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ABSTRACT8

Identifying the hidden organizational principles and relevant structures of networks representing complex

physical systems is fundamental to understand their properties. To this aim, uncovering the structures

involving the prominent nodes in a network is an effective approach. In temporal networks, the simul-

taneity of connections is crucial for temporally stable structures to arise. We thus propose here a novel

measure to quantitatively investigate the tendency of well connected nodes to form simultaneous and

stable structures in a temporal network. We refer to this tendency, when observed, as the "temporal rich

club phenomenon". We illustrate the interest of this concept by analyzing diverse data sets under this

lens, and showing how it enables a new perspective on their temporal patterns, from the role of cohesive

structures in relation to processes unfolding on top of the network to the study of specific moments of

interest in the evolution of the network.

9

1 Introduction10

A wide range of natural, technological and social systems can be represented as networks of agents (nodes)11

and their interactions (edges)1–3. Typical examples include communication systems4, transportation12

infrastructures5, biological and ecological systems6–8, brain networks9 or social interactions10–12. Such13

representation offers a common framework and common tools to analyse these systems, link their structure14

and dynamics and investigate processes on top of them. In particular, a common challenge consists in15

identifying relevant network structures, and several complementary approaches have been put forward to16
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characterize networked data sets and their more central elements. For instance, hubs, single nodes with very17

large numbers of connections (degrees), are known to influence spreading processes1, 3. A quantification of18

a core-periphery structure identifies a central core of well-connected nodes13. The k-core decomposition14
19

decomposes the network into subgraphs of increasing connectedness, with correspondingly increasing20

influence in spreading processes15. The rich-club coefficient quantifies whether the nodes with large21

numbers of neighbors (the hubs) tend to form more tightly interconnected groups16–20 that can, for instance,22

share the control of resources in social and collaboration networks18, or shape the routing and integration23

of communication in brain networks21–23.24

While these approaches are effective for static networks, an increasing number of data sets25

include temporal information about edges, which appear and disappear on different time scales: static26

networks are often only aggregated representations of the resulting temporal networks24–26. Thus, any27

structure found in a static network obtained by temporal aggregation of data could in fact be formed by28

edges that were active at unrelated times27, 28. To investigate structures in temporal networks, it is crucial29

to take into account the complex temporal properties of the data, as already argued in early works on30

temporal networks27, 28. For instance, a static hub might have drastically different numbers of neighbors at31

different times27, 28, as well as different dynamical properties27–29; Network modular structures can evolve32

(which can e.g. be a resource for cognitive processing30); Processes can only take causal, time respecting33

paths among the elements of a network31, 32; Concurrency, i.e., the simultaneity of connections of a given34

node with others, is key in epidemic propagation processes28, 33; Dynamic or temporal motifs can be35

defined as the repetition over time of simultaneous subgraphs28 or as the repetition of the connections in a36

small temporal subgraph in a given order34–36; Well connected structures such as cores are not static but37

are defined on specific time-intervals37, 38.38

Overall, structures and hierarchies in temporal networks need to be defined and investigated39

taking into account (i) the temporality and simultaneity of the interactions forming the structure, (ii)40

the time-span on which the structure exists. Here, we propose a new way to investigate the cohesion41

of increasingly central nodes in a temporal network, namely, the temporal rich club (TRC) coefficient:42

given a temporal network, our aim is to quantify whether nodes who interact with increasing numbers of43

other nodes (i.e., with increasing degree in the aggregate network) tend also to interact with each other44

simultaneously and in a stable way. We thus first define the ∆−cohesion of a group of nodes at each time45

t, as the density of links persistently connecting the nodes in the group during a time interval of length46
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∆ starting at t. We then consider groups of nodes of increasing degree in the aggregated network, and47

measure the maximum value of their ∆−cohesion over time: this quantifies whether these groups are48

tightly and simultaneously interconnected for a certain duration ∆.49

Moreover, and as in the case of the static rich club coefficient17, 39, a natural question is whether50

the simultaneous connections between high degree nodes could exist just by chance, so that we compare51

the result with an adequate null model for temporal networks40. To show the broad interest of this new52

analysis tool for temporal networks, we consider empirical temporal networks representing very different53

systems: an air transportation infrastructure, face-to-face interaction networks in social contexts, and a54

network of neurons exchanging information. In each case, we compute the temporal rich-club coefficient55

for the data and the null model, and highlight how it unveils interesting properties of the data. We show56

in particular how static and temporal rich clubs are independent phenomena, how a temporal rich club57

impacts spreading processes, and how a temporal network undergoing successive states41 can present a58

distinct temporal rich club in each state, with different temporal patterns despite similar static structures.59

Our findings suggest that the temporal rich club coefficient provides a new item in the toolbox for the60

analysis of temporal networks, interlinked with but different from and complementary to the investigation61

of other types of structures in temporal networks such as stable or unstable hubs27, dynamic motifs28, 35 or62

span-cores37 (in the same way as investigating the static rich club is different from showing the existence63

of hubs, cores or static motifs): for instance, a stable hub might be connected to low-degree nodes, and/or64

to different nodes at different times, and motifs can involve nodes of different degrees. This new tool65

can thus shed light on the role and connections of the most prominent elements and provide relevant66

information on the different periods of interest of the network.67

2 Results68

2.1 The temporal rich club69

We consider a temporal network in discrete time on a time interval [1,T ], represented as a series of70

instantaneous snapshots of the network at each time stamp (Figure 1.a)24, 27. We denote by temporal edges71

the interactions between pairs of nodes in each snapshot. The temporal aggregation over [1,T ] yields a72

static (aggregated) network G = (V,E) with set of nodes V and set of edges E (Figure 1.b), in which an73
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edge is drawn between two nodes i and j if they have at least shared one temporal edge, with a weight wi j74

given by the number of temporal edges between i and j. The degree k of a node in G is the number of75

distinct other nodes with which it has interacted at least once in [1,T ], and its strength s the total number76

of temporal edges it has participated to.77

As stated above, our goal is to quantify a temporal rich club effect, i.e., whether nodes of78

increasing degree in G tend to be more connected than by chance simultaneously and for a certain79

duration. We first remind that the rich club coefficient was defined for a static network as the density of80

edges in the subset S>k of the N>k nodes with degree larger than k16, 17, 39: φ(k) = 2E>k
N>k(N>k−1) , where E>k81

is the number of edges connecting the N>k nodes. This coefficient quantifies the rich club connectivity:82

how densely the subset S>k is interconnected. Its evolution with k has been discussed, as an increasing φ(k)83

indicates that nodes of larger degree tend to form increasingly connected groups of nodes (the so-called84

