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Abstract
In this letter we show the emergence of an agreement between the instruments of a rain-gauge
network to point toward a positive trend in daily precipitation extremes since 1960 in the French
Mediterranean Region. We identify for each gauge the time varying parameters of the generalized
extreme value distribution of annual maximum precipitation over incremental time-windows.
These distributions provide for each station of the network a trend assessment over a chosen period
that can be interpreted for instance as a trend of the mean or as the trend of a chosen quantile. The
incremental window, i.e. a window containing the series of data available at a given date, mimics
the annual assessment of the trends that could have been made through time. Each year we thus
have one trend per gauge that we can look in distribution through the network in order to assess
the level of consensus among instruments. We show how the increasing size of the datasets used
over a period of possible climate non-stationarity progressively leads from a dissensus anarchically
pointing to no trend (before the 2000s) to a consensus where a majority of gauges points toward a
positive trend (after the 2000s). The detected trend in this Mediterranean Region is quite
substantial. For instance the 20 year return period precipitation in 1960 turns out to become a
8 year return period precipitation in 2020. Using a simulation basis we try to characterize the effect
of decadal variability that is quite readable in the consensus evolution. The proposed metrics is
thought to be a good candidate for the assessment of the local time and rate of emergence of climate
change that has important implications in regards to adaptation of human and natural systems.

1. Introduction

Over recent years, some studies relying on ground
observation data started to show positive trends in
rainfall extremes at regional scale over the French
Mediterranean (Tramblay et al 2013, Blanchet et al
2018, Ribes et al 2019), while in previous compar-
able studies over the same region trends were appar-
ently undetectable (see for instance Soubeyroux et al
2015). In this letter we conduct a retrospective study
to show the emergence of consistent trends in rain-
fall extremes over this region prone to heavy precip-
itation events (HPEs) generating devastating flash-
floods during the fall season. The area is studied for
its quite intensive rainfall regime (Molinié et al 2012)
as well as for the related socio-environmental issues at
stake (Lutoff and Durand 2018, 2020). In this context
detecting the emergence of a change regards impacts

and adaptation because human and natural systems
start to be vulnerable and have to adapt when unpre-
cedented climate conditions appear, whether they are
related to the ‘anthropogenic’ global warming effects
or not (IPCC 2021, chapter 12.5.2).

Obtaining climate change information from
observed data is important for at least two reasons.
First, a change revealed by observation means obvi-
ously that new conditions already emerged, which
is informative in regard to adaptation decisions, or
absence of decision. Second, the use of observations
looks quite necessary when modeling outputs are
hardly conclusive in regard to the complex atmo-
spheric conditions generating HPEs. The complexity
of rainfall formation in this mid-latitude area with
a quite marked topography neighboring a warm sea
basin (Delrieu et al 2005, Ducrocq et al 2008, Nuissier
et al 2008, Drobinski et al 2014) makes available
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regional climate modeling outputs difficult to use
in regard to significant biases at high-order quantiles
(Colmet-Daage et al 2018). This difficulty stemsmore
from model physics, in particular convection para-
meterization, than from resolution (Cavicchia et al
2018). It calls for the use of non-hydrostatic higher
resolution models better depicting the convection
control of the space–time patterns of rainfall extremes
(Fumière et al 2019). The reliability of model-based
studies regarding changes in extremes is anyway a
general issue (Bellprat et al 2019).

Detecting a change in atmospheric variables, be it
from ground data or model outputs, is a problem of
signal-to-noise ratio S/N, the trend or ‘forced’ signal
S being hidden by the atmospheric ‘natural’ variab-
ility or ‘noise’ N. This problem was encountered in
climate prediction assessment and early recognized
as a space–time pattern recognition issue since cli-
mate data are multi-dimensional (Hasselmann 1979,
Kirchmeier-Young et al 2019). Trend identification
as well as attribution of extraordinary events (see
for instance Vautard et al (2015), about the 2014
series of HPEs in the study region) and identifica-
tion of the time of emergence (ToE) (see for instance
the pioneering results of Giorgi and Bi 2009, for the
‘Mediterranean hotspot’) belong to the same class of
problems. Attribution and ToEmetrics detect a signi-
ficant change between a reference period of natural
variability N, sometimes coined ‘counterfactual’ or
‘historical’, and a period where the forcing is present
S+N. Different metrics of ToE have been used in
previous studies. Giorgi and Bi (2009), Hawkins and
Sutton (2012), Maraun (2013), Rojas et al (2019), Sui
et al (2014) define the ToE as the time at which the
signal-to-noise ratio S/N becomes greater than a pre-
scribed value. Mahlstein et al (2012), Chadwick et al
(2019), Gaetani et al (2020) define the ToE as the
time when S+N gets statistically different from N.
Kusunoki et al (2020) define the ToE as the start of
the period in which S+N consistently exceeds the
maximum value of N obtained from the historical
experiment. The frequency share between low- (S)
and high-frequency (N) is anyway quite theoretical
in front of a continuous range of scales where inter-
mediatemulti-decadal variability related to large scale
atmospheric oscillations is difficult to relate to S or
N (Deser et al 2016, Gaetani et al 2020). The role
of the metrics in change detection is important, but
in front of complex space–time patterns, a critical
issue is to apply the metrics to appropriate integra-
tion domains over space and time in order to amplify
the signal to noise ratio and favor trend emergence
(Maraun 2013).

