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Abstract—Training people for facing dangerous situations has
always been expensive and difficult or dangerous to organize. New
approaches use virtual environments and simulation in which the
role of collaborative people is played by cognitive agents, which
allows making training sessions when they were not previously
possible, or else decreasing their cost. Two problems arise: firstly,
it is necessary to simulate teams, composed of virtual agents
and the learner, interacting in a collaborative context. Secondly,
we need to support the definition of a variety of explainable
and professional behaviours (i.e. representative of the expected
behaviours of an expert in a given profession). It is extremely
complex and time consuming. To facilitate the design of tools
allowing to build adequate agents model, we propose a meta-
model of human behavior simulation. The originality of this meta-
model is to make the cognitive models, used for explainability,
and the agent model completely independent, to avoid repeated
implementations of various behaviours. We show how task
selection works on a simple agent model, by means of a graph of
influences and preferences. This means has the advantage of being
intelligible by its visual nature and of facilitating the addition
of new behaviours impacting on the selection. A preliminary
evaluation has shown that human users perceive the variability
of behaviour and that the provided explanations are relevant.

Index Terms—simulation for training, virtual collaborative
agents, behaviours, cognitive model, task selection, influence
graph, preferences, independence.

I. INTRODUCTION

New training environments use cognitive agents to simulate
collaborating humans [1]-[3]. We are interested in the training
of socio-technical skills during collaborative activities in crisis
situations. For this purpose, we use agents to simulate team
members whose behaviour varies according to several aspects,
such as stress and/or personality. These behaviours can impact
on the collaborative activity and require the learner to adapt
to their team [4].

These agent are Autonomous Virtual Characters, abbrevi-
ated as AVCSs. They are embodied virtual agents evolving
within a virtual environment (VE). They interact with the
elements of the environment, whether they are artefacts, other
AVCs, or human users. The activity of AVCS within the VE
is defined by an agent model. Classically, the model follows
repeated perceive-reason-act cycle [5]. An agent model is thus
composed of a set of information processing mechanisms,
from perception to action. We call them processes.
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Our objective is to incorporate different sorts of behaviours
in the model that impact the processes so as to create an
illusion of life by imitating some psychological mechanisms.
For example, Driskell and Salas [6] proposed “a limited num-
ber of cognitive, emotional, and social mechanisms through
which stress impacts performance.” One of these behaviours
could impact perception as “Stress increases distraction and
decreases attentional focus.” Another could impact task selec-
tion as “under stress people tend to be less likely to help others
[...]1.” Cognitive models in the literature like this one or others
like [7] or [8] propose different ways of implementing such
behaviours within an agent model. In this paper, we propose
a meta-model allowing to combine different behaviours from
different cognitive models within one single agent model, in
a modular way.

To evaluate this model, we place ourselves on a case study in
the field of emergency medicine [2]. We show how our model
allows us to simply define identifiable, explicable and modular
behaviours in relation to the domain (here, stress management
and communication).

Our first goal is to be able to reproduce behaviours that are
representative of those observed in the field. We call it sifuated
behaviours [4].

Our second goal is to obtain explainable behaviours. While
the representativity requires some variability in the expressed
behaviours, we want that the actions of the agent make sense
for the observer and that its apparent decisions are always
explainable (especially since we are in a learning context).
According to [9], explainability includes taking into account
the observer’s model to provide the relevant explanations.
However, in this paper, we limit explainability to providing an
explanation of the causes of a behaviour, through the cognitive
models and the strategies used. We aim at using cognitive
models to explore the variability in an explainable way. An
observer may not understand at first the observed behaviours,
but they should make more senses after an explanation is
provided.

Our third goal is to propose a modular approach to be-
haviour simulation through cognitive models integration. In-
deed, we want to be able to add or to remove behaviours as
required by the application domain. Building such a domain-
independent model requires the model to be also independent



from the cognitive models, so that different aspects of different
models can be integrated. The model we present in this paper
supports such a modularity.

The next section positions our work w.r.t. other models in
the literature. Section 3 presents the basics of our model.
Section 4 shows how we implement behaviours during task
selection. Section 5 present a preliminary experiment to as-
sess whether users can perceive the differences in AVCS’
behaviours.