"rich club effect")16, 17, while φ(k) can also collapse to 0 at large k, for instance in very disassortative85

networks39. Moreover, φ(k) can be compared with the value φran(k) obtained in an equivalent randomized86

graph17, 39.87

Here, to take into account temporality, we first define at each time t the ∆−cohesion. To this aim,

we consider the set of ties E>k(t,∆) (between the nodes of S>k ) that remain stable over the time interval

[t, t +∆[ (Figure 1c): the ∆−cohesion ε>k(t,∆) is then the number |E>k(t,∆)| of such ties, normalized by

its maximal possible value N>k(N>k−1)/2 Note that ε>k(t,∆ = 1) is the instantaneous density between

the nodes of S>k, i.e., a kind of instantaneous static rich-club coefficient calculated with the same ranking

of nodes in all snapshots (given by the aggregated degree), which is different from the rich-club coefficient

of the instantaneous snapshot at time t computed using the instantaneous values of the degree, as the

degree of each node can fluctuate28. We then define the temporal rich club coefficient as the maximal

cohesion observed in the temporal network over time:

M(k,∆)≡max
t

ε>k(t,∆) .

In other terms, M(k,∆) is the maximal density of temporal edges observed in a stable way for a duration ∆88

among nodes of aggregated degree larger than k: it allows to understand and quantify (i) whether the static89

rich-club patterns correspond to a structure that actually existed at some instant, with the same density of90

links measured in the static aggregated network, or with a smaller density, (ii) how stable such structure91

4/29



was, (iii) or whether the static rich-club is actually formed by links that appeared at unrelated times and92

never existed in a simultaneous way. While, by definition, M(k,∆) is non-increasing as a function of ∆, a93

M(k,∆) increasing with k denotes that the most connected nodes tend as well to be increasingly connected94

with each other in a simultaneous way for a duration at least ∆. We note that, for large k, this is a different95

requirement from distinguishing stable and unstable hubs27, even if a stable hub would statistically tend to96

contribute to such connectedness. Indeed, M(k,∆) focuses on the links between hubs: a hub might have a97

consistently large instantaneous degree but towards small degree nodes or towards changing neighbors42,98

while another might have a fluctuating degree but still maintain its few links towards other high degree99

nodes, hence contributing to a temporal rich club. Moreover, as the simultaneity of connections within100

S>k might simply be due to chance, we compare M(k,∆) with the value Mran(k,∆) obtained in a suitable101

null model of the temporal network: µ(k,∆)≡M(k,∆)/Mran(k,∆)> 1 indicates that the nodes of degree102

larger than k are more connected simultaneously on at least one time interval of duration ∆ than expected103

by chance, denoting a temporal rich club ordering. Although there is a large variety of null models for104

temporal networks40, we focus here on the simultaneity of connections: we thus consider a randomization105

procedure that preserves the overall activity timeline of the temporal network (number of temporal edges106

at each time) as well as the degree of each node and weight of each link (i.e., number of snapshots in which107

the link is active) in the aggregated graph. To this aim, we consider the list of all temporal edges, under108

the form (iq, jq, tq) denoting an interaction between nodes iq and jq at time tq ∈ [0,T ], and we permute109

randomly the timestamps tq of all temporal edges while keeping the node indices iq and jq fixed. We110

emphasize that the resulting aggregated structure is the same as in the original data, so that the static RC111

is exactly the same in the data and in the null model. Moreover, the activity timeline is also the same:112

differences in the cohesion and in the temporal rich club coefficient between the data and the null model113

makes it thus possible to distinguish between simultaneity of links due purely to e.g. bursts of activity and114

simultaneity due to more meaningful structures.115

Furthermore, as M(k,∆) is defined as a maximum over time, it is also relevant to study the time116

evolution of the ∆−cohesion ε>k(t,∆), in order to find the moments of highest simultaneous connectivity117

of S>k, and to check whether this cohesion is stable or fluctuates strongly (similarly to the fact that single118

nodes can have stable or fluctuating high degree27). This quantity can be shown, as in Figure 1d-e, as a119

colormap of ε>k(t,∆) vs. t and ∆ at fixed k, (or t and k at fixed ∆), or as curves (ε>k(t,∆) vs. t at fixed ∆120

and k). This allows for instance to distinguish between stable or recurrent and transient rich club effects:121
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in the former case, ε>k(t,∆) reaches its maximum M(k,∆) repeatedly, or remains close to it, while in the122

latter, M(k,∆) is reached only once or only at specific moments. We can moreover compare ε>k(t,∆)123

for the data and for the null model, in which the activity timeline and the static rich-club structure are124

conserved, to reveal which temporal patterns cannot be simply explained by e.g. periods of higher activity.125

a) b)

c)

d)

G(V,E)

6 links ∈ E>3(t=t0 , ∆=1 ) 

2 links ∈ E>3(t=t0  , ∆=5) 

4 links ∈ E>3(t=t0 , ∆=3 ) 

t0 t1 t2 t3 t4

...

...

...

...

...
e)

...

∆ = 1

∆ = 50

k = 350

k = 410k = 410

k = 350

Figure 1. a) Schematic representation of a temporal network as a sequence of instantaneous snapshots where
nodes are connected by temporal edges. b) Time aggregated graph G(V,E), where the weight of an edge
corresponds to the number of occurrences of the corresponding temporal edge. The set S>3 of nodes of degree larger
than 3 in the aggregate graph G and its induced subgraph are highlighted by the shaded area. c) Each line shows the
edges that form E>3(t0,∆), i.e., the edges joining nodes of S>3 that are stable on [t0, t0 +∆[, for several values of ∆,
for the toy example of panel a). d) Two examples of colormaps of the ∆−cohesion ε>k(t,∆) vs. t and ∆ at fixed k,
computed for the U.S. Air Transportation Temporal Network, for k = 350 and k = 410. The characteristic triangular
shapes in these colormaps is due to the following property: if an edge (or a set of edges) is stable from a time t to a
time t +∆, it is also stable from t +1 to t +1+(∆−1), from t +2 to t +2+∆−2, etc. Each edge contributing to
the density value at coordinates (t,∆) in the colormap thus also contributes to the value at (t +n,∆−n). Note that
ε>k(t,∆) gives the density of edges stable on [t, t +∆[, so is not defined for t > T −∆+1. e) Examples of time
series ε>k(t,∆) vs. t, at fixed k and ∆, for the same data set, i.e., horizontal cuts of the colormaps.
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2.2 Static vs. temporal rich clubs126