Our study aims at using a minimal set of assump-
tions to show how a network of rain-gauges progress-
ively integrates the variability of yearly maximum
point rainfall over its increasing time window of
functioning and over its space domain of extension.

The key characteristics of our metrics is (a) to work
with point trends, (b) to integrate in space looking
at the distribution of point trend diagnoses given
by each instrument of a network and (c) to integ-
rate in time over an incremental window size that
progressively filters out lower frequencies. We thus
assume that the functioning window spans over a
large enough time spectrum to progressively filter
out the noise N including some decadal variabil-
ity and that the instrumental consensus points an
homogeneous behavior of S over a small enough
study domain.

The characteristics and assumptions of our met-
rics are individually present in previous studies but, to
our best knowledge, have never been applied together.
In all the mentioned studies, the space–time resol-
ution of the raw data depends on the nature of the
data, computational or instrumental. Model outputs
are gridded and instruments may have a point resolu-
tion (rain-gauges) or a gridded resolution (radar) and
point data may be converted to grids by interpolation
(Haylock et al 2008, Gottardi et al 2012). Our met-
rics can apply to a set of points or grid nodes as well.
In space, a majority of metrics analyzes the change in
average rainfall values or indices over either clusters of
instruments (Ribes et al 2019), or hotspots and con-
tinental regions (Gaetani et al 2020), or hydrographic
units (Leng et al 2016, Zhuan et al 2018), or latit-
ude bands (Zhang et al 2007). The analysis of a set
of point changes following a consensus approach like
in our metrics is to our best knowledge only present
in some modeling based studies that look at the con-
sensus between models (Hawkins and Sutton 2012,
King et al 2015, Nguyen et al 2018). In time, the most
common ways to filter out N including the multi-
decadal variability are (a) to work on average val-
ues or indices over seasons (Giorgi and Bi 2009) to
years (Chadwick et al 2019) and (b) to use large tem-
poral moving windows of chosen width to detect the
change (typically 20 years such as in Giorgi and Bi
2009, Gaetani et al 2020). To our best knowledge, only
one study used incremental windows as in our met-
rics to show the time evolution of maximum precip-
itation (see figure 4 of Ribes et al 2019)—in the lat-
ter, considering the series of spatial weighted average
of maxima.

In summary, we basically combine the idea of
displaying the diagnostic evolution in time (Ribes
et al 2019) to a consensus metrics present in some
ToE modeling studies (Hawkins and Sutton 2012).
Doing so, we avoid choices such as indices and
thresholds, co-variables, time window sizes and ref-
erence periods. We keep the analysis as close as
possible to the raw data characteristics—number of
instruments and time length of the series—only sub-
mitting the study area (the French Mediterranean
Region) and the window increments (1 year) to an
arbitrary choice.
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Figure 1.% of change in mean annual maxima between 1960 and 2020 predicted by the non-stationary GEV models using data
from (left) 1958–1972, (right) 1958–2020. For readability, the colorscale of the left map is restricted to±100% (the actual range
exceeds±200%).

