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Abstract Diagnosis through imaging generally requires the combina-
tion of several modalities. Algorithms for data fusion allow merging in-
formation from different sources, mostly combining all images in a single
step. In contrast, much less attention has been given to the incremental
addition of new data descriptors, and the consideration of their costs
(which can cover economic costs but also patient comfort and safety).

In this work, we formalise clinical diagnosis of a patient as a sequen-
tial process of decisions, each of these decisions being whether to take
an additional acquisition, or, if there is enough information, to end the
examination and produce a diagnosis. We formulate the goodness of a
diagnosis process as a combination of the classification accuracy minus
the cost of the acquired modalities. To obtain a policy, we apply rein-
forcement learning, which recommends the next modality to incorporate
based on data acquired at previous stages and aiming at maximising the
accuracy/cost trade-off. This policy therefore performs medical diagnosis
and patient-wise feature selection simultaneously.

We demonstrate the relevance of this strategy on two binary classific-
ation datasets: a subset of a public heart disease database, including
531 instances with 11 scalar features, and a private echocardiographic
dataset including signals from 5 standard image sequences used to assess
cardiac function (2 speckle tracking, 2 flow Doppler and tissue Doppler),
from 188 patients suffering hypertension, and 60 controls.

For each individual, our algorithm allows acquiring only the modalities
relevant for the diagnosis, avoiding low-information acquisitions, which
both resulted in higher stability of the chosen modalities and better
classification performance under a limited budget.

Keywords: Computer aided diagnosis · Reinforcement learning · Active
feature selection · Acquisition costs · Cardiac imaging
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1 Introduction

Medical diagnosis is not based on a single image, but usually considers several
sources of information, each with different costs and accuracy at detecting dif-
ferent phenomena. Given the limited amount of resources in many real-life situ-
ations, it is crucial to select the most appropriate acquisitions for each patient [6].
In clinical practice, decisions are based on guidelines and consensus recommend-
ations [4], which are in turn based on qualitative analysis of current evidence
by experts. While machine learning has shown great success for quantitative
analysis and diagnosis in medical images [1,13], quantifying the appropriateness
of acquisitions has been neglected, as data are often considered an immutable
input of the algorithms.

Cost-aware feature selection has received substantial attention from the ma-
chine learning community: the simplest methods are based on heuristics that
promote sparsity at a population level, such as L1 regularisation [9]; or decision
trees and forests that include features’ costs in the split criteria, thus doing
patient-specific feature selection [11]. Recent approaches are based on Markov
Decision Processes (MDPs), a formalisation of a time discrete process involving
decisions with uncertain outcome, [5,12]. These methods build a common space
that integrates all information, treating non acquired data as missing/censored.
The current state is defined as a point/probability distribution in that space,
which is updated after the acquisition of a new modality. Finally, Reinforce-
ment learning (RL) is used to discover a policy, which is the optimal modality
acquisitions at each point of this space.

A downside of the previous methods is that they heavily involve sampling,
for both the data imputation and RL, which can become prohibitive when the
data are high dimensional objects. In addition, the handling of “missing” data
assumes that not-yet-acquired data can be estimated from the present data. In
[10], Wang et al. proposed a method that considered all possible combinations of
the N features, and a single-step policy, based on cost-sensitive-learning decision
trees, had to be learnt for each of these 2N combinations. However, this approach
is only tractable for a small number of features, and therefore more modern
literature has focused on partially-observed data approaches.

In this work, we propose a modality- and cost-aware RL method that se-
quentially proposes new acquisitions until it has enough confidence to produce a
diagnosis. This work uses RL to extend to multiple modalities and more complex
scenarios a recent two-stage strategy that recommends when a complex modality
is needed instead of a simpler one [2]. Our method is similar to the value itera-
tion algorithm, and we use kernel methods to estimate the state-action values.
To avoid sampling, we use a strategy similar to Wang et al. [10]. We demon-
strate the relevance of our method on two clinical datasets: the publicly available
Heart Disease dataset [3], involving scalar measurements, and a private echocar-
diography dataset of patients with arterial hypertension with disease-related
changes in cardiac function (i.e diastolic and systolic function), involving tem-
poral signals along the whole cardiac cycle (flow and tissue motion data from
speckle tracking and Doppler Imaging).
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2 Methodology

