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Strict Lyapunov functions for dynamic
consensus in linear systems interconnected

over directed graphs
Maitreyee Dutta Elena Panteley Antonio Lorı́a Srikant Sukumar

Abstract— We study dynamic consensus for general net-
worked (homogeneous) linear autonomous systems, that
is, it is only assumed that they are stabilizable. Dynamic
consensus pertains to a general form of consensus in
which, as a result of the systems’ interactions, they exhibit
a rich collective dynamic behavior. This generalizes the
classical consensus paradigm in which case all systems
stabilize to a common equilibrium point. Our main state-
ments apply to systems interconnected over generic di-
rected connected graphs and, most significantly, the proofs
are constructive. Indeed, even though our controllers are
reminiscent of others previously used in the literature, to
the best of our knowledge, we provide for the first time in
the literature strict Lyapunov functions for fully distributed
consensus over generic directed graphs.

Index Terms— Multiagent system, directed graphs, Lya-
punov stability, linear systems.

I. INTRODUCTION

IN the study of the collective behavior of multiagent
networked systems, a common problem studied in the

literature pertains to the case in which all the systems stabilize
at a common equilibrium point —see [1]. The collective
behavior, however, may be much richer than converging to an
equilibrium. In general, it depends on the nature of the systems
dynamics—they may be, e.g., linear [2]–[4] or nonlinear [5],
[6]—, on whether the networked systems are homogeneous
[2], [4] or heterogeneous [5], [7], [8], on the nature of
the interconnections graph—whether it is undirected [6] or
directed [2], [4]—, etc.

In this letter, we study the collective behavior of multia-
gent linear systems interconnected over directed graphs via a
distributed consensus algorithm. The class of systems that we
consider is fairly general since the only standing assumption
regarding the systems’ model is that it is stabilizable —cf. [3],
[6], and [9]. This class covers stable systems, as in [2] and [7],
neutrally stable systems, as in [4] and [8], but also unstable
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systems or oscillators. Therefore, the collective behavior of
such systems is not bound to stabilizing over a common
equilibrium point, but is much richer.

Following [5], we study dynamic consensus. This pertains
to the case in which, due to the systems’ interaction, an
emerging dynamics is generated, which, roughly, corresponds
to a weighted average dynamics of the interconnected systems.
Then, we say that dynamic consensus is achieved if the motion
of each system in the network matches asymptotically that of
the emergent dynamics. For instance, a network of oscillators
may behave collectively as a weighted averaged oscillator.
Other works in which synchronization is considered with
respect to a dynamical system, as opposed to an equilibrium
point, include [2] and [4]. The systems studied in [3], [6],
[9] and [8], too, lead to reach collective behaviors since they
are assumed to be merely stabilizable in [6], [9] and [3], and
neutrally stable in [8].

We analyze two controllers that are reminiscent of consen-
sus algorithms previously reported, in which the control gain
is defined upon the solution to a linear matrix inequality —cf.
[3], [6], [9], and [8]. The first controller, as the one proposed
in [10], relies on a constant coupling strength, so dynamic
consensus is reached exponentially fast (we provide an explicit
bound), but knowledge of the maximum eigenvalue of a matrix
that solves a Lyapunov equation involving the Laplacian
matrix is required. For the second controller this requirement
is removed, so, as in [6] and [9], it is fully distributed. We
show that by rendering the coupling strength time-varying
and monotonically increasing, the aforementioned information
is not required. To some extent, our control law recalls that
proposed in [9], but even if our controller relies on the same
principle, it differs from that in [9] in that in the latter the
coupling gain is computed dynamically in function of the norm
of the network’s state, akin to high-gain adaptive control.

