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Abstract

We propose new parametrizations for neural networks in order to estimate extreme
quantiles in both non-conditional and conditional heavy-tailed settings. All proposed
neural network estimators feature a bias correction based on an extension of the usual
second-order condition to an arbitrary order. The convergence rate of the uniform error
between extreme log-quantiles and their neural network approximation is established. The
finite sample performances of the non-conditional neural network estimator are compared
to other bias-reduced extreme-value competitors on simulated data. It is shown that
our method outperforms them in difficult heavy-tailed situations where other estimators
almost all fail. The source code is available at https://github.com/michael-allouche/
nn-quantile-extrapolation.git. Finally, the conditional neural network estimators
are implemented to investigate the behavior of extreme rainfalls as functions of their
geographical location in the southern part of France.

Keywords: Extreme-value theory, heavy-tailed distribution, quantile estimation, conditional quan-
tile estimation, neural networks
MSC: 62G32 , 68T07, G2G08, 62G32

1 Introduction

Nowadays, estimation of extreme events is a major concern due to climate change. According to the
last Intergovernmental panel on climate change [54], on a global scale, it is very likely that the extreme
daily precipitation events will increase by about 7% per 1◦C of global warming and become more
frequent. Furthermore, the global surface temperature is also very likely to rise on average over the
years 2081-2100 by a range of 1◦C-5.7◦C depending on the greenhouse gas emission scenario; leading
to a climb of heat waves, global mean sea levels and natural disasters. Potential consequences for
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the human being might be both direct (increased mortality, population displacements, hunger,...), and
indirect (increased costs of raw materials, food, insurance premiums,...).

In this context, numerical simulation of unfavorable extreme (but plausible) scenarios with gen-
erative models [3, 5, 62] is a major tool to study the occurrence and the size of such risks. These
models aim at learning the distribution of a random variable, whose resulting support is usually re-
stricted to the one observed in the training dataset (of size n). In this work, we rather focus on the
prediction of the variable of interest beyond the largest observed value. Such events are associated
with tail probabilities αn larger than 1−1/n and are therefore referred to as extreme quantiles, see for
instance [8, 20] who studied extreme bank losses, [55] in the context of flood risk assessment and [17]
for an application to oceanographic data. We also refer to the books [4, 15, 19] for a general overview
of the theoretical background on extreme quantile estimation.

We focus on heavy-tailed distributions which have been revealed useful to describe the tail structure
of actuarial and financial data (see [19, Page 9] and more recently [53, Page 1]), as well as extreme
events when studying climatic risk (see [10, Section 1.2] and [47, Section 7]). One of the most famous
estimators in such a context is the Weissman estimator [61] described in Section 2 thereafter. Basing
on its asymptotic representation [15, Theorem 4.3.8], bias-reduced estimators have been introduced
thanks to a prior estimation of additional parameters driving the first dominant bias component,
see [38].

Our first main contribution is to show that all first J bias terms have a simple neural network
(NN) representation, where J is linked to the complexity (depth and width) of the network. Based
on this result, we derive a NN extreme quantile estimator which features an automatic estimation
and removal of all J first bias terms. Second, two extensions of this NN estimator are introduced to
tackle the conditional case, i.e. when the extreme quantiles depend on a multi-dimensional covariate.
Up to our knowledge, this is the first attempt at reducing the estimation bias in conditional extreme
quantiles.

This paper is organized as follows. An extrapolation principle for estimating extreme quantiles in
the non-conditional heavy-tailed case is introduced in Section 2 with an emphasis on bias corrected
estimators. The construction of the NN estimator is presented in Section 3 which ends up with our
first theoretical result (Theorem 2) on the associated approximation error. Similarly, an extrapolation
principle for estimating conditional extreme quantiles is proposed in Section 4 and two conditional NN
estimators are derived in Section 5 with their associated approximation properties (Theorem 3 and
Theorem 4). The finite sample properties of the NN estimators are first illustrated on simulated data
in the unconditional case (Section 6) where they are compared to extreme-value competitors. Second,
the conditional neural network estimators are tested on real data (Section 7) which consist in daily
rainfall measurements between the years 1958 and 2000 among 524 stations in the southern part of
France, see Figure 1. Proofs and algorithms are postponed to the Appendix.

