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Abstract

Deep neural networks (DNN) achieve state-of-the-art perfor-
mance in many machine learning tasks and in various types
of applications. Their efficiency in solving complex problems
has led to apply deep learning techniques in safety-critical
tasks such as autonomous driving or medicine. However their
sensitivity to adversarial attacks, rounding errors, or quanti-
zation processes raises concerns and has lead to high interest
in finding new approaches to make them more robust. In this
work we propose a novel approach for the construction of ad-
versarial attacks which relies on a local Sequential Quadratic
Programming (SQP) strategy. These attacks use second order
information to achieve competitive performance compared
with existing state-of-the-art approaches. We present numer-
ical results that support our theoretical findings and illustrate
the relevance of our approach on well-known datasets.

Introduction

Artificial neural networks (ANN) attempt to exploit the ar-
chitecture of the human brain in order to perform a wide
range of tasks. Deep neural networks, which are artificial
neural networks composed of multiple layers between the
input and the output of the network, are known to be univer-
sal approximators (Hornik, Stinchcombe, and White 1989;
Scarselli and Chung Tsoi 1998), in fact many results provide
upper bounds on the network size and assert that a small ap-
proximation error can be achieved if the network size is suf-
ficiently large. Those theoretical results are often quoted to
justify the empirical efficiency of DNNs: indeed, DNNs ex-
ceed human accuracy in many applications, from medicine
with the detection of cancer (Ciresan et al. 2013), to playing
games (Silver et al. 2016; Chellapilla and Fogel 1999; Mnih
et al. 2013) and driving cars (Wu et al. 2016). But despite
their empirical efficiency many works underline the sensitiv-
ity of DDNSs to adversarial attacks (Szegedy et al. 2014; Ku-
rakin, Goodfellow, and Bengio 2016; Evtimov et al. 2017,
Moosavi-Dezfooli, Fawzi, and Frossard 2015). Among ad-
versarial attacks, artificial neural networks are vulnerable
to adversarial examples, which are perturbations applied to
an input that would not fool a human but are sufficient to
fool the model into making a wrong prediction. Figure 1
shows an example of how a slight perturbation on an image
can trigger an erroneous classification by a neural network
which works correctly on the unperturbed image.

Figure 1: The camouflage fools the Mask R-CNN object de-
tector (on the bottom), whereas plain colors (on top) is being
correctly detected (Zhang et al. 2019b).

Adversarial examples are considered to be a significant
obstacle to the deployment of neural networks models in
safety-critical task, due to the clear security threat that these
attacks represent; this also raises questions regarding the ro-
bustness and ability of a neural network to generalize in the
context of new distributions. Exact computation of a neu-
ral network robustness (Katz et al. 2017; Tjeng, Xiao, and
Tedrake 2019), when possible, does not scale well for large
neural networks; for instance, the problem of verifying the
robustness of a ReLU neural network can be formalized as
a Mixed Integer Programming problem, which is NP hard.
For this reason many different approaches have been devel-
oped to find adversarial examples in order to more efficiently
evaluate neural network robustness. Finding adversarial ex-
amples with small norm perturbations is crucial to assess
the vulnerability of a neural network against attackers, pro-
vides for a better understanding of its robustness and allows
for improving its robustness by integrating these adversarial
samples into the training process — a defense known as ad-
versarial training (Goodfellow, Shlens, and Szegedy 2014;
Madry et al. 2018).

The literature on adversarial attacks is very abundant and



many methods have been proposed. A complete review is
out of the scope of our work but we make a brief survey of
some of the most popular and successful methods in the next
section.

In this paper we present a novel approach for creating
such adversarial attacks; our aim is to produce perturbations
with smaller norms with respect to existing, state-of-the-art
methods. To tackle this objective, we propose an approach
that relies on second order information and, more precisely,
on Sequential Quadratic Programming (SQP) which is a
well known and widely studied method for solving con-
strained optimization problems. We will discuss the practi-
cal limitations of a baseline SQP-based method and propose
some improvements to overcome them which lead to a hy-
brid approach mixing first order and second order iterations
in order to achieve better convergence and lower execution
time.