We first apply our measure on a data set describing the U.S. air transportation infrastructure from 2012 to127

2020, with temporal resolution of one month, for 105 snapshots (see Methods): in this temporal network,128

the N = 1920 nodes represent airports and a temporal edge in one snapshot represents the existence of a129

direct connection in the corresponding month. The average number of temporal edges in a snapshot is130

6126 and, in the aggregated network, the average degree is 44, with degrees ranging from 1 to 498. We131

show in the Supplementary Information (SI) the degree distribution of the aggregated network as well as132

of several snapshots: as discussed in43, these distributions are broad and stable across months and years,133

despite some fluctuations in the instantaneous degrees of single nodes.134

Figure 2.a shows the k−∆ diagram of the temporal rich club coefficient M(k,∆) as a color plot135

(the size of S>k being shown on top). At fixed k, M(k,∆) decreases as ∆ increases (by definition, as a136

larger ∆ is a stronger requirement in terms of stability of temporal edges). At fixed ∆, M(k,∆) is small137

for small and intermediate k, and decreases rapidly as ∆ increases: many small airports have fluctuating138

activity, sometimes seasonal, so that many temporal edges involving these airports are not very stable43,139

leading to a small cohesion at the global level. The maximal cohesion however increases with k: airports140

with more connections tend also to be more interconnected and with increasingly stable connections (as141

found also in43). M(k,∆) reaches very large values around k ∼ 315, even at large ∆, indicating a stable142

and very cohesive structure. In fact, most of the 31 airports in S>315 are hubs of the U.S. air transportation143

system, which are largely interconnected with very stable (and simultaneous) connections. We note that:144

(i) the cohesion reaches 1 for ∆ = 1, meaning that there exists at least one month in which these nodes are145

all simultaneously interconnected, however (ii) the cohesion remains lower than 1 for ∆ > 1, meaning that146

not all these connections are stable. For higher values of k, M(k,∆) decreases again, especially at large ∆,147

with a final increase close to the maximum possible value of k (such that |S>k| ≥ 2). This pattern indicates148

that, when restricting to k > 380− 390, the interconnections of the nodes of S>k become actually less149

simultaneous and stable than in S>315: this means that some airports with degree larger than 380−390150

have actually less stable connections than others with degree 315 < k < 380, i.e., that some of the airports151

with very large aggregated degree have fluctuating connections, even if their instantaneous degree remain152

stable, see Figure 2d. This is also clear from the cohesion shown in Figure 1.d-e for k = 350 and k = 410,153

with large and stable values for k = 350 at any ∆, but smaller values for k = 410 and large fluctuations154
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at small ∆. While the static rich-club analysis shown in Figure 2c does not reveal any such pattern, the155

analysis of the cohesion shows that the nodes with very high degree have a counter-intuitive behaviour156

with less stable connections than nodes with slightly less high degree.157

We further investigate this point in Figure 2.b,d: Figure 2.b shows the 20 airports with largest158

aggregated degree, i.e., number of distinct other airports with which they share a direct connection (degree159

values ranging from 350 to 498). We highlight in red the airports that are as well among the 20 nodes with160

largest aggregated strength (s > 10,000), and in light blue the others. While the red nodes are typically161

well-known hubs, we find among the nodes in light blue airports such as Burbank-Hollywood (BUR),162

Teterboro Airport (TEB) and Westchester County Airport (HPN). It turns out these airports serve as163

reliever airports for hubs such as LAX (Los Angeles) and JFK (New York), respectively: they are therefore164

extremely well connected in the aggregated network but have fluctuating connections, depending on the165

needs of the neighbouring hubs. Figure 2.d highlights the differences between the two types of nodes,166

i.e. the "real" hubs and the reliever airports. On the one hand, both hubs and relievers have rather stable167

values of their instantaneous degree k(t). The relievers cannot be simply identified as unstable hubs27, i.e.168

by a strongly fluctuating instantaneous degree. On the other hand, the bottom panel displays the Jaccard169

index between the connections of O’Hare International Airport (ORD) and Westchester County Airport170

(HPN) in successive months. ORD has a very stable neighborhood while HPN (reliever airport for JFK),171

despite having the largest aggregated degree value, undergoes changes of up to 80% of its neighborhood172

from a month to the next: as also shown in the SI, the neighborhoods of reliever airports, and not of hubs,173

change between successive snapshots: it is thus the dynamics of their neighborhoods that identifies reliever174

airports42, rather than the evolution of their instantaneous degree.175
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Random

Data

a) b)

c) d)

ORD

HPN

ORD

HPN

Figure 2. U.S. air transportation temporal network. a) (top) Size N>k = |S>k| of the sub-network of
nodes of aggregate degree larger than k as a function of k; (middle) temporal rich club coefficient M(k,∆)
as a color plot as a function of k and ∆, for the U.S. air transportation temporal network; (bottom)
Mran(k,∆) obtained for a randomized version of the temporal network that preserves the activity timeline
and the structure of the aggregated network. b) Geographic locations of the 20 airports with largest
aggregate degree (S>350); airports that are also in the group of 20 nodes with highest strength (s > 10,000,
i.e., at least about 100 different connections each month on average) in the aggregated network are
depicted in red, whereas the light blue nodes have low strength. c) (top) Static rich club coefficient φ(k)
of the aggregated graph, as a function of the aggregate degree k; (bottom) ratio µ(k,∆) between M(k,∆)
and Mran(k,∆) as a function of k for specific values of ∆. µ(k,∆)> 1 indicates that a temporal rich club
ordering is present, i.e., that the interactions within S>k are more simultaneous than expected by chance.
d) Instantaneous degree and Jaccard index of the neighborhood of a node between times t and t +1
(bottom) as a function of time, computed for O’Hare International Airport (ORD), and Westchester
County Aiport (HPN): both airports are in the top 20 nodes for aggregate degree, yet ORD has also a
stable neighborhood while the one of HPN fluctuates more.
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Figure 2.a (bottom) displays the maximal cohesion Mran(k,∆) for the randomized version of176