2. Data andmethods

The studied region corresponds to the southern part
of France that is under Mediterranean climatic influ-
ence (see figure 1). It is limited to the north by
the Massif Central, to the south by the Mediter-
ranean coast from Perpignan to Nice—excluding the
Bouche-du-Rhône department that behaves differ-
ently, to the west by the Pyrenees and to the east by
the southern Alps, with altitude ranging from 0 to
more than 3000 m.a.s.l over a surface of 100000 km2.
The domain is known to experience severe storms
generating devasting flash-floods from various foot-
hill rivers, as occurred in the region of Nı̂mes in
1988 (southern France, Duclos et al 1991), on the
Ouvèze River in 1992 (eastern flank of the Alps, Sénési
et al 1996), on the Aude River in 1999 (north-east of
the Pyrenees, Gaume et al 2004), on the Gard River
in 2002 (southern edge of the Massif Central, Del-
rieu et al 2005), on the Argens River in 2010 (south-
ern edge of the Alps, Ruin et al 2014), on the Vésubie
River in 2020 (southern Alps, Chochon et al 2021).
The south-eastern edge of the Massif Central experi-
ences most of the extreme storms and resulting flash-
floods (figures 2 of Nuissier et al 2008, Blanchet and
Creutin 2017, Blanchet et al 2018).

Daily rainfall data are acquired by Météo-France.
About 1500 daily stations are located in this area
but with various lengths of observation. We consider
180 stations featuring at least 60 observed years over
the period 1958–2020 and we extract, at each sta-
tion, the series of annualmaxima. The stations are rel-
atively homogeneously spread over the region, with
however a larger density along the Massif Central
flank (see figure 1).

Trend in the statistics of extreme precipitation
is assessed by fitting a non-stationary generalized
extreme value (GEV) distribution with cumulative
distribution function at year t:

G(rt;µ(t),σ(t), ξ) = exp

{
−
[
1+ ξ

rt −µ(t)

σ(t)

]−1/ξ
}
,

(1)

where rt is the annual maximum of a given sta-
tion, µ(t), σ(t) and ξ are the location, scale and
shape parameters at year t. We consider linearly vary-
ing location and scale parameters: µ(t) = µ0 +µ1t,
σ(t) = σ0 +σ1t. This implies that the mean (mt) and
T year return levels (RLt(T)) are assumed to vary lin-
early with years:

mt = µ(t)+
σ(t)

ξ
(Γ(1− ξ)− 1) (for ξ < 1), (2)

RLt(T) = µ(t)+
σ(t)

ξ

[(
− log

(
1− 1

T

))−ξ

− 1

]
,

(3)

where Γ is the Gamma function. This model might
not be the most parcimonious (Blanchet et al 2021a)
and this could, e.g. affect significance testing but this
is out of concern here since we are only interested in
trend values.

The GEV model of equation (1) is fitted by max-
imum likelihood (Coles 2001) at either station. We
consider incremental windows, first estimating the
model based on the maxima for 1958–1972, then
increasing the window size by 1 year (1958–1973),
and so on up to the maximal window 1958–2020.
Thus 49 GEV distribution estimates are obtained
for each station, each estimation being based on
15 (1958–1972) to 63 (1958–2020) maxima.

Since our interest is to assess the instrumental
agreement as time goes on, we compare the pre-
dicted changes (in mean or return level) for a com-
mon period, which is here arbitrarily chosen as
1960–2020. This is given by (m2020 −m1960)/m1960

and (RL2020(T)−RL1960(T))/RL1960(T) with mt and
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RLt(T) given by equations (2) and (3). Note that
this implies extrapolating in time all models (but the
maximal one) till 2020 but this is mathematically-
speaking no issue since equations (2) and (3) are para-
metric functions (so we only have to replace t by 2020
therein).

We call the ‘consensus curve’ the curve defined by
the station median of the predicted changes versus
time (i.e. versus the window size). Our goal is the
assess whether the consensus curve for the mean or
return level converges at some point to a nonzero
value, i.e. to estimate the time in the past when an
agreement has emerged between most stations to
point toward a trend. This definition of emergence
based on convergence over incremental windows dif-
fers from other studies such as Giorgi and Bi (2009),
Tramblay and Somot (2018) that assess the TOEbased
on full series of climate simulations (e.g. from 1950 to
2100). Our TOE can actually be understood as a time
when a consensus is reached.

3. Results

For illustration, we show in figure 1 the spatial
distribution of the % of change in mean annual
maxima between 1960 and 2020 predicted by the
non-stationary GEV models using data from either
1958–1972, or 1958–2020. The % of change using
15 years of data are very chaotic, with changes vary-
ing from−100% to+100% in few km.Whenusing 63
years, changes are smaller in absolute value but much
more homogeneous and very mainly positive.