II. PROBLEM STATEMENT

We are interested in operationnalizing a set of cognitive
models about collective work, within an agent model. We first
started to look at relevant computational approaches.

A. Related-works

Several approaches are conceivable to simulate our agents
and generate behaviours in line with their cognitive models.

On one hand, we could use techniques present in video
games [10], such as Behaviour Trees (BT) or Finite State
Machine (FSM). However, scaling up with the necessary
variability takes us away from such approaches.

We could also consider planning approaches such as Hi-
erarchical Task Network (HTN) [11], but on their own they
lack the functionality needed for an agent model such as
communication, perception, etc.

On the other hand, other possibilities would be to use
heavy cognitive architectures, like SOAR [12], or ACT-R
[13]. An approach frequently adopted in simulation [14] is
to use BDI [15] architectures. However, their complexity and
their cognitive models are not necessarily what we desire.
Another difficulty is to integrate other cognitive models within
such architectures, hence the large number of extensions to
BDI [14], like PEP-BDI [16] or more recently BEN [17], a
normative social emotional agent architecture.

We do not seek to challenge these approaches. Rather, we
see them as tools that we could use/build upon to add required
cognitive models. A question is how we can modularly add
cognitive models and dynamically modify the agent’s model
without having to do extensive work. We are therefore moving
towards what we call an agent meta-model. To illustrate our
work in a training context, we build upon an already existing
agent model that takes into account some cognitive models.

B. Agent model

For the reasoning part of the agent model, an option is
to consider hybrid approaches, like REPLICANTS [4]. The
model reasons on an activity model, called ACTIVITY-
DL. The formalism allows to model human activity in a
hierarchical way, close to the mental representation of experts.
It is particularly relevant for describing collaborative work, as
it allows the modeler to define agent roles or qualifications for
each task, number of agents, and the preconditions that impact
the subtasks in the hierarchy. Moreover, this model inherently
supports the generation of variable behaviours that achieve the

procedure, by allowing agents to fulfill only a subset of the
conditions.

The model already takes into account some cognitive mod-
els like Demary [7]. However, this model does not meet our
requirements (like modularity) and must therefore be adapted.

C. Cognitive models

We are interested in cognitive models applicable to a
team in a crisis situation, particularly those that may impact
the collective aspect. Therefore, we consider the following
cognitive models:

Demary [7] studied behaviours of followers in a hierar-
chical team, including the difference in behaviour between a
proactive follower and a passive follower. It is based on the
followership models of [18], [19].

Driskell [20] has conducted numerous studies on teams in
extreme environments and the impact of stress, among other
factors, on their behaviours. An example of such behaviour
would be the “flexibility in the team’s status structure, such
that one team member may take the lead for some tasks
and another team member for other tasks.” The model is of
particular interest to us because of the multiple impacts of
stress on different processes, such as emotions, cognition and
sociability. It represents a challenge in terms of the variety of
behaviours to be accounted for.

A first observation is the difficulty of operationalising one
but also several cognitive models within an agent model. Thus,
we would like to facilitate this step.

III. PRESENTATION OF THE META-MODEL

In this section, we will first present the basics of the meta-
model. Then, we will give some details on the use of influence
graphs and preferences to select tasks.

A. Meta-model to simulate AVC

Our meta-model consists of programming an agent model
to simulate AVCS. We do not seek to define yet another agent
model. The objective is to facilitate the operationalisation of
behaviours, whatever the agent model used, according to the
needs of the application. This is why we propose a meta-model
and not a specific model.

1) AVC: An AVC is characterised at least by an internal
state and an agent model, as shown by Fig.1.

. Stable

. . Internal characteristics
is defined by o

e.q traits

Dynamic

. . e.g stress
characteristics

works according to

Perception

PVA
e.g BDI
Fig. 1. Structure of AVCS. The exact definition depends on the application.