the data. Mran(k,∆) shows similar patterns but smaller values than M(k,∆) for all (k,∆), showing that177

a temporal rich club ordering is present: for any S>k, the interactions tend to be more simultaneously178

cohesive than expected by chance. This is the case even at very large k: even when the reliever airports179

lead to a smaller M(k,∆), its value is still larger than by chance.180

Differences with chance expectations are further investigated in Figure 2.c, which also shows181

for reference the static rich club coefficient φ(k). φ(k) increases monotonically and saturates at 1 for k182

larger than ∼ 300, with thus a simpler pattern than M(k,∆). The ratio µ(k,∆) vs. k for various ∆ exhibits183

on the other hand an interesting behavior: µ(k,∆) is above 1 and almost constant over a large range of184

k values, and decreases for 320 . k . 380: in this range of k values, S>k is a mix of hubs and reliever185

airports, with both very stable connections and others much less stable. The randomization by time stamp186

reshuffling does not perturb the most stable connections, so that M and Mran are closer. Finally for the187

largest aggregated degree values, µ(k,∆) reaches again very large values, especially for large ∆: many of188

the remaining connections are to reliever airports (more than 50% of edges between the nodes of S>k for189

k > 350), and, even if these connections are not necessarily very stable nor simultaneous, they are more so190

than by chance.191

We also show in the SI the analysis of the data set if we merge each reliever we have identified192

with its corresponding hub: as could be expected from the previous discussion, the temporal rich club193

coefficient is then simply an increasing function of k at fixed ∆, with M(k,∆) close to 1 for all k > 310194

and all ∆, and the large values of µ(k,∆) at large k are suppressed. The patterns of Figure 2 are thus due195

to the co-existence of hubs and relievers, whose different nature could not simply be inferred from the196

static rich club coefficient nor by the fluctuation of their instantaneous degrees. We note indeed that the197

static rich clubs of the two cases (with or without merging of hubs and relievers) are very similar (see SI);198

however the temporal patterns are very different, especially for the very high degrees: when hubs and199

relievers are merged, ε>k(t,∆) remains close to 1 for all k > 310 and all ∆, indicating an extremely stable200

densely connected structure present at all times; in the original data, ε>k(t,∆) still does not depend much201

on time for 310 . k . 380 but takes lower values (hence the structure is less densely connected), and for202

k = 410 it is possible to identify the coexistence between (i) a very stable structure with density ∼ 0.3 (ii)203

links that allow to reach a larger cohesion but only at specific moments in time and for limited durations204

(smaller ∆). Overall, the analysis of the US air transportation network under the lens of the temporal205
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rich club has thus shed light on the different roles of well-connected nodes, highlights how temporal and206

static rich clubs can co-exist albeit with different patterns, and how a given static rich club pattern can207

correspond to very different temporal rich club dynamics.208

2.3 Temporal rich club and spreading processes209

The second dataset we consider is a temporal network of face-to-face interactions between 232 students210

and 10 teachers of a primary school in France12: the temporal edges between two nodes at a specific211

time stamp correspond to the detection by wearable sensors of a face-to-face interaction between the212

two corresponding individuals at that time, as in similar data sets studied in previous works on temporal213

networks11, 27, 44, 45 (see Methods). The original time resolution of the data set is 20s for two schooldays,214

and, in order to smoothen the short time noisy dynamics, we perform a temporal coarse-graining on215

successive time-windows of 5 minutes. We consider in the main text the first school day only, i.e., a216

temporal network of N = 242 nodes and duration T = 103 time stamps (each representing a 5-minutes time217

window). The maximal degree in the aggregated network is kmax = 98 (see SI for the degree distribution218

of the aggregated network). Results for the whole 2-days data set and for a finer temporal resolution are219

shown in the SI. We also show and discuss in the SI the analysis of other data sets describing face-to-face220

interactions in other contexts.221

Figure 3.a displays the k−∆ diagrams of M(k,∆) for the original temporal network (middle)222

and its randomized version (Mran(k,∆), bottom), with the size of S>k (top panel), as for Fig. 2a. At fixed223

∆, M(k,∆) tends to increase with k; moreover, M(k,∆) decreases more slowly with ∆ when k increases:224

nodes with higher degree in the aggregated network tend to be more tightly interconnected, and in a more225

stable way. This gives additional insights into the social dynamics of the school, by showing that the static226

rich club is not only due to contacts occurring at unrelated times, but that a cohesive structure between the227

high degree nodes actually took place in a simultaneous way. For instance, the 7 nodes of S>87 reach a228

maximal cohesion M(k,∆)≈ 0.28 at ∆ = 1 and have some long lasting stable contacts (M(k,∆)& 0.09229

up to ∆ = 25). We have verified that the students of S>87 actually belong to different school classes: the230

static rich club could thus a priori be due to random, fleeting contacts occurring at unrelated times between231

them, but the value reached by M(k,∆) shows that a part of the structure found statically is indeed found232

as simultaneous links at least once. Note however that the instantaneous cohesion remains lower than233
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the static rich club coefficient: only a fraction of the links present in the aggregated network are present234

simultaneously at any instant (φ(k) reaches values close to 0.9, while the instantaneous cohesion M(k,∆)235

remains lower than 0.3).236

The temporal structures disappear in the randomized version of the temporal network (which237

has the same static rich-club as the original data), with much lower cohesion values on the whole k−∆238

domain, indicating a temporal rich club ordering in the data i.e., that the cohesion between the large degree239

nodes cannot be simply explained by the activity timelines. This is confirmed in Figure 3.b, in which240

we investigate the dynamics of the temporal rich club through the temporal evolution of the cohesion241

ε>87(t,∆). For the original data, the simultaneous cohesion of these nodes fluctuates strongly at small ∆,242

is 0 in many snapshots and reaches its maximum in the periods of high overall activity (namely recess and243

lunch break12, as seen from the activity timeline of the network), forming a transient but repeated temporal244

rich club (just as single nodes can also repeatedly have large numbers of neighbours, or small structures245