Adversarial attacks

In this work we focus on a particular type of adversarial
attacks on artificial neural network: adversarial examples.
These are inputs of a neural network perturbed in such a
way that they are classified in a different class than expected
whereas a human would still correctly recognize them and
assign to them the correct label. Finding targeted adversarial
examples amounts to computing the smallest norm perturba-
tion on the input data x such that the perturbed input = + Ax
is misclassified by the neural network in a prescribed target
class j instead of the expected true label ¢. Mathematically,
the targeted adversarial perturbation is defined as the solu-
tion of the following minimization problem:

Solve

min||Az||? 0

subject to
Class(x + Azx) = j,

where j is the target class and Class(x + Ax) the class of
the perturbed image. Different types of norms can be used
to measure the size of the perturbation and methods have
been proposed that can handle one or the other or even mul-
tiple types. In our work, we focus on the Frobenius norm
and, for the sake of readability, we will drop the subscript
on the || - || operator in the remainder of this document.
In most cases a classifier will associate with an input x the
label ¢ out of K classes when the ¢th component of the clas-
sifier’s output C'(x) is the maximum of its K components,
that is: argmax;_;  n Cr(z) = i. Hence the constraints
Class(x + Az) = j can be formulated as

Ci(x+ Az) < Cj(z+ Azx),i=1,..., K. )
In an untargeted attack, instead, one will search for a per-
turbation that leads to a misclassification regardless of the

output class. In this case the constraints of the minimization
problem become

Class(x + Ax) # i, 3)

where ¢ is the true label associated with the input 2. Hence
for most classifiers the constraints can then be formulated as

Ci(x + Ax) < max Cj(x + Ax). 4)
VE

It has been argued (Carlini and Wagner 2016) that comput-
ing an untargeted attack is often a less accurate approach
than running a targeted attack for each target class and
then take the smallest perturbation. For this reason, in our
work we will focus on computing a targeted attack, know-
ing that we can then use it in an untargeted context using
this method. Our method can easily be extended to the case
of untargeted attacks but we consider this is out of the scope
of the present work.

In general the original problem (1) is too complex to be
solved directly, hence state-of-the-art methods to compute
adversarial examples attempt to approximately solve prob-
lem 1. Numerous approaches that have been proposed and
are commonly used to generate adversarial examples resort
to solving the following penalty problem:

Solve

5
min||Az||* + cL(z + Az, j), ®

where L is a given loss function, potentially different than
the one used to train the neural network, of the input with
respect to a given target class. This was first introduced
by Szegedy et al. (2014) who formalized the minimiza-
tion problem and introduced the term of adversarial sam-
ple. In their work they proposed an attack using a Large
Broyden-Fletcher—Goldfarb—Shanno (L-BFGS) algorithm
to solve problem 5. The L-BFGS attack uses a line-search
algorithm to find the optimal value of the weight ¢ which
makes it expensive; to overcome this limitation, Goodfel-
low, Shlens, and Szegedy (2014) proposed a so-called Fast
Gradient Sign Method (FGSM). This attack uses only one
step in the direction of the sign of the gradient to generate
an adversarial example; hence the obtained perturbation can
be expressed as:

Az = e sign(VyLy(z, 7)) (6)

where Ly is the cost function used during training.

A more powerful direct alternative to FGSM is Projected
Gradient Descent (Madry et al. 2018) (PGD) which is an it-
erative version of FGSM, producing smaller perturbations at
the cost of being computationally more expensive. The most
well known state-of-the-art adversarial attack using this so-
called penalty method is the Carlini-Wagner attack (Car-
lini and Wagner 2016). Penalty methods transform the con-
strained optimization problem into an unconstrained one by
coupling the need to minimize the perturbation norm and
the need to misclassify the image; the resulting optimization
problem is easier to solve than the problem in equation (1)
but this comes at the expense of needing to find an optimal
loss function as well as an optimal weight ¢ which is, for
the weight, often achieved using expensive line-search algo-
rithms.