In regards to the network’s topology, as for instance in [3],
we consider networks interconnected over generic connected
directed graphs, that is, containing a rooted directed spanning
tree. In particular, the graph may consist in a spanning tree,
as in [11], it may consist in a directed graph contain a root
node, as in [2], [10] and [12], or in rooted graphs with a
specific leader, as in [8], [9], [13], and possibly bidirectional
links among the followers, as in [8], to mention a few. Similar
results to those obtained here are presented in [9], but they are
restricted to a leader-follower configuration, so the directed



graph is assumed to have a directed spanning tree with a root
node as a leader. See also [13]. On the other hand, in [12] the
leaderless consensus problem is addressed for directed-graph
networked systems, but under the assumption that the (static)
graph is balanced. Thus, in none of these references generic
directed graphs are considered.

From the viewpoint of analysis, in many cases consensus
among linear systems may be assessed by relying on linear
algebra and graph theory. However, these methods fail for
nonlinear systems —cf. [5], [6]. In this case, the consensus
analysis (resp. design) problem may be broached as one of
stability analysis (resp. stabilization), relying on the con-
struction of a Lyapunov function. There are many articles
in which Lyapunov functions are proposed, for multiagent
systems interconnected over undirected graphs [6] as well as
over directed graphs [8]–[10], [12]–[14]. Actually, our proofs
follow a similar rationale as that in [6], but they certainly do
not constitute a straightforward extension.

Furthermore, we stress that except for [14], which is re-
stricted to systems of the form ẍi = ui, in none of these ref-
erences a strict Lyapunov function is proposed. Furthermore,
we stress that except for [14], which is restricted to systems
of the form ẍi = ui, in none of these references a strict
Lyapunov function (i.e., having a negative-definite derivative)
is proposed. The analysis methods used most commonly in
the literature relies on tools such as La Salle’s invariance
principle or Barbalat’s lemma. The former does not apply to
networks with time-varying topology and the latter does not
lead to uniform asymptotic stability. Only the latter, however,
guarantees robustness with respect to bounded additive distur-
bances. Disposing of strict Lyapunov functions is an important
step to consider more general scenarrii, such as that of linear
heterogeneous systems or with added nonlinearities, but they
may also be useful in the study of perturbed networked
systems or of robustness with respect to neglected dynamics.

Thus, to the best of our knowledge, although several aspects
studied in this letter have been addressed in the literature,
separately, never have they been considered simultaneously.
Beyond the generality of the network topology as well as in
the class of systems that we consider, our primary contribution
resides in the construction of strict Lyapunov functions for
multiagent systems in such a general scenario. Indeed, we
are unaware of strict Lyapunov functions for generic lin-
ear systems interconnected over arbitrary connected directed
graphs. The construction is based on that for second-order
integrators, proposed in [14], and as a byproduct of our main
results, we provide explicit exponential stability bounds on the
synchronization error trajectories. We show explicitly how the
speed of convergence depends on the maximum eigenvalue of
the matrix that solves an algebraic Riccati equation with unity
weighting matrix.

The remainder of this Letter is organized as follows. In the
next section we present the problem statement and its solution.
In Section III we present our main results, in Section IV we
provide illustrative numerical examples, before wrapping up
the paper with some concluding remarks in Section V.

II. PROBLEM FORMULATION AND ITS SOLUTION

We consider N multiagent linear systems with identical
dynamics,

ẋi = Axi +Bui, i ∈ {1, 2, · · · , N}, (1)

where xi ∈ Rn, ui ∈ Rp, and A ∈ Rn×n, B ∈ Rn×p, and
N ∈ N. For the systems (1) we address the consensus problem,
i.e., to guarantee that limt→∞ |xi(t) − xj(t)| = 0 ∀i 6= j,
under the following
Standing Assumption:

1) the agents communicate over a directed connected
graph,

2) the pair (A,B) is stabilizable.
That is, it is assumed that the systems communicate through
reliable unidirectional channels of intensity aij ≥ 0. That is,
if there exists an unidirectional edge εji interconnecting the
node j to the node i, we have aij > 0 and if no information
flows from the jth to the ith node aij = 0. In general, for any
pair (i, j), aij 6= aji. As is customary, the graph topology may
be modeled using the Laplacian matrix L = [lij ] ∈ RN×N ,
where

lii =

N∑
j=1,j 6=i

aij , lij = −aij , i 6= j. (2)