-motifs- can also appear repeatedly in some cases28). We also show in the SI that some cohesion between246

these nodes occurs again in the class breaks of the second day of data, albeit in a less stable way. Note that,247

while the analysis of static RCs on each snapshot could reveal that small cohesive structures between these248

nodes appear repeatedly, it would not allow to investigate their stability, as the links of these instantaneous249

rich clubs could differ from one time to the next. We show for instance in the SI the cohesion diagrams as250

a function of time and degree, for various values of ∆: ε>k(t,∆ = 1) reaches values of ≈ 0.25 in several251

periods, but a same density of 0.25 in successive times could correspond to completely different links.252

This is actually the case in the reshuffled data (even if the instantaneous rich club connectivity reaches253

similar values as in the real data in a repeated fashion), as the investigation of ε>k(t,∆ > 1) shows: it254

remains larger than zero for ∆≥ 5 only for the original data and during the lunch break. In other words,255

patterns of apparent stability seen in instantaneous static rich club values do not correspond necessarily to256

a real stability of the link structure. Studying the ∆-cohesion with ∆ > 1 makes it possible to distinguish257

between these possibilities: Figure 3.b, shows that the link structure between the large degree nodes is258

also partially present for large ∆, although with few links for ∆ > 10; it becomes moreover transient, i.e.,259

the cohesive structure between these students occurs only once in a stable manner, namely at lunch. Note260

also that this transient structure is an indication that the network structure is different during lunch with261

respect to other periods, as indeed found by other analysis41, 46. In the randomized data instead, in which262

both activity timelines and static RC are conserved, these patterns are suppressed: this highlights once263
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again how the stability and transient or repeated character of the rich club structure could not be deduced264

from the analysis of the static RC nor of the activity timeline.265

Figure 3c shows for reference the static rich club coefficient φ(k), which increases with k, as266

with other social networks17: the children with a larger diversity of contacts (the degree in the aggregated267

network is the number of distinct other individuals contacted) tend also to be more interconnected. For268

the temporal rich club coefficient, the ratio µ(k,∆) quantifies moreover the difference in simultaneous269

interactions with respect to the randomized version: it is higher for larger ∆, as stable simultaneous270

interactions are disrupted in the null model, remains stable on a broad range of k values, and tends to271

decrease at larger k. This indicates that the nodes of the temporal network are connected in a much more272

simultaneous way than expected by chance, especially when considering stable interactions (i.e., temporal273

edges lasting over many successive snapshots). Once again, this result could not be deduced from the274

static rich club analysis, even if applied successively to each snapshot.275

The temporal network under scrutiny represents interactions among individuals, which can be276

the support of many processes, and in particular of the spread of information or infectious diseases. It277

is thus relevant to investigate whether the temporal rich club ordering plays a role in the unfolding of278

such processes, as with other temporal structures38. We therefore consider the paradigmatic susceptible-279

infected-susceptible (SIS) and susceptible-infected-recovered (SIR) models of spreading processes. In the280

SIS case, nodes can be either susceptible (S) or infectious (I): a susceptible can become infectious upon281

contact with an infectious, with probability λ per time step; infectious individuals recover with probability282

ν at each time step and become susceptible again. In the SIR case, nodes enter the R compartment upon283

recovering and cannot be infected again. We quantify the interplay between the temporal network and the284

spread by the epidemic threshold λc at given ν (the epidemic thresholds of the SIS and SIR models have285

been shown to coincide47): it separates a phase at λ < λc in which the epidemic dies out from a phase286

at λ > λc where it reaches a non-zero fraction of the population. We compute the epidemic threshold,287

using the method of48, in (i) the original data set (λ data
c ) and (ii) versions of the data set in which the288

timestamps of the temporal edges connecting the nodes in S>k are randomized (λ rand
c ), thus disrupting289

their simultaneity (see Methods). Figure 3.d displays the relative difference between the two obtained290

values as a function of k. This difference takes higher absolute values for lower values of k, which can be291

expected as the randomization affects then a larger number of temporal edges; most importantly, λ data
c292

is systematically lower than λ rand
c : this indicates that the spreading process is favoured by the temporal293
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a) b)

c) d)

Random

Data

Random

Data

Figure 3. Primary school temporal network. a)(top) Size |S>k| of the sub-network of nodes of
aggregate degree larger than k as a function of k of the Primary School temporal network; (middle)
Maximal cohesion M(k,∆) as a function of k and ∆; (bottom) Mran(k,∆) diagram of the randomization
preserving aggregate node statistics and overall activity timeline. b) (top) Activity timeline of the network,
i.e., number of temporal edges at each time step; (middle) Colormap of the cohesion ε>87(t,∆) vs. t and
∆; (bottom) Colormap of the same cohesion for the randomized data. c) (top) Static rich club coefficient
φ(k) computed for the aggregated graph as a function of the aggregate degree k; (bottom) ratio µ(k,∆)
between M(k,∆), computed for the data, and Mran(k,∆), for different values of ∆. d) Relative difference
between the epidemic threshold λ data

c , computed for the original dataset, and λ rand
c , computed after the

randomization of the interactions between the nodes of S>k (see Methods).

rich club of the data, i.e., by the stronger simultaneity of connections than in the randomized versions33.294

The effect is also larger for larger ν , i.e., for faster processes. The fact that hubs in an aggregated network295

might in fact have fluctuating degrees27, 33, as well as the simultaneity of other structures38, have been296

shown to impact spreading processes. The temporal rich club analysis thus reveals cohesive simultaneous297

structures of prominent nodes that affect spreading dynamics.298

2.4 State-specific temporal rich clubs: similar static patterns, distinct temporal patterns299

We finally investigate the temporal rich club patterns of a network of biological relevance, namely the300

time-resolved functional connectivity of N = 67 neurons in the entorhinal cortex and hippocampus of an301

anesthetized rat. The nodes represent single neurons and the temporal edges correspond to a significant302

mutual information between the firing patterns of pairs of neurons in a sliding window of 10 seconds29, 49,303
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as shown in Figure 4a. Successive time windows are shifted of 1 second: this is the temporal resolution304

of the network, which lasts 2284 seconds. We also consider in the SI a similar data set describing the305

temporal functional connectivity of neurons in an epileptic, anesthetized rat50, and highlight similarities306

and differences between both cases.307

We first note that the aggregated network is very dense: the average degree is 〈k〉= 54 (whereas308

the minimal value of k is kmin = 14) and the maximal degree is equal to N − 1 = 66 (see SI for the309

aggregated network degree distribution). In such a dense network, the static rich club ordering cannot310

be assessed as randomization of the links is impossible to achieve in practice. Taking into account311

temporality reveals a more interesting picture. Figure 4.b shows that the temporal rich club coefficient312

