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Recently, the estimation of facial age has attracted much attention. This letter extends and
improves a recently developed method (Guehairia et al., 2020) for fusing multiple deep
facial features for age estimation. This method was based on deep random forests. We pro-
pose a new pipeline that integrates tensor-based subspace learning before applying DRFs.
Deep face features of a training set are represented as a 3D tensor. Multi-linear Whitened
Principal Component (MWPCA) and Tensor Exponential Discriminant (TEDA) are used to
extract the most discriminative information. The tensor subspace features are then fed into
DRFs to predict age. Experiments conducted on five public face databases show that our
method can compete with many state-of-the-art methods.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Face age estimation is one of the biometric technologies that have evolved greatly in recent years [22,40,32,9,23,34,37].
This technology can be used variously in the real world applications within various domains, such as Human Computer Inter-
action (HCI), security and management applications. Forensic Investigations[10,15]. The aging process of faces works accord-
ing to some well-known aging modes. When children grow up, their shape changes significantly due to the growing skull. On
the other hand, the aging process in adulthood can be identified by changes in facial skin texture as the physical appearance
changes. These are described by deep wrinkles, skin that peels off with time, and spots on all parts of the face [14]. In addi-
tion to the complexity of facial features and age, the aging process can also be impacted by other factors such as gender,
genes, race, health status, and life circumstances. In the field of image-based age estimation, the acquisition of facial images
is considered a challenge due to its difficulty and tediousness. In the field of image-based age estimation, the acquisition of
facial images is considered a challenging process due to its difficulty and tediousness. It is dilemmatic to find out the require-
ments for a comprehensive research, because the public age data of faces may have some limitations, such as unbalanced
representation of age, gender, and ethnicity. These difficulties show that age estimation research faces major obstacles.
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Although face age estimation technology faces many challenges, there are many different applications in the fields of close
observation and inspection systems, information management, human–computer interaction, and entertainment, etc.

Modern Convolutional Neural Networks (CNNs) are becoming more extensive and complicated [13,5]. Despite their suc-
cess in estimating the age of faces in images, they still have some weaknesses: (i) the choice of architecture of the network,
(ii) high computational cost, (iii) limited portability between different datasets, and (iv) the need for a very large dataset for
training.

In this letter, we propose a new approach that can solve many of the above problems.
In our proposed approach, we use pre-trained CNN models to extract features from facial images. These features are pro-

vided by multiple networks and used as input features to our estimator. The latter consists of tensor transformations and
deep random forests.

So far, the subspace transformation is the most commonly used technique for dimension reduction. Recently, several
dimension reduction algorithms have been proposed that are suitable for feature extraction [35,39]. Principal component
analysis (PCA) [1] and linear discriminant analysis LDA [30] are commonly used. They are linear subspace techniques. Essen-
tially, an image face is a matrix of m �m0 pixels treated as a 1-D feature vector of size m �m0. Unfortunately, this method
loses the position information of the pixels. Recently, multilinear subspace techniques based on tensor analysis of data in
high-dimensional spaces have been considered as a remarkable multi-linear technique [27]. These approaches allow the
preservation of the important information about the face structure. Multilinear transformations analyze the multifactorial
structure of facial images over different index numbers.

The common linear subspace methods PCA and LDA are extended to Multilinear PCA (MPCA) [27] and Multilinear Dis-
criminant Analysis (MDA) [36], which allow to manipulate the mathematical tensors. The high tensor order (i.e. >2) is pre-
sented in a normal form to show the set of face images without collapsing the original structure and correlation of the data
[28] [8]. In [29], the authors propose a new application of an adopted MPCA, Multilinear Whitened Principal Component
Analysis (MWPCA), which can solve the problem of small sample size in high-dimensional space and improve the hard dis-
crimination obtained by classical MPCA. Multilinear Variational Analysis MDA has also been extended to Tensor Exponential
Discriminant Analysis TEDA to improve the discriminant data contained in the null space of the within-class scatter matrix of
each tensor mode. TEDA increases the distance between samples belonging to multiple classes by distance-diffusion map-
pings. To our knowledge, there are no studies on age estimation from face images using MWPCA, TEDA, and Deep Random
Forest (DRF) tensor projection methods.

The main contributions of this work are as follows:

� We propose a multiview feature fusion [20] that improves the performance of our method previously proposed in [17].
Our proposed method also leverages the techniques in [29].

� We fuse the deep features using Whitened Principal Component Analysis (MWPCA) and Tensor Exponential Discriminant
Analysis (TEDA), respectively.