The first part of the Standing assumption is that the directed-
interconnection graph contains a rooted spanning tree. The
latter is a necessary condition for consensus in such networks
[16] and it means that there exists a subgraph containing a
node called root which has no incoming edge and from which
all nodes may be reached. It seems important to stress that
we do not assume that the graph contains a root node with
no incoming edges, as in a leader-follower configuration [8],
[9], [13]. Under the assumption that the graph is connected
we have the following.

Lemma 1: [16], [17] If the directed graph G has a rooted
spanning tree then its associated Laplacian matrix has a simple
zero eigenvalue with 1N :=

[
1, · · · , 1

]>
as its eigenvector of

dimension N and all of the remaining eigenvalues lie in the
open right half plane.

Another important characteristic of the Laplacian corre-
sponding to a directed graph is that it is not symmetric. This
is significant because it adds considerable difficulty to the task
of constructing strict Lyapunov functions to study consensus.
Yet, the following statement holds.

Lemma 2: [14] Let G be a directed graph of order N
and L ∈ RN×N be the associated non-symmetric Laplacian
matrix. Then, the following statements are equivalent:

1) the graph G has a spanning tree,
2) for any matrix QL ∈ RN×N , QL = Q>L > 0 and for

α > 0, there exists matrix P = P> > 0 such that

PL+ L>P = QL − α[P1Nv>l + vl1
>
NP ], (3)

where vl is the left eigenvector associated to the single
zero eigenvalue of L.

Under the standing assumptions above, we propose two
solutions to the consensus problem. Both involve the use of a



control input of the form

ui = −c(·)F
N∑
j=1

aij(xi − xj), (4)

where c(·) > 0 is a coupling weight that may be constant or
a time-varying function c : R≥0 → R>0 and F ∈ Rp×n is the
feedback matrix defined as F = B>M , where M is solution
to the Riccati equation

MA+A>M −MBB>M = −Q0, (5)

for any given Q0 = Q>0 > 0 —cf. [3], [6], [8]–[10]. The
existence of such matrix M is guaranteed by the assumption
that the pair (A,B) is stabilizable —cf. [18], [19]. Indeed, in
this case, for any symmetric positive definite matrices Q and
R ∈ Rn×n, there exists a positive definite matrix M =M> ∈
Rn×n that satisfies the matrix algebraic Riccati equation

MA+A>M −MBR−1B>M = −Q.

Thus, the existence of the control parameters c and F is
guaranteed by Lemmata 1–2 and the standing assumption.

III. CONSENSUS ANALYSIS: MAIN RESULTS

Our main statements, which are presented in this section
farther below, establish consensus of the systems (1) under
the control law (4) and, more significantly, provide a strict
Lyapunov function for the closed-loop system. In the first
statement it is assumed that the coupling strength c is a
constant majorating the largest eigenvalue of P in (3) —cf.
[3], [8], [10], [12]. Hence, the computation of the appropriate
gain c relies on the solution P to Eq. (3) and, indirectly,
on the knowledge of L. The second statement relaxes this
dependence by introducing a time-varying, strictly increasing,
gain t 7→ c(t).

A. The networked system’s equations
The rest of the paper is devoted to the analysis of the

consensus manifold {xi = xj} for all i, j ≤ N for the systems
(1) under the control law (4). To that end, we write the closed-
loop equations in the compact matrix form

ẋ = (IN ⊗A)x+ (IN ⊗B)u, (6)

where ‘⊗’ denotes the Kronecker product, IN denotes
the identity matrix of dimension RN × RN , and u :=
[u>1 · · · u>N ]> is given by

u = −(L ⊗ cF )x, (7)

so, replacing (7) in (6), we obtain

ẋ = [(IN ⊗A)− (L ⊗ cBF )]x. (8)

Then, we recall that, in contrast to systems that have
asymptotically stable equilibria, in general, for the multiagent
system (8) consensus, if it takes place, is dynamic. That is,
on the consensus manifold, on one hand a collective dynamic
behavior arises and, on the other, the synchronization errors
with respect to such behavior, converge to zero. To analyze
the dynamic consensus we follow the framework laid in [5].