Figure 2 summarizes such maps by showing
the boxplots of % of change between 1960 and
2020 obtained over all incremental windows. The
horizontal dashed red line shows a rough estima-
tion of the expected Clausius–Clapeyron response,
obtained by combining the Clausius–Clapeyron rate
of+6.8%K−1 with the observed annual mean warm-
ing over the region of about +1.79K (Ribes et al
2019), giving an expected increase in extremes of
about 12.2% between 1960 and 2020. Note that the
expected Clausius–Clapeyron response is an hori-
zontal line in figure 2 because the plots show
changes with respect to a common reference period
1960–2020 and hence to a common level of warm-
ing. The figure shows that the dispersion of pre-
dicted percentage of change between 1960 and
2020 has evolved considerably over time. The data
series have indeed become longer over time, gradu-
ally covering a period where climate change gets
increasingly clearer.

Three periods stand out in the ‘consensus’ of the
rain gauges. Until themid-1980s, the rain gauges gave
widely varying opinions. Many of them predicted a
decrease in extreme between 1960 and 2020 in pro-
portions ranging from 0% to 100%. The data series
available—a mere 20 years or so—was too short to

produce reliable statistics. Clearly, the change was
not yet perceptible in the Mediterranean region at
that time. In the 1990s, a dramatic shift occurred.
The divergence of predicted changes between rain
gauges was halved as a result of longer observa-
tion times. More importantly, the vast majority of
rain gauges fell into the same intensification opin-
ion. Since the 2000s, this unanimity has been stable.
More than 80% of the rain gauges predict an increase.
This increase tends to tighten around about 18% for
the mean annual maximum and 22% for the 20 year
return level. The latter implies that the 20 year return
period of precipitation in 1960 turns out to become a
8 year return period of precipitation in 2020. Further-
more 75% of the rain gauges exhibit super-Clausius–
Clapeyron behavior (i.e. an increase larger than the
expected Clausius–Clapeyron response), which is in
coherence with Ribes et al (2019). In view of these
analyses, the intensification of exceptional heavy rain-
fall appears to be undeniable in the region of interest,
and has been for a good 10 years. The stabilization
of the consensus curve in figure 2 argues in favor of
a TOE around 1995–2000, which is quite consistent
with the break date of 1985 identified in the region
(Blanchet et al 2018, 2021b). This is also consistent
with the TOE estimated between 1980 and 2000 is the
region in Tramblay and Somot (2018) using climate
simulations up to 2100.

The consensus curve—and thus the TOE—vary
very little whether they are defined from the mean
maxima or from the 100 year return levels, as they
corresponds to % of changes rather than absolute
changes (figure 3). It can also be noted that, although
based on convergence of medians, the TOE defined
from the consensus curve corresponds to the time
when more than two third of the stations agree
on positive trends, whatever the return period con-
sidered (figure 3).

Another remarkable property of the consensus
curve is to be little sensitive to the occurrence of
major events, such as in October 1988 (Nı̂mes
disaster, Duclos et al 1991), 1992 (Ouvèze River,
Sénési et al 1996), 1999 (Aude River, Gaume et al
2004), 2002 (Gard River, Delrieu et al 2005),
2010 (Argens River, Ruin et al 2014). The consensus
curves obtained by omitting either of these years in
the data (i.e. by setting the maxima values of these
years to NA) yields to differences no larger than 5%
for the mean maxima and no larger than 6% for the
20 year return levels. Another remarkable property
of the consensus curve is to be little sensitive to the
spatial distribution of the stations since it is based on
the median.

In order to illustrate the respective effects of
a stationary noise N and a multi-decadal signal S
on the presented statistics, we made a simulation
exercise. We simulated, at each gauge, n fictitious
annual maximum series drawn independently from
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Figure 2. Boxplots of the % of change between 1960 and 2020 predicted over incremental windows. Left: mean maxima.
Right: 20 year return level. The expected Clausius–Clapeyron response is shown in dashed red. The black curves show the
consensus curves represented by the median of the station estimates as the window increments. The bottom and top of the boxes
are the lower and upper quartiles. The upper whisker extends to the largest value no further than 1.5 times the IQR from the
boxes. The lower whisker extends to the smallest value at most 1.5 times the IQR from the boxes. The points show the values
beyond the end of the whiskers.

Figure 3.Median (consensus curve) and 75% confidence
interval of the % of change between 1960 and 2020
predicted over incremental windows, for the mean maxima,
the 20, 50 and 100 year return levels. The black points show
the years 1988, 1992, 1999, 2002, 2010, 2020 during which
flash-flood events occurred in the region.