� Once the facial image features are represented in the tensor subspace, the final age is estimated using our new Deep Ran-
dom Forests (DRF) [17].

2. Building Blocks of the Proposed Method

In this section, we describe the main modules of our pipeline. The latter consists of two parts (see Fig. 1). The first part
consists of Multilinear Whitened PCA (MWPCA) followed by Tensor Exponential Discriminant Analysis (TEDA) [29]. The sec-
ond part performs regression by classification using deep random forests [17] that map features of the tensor space to a pre-
dicted age.

2.1. Multilinear whitened PCA (MWPCA):

In [29], the authors introduce MWPCA. MWPCA is an extension of MPCA to improve data representation in tensor space.
To achieve this, the training tensor dataset is centered by subtracting the average tensor from the training sample in a pre-
processing step. Then, in an initialization step, the covariance matrix and its eigenvalue decomposition are computed. This
allows for the whitening of each tensor, which consists of normalizing each eigenvector by the square root of its correspond-
ing eigenvalue. In this way, the data are less correlated and their variation is uniform in all directions. After initialization, the
whitening of each mode of the tensor patterns is performed by an iterative local optimization step of the projection matrices
until the maximum number of iterations is reached or the difference of the projected tensors between two consecutive iter-
ations becomes smaller than a predefined threshold. The process is performed with the set of tensor samples Ai 2 RI1�I2����Im

i ¼ 1; . . . ;nð Þ, the number n kð Þ of selected eigenvectors for each k-mode, the itrmax, which is the maximum number of itera-

tions and the threshold g. MWPCA generates the projection matrices of the modes as well as the projected tensor fAi

2 RI01�I‘2����I‘m which is the new representation of the original tensor Ai.
In [29], the authors introduce MWPCA. MWPCA is an extension of MPCA to improve data representation in tensor space.

To achieve this, the training tensor dataset is centered by subtracting the average tensor from the training sample in a pre-
processing step. Then, in an initialization step, the covariance matrix and its eigenvalue decomposition are computed. This
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Fig. 1. Illustration of the proposed architecture. The model is given by the MWPCA, TEDA, and DRFs. Each test image is fed into this pipeline (red arrows) to
obtain the associated age.
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allows for the whitening of each tensor, which consists of normalizing each eigenvector by the square root of its correspond-
ing eigenvalue. This makes the data less correlated and has a uniform variance in all directions. After initialization, the
whitening of each mode of the tensor patterns is performed by an iterative local optimization step of the projection matrices
until the maximum number of iterations is reached or the difference of the projected tensors between two consecutive iter-
ations becomes smaller than a predefined threshold. The process is performed with the set of tensor samples Ai 2 RI1�I2����Im

i ¼ 1; . . . ;nð Þ, the number n kð Þ of selected eigenvectors for each k-mode, the itrmax, which is the maximum number of itera-

tions and the threshold g. MWPCA generates the mode projection matrices as well as the projected tensor fAi 2 RI01�I‘2����I‘m

which is the new representation of the original tensor Ai.

2.2. Tensor Exponential Discriminant Analysis (TEDA):

For the TEDA, presented in [29], the input is a tensor generated by the previous MWPCA, which is defined as eA
2 RI01�I‘2����I‘m�n of the n training samples belonging to L classes, each class l ¼ 1; . . . ; L has a tensor fAl containing nl samples,
the itrmax is the maximum number of iterations and the final lower dimensions I001 � I002 . . . I

00
m.

From these inputs, TEDA estimates the projection matrices Uk. TEDA includes the null space of the within-class scatter
matrices of each tensor mode. In addition, TEDA increases the distance between samples belonging to different classes
via distance-diffusion mappings.

2.3. Deep Random Forests for age estimation [17]:

Our previous method [17] targets the age estimation problem and predicts age based on a single facial image. It performs
regression by classification. In this subsection, we briefly describe its principle.

The goal of the method RF is to generate multiple predictors before combining their different predictions, rather than try-
ing to obtain an optimized method all at once. For more details on random forests, see [7]2. In [17], we put into practice a
new approach that can solve the problem of age estimation from facial images (Deep Random Forests). It has shown ade-
quate performance compared to the state of the art. It consists of ensembles of random forests. The ensembles of Random
Forests form a cascade structure by forming more than one layer. An ensemble of Random Forests forms one layer in this
structure. The feature vector is received from the first layer as a given input. A class probability distribution is generated
by each forest in the same layer. An L-dimensional class vector is the output of each forest if there are L classes to predict.
By concatenating the original input vector with the generated class vectors of each forest (from the previous layer), the input
vector for subsequent layers is obtained.
1311
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3. Proposed approach