2 Extrapolation principle for estimating extreme quantiles

Let X1, . . . , Xn be an i.i.d sample from an unknown cumulative distribution function (c.d.f) F . The
associated order statistics are denoted by X1,n ≤ · · · ≤ Xn,n. We are interested in the estimation of
the quantile function defined by q(·) := F←(·) = inf{x ∈ R : F (x) ≥ ·}, at the extreme level 1 − αn
i.e. such that nαn → 0 as n → ∞. This latter condition entails that q(1 − αn) is almost surely
asymptotically larger than the sample maxima.

Heavy-tailed distributions. Focusing on distributions in the Maximum domain of attraction
of Fréchet, it is known from [15, Theorem 1.2.1] and [15, Proposition B.1.9.9] that the tail quantile
function U(t) := q(1 − 1/t) defined for all t > 1, is regularly-varying with index γ > 0 (this property
is denoted by U ∈ RVγ in the sequel) i.e.

U(t) = tγL (t) , (1)
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Figure 1: Historical (1958-2000) daily rainfall maxima in millimeters per station in the Cévennes-
Vivarais region of France.

where γ is the so-called tail-index and L ∈ RV0 is a slowly-varying function at infinity i.e. L is positive
and, for all z > 0,

lim
t→∞

L(tz)

L(t)
= 1. (2)

The index γ tunes the tail heaviness of F : the larger the index, the heavier the right tail. Examples
include the (generalized) Pareto, Burr, Fisher, Inverse gamma and Student distributions, see Table 1
for the associated tail indices.

Distribution (parameters) Density function γ ρ2

Generalized Pareto (ξ > 0) (1 + ξt)
−1−1/ξ

, t > 0 ξ −ξ
Burr (ζ, θ > 0) ζθtζ−1

(
1 + tζ

)−θ−1
, t > 0 1/(ζθ) −1/θ

Fisher (ν1, ν2 > 0)
(ν1/ν2)ν1/2

B(ν1/2, ν2/2)
tν1/2−1

(
1 +

ν1

ν2
t

)−(ν1+ν2)/2

, t > 0 2/ν2 −2/ν2

Inverse Gamma (ζ > 0)
1

Γ(ζ)
t−ζ−1 exp(−1/t), t > 0 1/ζ −1/ζ

Student (ν > 0)
1√

νB (ν/2, 1/2)

(
1 +

t2

ν

)− ν+1
2

1/ν −2/ν

Table 1: Examples of heavy-tailed distributions satisfying the second-order condition (7) with the
associated values of γ and ρ2. Here, Γ(·) and B(·, ·) denote respectively the Gamma and Beta functions.

The idea underpinning the estimation is to take advantage of (1) to establish a link between the
extreme quantile of interest q(1−αn) = U(1/αn) and an intermediate one q(1− δn) = U(1/δn) where
δn is interpreted as an anchor level such that k := bnδnc → ∞ as n→∞. To this end, introduce the
log-spacing function defined as

(x1, x2) ∈ R2
+ 7→ f(x1, x2) = logU(exp(x1 + x2))− logU(exp(x2)) = γx1 + ϕ(x1, x2), (3)
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with

ϕ(x1, x2) := log

(
L(exp(x1 + x2))

L(exp(x2))

)
. (4)

It immediately follows that

q(1− αn) = q(1− δn) (δn/αn)γ exp
(
ϕ
(

log (δn/αn) , log (1/δn)
))
.

An estimator of the extreme quantile can then be obtained using a two-step approach. First, a para-
metric model ϕ̃θ is introduced for ϕ yielding a parametric approximation of q(1−αn) with parameter
φ = (γ, θ):

q̃φ(1− αn; 1− δn) = q(1− δn) (δn/αn)γ exp
(
ϕ̃θ
(

log (δn/αn) , log (1/δn)
))
. (5)

Second, for a given level δn, estimate both q(1− δn) by the associated order statistic Xn−k+1,n and φ
by a dedicated estimator to get:

q̂φ̂(1− αn; 1− δn) = Xn−k+1,n (δn/αn)γ̂ exp
(
ϕ̃θ̂
(

log (δn/αn) , log (1/δn)
))
,

where φ̂ = (γ̂, θ̂). See Figure 2 (left panel) for an illustration of (3) associated with a Burr distribution
and its pointwise estimation based on order statistics.