All the above methods aim to optimize both the misclas-
sification and minimal norm criteria at the same time, often
using line-search algorithm to find the best balance between



the two criteria. Other methods aim to accelerate the gen-
eration of adversarial samples, tailoring algorithms specifi-
cally for a given norm. Amongst them DeepFool (Moosavi-
Dezfooli, Fawzi, and Frossard 2015) iteratively perturbs the
input by linearizing the model around the current point and
then find the closest decision boundary for the Iy or I
norms. DDN-attack (Rony et al. 2018) is another method
which decouples the two objectives by using projections on
a [y ball centered on the original image at each iteration,
whereas FAB-attack (Croce and Hein 2019) uses both pro-
jections and linear approximations of the neural network to
produce competitive adversarial examples.

A recent approach called ALMA (Rony et al. 2021) takes
advantage of the Augmented Lagrangian method to attenu-
ate the drawbacks of penalty-based attacks. Indeed with this
method the penalty is adaptively modified during the opti-
mization iterations to estimate and converge to the optimal
penalty term, which corresponds to the Lagrangian multi-
plier of the optimization problem.

Local Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is one of the most
well-known and successful methods for constrained nonlin-
ear optimization; the first reference to SQP-type algorithms
appears in the PhD thesis of Wilson (1963). An exhaustive
review of this method is out of the scope of this paper but, in
this section, we will explain the general idea behind it; we
refer the reader to the above-mentioned thesis or to any opti-
mization textbook such as the one by Boggs and Tolle (1995)
or Nocedal and Wright (2006). Although SQP is generic
enough to solve optimization problems with both equality
and inequality constraints, in this work we will focus on
the case where only inequality constraints are present be-
cause this is enough for computing adversarial attacks, as
explained in the next section. Therefore, our review of the
SQP method below is limited to this case for the sake of
conciseness.

Let us assume that one has to solve the following mini-
mization problem:

Solve

min f(x)
subject to
g9(z) <0.

The idea behind SQP is to solve this problem iteratively:
at each iteration zj the problem is modeled by a con-
strained quadratic programming subproblem whose mini-
mizer is used to build iterate x;;. One common choice is
to solve the Karush—Kuhn-Tucker (KKT) equations using
Newton’s method. The Lagrangian of this problem is

L(z,\) = f(z) + AT g(), ®)

where the vector A\ corresponds to the Lagrangian multipli-
ers.

To satisfy the KKT conditions one must find (z, ) such
that

(N

VL(z,A)=0

g(z) <0. ©

Applying Newton’s method to the above equation generates
iterates that are identical to those one gets by solving the
following quadratic problem:

Solve
1
inV Td+ 2dTV2 L(xg, \p)d
min V f (zx) 54" Vaa Lz, M) (10)
subject to

Vg(xr)'d+ g(xr) <0.
This leads to the local SQP method in Algorithm 1 where

(dg,dy) are the primal dual solution of the quadratic opti-
mization subproblem.

Algorithm 1: local SQP

1: Input: z( starting point of the algorithm.
2: Input: Nji., number of iterations.
3: while k =1,..., Nj., do

4:  solve

6. subject to

7: Vg(zr)"de + g(z) <0
8:  end solve

9: Tpt1 < T +dy
10: Ak41 < dx
11: end while

Adversarial attacks using Sequential
Quadratic Programming

In this section we will adapt the local SQP algorithm de-
scribed in the previous section to solve adversarial attack
problems. Essentially, this amounts to defining an objective
function and inequality constraints that correspond to the
problem in equation (1). We will focus on a targeted for-
mulation of this problem knowing that, as explained above,
an untargeted version can be obtained by applying the pro-
duced algorithm to all classes and then taking the smallest
successful perturbation.

Let us assume that C' : R® — RX is a classifier such that
C assigns to an input z € R" the label 4, ¢ being one of the
K classes, when

Cj(x) < Cix),j=1,...,K. (11)

Then, as stated before, one must solve the following opti-
mization problem in order to find an adversarial perturba-
tion:

Solve
1 2
min — ||Az||
Az 2
subject to
Ci(z +Az) < Cj(z+ Ax),i=1,..., K,
(12)

where j is a target class that is different from the true label
of the input .