In this section we will be elaborating on the proposed architecture. It consists of two main steps: the dimension reduction
of the tensor and Deep Random Forest for the final age estimation. These two main parts are performed during a training
phase, where the first part (tensor transformations) is first determined and then the second part (DRFs) is estimated. We
assume that each face image has several types of deep descriptors. These feature vectors form a 2D matrix, which is consid-
ered as the feature matrix of a face image. Thus, each face image is represented by a 2D tensor. A training set of face images
can be represented by a 3D tensor. Then, the 3D tensor is successively treated by MWPCA and TEDA techniques to reduce the
dimensions while preserving the essential components. The output from TEDA is used as input to the Deep Random Forests
method for the final estimation. In the next section, we will present the implementation details of the proposed method.

We collect several types of descriptors for each facial image. The purpose of using these different feature types is to utilise
the different types of information to improve the age estimation process. After extracting the different feature vectors of the
face image, we reshape them into a 2D matrix of size I1 � I2, where I1 is the number of feature vectors used and I2 is the
dimension of the feature vectors.

The optimal multi-linear projection matrices are estimated in the training phase. After the model is computed, each new
face image can be projected in the testing phase by the above-mentioned tensor transformations.

The training X 2 RI1�I2�I3 is constructed using the feature vectors extracted from the preprocessed face images of the
training database. The feature vectors can be of different types. However, they should have the same dimension I2.

The modes of the tensor X 2 RI1�I2�I3 are:

� I1 denotes the number of the descriptors.
� I2 denotes the dimension of the feature vector.
� I3 denotes the number of training face samples.

The transformations of the input 3D tensor X are estimated based on the MWPCA/TEDA methods. The I1 and I2 modes are

projected into another subspace. Hence, a new reduced tensor Y 2 RI001�I002�I3 , where I01 � I002 < I1 � I2. For further processing,
these transformed features are reshaped (flattened) into a vector of dimension I001 � I002. The same procedure is applied consis-
tently upon the test samples. Having obtained the reduced tensor, we invoke the second learning module, namely the deep
random forests proposed in [17,16], where an ensemble of random forests interacts in the form of a cascade structure. The
input is a feature vector. This is processed by multiple random forests. This collection of RFs is considered as the first layer,
and the Deep Random Forest consists of multiple layers.

Each RF of the same layer generates a class probability vector. The generated class probability vectors are concatenated
with the input vector to form the input vector of the next layer. In this way, a new feature vector with more information is
created. The dimension of the new vector (in the first layer) is given by:
Dim ¼ D1 þ F � Lð Þ ð1Þ

where D1 denotes the original feature size, F the number of forests, and L the number of classes.

The output of the first layer is the input for the second layer, up to the last layer (the number of layers is a user-selected
parameter). In the last layer, the vectors of probabilities are averaged to obtain a final vector of class probabilities. The final
estimated class is the average of the N largest class probabilities. This is suitable for the age estimation problem. For more
details, see [17].
4. Experiments and implementation details

We used five datasets to test the performance of our proposed architecture: MORPH II (with 55,608 images and 5-fold
random partitioning), FG-NET (with 1002 images and LOPO protocol), PAL (1,046 images with 5-fold random partitioning),
LFW+ (with 15,699 images and 5-fold cross validation), APPA-REAL (real age labels of 7591 images and 5-fold cross
validation).

4.1. Pre-processing

We used the Ensemble of Regression Trees (ERT) algorithm [21]to locate the landmarks on the face. colorblueThis latter is
considered a good algorithmfor face feature detection. The landmarks are used to align the 2D face image based on the eye
coordinates. After the 2D alignment, the face region is cropped.

4.2. Feature extraction

We used the pre-trained models IMBD-WIKI and DEXchalearn to extract deep facial features [31]. We extract the last two
fully connected layer vectors of the above pre-trained models FC6 and FC7 of the pre-processed input images with size
1312
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224� 224. For each input face image, the FC6 and FC7 vectors of both models are later extracted as mentioned above to cre-
ate a 2D matrix feature of size 4096 � 4.

4.3. Evaluation Metric

To evaluate the performance of the proposed age estimation method, we used the Mean Absolute Error (MAE). It is one of
the most well-known indicators for evaluating the performance of age estimators in the literature. MAE calculates the aver-
age of the absolute error between the predicted age and the actual age. It is given by:
MAE ¼ 1
n

Xn
t¼1

jpt � gtj ð2Þ
where n is the number of images tested, pt is the predicted age of image t, and gt is the actual age of that image.