M(k,∆) increases with k for each value of ∆, and that groups of nodes with increasing aggregated degree313

are simultaneously interconnected for increasing durations. The group of 8 neurons with largest degree314

(which are each connected at least once over the temporal network duration to each of the other nodes)315

are in particular very strongly interconnected in a simultaneous and stable way, with M(k,∆)≥ 0.5 up to316

∆ = 150 (reaching even M(k,∆) = 1, i.e., the fully connected link structure of these 8 neurons seen in the317

static aggregated graph does occur at some time in a simultaneous way). Mran(k,∆) takes much smaller318

values for most values of k and ∆, see SI, indicating the existence of a temporal rich club ordering in this319

data set: even if the neurons with largest degree share some simultaneous connections also in the null320

model, the corresponding structure is never simultaneously fully connected, and is not stable.321

While this analysis corresponds to the TRC computed over the whole temporal network, it is322

worth investigating in more details the dynamical patterns of the cohesion. Indeed, the temporal network of323

functional connectivity actually goes through several "states"29. These states are identified by the method324

pioneered in28 and recently developed in41 (Figure 4c): one computes the network similarity matrix, in325

which each element (t, t∗) gives the similarity between the snapshots of the network at times t and t∗;326

the hierarchical clustering of this matrix makes it possible to identify periods of stability of the network327

("states") as periods of large similarity values. This is the case in various types of data28, 41, 51 and in328

particular in the present data set29, as shown in Figure 4.c (red blocks along the diagonal, with underneath329

the timeline of successive states). The figure also shows the colormap of the cohesion ε>65(t,∆) of the330

nodes with highest degree in the network aggregated on the whole recording: the cohesion among these331

nodes changes strongly from one state to another, and actually reaches very large values only during one332

specific state. Note that, even if the TRC analysis by itself does not allow to uncover and define precisely333
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Figure 4. Temporal network of information sharing neurons. a) Sketch of the brain areas
(enthorinal cortex, mEC, and hippocampus, HPC) and electrodes recording the firing signal of single
neurons (as shown in the right part of the panel). b) (top) Size |S>k| of the sub-network of nodes of
aggregate degree larger than k as a function of k; (bottom) Maximal cohesion M(k,∆) as a function of k
and ∆. c) Temporal network similarity matrix: the (t, t∗) matrix entry is given by the similarity between
the instantaneous snapshots of the network at times t and t∗. The red blocks around the diagonal indicate
periods in which the network remains similar to itself, i.e., "states" of the network29, 33: we show below
the matrix the timeline of these states as a colored barcode (each color represents a different state), as
extracted by clustering of the similarity matrix in29. In addition, we show below this timeline the
colormap of the cohesion ε>65(t,∆) of the N>65 = 8 nodes of aggregate degree larger than k = 65 as a
function of t and ∆, showing patterns at different times and that the temporal rich club is transient and
mostly concentrated at the times corresponding to a specific state. d) For three different states (states 1, 3
and 5), we show in the left column the size |S>k| of the sub-network of nodes of aggregate degree larger
than k and the maximal cohesion M(k,∆), and in the right column the cohesion ε>k(t,∆) of the nodes
with highest degree in the aggregate graphs of the corresponding states (respective largest degree values:
45, 56 and 41); the sets have sizes |S1

>44|= 5, |S3
>55|= 7 and |S5

>40|= 7; S1
>44 has 1 node in common

with S3
>55, and S5

>40 has no node in common with S1
>44 nor with S3

>55.

16/29



the network states, the cohesion diagram of Figure 4.c in itself is a strong indication that (i) there exists at334

least one period of stability in the network, in which the static RC nodes are very cohesive (ii) there are335

specific periods of time with distinct dynamics, and thus it is relevant to look for network states. Such336

insights could not be obtained by investigating only the activity timeline and the static rich club, nor337

the instantaneous rich club on each time stamp. This is made clear in the SI by comparing the network338

similarity matrix and the ε>k(t,∆) colorplots of the real data and of the null model with the same timeline339

and static rich club as the data: indeed, (i) the states are scrambled in the null model; (ii) ε>k(t,∆ = 1),340

giving the instantaneous rich club density, reaches high values during several periods for both data and341

null model, indicating the existence of simultaneous connections among the high degree nodes in both342

cases; as soon as ∆ increases however, this cohesion disappears for the null model, showing that no stable343

structure is in place, while it remains high for large values of ∆ at specific periods in the real data.344

We thus investigate separately these different states, computing an aggregated network Gs for345

each state s by aggregating the temporal edges in the snapshots belonging to s, and defining Ss
>k as the set346

of nodes with degree larger than k in Gs: nodes are not similarly active in each state and have thus different347

degrees in the different Gs. This leads us to measure the state-specific temporal rich club coefficients348

Ms(k,∆). Figure 4.d shows that the corresponding k−∆ diagrams for states 1, 3 and 5 have in each case349

more stable simultaneously interconnected sets of nodes as k increases, and a temporal rich club ordering350

(we show in the SI that the randomized data sets yield much lower values of M). The SI shows also that351

the static rich club patterns of the aggregated networks of these three states are very similar. The sizes352

of the sets of nodes with largest degree are also comparable in the three states (|S1
>44| = 5, |S3

>55| = 7,353

|S5
>40|= 6). However, the nodes belonging to these three sets are mostly different: of the nodes in S1

>44354

only one is also in S3
>55, and S5

>40 has an empty intersection with the other sets. Moreover, the cohesion355

colormaps of these sets of nodes, shown in Fig. 4.d and in the SI (with zooms on each state), show356

that (i) their instantaneous cohesion is maximal (reaching even 1) precisely in the time stamps of the357

corresponding state (ii) different dynamics are observed despite the similarity in their state-wise static358

rich clubs: for states 1 and 3, we observe a maximal cohesion for almost all the state duration; for state 5359

instead, the maximal cohesion is reached repeatedly but does not last the whole state.360