To that end, we start by recalling a suitable convertible
transformation that maps the space of the states x into two
orthogonal spaces, one containing the states of the “averaged”
states xm and one containing the synchronization errors e.
More precisely, we have[

xm
e

]
= Tx, T :=

[
v>l ⊗ In

(IN − 1Nv
>
l )⊗ In

]
. (9)

It is important to remark that the matrix T is invertible and
it exists under the mild assumption that the Laplacian has a
simple eigenvalue equal to zero and all others have positive
real parts. That is, after Lemma 2 under the assumption that
the graph is directed and connected.

We remark that the state xm = (v>l ⊗In)x may be regarded
as a weighted average of the individual systems’ states and the
synchronization errors are defined relative to it, i.e.,

e =


e1
e2
...
eN

 =


x1 −

∑N
j=1 vljxj

x2 −
∑N
j=1 vljxj
...

xN −
∑N
j=1 vljxj

 =


x1 − xm
x2 − xm

...
xN − xm

 . (10)

Therefore the collective behavior of the networked system
is completely described by the dynamics of xm and of e.
These are computed by differentiating on both sides of the
first equality in (9) and using (8). For the mean-field dynamics
we obtain

ẋm =(v>l ⊗ In)[(IN ⊗A)− (L ⊗ cBF )]x
=(v>l ⊗A)x = Axm, (11)

—cf. [2], [4]. This dynamics, which is inherent to the network,
is clearly influenced by the systems dynamics.

On the other hand, the dynamics of the synchronization
errors e, yield

ė = [(IN − 1Nv
>
l )⊗A− (L − 1Nv

>
l L)⊗ cBF )]x. (12)

Then, since vl is a left eigenvector of L, we have L>vl = 0N
and L1N = 0N . Using the latter in (12) we obtain

ė = [(IN ⊗A)− (L ⊗ cBF )][(IN − 1Nv
>
l )⊗ In]x. (13)

Hence, replacing e = [(IN − 1Nv
>
l ) ⊗ In]x —cf. Eq. (9), in

(13), we obtain

ė = [(IN ⊗A)− (L ⊗ cBF )]e. (14)

In the sequel, we establish exponential stability of {e = 0}
for (14) and provide a strict Lyapunov function for this system
under the condition that c is positive and either constant or a
strictly increasing function of time. Exponential stability of
{e = 0} implies that all the systems synchronize and their
motions tend to that of the emergent dynamics (11); note that
the behavior of this system is purely determined by that of
the original systems and the network topology (through the
eigenvector v`), independently of the coupling strength.



B. Consensus with prescribed convergence rate

Remark 1 (notation): We use pm and pM to denote, re-
spectively, the smallest and largest eigenvalues of P ; mutatis
mutandis for Q, M and any other square matrices.

Proposition 1: Let P = P> > 0 be a solution of (3) with
QL = IN and an arbitrary α > 0 and let M be the solution of
(5) for any given Q0 = Q>0 > 0. Consider N identical linear
systems (1), with (A,B) stabilizable, in closed loop with (4)
with c ≥ pM , F := B>M , and let the coefficients aij ≥
0 be such that they generate, through (2), a non-symmetric
Laplacian matrix L that has a simple zero eigenvalue and all
others have real positive parts.