The internal state contains what is called a profile, i.e. a set
of characteristics. We differentiate between stable characteris-
tics (e.g. personality traits) and dynamic characteristics (e.g.



stress). The difference lies in the way these characteristics
are assessed. A stable characteristic can be determined in
an arbitrary way. This characteristics may change during the
simulation, but overall it is expected to remain the same.
In contrast, dynamic characteristics are expected to change
regularly during the simulation. A priori, its value can only
be evaluated during the simulation, by a process which is
responsible for updating its value.

The agent model takes as input a set of percepts, i.e.
information that it can perceive. Its operation is the result of a
set of processes, whether or not they are chained together. It is
inspired by flow-based programming [21]. Finally, the agent
model outputs actions to be performed. Whether it is the agent
model or the internal state, we cannot specify the contained
data more precisely. Indeed, this depends on the needs of the
application [5].

2) Process: A first contribution is to standardise the defini-
tion of a process. The goal is to combine different processes
whatever the models from which they are derived. A process
is a function with any inputs and outputs. The process is
characterised by a strategy that indicates how a set of be-
haviours, noted C, from relevant cognitives models, will alter
the process.

3) Behaviour: The definition of a behaviour is therefore
dependent on the strategy. We can identify that a behaviour
has, as a minimum, the inputs of the process it affects. The
operation and output of the behaviour depend on the strategy
adopted by the process.

As Faur [8] points out, a behaviour depends on both
the agent’s profile and his evaluation of the situation. This
evaluation depends on the agent’s profile and its knowledge.
For example, an introverted agent might behave extrovertly
in the presence of friends, but introvertly in the presence of
co-workers. Therefore, each behaviour is associated with an
activation function. It indicates when this behaviour should be
taken into account according to the profile of the agent and
his evaluation of the situation. This function takes the agent’s
state as input, evaluates the situation and returns true or false
according to the indications of the cognitive model.

B. Operationalising a cognitive model

Operationalising a cognitive model consists in implementing
it within the agent model so that it can exhibit the behaviours
induced. The implementation can be done in 4 steps, ordered
by increasing difficulty:

1) Adding stable characteristics to the internal state (e.g

adding personality traits).

2) Adding dynamic characteristics to the internal state.
A process must be responsible for updating it. If such
process is not defined, see step 4. (e.g adding stress,
constantly updated by a process).

3) Adding behaviour so the characteristics are taken into
account in the appropriate processes (e.g “high stress
reduces cooperation”).

4) Adding processes in case where the agent model does
not have an adequate process to update a dynamic

characteristic or to take into account certain behaviours
(e.g an appraisal process is responsible for evaluating
stress.).

IV. INFLUENCES GRAPH AND PREFERENCES

To illustrate our model, we consider the Replicants cognitive
model [4] that we extend with a strategy called “choice by
influence and preference graph” (abbreviated as I&P graph)
to operationalise behaviours during task selection. An example
of influence and preference graph is given on Figure 2.

Task Selection

I Behaviour A '

Behaviour B

Fig. 2. Task selection process is using a strategy of “choice by I&P graph”.

A. Overview

A task selection” process (see algorithm 1) takes as input
a set of candidate tasks 7' and returns a selected task ¢t € T'.
The influence graph is a bipartite graph with, in this context,
behaviours indicating which tasks are suitable or not, symbol-
ised by positive or negative influences. The score of a task is
the sum of the positive (4+1) and negative (—1) influences. The
task with the highest score indicates the one that most satisfies
the behaviours. It is therefore selected and corresponds to the
output of the process. Tasks are identified by a name and a set
of indicators. This information allows behaviours to reason
and decide whether or not they should be favored. The set
of indicators depends on the application. We can assume that
at least the cost will be present. This graph is automatically
constructed from the behaviours taken into account and the
candidate tasks.

Algorithm 1 Task-selection process
Input a set of candidate tasks 7, a set of behaviours C.
Output t € T
1: influence_graph + {}
2: for all c € C do
3. for all influence € compute(c,T) do
4 add_edge(in fluence_graph,in fluence)
5: highest_tasks < highest_score(in fluence_graph)
6
7
8
9

. if size_of(highest_tasks) == 0 then
return ¢

. else
return random_element(highest_tasks)

B. Influence function

Each behaviour is defined as an influence function which
defines a list of positive or negative influences towards some
elements ¢ € T. The influence value depends on ad-hoc



variables in the behaviour (e.g. give select the shortest task)
and, possibly, the other elements ¢’ € T (e.g. select the
cheapest task).