2.1 Markov decision process and reinforcement learning

An MDP is a mathematical framework of sequential decisions with uncertain
effects. Formally, an MDP consists of a tuple (S,Send,A,R, T ), where S is the
possible state spaces, Send ⊂ S is a set of ending states, A is the discrete action
space, T : S ×A×S → R is the transition function, which gives the probability
distribution over S of the next state, knowing the current state and the action
taken. R : S × A× S → R is the random reward function, that depends on the
current and next states, as well as the action taken. An episode, starting in a
given state s1, consists of a sequence of states and actions:

((s1, a1, r1), (s2, a2, r2) . . . (sn, an, rn)), (1)

where si is not a final state for i ∈ [0, n − 1] and sn is a final state. The total
reward of this episode is

∑
i ri. The transitions and ri follow the previously

stated probability distributions T and R. As we will show in the next section,
our MDP is episodial with the number of steps being lower than the number of
available modalities, so the use of a discount factor γ is not required.

A policy π : S → A is a function that chooses which action to perform at each
state. We would like to find the optimal policy π∗ that maximises the expected
total reward over a random episode if we take actions following this policy. RL
is a set of techniques to estimate such policy when the R and T distributions
are unknown, but samples can be obtained. Given a policy, we define the value
of a state s as the expected total reward over all episodes starting in s.

2.2 Problem definition

We formalise our cost-sensitive diagnostic problem under the notation of an
MDP. An episode corresponds to an examination of a single patient, where
each step (action) is the acquisition of a certain modality. The state will con-
tain information on the already acquired data. The total reward will depend on
whether a correct diagnosis was reached, and the costs associated with the used
modalities.

Each modality of the set of modalities M is identified by an index i, and its
measurements are elements of Rni , allowing vector-valued measurements of dif-
ferent dimensionalities. Therefore, to represent a combination of measurements
p, we use the Cartesian product (

Ś

) of each space corresponding to a single
measurement:

Ś

i∈p Rni . To avoid data imputation, the full state space S is
defined as the disjoint union of all possible combinations of acquired modalities
p ⊂M :

S =
9⋃
p⊂M

ą

i∈p

Rni (2)

where 9
⋃

denotes the disjoint union. S therefore consists of a connected domain
for each element i of the powerset p ⊂ M . We will call each of these domains a
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“superstate”. By allowing multidimensional measurements, we can group mod-
alities, so that the policy is forced to either ignore or acquire them together, thus
reducing the number of superstates.

The set of actions contains one action a for each modality, associated with ac-
quiring the a-th modality, and a special action to finish the episode and produce
a diagnosis. Transitions associated which each “acquire” action are to move to a
new state, which includes the previously acquired data, and the newly acquired
measurement of the modality a. Therefore, the next state sn+1 will belong to the
superstate identified by p∪{a}, where p is the superstate of the current state sn.
Note that this means that even if we cannot know the exact state resulting of
applying an action, since the measurement values are unknown, the transitions
between “superstates” are completely deterministic, since they only depend on
which modalities were acquired, but not on the measurement that was observed.

If the new state is not a final state, the reward of each action is set to 0. For
a final state sn, belonging to the superstate p, the reward is set as follows:

R(sf ) = 1(y = ypredp )− λ
∑
i∈p

ci (3)

where 1 is the indicator function, thus reflecting the accuracy (ypredp being the
label prediction of the instance at state p, y being the true label of the instance);
ci is the cost of the i-th modality and λ is the coefficient weighting the relative
contribution of the cost and accuracy. The reward of acquiring a modality that
has already been observed is set to −∞ to discourage the algorithm to take it,
therefore each action is taken at most once during an episode. The class predic-
tions ypredp are computed statically, using a classifier learnt at each superstate p
from the available modalities. In our case, we chose a Support Vector Machine
with Gaussian kernel.

2.3 Policy optimisation

We use a variation of value iteration to estimate π∗, where we estimate the
state-action value Q(s, a) for each state s, defined as the expected value if an
action a is taken. Our method is a model-free strategy (meaning that it does
not estimate the state transition function T ). We search for a solution to the
recursive Bellman optimality equations:

Q(s, a) = E[R(s, a, s′) + max
a′

Q(s′, a′)], (4)

where E refers to the expectation over the next states s′, a′ being the next action.
For discrete spaces, this Q-function can be exactly stored in a table. However,
in a continuous setting, function approximation is needed. Typical choices are
neural networks, but given our limited amount of training data, and the success
of kernel methods in similar applications, we used kernel ridge regression.