Assuming z; = x + Ax is the perturbed input, for the
specific case of adversarial attacks on a neural network clas-
sifier the objective function of the optimization problem can
be defined as

1
frap— §||$—.13kH2 (13)

Let us define I the identity matrix of size K, e; the j-
th canonical vector of size K and 1k the all-ones vector of
size K. Then the inequality constraints of the optimization
problem can be expressed as

9(zx) = (I — 1k e;)C(zy) < 0. (14)

Improvements to the basic SQP algorithm

Algorithm 1 can readily be used to solve the optimization
problem with f and ¢ defined as in the previous section.
Nevertheless, this naive approach suffers from some limita-
tions. First, SQP being a local algorithm, its convergence is
not guaranteed for any given starting point. This means that
Algorithm 1 may fail to compute a successful adversarial at-
tack or to compute one with a small norm; this behavior was
indeed observed in a preliminary experimental evaluation.

The second major drawback relates to the use of the Hes-
sian of the Lagrangian V2 L(xy, \r) which, essentially,
amounts to computing second order derivatives of the neural
network function that appears in the constraints defined in
equation (14). Note that whether this term has to be explic-
itly computed depends on the optimizer which is chosen to
solve the quadratic subproblem on lines 4-8 of Algorithm 1.
If the optimizer relies on a direct method, this term has to be
computed explicitly; for other choices, it may be sufficient
to provide the local optimizer with a function to apply this
operator to a vector. In all cases computing or applying this
term may be excessively expensive (both in terms of opera-
tions and memory).

In order to overcome or mitigate these two limitations, we
propose a few modifications.

The first improvement consists in using a hybrid approach
where a first order method is used prior to the SQP iterations.
The objective is to provide SQP with a better starting point
so that it is more likely to converge. Let us say that one seeks
to solve the optimization problem (7). Using a first order
development of the constraints function we obtain

9(xrr1) = gl +d) =~ Vg(zr) d + g(x1).

Then a first order iterative problem close in spirit to SQP
would be the following:

Solve

min f(zg + d)
! (15)
subject to

V(i) d+ g(zp) <0

This quadratic problem iterates on the perturbations while
linearizing the constraints. In our case, where f is defined as

in equation (13), we have:

1
flap+d) = Slle -z — d|?
1 1
=3 (x — gl — xg) — (d|z — z) + 5 (d|d) .
(16)
By noting that
Vf(a:k)Td = —{(d|x — ) a7
we obtain

Flan +d) = % (@ — anle — ) + V(o) Td + %dTId.
(18)

Hence solving problem (15) is equivalent to solving

Solve

1
inVf(zy)'d+ -d"Id
min V£ (o) Td + )
subject to

Vg(xp)Td + g(xr) <0.

This is achieved by performing iterations of Algorithm 1
where V2_L(x, \;) in line 5 is replaced with the identity
matrix.

A second minor improvement consists in adding regular-
ization terms to the update of the current solution at iteration
k; these are called « for the first order iterations updates and
B for the second order iterations update. The use of these
regularization terms was found to drastically improve the
convergence in practice and more will be said in the experi-
mental evaluation.

Finally, the choice of the starting point for the first order
iterations is still critical to speed up the convergence of the
method. In a basic implementation a natural choice would be
to set xg = z, that is, the starting point for the optimization
solver is the unperturbed input. Assuming that a targeted ad-
versarial attack towards class j must be computed, we have
found that a better starting point is a randomly selected input
belonging to class j.

Combining all these improvements leads us to the final
algorithm, which we called Sequential QUadratic Program-
ming ATtack (SQUAT) and which is described in Algo-
rithm 2. Here, a total number of N, iterations is per-
formed; alternatively the method can be stopped when a per-
turbation of small enough norm is computed. Out of these
iterations, the first N7 only use first order information; these
are relatively cheap and serve to get closer to an optimal so-
lution. The remaining iterations, that are based on the SQP
method and, thus, rely on second order information refine
the solution computed by the previous ones. The value of Ny
as well as of « and 3 has to be carefully chosen to achieve
fast convergence.