C. Selection

The task with the best score is selected. If several tasks
have the best score, a task is randomly selected. If we had a
reason to select one of the tasks, then this reason would be a
high-level rule, i.e. an influence function.

D. Preferences

Also, on its own, influences are not sufficient to describe
certain behaviours. This is why we propose to couple them
with a preference graph. This graph allows us to refine the
choice of the behaviour to select if there is an indecision.
The principle of the preference graph is to partially order
behaviours, either according to a justification from a cognitive
model: "in a situation of intense stress, a reduction in commu-
nication is observed”, or if the scenario favours a behaviour.
For example, they could indicate a preference on one of the
tasks. We will therefore select this one, rather than selecting
randomly. Like the influence graph, this graph is deduced
automatically according to the preference rules established and
the behaviours taken into account.

The combination of these two graphs improves the ex-
pressiveness of the strategy, which ultimately allows us to
operationalise behaviours more finely.

We could have used weights instead of preferences, but this
would have been at odds with our goals of modularity and
genericity. In particular, instead of specifying preferences be-
tween only the behaviours concerned, we would have to adjust
the weights of all the behaviours. Also, using preferences is
more intelligible than weights.

E. Explainable

As mentioned at the beginning of the paper, we relax the
explainable property [9]. This goes beyond our scope. We just
try to provide an explanation of the causes of a behaviour,
through the cognitive models and the strategies used, during
debrief.

To do this, we propose the influence and preference graph
mechanism. It is a visual and intelligible mechanism to iden-
tify the factors (i.e rules from cognitives models) that led to
this behaviour, against other possibilities.

Another mechanism, if the visualisation of the graph is not
possible, is to provide a textual explanation that takes the
following form: “The agent did X, because Y, he does Z.”
X is the realised behaviour. Y is the information about the
internal state (i.e. the profile and the evaluation of the situation)
relevant for the rule Z. Z is the high-level rule that led to X. If
several cognitive models are linked to the behaviour selection,
each one provides their Y and Z.

F. Example

Fig.3 is an example of an influence graph. On the top, there
are three behaviours and on the bottom are some tasks. Before
detailing how this example works, we will detail the data.

Inhibit inactive tasks
Favor ordered tasks

Favor short tasks or  Favor regulatory
mastered tasks tasks

Followership proactive Stressed Reglementary

Do
nothing

Fig. 3. Diagram of the “choice by influence graph” strategy. In this example,
task T3 has the maximum score. It is therefore the one selected.

1) Tasks: Let us assume the following indicators:
« cost B: base cost to execute this task
« cost R: additive regulatory cost if following the rules
o Tags: set of symbols to describe the tasks. Here we use:
- SCX, where X is the skill level of the PVA. The
higher the number, the better.
— Ordered, indicates an order from their leader.
The more advanced the indicators, the more advanced the
influence functions can be. Figure IV-F1 describes the tasks
used by Fig. 3.

Name cost B | cost R | Tags

Do nothing | 0 0 None

T1 1 0 SC3

T2 2 0 SCI

T3 3 0 SC2 - Ordered

T4 2 5 SC2 - Regulatory
Fig. 4. Set of tasks.

2) Behaviours: Figure IV-F2 describes the behaviours used
by Fig. 3.

Behaviour Activation function | Influence function
Followership | . . — inactive tasks
Proactive s proactive + ordered tasks
+ mastered tasks
Stressed is stressed (< to skill)
or shortest tasks
situation is — urgent
Regulatory xor It is urgent and | + regulatory tasks
agent is regulatory

Fig. 5. Set of behaviours.

3) Scenario: Let’s say for this example that we have the
following parameters. Our agent is: proactive, not regulatory
and stressed. The situation is considered to be urgent.