Finally, we highlight in the epileptic brain data set studied in the SI how the cohesion diagram361

indicates in that case a state with a cohesive rich club, but that the cohesion patterns are less stable than in362

the non-epileptic case (with cohesive structures lasting much less than the state duration), and how this363
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hint is confirmed by the analysis of the cosine similarity matrix. This is coherent with the results of50,364

according to which the functional connectivity is more disordered in the epileptic brain.365

Overall, the analysis of this temporal network highlights how a temporal rich club phenomenon366

can be present even when a static rich club ordering cannot be identified. Moreover, it shows that distinct367

temporal rich clubs can be found when a temporal network goes through different states, with similar368

state-wise static rich-club patterns but different temporal stability patterns. In fact, the TRC analysis can369

even give hints about the existence of states and their internal dynamics. Further investigation of the mutual370

relations of the state-wise temporal rich clubs could help shed light on the function of the different states of371

the system29. In particular, while the core-periphery structure highlighted in29 does not reveal whether the372

core neurons are interconnected in a stable way, the TRC captures the existence of a subset of neurons with373

enhanced internal integration not just instantaneously but lasting for a finite time. It might thus provide374

a translation into a temporal network language of what systems neuroscientists have been calling a cell375

assembly, as an entity implementing a window for distributed information integration52–54. Different states376

might in this perspective correspond to the recruitment of different cell assemblies performing different377

computations.378

3 Discussion379

An increasing number of studies24, 26, 28, 55 have shown how the analysis of temporal networks necessitates380

specific tools, as the study of static aggregated networks hides e.g. the fact that nodes with large aggregated381

degree can have a strongly varying connectivity27 or neighborhood42: for instance, the repetition of382

simultaneous or successive subgraphs forming temporal motifs28, 34–36, 56 or the emergence of stable383

strongly connected subgraphs37 cannot be guessed from a static picture. We have defined here a novel384

concept to investigate temporal networks and quantify the patterns of simultaneous interconnectedness of385

nodes, namely the Temporal Rich Club (TRC). We have defined the temporal rich club coefficient as the386

maximal value of the density of links stable during at least a duration ∆ between nodes having aggregated387

degree at least k. We emphasize that the properties of this density cannot be simply reduced to the stable388

or varying degree of the hubs nor to the existence of subgraphs, although these concepts are naturally389

interdependent: a stable hub might have only low degree neighbours (i.e., not contributing to a rich club),390

or have low loyalty42, i.e., different neighbours from one time to the next; conversely, a hub might have391
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mostly fluctuating links, i.e., be an unstable hub27, but maintain some stable connections to other hubs392

and hence contribute to a temporal rich club. We compare the values of the TRC coefficient obtained on393

an empirical data set to those reached in a randomized version of the data, in order to measure whether394

the simultaneity and stability of the connections of groups of nodes is higher than expected: a temporal395

rich club ordering corresponds to more simultaneous cohesion than expected by chance. We note here a396

delicate point: many randomization procedures are possible for a temporal network40. However, to focus397

on the simultaneity of connections, it is sensible to consider only reshuffling procedures that maintain the398

network activity timeline and the aggregated properties of the nodes and links, i.e, to simply reshuffle the399

timestamps of all temporal edges.400

In general, different patterns can be observed in terms of temporal rich clubs, even at given static401

rich club: the links forming a rich club of the static network could correspond to interactions occurring402

at different times; vice-versa, interactions could be more simultaneous than expected by chance, with a403

temporal rich club ordering, without a rich club ordering. In the US air transportation case (Figure 2), the404

static rich club coefficient increases monotonically with k, but the existence of reliever hubs leads to more405

fluctuating links around large degree nodes, and thus a non-monotonic behaviour of M(k,∆) with k. By406

comparing the original data and a network with merged hubs and reliever airports, we showed how the407

static rich club patterns are not altered, while the temporal rich club patterns are strongly modified. In408

the school contact network instead, both static and temporal coefficients show an increasing trend with k409

(Figure 3). In the other data sets of face-to-face interactions analyzed in the SI, we exhibit on the one hand410

a similar case with both static and temporal rich clubs, and on the other hand a case where a static rich411

club does not correspond to any temporally simultaneous structure. In the third data set explored, the static412

rich club connectivity is equal to 1 at intermediate and large k, so that the static rich club ordering concept413

is irrelevant in practice (the links cannot be reshuffled so the null model cannot be defined). Taking into414

account temporality reveals a more interesting picture and a temporal rich club ordering (Figure 4). The415

evolution of the instantaneous cohesion reveals an additional diversity of patterns, as the temporal rich416

club can be present in a rather stable way (Figure 1d), or concentrated around specific periods (Figure417

3b, Figure 4c). The temporal patterns of the cohesion can even hint at the presence of different temporal418

network states stability periods or states (Figure 4c), and highlight different temporal rich-club patterns419

within these states despite similar state-wise static rich-club patterns. The comparison of the cohesion420

patterns between temporal networks of different brains (e.g. epileptic vs. non-epileptic, see SI) also421
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indicates differences in their states’ internal dynamics.422

A limit of our analysis comes from the fact that we have considered the degree of nodes in the423

aggregate network as the reference for centrality in the aggregate network. A natural extension would424

be to consider instead the strength of the nodes in the aggregate network, i.e., the number of temporal425

edges to which they have participated during the span of the temporal network: in this case, the focus426

would be to investigate the simultaneity of the connections within the set S>s of nodes having participated427

in more than s temporal edges. As strength and degree are generally correlated, the results are expected428

to be similar, but some significant and interesting differences might emerge, as in the example of the air429

transportation temporal network where the reliever airports have a very high degree but relatively low430

strength.431

Overall, the temporal rich club perspective provides a new tool to study temporal networks432

and in particular to unveil the relevance of simultaneous interactions of increasingly connected nodes in433

processes unfolding on top of the temporal network: we have shown for instance that a temporal rich434

club pattern favours spreading dynamics, similarly to other static or temporal cohesive structures15, 33, 38,435

suggesting to add such new measure to the repertoire of methods to study contagion processes in networks,436

and that models of temporal networks should take such structuration into account57, 58. Moreover, we have437

shown how distinct temporal rich club patterns can be found when a temporal network evolves through438

different states, and provide thus an additional way to characterize such states and their internal dynamics439

and, possibly, investigate their function. For instance, key processes in neural information processing,440

such as synaptic plasticity, are critically affected by the timing of neuronal interactions59 and different441

temporal rich clubs in different states may thus enable flexible computations within a same circuit49. TRC442

might even provide a connection to so-called cell assemblies52–54, with different cell assemblies being443

recruited in different states. To form a cell assembly, many neurons must remain strongly functionally444

connected for a certain finite time, in order for the assembly to be detected by some reader system60.445