Algorithm 2: SQUAT

1: Input: j the target label.

2. Input: N, total number of iterations.

3: Input: N; number of iterations before using second
order information.

4: Input: « and f, fixed regularization terms.

5: xg < @7, 27 being an image belonging to class j.

6: while £ < N;;., do

7.

8

Solve

o ifk=1,...,Ny:
9: ming V f (z)Td + 3d"1d
10:  ifk> Ny:
11: ming Vf(l‘k)Td—F %dTVQ%wL(JZk,)\k)d
12:  subject to
13: Vg(xi)Td+ g(zg) <0
14:  end solve
15:  if k< Ny:
16: Tp+1 < T + ad,
17:  ifk> N
18: Ta1 < T + PBdg
19: Ak41  Bdy

20: end while

Experiments
Experimental setup

In order to compare our method with the current state-of-the-
art we chose to use the code provided by Rony et al. (2021).
In the following comparisons we will only use non-targeted
attacks to show that our method can compete with, and
even outperform, state-of-the-art attacks on a non-targeted
scheme. More precisely, we will compare our method to
state-of-the-art methods for the I3 norm: C&W (Carlini and
Wagner 2016), DDN (Rony et al. 2018), FAB (Croce and
Hein 2019), and ALMA (Rony et al. 2021). The experiments
are done on a SmallCNN neural network from Zhang et al.
(2019a), in order to evaluate our attack against defenses we
use this network in different training setups. First it is trained
regularly and then trained to be robust to adversarial attacks:
first using /..-TRADES defense (Zhang et al. 2019a) and
then using l5-DDN defense (Rony et al. 2018) on the MNIST
dataset (LeCun, Cortes, and Burges 2010). We will denote
these neural networks, respectively, SmallCNN for the reg-
ularly trained model, SmallCNN-TRADES and SmallCNN-
DDN for the adversarially trained models.

Metrics

We assess the performance of an attack by how much the
accuracy of a given neural network decreases depending on
how small perturbations are in terms of norm. This is mea-
sured using a metric called robust accuracy: for a given
value € and assuming all the inputs of a dataset are attacked,
it corresponds to the percentage of input data that have been
successfully attacked with a perturbation of norm smaller
than e. Hence, the lower the robust accuracy for a given
threshold, the better the attack. In Figures 3, 4 and 5 we plot
curves showing the robust accuracy as a function of e.

For all the experiments we chose to evaluate the attacks
on the first 500 images of the testing dataset. To summa-
rize these results we also present the median distance be-
tween the found adversarial example and the original input
for multiple attacks and neural networks in Table 2.

Algorithm implementation and complexity

The complexity of an attack on a deep learning system can
be measured in terms of forward and backward evaluations
of the model as these operations usually require more com-
putational power than other operations involved in these al-
gorithms. In our case most of the operations are done com-
puting first and second order derivatives of the neural net-
work model to define each quadratic sub-problem. These
sub-problems are then solved using the Python CVXPY li-
brary (Diamond and Boyd 2016; Agrawal et al. 2018). For
the experiments reported in this section, the algorithm used
by the solver is the default one, namely, Operator Split-
ting Quadratic Program (Stellato et al. 2020) (OSQP) which
implements an Alternating Direction Method of Multipli-
ers (Boyd et al. 2011) (ADMM) variant. In this case, the
solver requires the entire matrix involved in the problem’s
formulation, which, in our case, implies computing the Hes-
sian of the Lagrangian. Other types of optimizer could be
used to solve the quadratic subproblem and other implemen-
tation choices could be made in order to speed up the exe-
cution but exploring all these parameters is out of the scope
of this paper as we aim to show how a simple SQP-type
approach could efficiently be used to create competitive ad-
versarial attacks.

The choice of the number of iterations ;.. has, clearly,
a considerable impact on the cost of our method. Essentially,
we can afford doing many first order cheap iterations (N7) in
order to get as close as possible to an optimal solution such
that only few expensive second order iterations are needed
to reach convergence. In our experiments [V, is fixed to a rel-
atively large number. As for the second order iterations, the
number is not fixed but we keep on iterating as long as the
constraints of the quadratic subproblem are satisfied because
this means that the algorithm has successfully improved the
solution obtained at the previous iteration. The number of
second order iteration is, typically, of the order of a few tens.