In a general case, Eq.4 cannot be solved for Q directly, since it requires know-
ledge of R and T . Therefore, value iteration repeatedly performs the following
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updates for all state-action pairs until convergence of Q:

Qn+1(s, a)← E[rt +max
a′

Qn(s′, a′)] (5)

where s′ is the next state.
In our case, the particular structure of the state transitions produced by the

actions allows a direct solution of Equation 5, as shown in [10]. Since our state
space is disconnected, we can train an independent Q-function for each of the
2Nmeas superstates, noted as Qp(s, a). And, since we know which will be the next
superstate of each action, Eq. 5 becomes:

Qn+1
p (s, a)← E[rt +max

a′
Qn

p∪{at}(s
′, a′)]. (6)

Using the fact that subsets form a directed acyclic graph, we can visit all
superstates in postorder, and train the Qp functions on the transitions derived
from the collected data. As when visiting the superstate p, all Qp∪{at} have
already been trained, direct optimisation is possible.

2.4 Code availability

An implementation of the method, and the code used for the experiments, are
publicly available at https://github.com/creatis-myriad/featureSelectionRL.

3 Datasets

3.1 Heart UCI dataset

We first tested our methods on the public Heart Disease Data Set [3] available at
the University of California at Irving repository, whose objective is to diagnose
heart disease for patients admitted to intensive care. These data correspond
to a multicentric study, and we used all the available data except the imaging
information since it was only available in a single center. Data therefore consisted
of 11 features and associated costs per modality, which were split in 4 different
feature groups (clinical history, laboratory, vital constants and exercise testing).
We removed the individuals with missing data, which would induce additional
challenges out of the scope of this paper, leaving a total of 207 controls and 324
cases.

3.2 Hypertension dataset

We also evaluated our methodology on temporal signals quantifying the cardiac
function on an hypertense population. Details on the recruitment and cohort, as
well as on the signal pre-processing (delineation and temporal alignment) can be
found in [7]. The study protocol was approved by an internal ethical committee.
We used the signals corresponding to flow (Mitral and Aortic Flow Doppler)
and myocardial motion/deformation Septal Tissue Doppler, Global Longitudinal



6 G. Bernardino et al.

5 10 15 20 25
Average cost [Arbitrary unit]

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Heart Disease

Reinforcement learning
Populationwise feature selection

2 3 4 5 6 7 8 9
Average cost [Arbitrary unit]

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Hypertense

Reinforcement learning
Populationwise feature selection

Figure 1: Average accuracy as a function of the average acquisition costs, where
each point was generated by a specific value of the cost-coefficient λ. The solid
line, light shadowed and darker shadowed depict the mean value, standard de-
viation, and 95% confidence interval, respectively.

Strain (GLS) and the local strain in the septal basal segment). These data were
assigned arbitrary costs based on the frequency they are used in clinical practice
(1,1, 2.5, 5, 10 respectively). Examples of the signals of three individuals can
be found in Supplementary Material. Principal Component Analysis (PCA) was
applied to the signals from each modality to reduce the dimensionality of these
data before using them in the RL framework.

The interest of this dataset is twofold: the hierarchical representation provided
by our method allows identifying different phenotypes, and simultaneously quan-
tifying which modality is the most appropriate to detect each of these pheno-
types. In addition to the cost-effective predictive power of our algorithm, we
can interpret each decision of the policy by examining which biomarkers they
capture, which can be seen as a data-based clinical guideline. This usage is very
relevant when current human-generated clinical guidelines are long and complex.

4 Results

4.1 Prediction error against cost

For both datasets, we trained the policy for accuracy-cost coefficients λ (see
definition in Eq.3) between 10−3 and 10−1, and reported the mean accuracy
and cost on a test set, which was a class-stratified split of the full dataset. We
compared our algorithm with a classical feature selection using a validation set,
in which we tested all possible combination and features and kept the one with
a maximal validation reward. Results can be seen in Fig.1, where they were
repeated over different train/test splits. We can observe that our method has
a higher accuracy for a constrained budget, since RL allowed using expensive
modalities only for a few individuals with a difficult diagnosis, while population-
wise feature selection was forced to acquire the modality either for everybody or
for nobody.