GEV distributions with either the same stationary
parameters as the rain gauges, or non-stationary
parameters. In the latter case, the four GEV non-
stationary parameters are set so that: (a) the aver-
age GEV means and variances over 1958–2020 are
equal to the empirical means and variances of gauge
readings, (b) the percentages of change in mean and
20 year return level are equal to the median values of
the percentage of change of the rain gauges obtained
over the maximal window (i.e. corresponding to the
abscissa 2020 in figure 2).

Figure 4 compares the incremental medians and
interquartile ranges (IQR) predicted from both the
simulated data (n = 100 runs each) and the observed
maxima. Themedian of the non-stationary series are,

as expected, very close to the rain gauge value in 2020,
despite a small bias (slight underestimation of the
mean and slight overestimation of the 20 year return
level). The median of the stationary series converges
to 0, as also expected. It can be noted that, even in
this idealized experiment, uncertainty in changes is
considerable for the smallest windows: the change
in mean maxima (resp. 20 year return levels) var-
ies by ±20% (resp. ±50%) around the true value
for the 1950–1972 window. Although the nonstation-
ary GEV framework makes it possible to calculate
trends regardless of the length of the series, it is
clear that estimates over less than 30 years—say—are
unreliable even for the mean maxima. Uncertainty
obviously decreases as the window increments, going
down to ±2% for the mean maxima and ±3% for
the 20 year return level with the largest window of
63 years. Differences between the stationary and the
non-stationary series are notable—the 95% confid-
ence intervals of the mean and 20 year return level do
not overlap when more than 33 years are considered
(i.e. using series extending to 1990 or later). The IQR
with either the data or the simulations are very sim-
ilar and super-exponentially decreasing as the series
length increases (note the log-scale in the IQR plots of
figure 4). Thus the decreasing variability in the box-
plots of figure 2 is merely a question of data length.
Notably, multi-decadal variability of about 20 years is
visible in the median changes based on the data (light
gray curve in figure 4), whereas the simulations show
more random variability. We note that taking a grow-
ing size window shows two main advantages over the
fixed (e.g. 20 year) window approach. First it takes
the best of the available information at each time step
and second it shows the progressive filtering of multi-
decadal variability.
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Figure 4.Median (consensus curve, top) and IQR in log-scale (bottom) of the % of change between 1960 and 2020 predicted over
incremental windows based on either the data (black) or stationary simulations (red), or non-stationary simulations (blue).
Left: mean maxima. Right: 20 year return level. The dotted lines show the 95% confidence intervals obtained over 100 runs.
The light gray curve shows the cubic smoothing spline fitted to the median series of the data.

4. Conclusion

Wehave used a consensus approach to show the emer-
gence in the 2000s of an agreement between rain
gauges pointing toward an increase in extreme daily
precipitation in the French Mediterranean Region
since 1960. We have shown that the stations agree to
an increase of about 18% in mean maximum precip-
itation in the region and of about 22% in the 20 year
return level, which is considerably larger than the
12% increase expected by Clausius–Clapeyron rela-
tionship, but it is coherent with previous studies in
the region. We have highlighted that the consensus
approach shows various benefits, among which it
makes the best used of the available data, it is easy
to implement, it is robust to the occurrence of major
events without requiring regional methods (Blanchet
et al 2021a), it is by construction little sensitive to the
spatial spreading of the rain gauges, it allows progress-
ive filtering of the multi-decadal variability.
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Rhône Alpes Region in France. The data used in this
paper are maintained by MétéoFrance. They can be
downloaded under research agreement from the web-
site: http://publitheque.meteo.fr/

ORCID iDs

Juliette Blanchet https://orcid.org/0000-0001-
8088-8895
Jean-Dominique Creutin  https://orcid.org/0000-
0003-0076-9584

References

Bellprat O, Guemas V, Doblas-Reyes F and Donat M G 2019
Towards reliable extreme weather and climate event
attribution Nat. Commun. 10 1732

Blanchet J, Blanc A and Creutin J-D 2021a Explaining recent
trends in extreme precipitation in the Southwestern Alps by
changes in atmospheric influencesWeather Clim. Extremes
33 100356

Blanchet J and Creutin J-D 2017 Co-occurrence of extreme daily
rainfall in the French Mediterranean regionWater Resour.
Res. 53 9330–49