For the following experiments we chose to use a budget of
4000 iterations per image for ALMA, DDN, FAB and C&W
while for SQUAT we use a budget of approximately 2000
iterations as those iterations can be more expensive. As an
example, for the SmallCNN-TRADES neural network, this
typically results in a total of 4000 forward and 4000 back-
ward propagations for DDN and ALMA, 8000 forward and
40000 backward for FAB, 30000 forward and 30000 back-
ward for C&W. In this case the SQUAT attack performed
in average 20 iterations with second order information per
image while having set N; = 2000 first order iterations per
image. For the first order iterations 1 forward and 10 back-
ward propagations are needed, while in order to compute a
Hessian matrix-vector multiplication 1 forward and 1 back-
ward propagations would be needed, but to compute the full
hessian here the cost scale as the input size n so we make
the assumption that computing the Hessian costs as much as



n forward and n backward propagations, which gives an av-
erage of 18000 forward and 36000 backward propagations
in total.

The learning rate v used in the first order iterations, has to
be carefully chosen. In our experiments, in order to keep the
computational cost comparable to other methods, we chose
not to use a line-search algorithm to find an optimal learn-
ing rate value; instead, we only run the first order part of
our attack with few iterations in order to compare the algo-
rithm performance depending on «v. We compare, in Table 1,
the median distance of the attacks perturbations depending
on the value of «, and, in Figure 2, an example of how
changes on « impact the final results of the SQUAT algo-
rithm by showing robust accuracy curves on the SmallCNN-
TRADES.

Training
Regular DDN TRADES

« Median o Median « Median

Distance Distance Distance
0.8 1.80 0.7 3.68 0.2 1.89
09 1.76 0.8 3.55 03 1.70
1 1.79 09 3.52 04 1.68
1.1  1.83 1 3.58 05 201

Table 1: Adversarial attack performances on SmallCNN de-
pending on the choice of « and the training setup.

SmallCNN-TRADES adv. trained

100

ﬁ\\\ —— SQUAT a =03
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Z 2 \\
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Figure 2: Robust accuracy curves for the SmallCNN-
TRADES adversarially trained model on MNIST.

As seen in Table 1, and particularly for the more robust
networks, the behavior of the algorithm can be very sensitive
to the choice of a. For the SmallCNN and SmallCNN-DDN
neural network we chose a = 0.9 but, as seen in Figure 2,
the median distance does not always give enough informa-
tion and using robust accuracy curves we chose in this case
to use a = 0.3 as it gave a better performance trade-off be-
tween smaller and larger norm. The second hyperparameter
(B which is the learning rate when using second order in-
formation and is fixed at 5 = 0.15 for all our experiments.
Indeed tuning this parameter as it has been done for a can be
costly; moreover the goal here is to improve a good enough
starting point, it is not an exploration phase anymore, hence
one does not want to make large steps and we found that

usually any 5 < 0.2 can be a good choice, knowing that the
smaller [ is the more step will be needed to converge.

Results

As shown on the robust accuracy curves of all different at-
tacks on Figure 3 and on the median distances of Table 2
we observe that our proposed attack SQUAT outperforms
other state-of-the-art attacks on the regularly trained Small-
CNN. Indeed for a given threshold the robust accuracy is
globally lower with SQUAT than with other attacks. This is
even clearer for smaller norms as seen on the bottom of Fig-
ure 3: for norms in the [0, 1] range, all other attacks have
comparable results and only our method stands out. Finally,
it must be noted that SQUAT and ALMA, attain 100% attack
success rate approximately at the same perturbation norm
which is smaller than the other methods.