Weissman estimator. In this setting, the simplest method consists in choosing ϕ̃θ = 0 in (5), so
that φ = γ, to get the so-called Weissman estimator [61]:

q̂W
φ̂
(1− αn; 1− δn) = Xn−k+1,n (δn/αn)γ̂

H(k), (6)

where γ̂H(·) is the Hill estimator [44]. This approach relies on the approximation of the slowly-varying
function L in (4) by a constant, which can be not precise enough in practice.

Bias corrected estimators. The above expression (4) can be evaluated using the well-known
second-order condition of the tail quantile function which states that there exist γ > 0, ρ2 ≤ 0 and a
function A2 positive or negative with A2(t)→ 0 as t→∞ such that for all z ≥ 1 [37, Equation (13)]

logU(zt)− logU(t) = γ log z +A2(t)

∫ z

1

zρ2−1
2 dz2 + o(A2(t)), as t→∞. (7)

Moreover, |A2| is regularly-varying with index ρ2. This second-order parameter drives the bias of most
extreme quantile estimators: the larger ρ2 is, the larger the asymptotic bias. Assumption (7) is stan-
dard in extreme-value theory, since it controls the rate of convergence in (2). Examples of commonly
used continuous distributions satisfying (7) can be found in [4, Section 3.3] and [15, Section 2.3], along
with thorough discussions on the interpretation and the rationale behind this second-order condition.
For instance, the (generalized) Pareto, Burr, Fréchet, Student, Fisher and Inverse-Gamma distributions
all satisfy this condition, see Table 1.

Ignoring the o(·) term in (7) and assuming

A2(t) = γβ2t
ρ2 , (8)

with ρ2 < 0 and β2 6= 0, give rise to the parametric model defined for every x1, x2 ≥ 0 by

ϕ̃CW
θ (x1, x2) = γβ2 exp(ρ2x2)[exp(ρ2x1)− 1]/ρ2, (9)

with θ = (β2, ρ2). Replacing in (5) yields the quantile approximation

q̃CWφ (1− αn; 1− δn) = q(1− δn)

(
δn
αn

)γ
exp

(
γβ2

(
1

δn

)ρ2 (δn/αn)ρ2 − 1

ρ2

)
, (10)
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and the associated Corrected Weissman estimator introduced in [38],

q̂CW
φ̂

(1− αn; 1− δn) = Xn−k+1,n

(
δn
αn

)γ̂
exp

(
γ̂β̂2

(
1

δn

)ρ̂2 (δn/αn)ρ̂2 − 1

ρ̂2

)
. (11)

The quality of (11) hinges on a reliable estimation of γ and θ, see Paragraph 6.2 for details. In the
following, we propose an extension of (10) to an higher order approximation and an estimation of the
associated parameter θ by a neural network.

3 A neural network estimator of extreme quantiles

In a neural network (NN) setting (see for instance [39] for a general perspective), our purpose is to
build an approximation of the log-spacing function (3) by taking advantage of higher order conditions
on U(·) unlike classical bias-reduced estimators which are based on the second-order condition (7).
Here, we focus on the class of one-hidden layer feedforward NN under the form

x ∈ R 7→
d∑
i=1

ν
(1)
i σe

(
ν

(2)
i x+ ν

(3)
i

)
∈ R, (12)

with parameters {(ν(1)
i , ν

(2)
i , ν

(3)
i ), i = 1, . . . , d} ∈ Θ ⊂ R3d where d is the number of neurons in the

hidden layer and with eLU (exponential linear unit) activation functions:

σe(x) :=

{
exp(x)− 1 , x < 0

x, , x ≥ 0.
(13)

Let us first observe that ϕ̃CW
θ in (9) can be rewritten using two eLU functions as

ϕ̃CW
θ (x1, x2) =

γβ2

ρ2
(σe(β2(x1 + x2))− σe(β2x2)) . (14)

In order to build higher order approximations of ϕ(x1, x2) using more than two activation functions,
we consider a J-th order condition, introduced in [60] for all J ≥ 2, on the tail quantile function.
Assume there exist γ > 0 and, for all j = 2, . . . , J , ρj ≤ 0 as well as positive or negative functions Aj
such that Aj(t)→ 0 as t→∞, |Aj | ∈ RVρj , such that

logU(tz)− logU(t) = γ log y +

J∑
j=2

j∏
`=2

A`(t)Rj(z) + o

 J∏
j=2

Aj(t)