4.4. Implementation

After obtaining the feature vectors from the pre-trained model, we extract them to create a matrix of 4096� 4. We then
extract the matrices of all the training samples to form a tensor of order 3. The training data from each database is used to
estimate the projection matrices for the subspace projection. There are two matrices for the MWPCA method and two matri-
ces for the TEDA method. The dimension was determined automatically by keeping 97% of the energy of the eigenvalues. To
monitor the convergence of the 3rd order tensor projection, the maximum number of iterations is empirically set to 16. For
the MWPCA algorithm, we set the convergence threshold to 106, as done in [29]. For the TEDA method, we changed the class
labels by combining the closest labels (ages) into a single class, which can be considered as grouping the ages. The range of
years in each group is the class width, which is considered as a hyperparameter in our work. The values are selected from the
set 1;2;3;4;5f g, resulting in the class widths in the set 1;2;3;4;5f g in years. Note that the DRF part uses the normal labels
(i.e., the class is indicated by a year) and uses two levels (including the decision level). The other settings of the DRFs are
similar to those described in [17].

4.5. Results

Tables 1 and 2 show an ablation study of our proposed architecture, which generally consists of three modules. Each time
we excluded one module to observe its impact on the overall architecture. In each table, we used one of the mentioned space
reduction methods (MWPCA or TEDA) with multiple decision parts: Deep Random Forest (DRF), Random Forest (RF) and
Support Vector Machine (SVM) for age classification.

In Table 1, we eliminated the MWPCA module and used the TEDA approach with DRF, RF, and SVM for the final classifi-
cation. TEDA has the potential to decrease the intra-class distance and increase the inter-class distance. This process may
take more than one iteration. In the same table, we give the number of iterations to show its impact. In Table 2, we elimi-
nated the TEDA module and used the MWPCA approach with DRF, RF, and SVM for the final classification. In Tables 1 and 2,
the input representation for the decision part is created from the concatenation or fusion of the projected original tensor. The
fusion used is the arithmetic mean of all tensor vectors.

From Tables 1 and 2 it can be seen that TEDA is generally better than MWPCA, but the proposed overall architecture, i.e.
the combination of all modules (MWPCA + TEDA + DRF), gives the best results, as can be seen from Table 3 using the same
dataset PAL, discussed in more detail below.

Fig. 2 shows all experimental results obtained with the five databases. Subplots (a), (b), (c), (d), and (e) show the MAE in
years as a function of two hyperparameters: the number of highest probabilities and the class width in the TEDA method.
The X axis corresponds to the number of highest probabilities used by the last layer of DRFs. The Y axis corresponds to
the class width (in years) in the TEDA method. Each integer on this axis indicates the number of years used to form the
age groups in the method TEDA. For example, a value of 2 means that the age groups are formed from classes with a width
of two years.

In Fig. 2, we can see that TEDA generally performs better when the class width is set to 2 years. We also note that, in gen-
eral, the best performance is obtained when the number of highest probabilities is greater than one. In (a) we see that the
Table 1
MAE in years obtained by using the TEDA module only with different classifiers. Results correspond to the PAL dataset.

Nbr Iteration TEDA + DRF TEDA + RF TEDA + SVM

8 2.95 3.26 3.1
10 2.93 3.21 3.02

PAL 12 2.74 3.09 2.92
16 2.71 3.13 2.91
18 2.73 2.98 2.84

1313



Table 2
MAE in years obtained by using the MWPCA module only with different classifiers. Results correspond to the PAL dataset.

MWPCA + DRF
Concatenation

MWPCA + DRF
Fusion

MWPCA + RF
Concatenation

MWPCA + RF
Fusion

MWPCA
+ SVMConcatenation

MWPCA + SVM
Fusion

PAL 3.06 2.91 3.14 3.05 3.20 3.18

Table 3
MAE in years obtained by using the two modules (MWPCA + TEDA) with different classifiers. Results correspond to the
PAL dataset.

MWPCA + TEDA + DRF MWPCA + TEDA
+ RF

MWPCA + TEDA
+ DRF

PAL 2.39 2.87 2.74

Fig. 2. MAE (years) of the proposed method as a function of two hyper-parameters: (i) the number of highest probabilities used by the last layer in the Deep
Random Forest and (ii) the class width (in years) used by the TEDA method.

O. Guehairia, F. Dornaika, A. Ouamane et al. Information Sciences 609 (2022) 1309–1317
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Table 4
Comparison of our method with some state-of-the-art methods using five datasets FG-NET, PAL, LFW+, APPA-REAL (REAL AGE) and MORPH II in terms of MAE
(years).