Blanchet J, Creutin J-D and Blanc A 2021b Retreating winter and
strengthening autumn Mediterranean influence on extreme
precipitation in the Southwestern Alps over the last 60 years
Environ. Res. Lett. 16 034056

Blanchet J, Molinié G and Touati J 2018 Spatial analysis of trend
in extreme daily rainfall in southern France Clim. Dyn.
51 799–812

Cavicchia L et al 2018 Mediterranean extreme precipitation: a
multi-model assessment Clim. Dyn. 51 901–13

6

http://publitheque.meteo.fr/
https://orcid.org/0000-0001-8088-8895
https://orcid.org/0000-0001-8088-8895
https://orcid.org/0000-0001-8088-8895
https://orcid.org/0000-0003-0076-9584
https://orcid.org/0000-0003-0076-9584
https://orcid.org/0000-0003-0076-9584
https://doi.org/10.1038/s41467-019-09729-2
https://doi.org/10.1038/s41467-019-09729-2
https://doi.org/10.1016/j.wace.2021.100356
https://doi.org/10.1016/j.wace.2021.100356
https://doi.org/10.1002/2017WR020717
https://doi.org/10.1002/2017WR020717
https://doi.org/10.1088/1748-9326/abb5cd
https://doi.org/10.1088/1748-9326/abb5cd
https://doi.org/10.1007/s00382-016-3122-7
https://doi.org/10.1007/s00382-016-3122-7
https://doi.org/10.1007/s00382-016-3245-x
https://doi.org/10.1007/s00382-016-3245-x


Environ. Res. Lett. 17 (2022) 074011 J Blanchet and J-D Creutin

Chadwick C, Gironás J, Vicuña S and Meza F 2019 Estimating the
local time of emergence of climatic variables using an
unbiased mapping of GCMs: an application in semiarid and
Mediterranean Chile J. Hydrometeorol. 20 1635–47

Chochon R, Martin N, Lebourg T and Vidal M 2021 Analysis of
extreme precipitation during the Mediterranean event
associated with the Alex storm in the Alpes-Maritimes:
atmospheric mechanisms and resulting rainfall Simhydro
2021: Models for Complex and Global Water Issues
(France: Sophia-Antipolis)

Coles S 2001 An Introduction to Statistical Modeling of Extreme
Values (Springer Series in Statistics) (London: Springer)

Colmet-Daage A, Sanchez-Gomez E, Ricci S, Llovel C, Borrell
Estupina V, Quintana-Seguí P, Llasat M C and Servat E 2018
Evaluation of uncertainties in mean and extreme
precipitation under climate change for Northwestern
Mediterranean watersheds from high-resolution Med and
Euro-CORDEX ensembles Hydrol. Earth Syst. Sci. 22 673–87

Delrieu G, Nicol J, Yates E, Kirstetter P-E, Creutin J-D,
Anquetin S, Obled C and Saulnier G-M 2005 The
catastrophic flash-flood event of 8–9 September 2002 in the
Gard region, France: a first case study for the
Cévennes-Vivarais Mediterranean hydrometeorological
observatory J. Hydrometeorol. 6 34–52

Deser C, Terray L and Phillips A S 2016 Forced and internal
components of winter air temperature trends over North
America during the past 50 years: mechanisms and
implications J. Clim. 29 2237–58

Drobinski P et al 2014 Hymex: a 10-year multidisciplinary
program on the Mediterranean water cycle Bull. Am.
Meteorol. Soc. 95 1063–82

Duclos P, Vidonne O, Beuf P, Perray P and Stoebner A 1991 Flash
flood disaster: N̂ımes, France, 1988 Eur. J. Epidemiol.
7 365–71

Ducrocq V, Nuissier O, Ricard D, Lebeaupin C and Thouvenin T
2008 A numerical study of three catastrophic precipitating
events over southern France. II: mesoscale triggering and
stationarity factors Q. J. R. Meteorol. Soc. 134 131–45

Fumière Q, Déqué M, Nuissier O, Somot S, Alias A, Caillaud C,
Laurantin O and Seity Y 2019 Extreme rainfall in
Mediterranean France during the fall: added value of the
CNRM-AROME convection-permitting regional climate
model Clim. Dyn. 55 77–91

Gaetani M, Janicot S, Vrac M, Famien A M and Sultan B 2020
Robust assessment of the time of emergence of precipitation
change in West Africa Sci. Rep. 10 7670