4) Description: With this data and scenario, we obtain
the influence graph shown in Fig.3. According to the acti-
vation rules, the two behaviours “followership proactive” and
“stressed” are activated. The “regulatory” behaviour is not ac-
tivated because the situation is urgent and he is not regulatory.
The example is simple enough, not to detail everything. We
specify the operation only for the two following tasks:

¢ ”Do nothing” is influenced negatively by “followership

proactive” but positively by “’stressed” as a short task.

e “’T3” is influenced positively by “followership proactive”

as this task has been ordered to him and also positively
by stressed” because it is a task that it masters.



G. Discussion

The use of an influence graph is justified by its intelligibility
and modularity. Indeed, we can trace which behaviours are
responsible for the selection. Moreover, we can add other
behaviours, without having to modify the existing behaviours
and the impacted process. But, on its own, it is not sufficient to
describe certain behaviours. This is why we propose to couple
it with a preference graph, to refine the choice of the behaviour
to adopt if there is an indecision.

A priori, if we do not take into account the preferences, but
rather the influences in the first place, it is because we wish
to privilege what the agent prefers, rather than the preferences
of external users such as the scenario. However, the opposite
is quite possible and could be another strategy.

V. USER EXPERIMENTATION ANALYSIS

Before testing the impact of agent behaviour on training for
collaborative activities and the ease of use of the tool, we set
up a preliminary experiment. We tested an application of our
model. We wish to ensure that generated behaviours remain
relevant when multiple cognitive models are combined (H1).
We also hypothesised that the users would be able to differenti-
ate the generated profiles (H2), and that an explanation brought
from the models we used helps to understand the presented
behaviour (H3).

The experiment was based on the following written sce-
nario: a doctor diagnoses a patient, concludes s/he need
an injection of adrenaline and asks a nurse to prepare the
injection. The nurse realises that the patient actually needs
morphine, reacts to the doctor’s orders, prepares an injection
and reports their actions.

The nurse’s decision-making and actions vary depending on
their attributed profile, determined by a combination of models
we would use for the AVCSs.

A. Protocol

Subjects were randomly given an alternate version of
the scenario, each of these corresponding to a differ-
ent behaviour for the nurse, characterised by four key-
words: passive/proactive, (un)communicative, (un)stressed and
(un)skilful. All behavioural profiles were defined as skilful
in this experiment, so we had eight variations matching
the remaining combinations. After reading the scenario, the
subjects were asked to evaluate the believability of the nurse’s
behaviour and the correspondence to the three variable be-
havioural keywords. Then, subjects were given explanations on
the behaviours, either justified by the chosen models, or simple
and naive. The subjects are asked to evaluate the relevance of
the given explanation.

All questions were presented as Likert scales, and the
subjects could justify every answer they gave.

The experiment was held as an online survey. Participants
were automatically allocated to one of the sixteen forms (eight
profiles and two types of explanations).

We used G*POWER [22], [23] to estimate the needed
number of participants among our sixteen groups, with a
medium effect size.

B. Results

The subjects were recruited from a pool of students and
lab staff. 174 entries have been registered, with at least ten
participants per group. We attributed integer values ranging
from —2 to 2 on the Likert scales, —2 being complete
disagreement and 2 being complete agreement.

a) HI: The mean over all groups concerning the believ-
ability of the nurse’s behaviour is —0.16. We actually observe
the only positive means in the groups corresponding to a
communicative & proactive profile, with a global 1.45, against
the rest being at —0.70.

b) H2: Regarding the evaluation of the behavioural
keywords, we observed very polarised results for the
(un)communicative and passive/proactive traits, the absolute
value of the median being over 1 for all groups, and actually
at 2 for most of them. All these answers match with the
defined behaviour, except for the communicative & passive
trait combination, where the (un)communicative trait has been
evaluated as uncommunicative. However, the (un)stressful trait
has a mean of zero with a wide standard deviation of 1, with
most results being 0.

c) H3: On average, the relevance of the model-based
explanations was rated 0.82, and the naive ones were rated
0.40. The difference proved to be significant enough with our
statistical sample (p = 0.031 < 0.05).