Database

Method FG-NET PAL LFW+ APPA REAL (real age) MORPH II

Liu et al. [24] 3.93 / / / /
LSDML [25] 3.92 / / / 3.08
DRFs [33] 3.85 / / / 2.17
Gunay and Nabiyev [18] / 5.40 / / /
Bekhouche et al. [6] / 5.00 / / /
Dornaika et al. [12] / 3.79 / / 3.67
(DMTL) Hun et al.[19] / / 4.50 / 3.0
Structured learning [26] 3.89 / / / /
Agustsson et al. [4] / / / 5.46 3.25
Agustsson et al. [4] (Residual DEX) / / / 5.35 2.68
Olatunbosun et al. [3] 3.56 / / 5.31 2.72
Guehairia et al. [17] 3.65 2.73 5.82 5.25 3.98
Zhang et al. [38] 3.14 / / / 2.15
Dagher et al. [11] 2.97 / / / 2.94
Proposed Approach 3.05 2.39 5.21 4.92 2.89
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best MAE for the dataset APPA-REAL (real age) was 4:89. This was achieved with a number N of probabilities equal to 5 and
the original labels. For the dataset LFW+, the best MAE was 5:21, obtained with a number N of probabilities equal to 6. For the
FG-NET data set, the best MAE was 3:05, obtained with a number N of probabilities equal to 2 and a class step of 2 years. For
the dataset PAL, the best MAE was 2:39 obtained with the original labels and a number of probabilities equal to 4. For the
dataset MORPH II, the best MAE was 2:89, obtained with a number of probabilities N ¼ 2 and a class width of 2 years.

In Table 4 we have compared our method with respect to MAE with some state-of-the-art methods. This table contains
the results for the databases FG-NET, PAL, LFW+, APPA REAL (real ages), and MORPH II. Our work outperforms most of the
state-of-the-art methods. The proposed method outperformed our previous DRF method. This is due to the use of tensor
transformations applied to the deep features.
4.6. Discussion and analysis of the results

In this section we will discuss the results presented in the previous section. As shown in Table 4, the proposed approach
outperforms the state-of-the-art for the datasets PAL and APPA-REAL. For the remaining datasets, the results of the proposed
method are consistent with the state of the art, but with some advantages. For the FG-NET database, the MAE of our pro-
posed method is 3.05 years, which is better than the MAE of [17], which is 3.65 years, although the work of [17] uses feature
fusion and enrichment. In addition, our method is better than the work of Zhang et al. [38] whose MAE is 3.14 years and the
work of Olatunbosun et al. [3] with MAE of 3.56 years. The work of Dagher et al. [11] slightly outperforms our work in terms
of MAE by 0.08 years.

For the PAL database, we obtained a MAE of 2.39 years, which is the best MAE compared to [17,12,6], whose MAEs for the
same database are 2.73, 3.79, and 5.0, respectively.

LFW + is a famous database constructed by Hun et al. in [19]. The work presented in [19] has a MAE of 4.5 years. The MAE
of our method using the same database is 5.21 years. As far as we know, the team that created LFW + has achieved the best
result. There are many reasons for this. These include the training phase requiring more auxiliary attributes, the proposed
deep multi-task learning network (DMLT), and the modified layer with batch normalization layer at the end of each convo-
lutional layer. Their result outperforms ours by 0.70 years in terms of MAE. Nevertheless, our work offers several advantages
in terms of complexity, either in time or space, and simplicity of the building blocks of our work.

For the dataset APPA-REAL (REAL-AGE), our method provides the best result compared to the state of the art. The MAE of
our method is 4.92 years and actually outperforms our previous work in [17] by 0.33 years.

For the MORPH II dataset, the MAE of our proposed method is 2.89 years. This result outperforms several methods, such
as the work of Dagher et al. [11], Agustsson et al. [4], and Guehairia et al. [17]. However, the best result is reported by Zhang
et al. [38] with MAE equal to 2.15 years reported. The authors of the latter paper proposed many paradigms for the age dis-
tribution. They restricted the age distribution to a reasonable number of adjacent ages. They also explored different age dis-
tributions to improve the performance of the proposed learning model. They used CNN and the improved learning model for
age estimation.
5. Conclusion

We have improved our previous DRF method for facial age estimation. The current work combines two completely dif-
ferent methods: the first based on tensor subspace learning and the second on deep random forests performing regression by
1315
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classification. The performance obtained with five public face databases is very promising. The proposed method outper-
formed several competing methods that rely on end-to-end deep solutions. These results pave the way for further research
on enriching face descriptors and integrating feature selection paradigms into the main components of the proposed
pipeline.
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