This type of firing coordination –which is both distributed in space and lasting in time– is captured only446

partially by commonly used methods, which seek either for instantaneous synchrony or for sequential447

firing61, 62. However, the temporal rich club notion here introduced precisely captures both criteria needed448

to qualify a set of co-firing neurons as an assembly. For this reason, we expect the temporal rich club to449

join the toolbox of network neuroscience for the investigation of dynamic functional connectivity patterns.450

In conclusion, our work provides a new procedure to detect relevant temporal and structural patterns in a451
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temporal network, enabling a new quantitative perspective on the temporal patterns of data sets coming452

from very different fields, from highlighting the role of simultaneous connections between central nodes in453

spreading on a temporal network of social interactions to that of hubs in air transportation infrastructures454

or in neuronal assemblies.455

4 Methods456

4.1 Data457

We consider three publicly available data sets. We have moreover gathered them at458

https://github.com/nicolaPedre/Temporal-Rich-Club/459

Air Transportation Network. This data set represents the connections between US airports, with tempo-460

ral resolution of one month, from January 2012 to September 2020, for a total of 105 time stamps. The461

N = 1920 nodes of the temporal network represent the airports, and in each monthly snapshot a temporal462

edge is drawn between two nodes if there was at least one direct flight between the corresponding airports463

during that month. The degree of a node in the aggregated network is thus the number of other airports to464

which it has been connected directly once, and its strength is its total number of temporal edges. We show465

in the SI the degree distribution of the aggregated network and of some monthly snapshots, as well as466

some additional temporal properties of the data.467

The data is publicly available on the website of the Bureau of Transportation Statistics468

(https://www.transtats.bts.gov/, "Air Carrier Statistics (From 41 Traffic) - U.S. Carriers" data base).469

Face to face interactions. This data set describes the face-to-face close proximity contacts between470

232 children and 10 teachers in a Primary School of Lyon, France, during two days in 2009, as collected471

by the SocioPatterns collaboration using wearable devices. The original data is publicly available from the472

SocioPatterns website (http://www.sociopatterns.org/datasets/primary-school-temporal-network-data/).473

The original data is a temporal network with temporal resolution of 20s, where the nodes represent474

the individuals and each temporal edge corresponds to the detection of a face-to-face contact between475

them12. Here, we perform a temporal coarse-graining on successive time-windows of 5 minutes to remove476
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short-time noise. We show in the SI the degree distribution of the aggregated network and some timelines477

of instantaneous degree.478

The results in the main text correspond to the first day of data while the analysis performed479

on the whole data set can be found in the SI, as well as the results obtained with a coarse-graining on480

time-windows of 1 minute.481

Information sharing neurons. This data set describes the functional connectivity between neurons in482

the hippocampus and medial entorhinal cortex of an anesthetized rat. The data was first presented in49 and483

further analysed in29. The network analysed here is made of N = 67 nodes. Each temporal edge represents484

a “functional connection”, i.e. the existence of a significant mutual information between the firing patterns485

of the corresponding pair of neurons computed in a sliding window of 10 seconds. Overlapping sliding486

windows are considered, each being shifted of 1 second with respect to the previous one. The duration487

of the temporal network is T = 2284 seconds. More details about the computation of time-resolved488

functional connectivity can be found in the original studies29, 49.489

We show in the SI the degree distribution of the aggregated network over the whole temporal490

network and over specific states.491

Table 1. Some properties of the data sets

Data N kmin kmax 〈k〉 # temporal edges time resolution, T

U.S. Airways 1,920 1 498 44 1,286,616 t = 1 month, T = 105
Primary School 242 1 98 49 53,056 t = 5 minutes, T = 103
Info. sharing network 67 14 66 53 511,174 t = 1s, T = 2,284

4.2 Temporal network randomization492

We consider a temporal network in discrete time T N(V,Γ,T ) as a set of nodes V = {i = 1,2,3 . . .N}493

and a set of temporal edges Γ = {γ1,γ2, . . .γΓ} where each temporal edge γq = (iq, jq, tq) represents an494

interaction between nodes iq and jq at time tq ∈ [0,T ]. An event or contact (i, j, t,τ) is moreover defined495

as an uninterrupted succession of temporal edges between nodes i and j starting at t and lasting τ time496

steps, i.e., a series of temporal edges (i, j, t),(i, j, t +1), · · · ,(i, j, t + τ−1). Furthermore, the "activity"497

of the temporal network at time t is simply the number of temporal edges at t. The aggregated network498
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G = (V,E) is obtained by drawing an edge between all pairs of nodes that have interacted at least once499

during [0,T ].500

A wide range of randomization procedures (null models) exist for temporal networks40. Here,501

our focus is on the simultaneity and stability of interactions, which define the existence of temporal rich502

club phenomena. As simultaneous interactions can occur simply by chance in periods of larger activity,503

we will consider randomization procedures that preserve the temporal activity timeline, i.e., the number504

of temporal edges at each time step. Moreover, in order to investigate the role of temporality, we need505

to consider a procedure that keeps the whole structure of the aggregated network G, i.e., the number of506

temporal edges among each pair of nodes. We thus consider the timestamps shuffling null model: this507

reshuffling procedure, denoted P[w, t] in40, randomly permutes the timestamps tq of all temporal edges508

while keeping the nodes indices iq and jq fixed.509

In the present work, we consider moreover two types of data randomization: either the random-510

ization of the whole temporal network, or a randomization involving only the subgraph induced by the set511

S>k of nodes of degree larger than k in the aggregate graph, while keeping all the other temporal edges512

fixed. The former case allows us to compare the temporal rich club coefficient M(k,∆) of the data with the513

values obtained for a null model, and thus to detect whether a temporal rich club ordering is present. The514

latter case is used in Section 2.3 to compare the epidemic threshold in the original data and in a partially515

reshuffled data set where the simultaneity of the connections between the nodes of degree larger than k516

(i.e., in S>k) is disrupted while the rest of the connections are unchanged.517

For each data set, we compute 100 realisations of the randomized data set and compute the518

average Mran of the temporal rich club coefficient over these realisations.519
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