Then, dynamic consensus is achieved for the multiagent
closed-loop system (8) and the synchronization errors satisfy

|e(t)| ≤ κ|e(0)|e−γt t ≥ 0, (15)

where

κ :=

√
mMpM
mmpm

, γ :=
q0m
2mM

, (16)

and q0m is the smallest eigenvalue of Q0 —cf. Remark 1.
Proof: Consider the Lyapunov function candidate

V (e) = e>[P ⊗M ]e, (17)

which is positive definite in the synchronization errors e, as
defined in (10), but it is not for all e ∈ RnN . Indeed,

mmpm|e|2 ≤ V (e) ≤ pMmM |e|2 (18)

(only) for all e = [ (IN − 1Nv
>
l )⊗ In ]x —cf. Eq. (9).

Then, we use the identity (A ⊗ B)(C ⊗ D) = AC ⊗ BD,
where A, B, C, and D are of suitable dimensions so that
one can get the matrix products AC and BD, as well as
F = B>M , to compute the total derivative of V along the
trajectories of (14). We obtain

V̇ (e) = e>
[
P ⊗ [MA+A>M ]− c[PL+ L>P ]⊗MBB>M

]
e,

so, in turn, using (3) with QL = IN , it follows that

V̇ (e) = e>
[
P ⊗ [MA+A>M ]

− c
[
IN − α[P1Nv>l + vl1

>
NP ]

]
⊗MBB>M

]
e. (19)

However, we remark that

[αP1Nv
>
l ⊗ In]e = [αP (1Nv

>
l − 1Nv

>
l )⊗ In]x = 0Nn,

so using the latter in (19) we obtain

V̇ (e) = e>
[
P ⊗ [MA+A>M ]− cIN ⊗MBB>M

]
e.

Now, since P is positive definite it admits the decomposition
P = CDCT where C ∈ RN×N is orthonormal and D is the
diagonal matrix having the eigenvalues of P in its diagonal.
Then,

V̇ (e) = e>[C ⊗ In]
[
D ⊗ [MA+A>M ]

− cIN ⊗MBB>M
]
[C>⊗ In]e.

Next, we introduce ẽ := [C>⊗ In]e = [ẽ>1 · · · ẽ>N ]>, so

V̇ (e) =

N∑
i=1

ẽ>i

[
λi(D)[MA+A>M ]− cMBB>M

]
ẽi

V̇ (e) ≤ pM

N∑
i=1

ẽ>i

[
MA+A>M − c

pM
MBB>M

]
ẽi. (20)

On the other hand, by assumption, c ≥ pM . Therefore, after
(5), we obtain

V̇ (e) ≤ −pM ẽ>[IN ⊗Q0]ẽ = −pMe>[CC>⊗Q0]e.

Hence, since C is orthonormal, CC> = IN and, consequently,
V̇ (e) ≤ −pMe>[IN ⊗ Q0]e. Global exponential stability of
the manifold {e = 0} and the bound (15)–(16) follow from
integrating the latter inequality and using (18).

C. Fully distributed consensus

We relax the requirement in Proposition 1 to know the
maximum eigenvalue of P , which is implicit in the condition
that c ≥ pM and, consequently, relies on knowledge of the
Laplacian L. To that end, we redefine the coupling strength c
in (7) as a “slowly” strictly increasing time-varying function.

Proposition 2: Consider the linear multiagent system (8),
with (A,B) stabilizable, in closed loop with the consensus
control law (4) with c : R≥0 → R>0 strictly increasing and
F and aij as in Proposition 1. Then, the multiagent system
reaches dynamic consensus exponentially.

Proof: Consider again the Lyapunov function candidate
V in (17). Proceeding as in the proof of Proposition 1 we
obtain that the total time derivative along the trajectories of
(14) satisfies (20). Now, defining,

Q(c) :=
c

pM
MBB>M −MA−A>M

we see that, after (5) and (20),

V̇ (e) ≤ −pM ẽ>
[
IN ⊗ [(Q(c(t))−Q0) +Q0]

]
ẽ,

so, proceeding as in the proof of Proposition 1 we obtain

V̇ (e) ≤ −pMe>[IN⊗Q0]e−pMe>
[
IN⊗ [Q(c(t))−Q0]

]
e>.