C. Interpretations

a) HI: First, in terms of perceived behaviour, the major-
ity of people did not find the behaviour of the passive scenarios
convincing. However, this is the case for the scenarios where
the nurse was proactive&communicative. One explanation
would be that we misrepresented the urgency of the situation
and the context, which is difficult without VE and introducing
biases. According to user feedback, less extreme behaviour
would have been preferable.

b) H2: Then, at the level of the perception of the
behaviours, the values obtained show that the users perceive
the differences in behaviours between the profiles (criteria
6.1), except for the stress characteristic, which is difficult
to capture in text, without giving too much information and
introducing a bias. A VE would have been more appropriate,
as we discuss in the next section.

c) H3: Finally, as far as explanations are concerned, they
have a better overall acceptance than naive explanations (H3).
However, the difference doesn’t seem significant enough to
conclude.

D. Discussions

For this first experiment, we were mainly interested in
whether the difference in behaviour was well perceived (crite-
ria 6.1), which is the case. Once the work is more advanced,
we would like to make the experiment more complex and test



it in a more meaningful way. In particular, we wish to extend
the duration of the simulation to observe long-term behaviour
and increase the number of possible behaviours. Ideally, we
would like to run the experiment from a VE. The user could
interact with the simulation and take part in the scenario. A
observation from this experiment, is that the urgency of the
situation and behaviours (especially stress) could have been
better conveyed with an VE than just text, as the means of
comprehension would have been closer to reality, especially
regarding perception of the different details of the scenario.

VI. CONCLUSIONS & PERSPECTIVES

Developing training environment using cognitive virtual
agents in a collaborative context is a complex and time
consuming task. To facilitate the work of modelling these
agents, we proposed a meta-model to generate an agent model
tailored to the needs of an application, i.e a set of behaviours
and cognitive models relevant to the domain. The originality
of this meta-model is to make the cognitive models, used for
explainability, and the agent model completely independent,
to avoid repeated implementations of various behaviours. We
formalised the processes that compose this model, by intro-
ducing the notion of strategy. A strategy defines how to take
into account several behaviours. This reinforces the genericity
but also the modularity depending on the strategy used.

We have applied this approach to generalise the oper-
ationalisation of behaviours during the selection of tasks,
using a strategy called “choice by influence and preference
graphs”. This strategy has the advantage of being modular
and explainable, at least by its intelligibility from its visual
nature or by explanations that can be constructed from the
graphs. A requirement for our agents is the ability to express
various explicable behaviours, induced from several factors
from cognitive models, such as stress or personality. A pre-
liminary evaluation showed that users perceived the difference
in behaviour between different agents in the same context. It
also showed that the explanations provided by the cognitive
models gave a better understanding of the agents’ behaviours.

Our future work will consist in applying this approach
to operationalise behaviours from Driskell’s studies [20]. In
particular, we would like to operationalise stress, flexibility
and adaptability behaviours. Before that, we need to continue
to work on the meta-model, especially on the sequence of
processes. Afterwards, the next step is to test with designers
whether the tool facilitates this work and whether these agents
improve the training of socio-technical skills.

ACKNOWLEDGMENT

Work funded by the ORCHESTRAA DGA RAPID project.
We thank Adrien CHARANNAT for his help in setting up the
experiment.

REFERENCES
[1] L. Callebert, D. Lourdeaux, and J.-P. Barths, “Trust-based decision-
making system for action selection by autonomous agents,” in 2016

IEEE 20th International Conference on Computer Supported Coopera-
tive Work in Design (CSCWD), May 2016, pp. 4-9.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]

[20]

[21]

[22]

(23]

L. Huguet, D. Lourdeaux, and N. Sabouret, “Prsentation du projet
VICTEAMS,” in Workshop affects, compagnons artificiels et interaction
(WACAI 2016), Brest, France, 2016.

B. G. Silverman, D. Pietrocola, B. Nye, N. Weyer, O. Osin, D. Johnson,
and R. Weaver, “Rich socio-cognitive agents for immersive training
environments: case of NonKin Village,” Autonomous Agents and Multi-
Agent Systems, vol. 24, no. 2, pp. 312-343, Mar. 2012.

L. Huguet, D. Lourdeaux, and N. Sabouret, “Moteur de slection de
tches pour des personnages virtuels autonomes non omniscients,” in
Workshop affects, compagnons artificiels et interaction (WACAI 2018),
Porquerolles, France, Jun. 2018.