SmallCNN reg. trained

100
o —— SQUAT
S 80 — W
= — FAB
£ 60 —— DDN
S —— ALMA
= 40
2 2
0
0 1 2 3 4 5
lo-norm
SmallCNN reg. trained
100
£ o
5 SQUAT
s — C&W
£ g — FAB \
= —— DDN
—— ALMA

0.0 0.2 0.4 0.6 0.8 1.0
lo-norm

Figure 3: Robust accuracy curves for the SmallCNN regu-
larly trained model on MNIST.

On Figure 4 and Figure 5 which give robust accuracy
curves on the SmallCNN-DDN and SmallCNN-TRADES
we can see that all the methods behave approximately the
same for norms belonging in the [0, 1] interval; this is not
suprising as the neural networks are much more robust and
hence less affected by small norm perturbations. On the [,-
DDN adversarially trained network all the attacks are sig-
nificantly less efficient than for the regularly trained net-
work, this is expected as these attacks are designed for the
lo-norm and the SmallCNN-DDN is designed to be robust
to these types of attacks. As seen in Figure 4, in this setup
ALMA, SQUAT perform similarly, with a slight advantage
for ALMA when perturbations norm are in the [2, 5] range.
On the other hand C&W, FAB and DDN all perform simi-



SmallCNN-DDN adv. trained
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Figure 4: Robust accuracy curves for the SmallCNN-DDN
adversarially trained model on MNIST.

larly for this neural network. Median distances obtained on
the [..-TRADES adversarially trained neural network are
closer to those we get on the regularly trained one except for
the C&W attack which performs poorly compared to other
state-of-the-art attacks. In this case SQUAT perform simi-
larly to FAB, outperforming DDN and C&W in terms of
median distance of adversarial perturbations, whereas glob-
ally ALMA get better results on this training setup.

Training

Regular DDN TRADES
Attack Median Median Median

Distance Distance Distance
SQUAT 1.22 2.53 1.55
FAB 1.29 2.61 1.63
DDN 1.31 2.55 1.80
ALMA 1.24 2.48 1.44
C&W 1.28 2.59 2.41

Table 2: Adversarial attacks performances on SmallCNN de-
pending on the training setup.

Conclusion and discussion

The existence of new types of adversarial attacks poses po-
tential security threats to machine learning models, hence
designing adversarial attacks and defenses is a subject of
great interest. Indeed they enable to better understand neural
networks sensitivity and improve their robustness, notably
by the means of adversarial training.

SmallCNN-TRADES adv. trained

100
o SQUAT
S ‘ C&W
; FAB
g 60 DDN
j; 40
2 2
0
0 i 2 3 ] 5
lo-norm
SmallCNN-TRADES adv. trained
100
S
g 96
g SQUAT
g0 —— C&W
2 P FAB
2 | —— DDN
90 —— ALMA

0.0 0.2 0.4 0.6 0.8 1.0
lo-norm

Figure 5: Robust accuracy curves for the SmallCNN-
TRADES adversarially trained model on MNIST.

In this work we have shown how to compute adver-
sarial attacks on deep neural networks using a Sequential
Quadratic Programming based approach, adapting the basic
algorithm to this specific case in particular by first using a
first order variation of SQP in order to then use second order
information to improve the resulting perturbations.

The goal of this paper is to provide a first look of how
successful adversarial attacks can be built using second or-
der information and using existing optimization algorithms.
As seen in the experimental results section, we have shown
that our approach can compete and even outperform others
state-of-the-art attacks on models that are regularly and ad-
versarially trained.

As seen in the work by Rony et al. (2021), using exist-
ing optimization methods to attack neural networks often
needs some customization. Our approach relies on few, sim-
ple, modifications of the original SQP algorithm, which en-
able the use of this method in the specific case of adversarial
attacks on a neural network and still obtains competitive re-
sults.

Many SQP-type algorithms and solvers (Byrd, Nocedal,
and Waltz 2006) have been developed and could be used
in our approach, notably Gill, Murray, and Saunders (2002)
designed a software using algorithm with limited-memory
quasi-Newton approximations to the Hessian of the La-
grangian. Those types of solvers, using Hessian approxima-
tion or taking advantage of Hessian-vector product could be
of special interest for designing a more robust and less ex-
pensive SQP-approach to create adversarial examples in the
future.
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