Now, since t 7→ c(t) is strictly increasing,

T ′ := min{t ≥ 0 : c(t) ≥ pM} ∈ [0,∞)

exists. Therefore,

|Q(c(t))−Q0| ≤ (mMbM )2 := β ∀t ∈ [0, T ′],

while Q(c(t))−Q0 ≥ 0 for all t ≥ T ′. It follows that

V̇ (e(t)) ≤
{

pMβ|e(t)|2 ∀ t ∈ [0, T ′]

−q0mpM |e(t)|2 ∀ t ≥ T ′
(21)

Then, using the inequalities in (18) and integrating both sides
of (21) we obtain

V (e(t)) ≤

{
eγ0tV (e(0)) ∀ t ∈ [0, T ′]

e−γ1(t−T
′)V (e(T ′)), ∀ t ≥ T ′

(22)



where γ0 := pMβ
pmmm

and γ1 := q0m
mM

. In turn, this implies that

V (e(t)) ≤ e(γ0+γ1)te−γ1tV (e(0)) ∀ t ∈ [0, T ′]

≤ e(γ0+γ1)T
′
V (e(0))e−γ1t,

while, using V (e(T ′)) ≤ eγ0T
′
V (e(0)) and the second in-

equality in (22), we obtain

V (e(t)) ≤ e(γ0+γ1)T
′
V (e(0))e−γ1t ∀ t ≥ T ′

Putting the last two inequalities together and using (18) with
e = e(t) we obtain that (15) holds with

κ :=

[
e(γ+γ0)T

′mMpM
mmpm

]1/2
, γ :=

q0m
2mM

. (23)

Remark 2 (Convergence of the control input): For the sake
of generality, in the statement of Proposition 2 there is no
particular choice for the function t → c(t) which is a
strictly increasing control gain. It is important to stress that
the monotonicity of c does not necessarily imply that the
control input grows unboundedly along the trajectories. For
example, in [9] a controller of the form (4) is also used
and c is defined dynamically and grows monotonically as
a function of the consensus errors. A simpler choice, state-
independent, is the slowly increasing function c(t) := ln(ε+t),
which also qualifies as a suitable function for purpose of
fully decentralized consensus and the control input remains
bounded. Indeed, c(t) ≥ pM for all t ≥ T ′ := epM − ε.
Hence, T ′ ∈ [0, epM ) exists for any ε > 0. On the other hand,
the control input in (7) is bounded along trajectories and, as
a matter of fact,

lim
t→∞

|u(e(t))| = 0.

This follows from the previous proof and using the explicitly
exponential bounds on the synchronization errors. More pre-
cisely, note that |u| =

∣∣ c(t)[−L ⊗ B>M ]x
∣∣ = |c(t)[−L ⊗

B>M ]e|, so, along the synchronization-error trajectories,

|u(e(t))| ≤ c(t)| − L ⊗B>M ||e(t)|.

Then, using (15) with (23), we see that

|u| ≤ κ
∣∣ − L⊗B>M ∣∣|e(0)|c(t)e−γt, ∀ t ≥ 0.

Therefore, any strictly increasing function that does not grow
faster than exponentially at the rate that the error trajectories
converge γ is suitable. In particular,

lim
t→∞

ln(t+ ε)e−γt = 0

for any ε > 0, so (2) holds.

IV. SIMULATION RESULTS

To illustrate our theoretical findings, we provide some
numerical simulation results done using MatlabTM R2021a.
The simulation tests are done using five harmonic oscillators
modeled by Eq. (1), with

A =

[
0 1
−1 0

]
, B =

[
0
1

]
.

We consider two graphs with different topology. First, as
in [8], [9], and [13], we consider a leader-follower scheme
in which the graph consists in a simple rooted spanning
tree. In the second case the directed graph is connected.
The respective graphs and the corresponding Laplacians are
provided in Figures 1 and 2, below.