B. Parasumanna Gokulan and D. Srinivasan, “An Introduction to Multi-
Agent Systems,” in Studies in Computational Intelligence, Jul. 2010,
vol. 310, pp. 1-27, journal Abbreviation: Studies in Computational
Intelligence.

T. Driskell, J. E. Driskell, and E. Salas, “Mitigating Stress Effects on
Team Cohesion,” in Team Cohesion: Advances in Psychological Theory,
Methods and Practice, ser. Research on Managing Groups and Teams.
Emerald Group Publishing Limited, Jan. 2015, vol. 17, pp. 247-270.
G. Demary, “valuation cognitive du leader dans une dyade hirarchique
: des comportements non verbaux du suiveur aux comportements de
leadership,” Bulletin de psychologie, vol. Numro 569, no. 5, pp. 271-
275, Nov. 2020.

C. Faur, “Approche computationnelle du regulatory focus pour des
agents interactifs : un pas vers une personnalit artificielle,” These de
doctorat, Universit Paris-Saclay (ComUE), Oct. 2016.

T. Chakraborti, A. Kulkarni, S. Sreedharan, D. E. Smith, and S. Kamb-
hampati, “Explicability? Legibility? Predictability? Transparency? Pri-
vacy? Security? The Emerging Landscape of Interpretable Agent Be-
havior,” Proceedings of the International Conference on Automated
Planning and Scheduling, vol. 29, pp. 86-96, Jul. 2019.

I. Millington, Al for Games, 3rd ed. Boca Raton: CRC Press, Mar.
2019.

K. Erol, J. Hendler, and D. Nau, “HTN Planning: Complexity and
Expressivity,” Proceedings of the National Conference on Artificial
Intelligence, vol. 2, May 1994.

J. E. Laird, A. Newell, and P. S. Rosenbloom, “SOAR: An architecture
for general intelligence.” Standford, Tech. Rep., 1986.

J. R. Anderson, “ACT: A simple theory of complex cognition.” Amer-
ican psychologist, vol. 51, no. 4, p. 355, 1996, publisher: American
Psychological Association.

C. Adam and B. Gaudou, “BDI agents in social simulations: a survey,”
The Knowledge Engineering Review, vol. 31, no. 3, pp. 207-238, Jun.
2016.

M. Bratman, Intention, Plans, and Practical Reason.
Study of Language and Information, 1987.

H. Jones, J. Saunier, and D. Lourdeaux, “Personality, Emotions and
Physiology in a BDI Agent Architecture: The PEP-> BDI Model,” in
Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference
on Web Intelligence and Intelligent Agent Technology-Volume 02, 2009,
pp. 263-266.

M. Bourgais, “Vers des agents cognitifs, affectifs et sociaux dans la
simulation,” phdthesis, Normandie Universit, Nov. 2018.

I. Chaleff, “The Courageous Follower: Standing Up to And for Our
Leaders,” Nassp Bulletin, vol. 81, pp. 119-119, Feb. 1997.

R. Kelley, “In praise of followers,” Harvard Business Review, vol. 66,
pp. 142148, Jan. 1988.

T. Driskell, E. Salas, and J. E. Driskell, “Teams in extreme environments:
Alterations in team development and teamwork,” Human Resource
Management Review, vol. 28, no. 4, pp. 434-449, Dec. 2018.

J. P. Morrison, “Flow-based programming,” in Proc. Ist International
Workshop on Software Engineering for Parallel and Distributed Systems,
1994, pp. 25-29.

F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner, “G*Power 3: A
flexible statistical power analysis program for the social, behavioral,
and biomedical sciences,” Behavior Research Methods, vol. 39, no. 2,
pp. 175-191, May 2007.

F. Faul, E. Erdfelder, A. Buchner, and A.-G. Lang, “Statistical power
analyses using G¥Power 3.1: Tests for correlation and regression anal-
yses,” Behavior Research Methods, vol. 41, no. 4, pp. 1149-1160, Nov.
2009.

Center for the