4.2 Stability under different training sets

We evaluated the consistency of the features selected by the algorithm, under
different bootstrap samples of the training data. We separated a test subset
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Figure 2: Stability of the policies to changes in the training set. Different policies
resulting of bootstrap samples of a train dataset are evaluated on a fixed test-set,
and the overlap of the sets of acquired modalities for each test patient on different
bootstrap samples is quantified using the Dice score (y-axis). This experiment
is repeated for several values of the λ weighting coefficient, resulting in different
average costs (x-axis). The color code is equivalent to Fig.1.

from the dataset, and subsequently obtained several training samples of the
remaining dataset, which were used to train the proposed RL model, and a
classical feature selection using cross-validation. Then, we applied the trained
models on the test set, and checked which were, for each subject, the selected
features (ie. the recommended acquisitions) at their final state. This set was
quantitatively compared to the features’ set resulting from the other training
bootstraps by computing the Dice coefficient. To improve statistical stability,
the procedure was tested for different values of the accuracy-cost coefficient λ
and test set splits. Figure 2 shows the results of this experiment, where our
method is more robust than feature selection using validation: indeed, static
feature selection forces that either all or none individuals acquire a modality,
while our method allows a gradual process where only a few individuals acquire
an expensive modality.

4.3 Policy interpretation on the Hypertense dataset

We further studied the learnt policy on the hypertense dataset. We trained the
RL algorithm with λ = 0.05, chosen to guarantee a low number of acquired mod-
alities. Afterwards, we evaluated the policy on all individuals from the training
set, keeping track of the superstates they visited. The full decision graph can be
seen in Fig.3. Figure 4 complements this by showing the representative signals
associated to the individuals that were diagnosed at each superstate of the graph
visited by more than 10 individuals, allowing us to examine and interpret the
decisions of the algorithm.

The first acquisition recommended by RL was Mitral Doppler, which is con-
sistent with clinical knowledge [8]. Hypertense individuals with a clear grade I
diastolic dysfunction mitral inflow pattern (presenting E/A-wave fusion, A-peak
larger than E-peak) or those clearly controls are differentiated based on the
Mitral Doppler only (first row in Fig.4). The remaining patients had still an
unclear diagnosis and were referred to either Aortic Doppler or GLS, depending
on the findings in the Doppler.
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Figure 3: Graph showing the decision paths proposed by our algorithm on the
full population. Each node represents a superstate (a set of modalities), and each
edge represents an action (acquiring a new modality). The number of individuals
that take the “finish” action is indicated at each node.

Figure 4: Class-wise mean and standard deviation (orange hypertension, blue
control) for the Mitral, Aortic and GLS signals of the individuals whose diagnosis
was done using Mitral only (1st row), Mitral and Aortic (2nd row) and Mitral
and GLS (3rd row). Un-used modalities are displayed with low opacity.

The Mitral Doppler of patients for which RL suggested Aortic Doppler (2nd
row) presented a slightly elevated A-wave, but still lower than the E-wave; lying
on the boundary between controls and cases of the first subpopulation. Although
the mitral inflow pattern is not suggestive of diastolic dysfunction, an earlier,
higher velocity aortic flow peak reflected increased cardiac contractility in the
setting of elevated afterload due to high blood pressure, identifying patients with
altered systolic function in hypertension.

The last group (3rd row) consists of individuals for which GLS was recom-
mended. Mitral Doppler showed a later onset of atrial contraction within the
cardiac cycle. This is confirmed in the GLS curves, where hypertense subjects
showed prolonged left ventricular stretching during the initial part of systole -
identifying a disease-related pattern in the timing of cardiac events.

5 Conclusion

We presented an RL framework to obtain a cost-effective policy that sequentially
proposes the best modality to acquire to produce a diagnosis. We thoroughly
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evaluated it on a public dataset with scalar features and a private one with com-
plex high-dimensional descriptors of hypertension. Compared to classical model
selection using a validation set, our method improved the model performance at
similar acquisition cost by making a more efficient use of expensive modalities.
The proposed method also showed stability to changes in the training set.

In addition, we were able to interpret and explain the policy constructed in
the diastolic dysfunction dataset, which captured physiological patterns consist-
ent with current clinical knowledge. Our algorithm showed potential not only as
a clinical decision support system for diagnosis, but also at a higher level to help
clinicians to derive data-based guidelines.

On a broader perspective, the method is highly promising for assisting ex-
perts with the analysis of multiple descriptors in an efficient manner. It could
lead to discovering cost-efficient policies in applications where high heterogen-
eity between individuals is expected, in particular for screening campaigns or in
developing countries.
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