1

2 3

4 5

a21=1 a31=1

a43=1 a53=1
L =


0 0 0 0 0
−1 1 0 0 0
−1 0 1 0 0
0 0 −1 1 0
0 0 −1 0 1


Fig. 1. Example 1: spanning-tree graph and corresponding Laplacian

1

2 3

4 5

a21=5 a31=1

a43=3 a53=1

a23=1

a15=2

L =


2 0 0 0 −2
−5 6 −1 0 0
−1 0 1 0 0
0 0 −3 3 0
0 0 −1 0 1



Fig. 2. Example 2: connected graph and corresponding Laplacian

For both cases, we use the control law in (4) with the
coupling strength c defined as c(t) := ln(ε+ t), with ε = 1.5.
To compute the control gain F , we start by setting Q0 = I2
and we solve the algebraic Riccati equation (5) for M . We
obtain

M =

[
1.912 0.4142
0.4142 1.352

]
,

which is positive definite. Then, we compute the controller
gain, F = BTM , which yields F = [0.4142 1.352].

Now, for the sake of fair comparison, we use the same initial
conditions for both cases:

x1(0) = [ 1 −1 1.5 2 3 ]>,
x2(0) = [ 2 −2 0.5 3 3.5 ]>.

For the case of leader-follower network as shown in Figure
1, the left eigenvector vl associated with zero eigenvalue of
the graph’s Laplacian is given by vl =

[
1 0 0 0 0

]>
.

This corroborates that the first agent is the singular root node
in the network. So, the emergent dynamics corresponds to
that of the first agent—see Figure 3. From the evolution of
individual state variables (represented by dashed lines), it can
be concluded that all the trajectories converge to that of the
mean-field system (represented by a solid blue line). The
control input subplot in Figure 3 shows that the control input
dies down to zero as the multi-agent system reaches consensus.

For the case of connected directed graph, the left eigenvector
associated with the zero eigenvalue of the graph’s Laplacian
is given by vl =

[
2
7 0 1

7 0 4
7

]>
, so the mean-field

state xm := (v>l ⊗ In)x corresponds to a weighted linear
combination of state variables of the agents that can transfer
information to all other agents, which in this case, are the first,
third, and fifth agents. This is reflected in the fact that the first,
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Fig. 3. Distributed consensus of x1 and x2 and the control input when
the communication graph has a spanning tree.

third and fifth elements of vl are non-zero. The simulation
plots for this case are portrayed in Figure 4.

The states x1 and x2 converge to their mean-field values,
showed as solid blue lines in Figure 4, so the corresponding
synchronization errors converge to zero. As expected from
the emergent dynamics (11), the steady state oscillator is a
weighted averaged oscillator influenced by the nodes in the
network that can transfer information to all the remaining
nodes. The control input sub-plot is shown in Figure 4 which
dies down to zero as synchronization dies down to zero.
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Fig. 4. Distributed consensus of x1 and x2 and the control input when
the communication graph is connected.

V. CONCLUSION

The collective behaviour of “general” linear systems in-
terconnected over a directed graph may be complex. Via a
change of coordinates that depends on the network topology
(the eigenvectors of the Laplacian matrix) it is possible to
exhibit the dichotomous character of the resulting motion.
Two variables belonging to orthogonal spaces appear, one
corresponding to the synchronization errors and another to
a “weighted-average” dynamics. The synchronization errors
converging to zero is known as dynamic consensus.

The results presented in this letter are fairly general, as they
establish dynamic consensus for merely stabilizable linear sys-
tems interconnected over arbitrary connected directed graphs.
The most important contribution, however, is to provide strict
Lyapunov functions (in the synchronization errors space). This
is significant because it may serve as basis to extend our results
to other interesting scenarios. For instance, to consider linear
systems with certain degree of heterogeneity or with added
nonlinearities. Disposing of strict Lyapunov functions may
also be useful in the study of perturbed networked systems, of
robustness with respect to neglected dynamics, and networks
with time-varying topology. Such topics are currently under
investigation.
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