Gaume E, Livet M, Desbordes M and Villeneuve J-P 2004
Hydrological analysis of the river Aude, France, flash flood
on 12 and 13 November 1999 J. Hydrol. 286 135–54

Giorgi F and Bi X 2009 Time of emergence (TOE) of GHG-forced
precipitation change hot-spots Geophys. Res. Lett.
36 L06709

Gottardi F, Obled C, Gailhard J and Paquet E 2012 Statistical
reanalysis of precipitation fields based on ground network
data and weather patterns: application over French
mountains J. Hydrol. 432–433 154–67

Hasselmann K 1979 On the signal-to-noise problem in
atmospheric response studiesMeteorology Over the Tropical
Oceans

Hawkins E and Sutton R 2012 Time of emergence of climate
signals Geophys. Res. Lett. 39 L01702

Haylock M R, Hofstra N, Klein Tank A M G, Klok E J, Jones P D
and New M 2008 A European daily high-resolution gridded
data set of surface temperature and precipitation for
1950–2006 J. Geophys. Res.: Atmos. 113 D20119

IPCC 2021 Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change
(Cambridge: Cambridge University Press)

King A D, Donat M G, Fischer E M, Hawkins E, Alexander L V,
Karoly D J, Dittus A J, Lewis S C and Perkins S E 2015 The
timing of anthropogenic emergence in simulated climate
extremes Environ. Res. Lett. 10 094015

Kirchmeier-Young M C, Wan H, Zhang X and Seneviratne S I
2019 Importance of framing for extreme event attribution:
the role of spatial and temporal scales Earth’s Future
7 1192–204

Kusunoki S, Ose T and Hosaka M 2020 Emergence of
unprecedented climate change in projected future
precipitation Sci. Rep. 10 4802

Leng G, Huang M, Voisin N, Zhang X, Asrar G R and Leung L R
2016 Emergence of new hydrologic regimes of surface water
resources in the conterminous United States under future
warming Environ. Res. Lett. 11 114003

Lutoff C and Durand S 2018Mobility in the Face of Extreme
Hydrometeorological Events 1: Defining the Relevant Scales of
Analysis. ISTE Editions (Amsterdam: Elsevier)

Lutoff C and Durand S 2020Mobility in the Face of Extreme
Hydrometeorological Events 2: Analysis of Adaptation
Rhythms. ISTE Editions (Amsterdam: Elsevier)

Mahlstein I, Hegerl G and Solomon S 2012 Emerging local
warming signals in observational data Geophys. Res. Lett.
39 L21711

Maraun D 2013 When will trends in European mean and heavy
daily precipitation emerge? Environ. Res. Lett. 8 014004

Molinié G, Ceresetti D, Anquetin S, Creutin J D and
Boudevillain B 2012 Rainfall regime of a mountainous
Mediterranean region: statistical analysis at short time steps
J. Appl. Meteorol. Climatol. 51 429–48

Nguyen T-H, Min S-K, Paik S and Lee D 2018 Time of emergence
in regional precipitation changes: an updated assessment
using the CMIP5 multi-model ensemble Clim. Dyn.
51 3179–93

Nuissier O, Ducrocq V, Ricard D, Lebeaupin C and Anquetin S
2008 A numerical study of three catastrophic precipitating
events over southern France. I: numerical framework and
synoptic ingredients Q. J. R. Meteorol. Soc. 134 111–30

Ribes A, Thao S, Vautard R, Dubuisson B, Somot S, Colin J,
Planton S and Soubeyroux J-M 2019 Observed increase in
extreme daily rainfall in the French Mediterranean Clim.
Dyn. 52 1095–114

Rojas M, Lambert F, Ramirez-Villegas J and Challinor A J 2019
Emergence of robust precipitation changes across crop
production areas in the 21st century Proc. Natl Acad. Sci.
116 6673–8

Ruin I et al 2014 Social and hydrological responses to extreme
precipitations: an interdisciplinary strategy for postflood
investigationWeather Clim. Soc. 6 135–53

Sénési S, Bougeault P, Chèze J-L, Cosentino P and Thepenier R-M
1996 1996: The Vaison-la-Romaine flash flood: mesoscale
analysis and predictability issuesWeather Forecast. 11 417–42

Soubeyroux J-M, Neppel L, Veysseire J-M, Tramblay Y, Carreau J
and Gouget V 2015 Evolution des précipitations extrêmes en
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