 , (15)

as t→∞ for all z > 0, where:

Rj(z) =

∫ z

1

zρ2−1
2

∫ z2

1

zρ3−1
3 · · ·

∫ zj−1

1

z
ρj−1
j dzj . . . dz3 dz2. (16)

Clearly, when J = 2, we recover the second-order condition (7). Moreover, J = 3 and J = 4 yield
back respectively the third-order [22, 51] and fourth-order conditions [33]. In the following, we let
ρ̄J = ρ2 + · · ·+ ρJ . The next Proposition presents how, starting from the J-th order condition, a NN
approximation of ϕ(x1, x2) can be built using J(J − 1) eLU functions.

Proposition 1. Assume the J-th order condition (15) holds for some J ≥ 2 with

Aj(t) = cjt
ρj , (17)

where cj 6= 0 and ρj < 0 for j = 2, . . . , J . Let ϕ̃NNJ
θ be the function defined for x1 > 0 and x2 > 0 by

ϕ̃NNJ
θ (x1, x2) :=

J(J−1)/2∑
i=1

w
(1)
i

(
σe
(
w

(2)
i x1 + w

(3)
i x2

)
− σe(w

(4)
i x2)

)
, (18)
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for some θ =
{

(w
(1)
i , w

(2)
i , w

(3)
i , w

(4)
i ), i = 1, . . . , J(J − 1)/2

}
∈ Θ := (R × R3

−)J(J−1)/2. Then, for all

ε > 0, there exists xε > 0 such that

ϕ(x1, x2) = ϕ̃NNJ
θ (x1, x2) + ∆(exp(x1), exp(x2))

J∏
j=2

Aj(exp(x2)),

with |∆(exp(x1), exp(x2))| ≤ ε exp(x1(ρ̄J + ε)) for all x1, x2 ≥ xε.

Hence, there exists a one-hidden layer eLU neural network approximation ϕ̃NNJ

θ̃
of ϕ with the same

representation as in (18), parameterized by some unknown θ̃ ∈ Θ, and with a controlled error. Note
that such a result is not a direct consequence of the Universal approximation Theorem [12] which
ensures that a continuous function can be uniformly approximated on a compact set with arbitrary
precision by a one hidden layer NN. Indeed, ϕ does not have a compact support and, moreover, the
extrapolation framework makes necessary to control the approximation of ϕ(x1, x2) when both x1 and
x2 tend to infinity. Recall that the parametric model (18) encompasses (14) as a particular case when
J = 2.

Second, for all φ̃ = (w̃0, θ̃) ∈ Φ := R+ × Θ, consider the NN approximation of the log-spacing
function

f̃NNJ
φ̃

(x1, x2) = w̃0x1 + ϕ̃NNJ

θ̃
(x1, x2), (19)

and, combining (5) with (19), the NN approximation of the extreme quantile is defined as

q̃NNJ
φ̃

(1− αn; 1− δn) := q(1− δn) exp
(
f̃NNJ
φ̃

(log(δn/αn), log(1/δn))
)
. (20)

The approximating NN includes d = J(J−1) neurons and CJ2 parameters, where C > 0 is a constant
independent of J . As a consequence of Proposition 1, we have the following convergence result on the
NN approximation of the extreme quantile:

Theorem 2. Assume the J-th order condition (15) holds together with (17) for some J ≥ 2. Then,
the one hidden-layer feedforward NN approximation (20) of the extreme quantile q(1−αn) is such that

αρ̄Jn inf
φ̃∈Φ

∣∣∣log q(1− αn)− log q̃NNJ
φ̃

(1− αn; 1− δn)
∣∣∣ ≤ c̄J , (21)

where c̄J = c2 × · · · × cJ , as αn → 0 and δn/αn →∞ when n→∞.

In view of (21), the error between the extreme log-quantile and its NN approximation is driven by
ρ̄J = ρ2 + · · · + ρJ . As expected, requesting higher regularity in the extreme-value model (through
the J-th order condition) yields a smaller approximation error thanks to an increasing width of the
proposed NN. We thus are in a position to defining the NN extreme quantile estimator

q̂NNJ
φ̂

(1− αn; 1− δn) := Xn−k+1,n exp
(
f̃NNJ
φ̂

(log (δn/αn) , log (1/δn))
)
,

where the estimated parameters φ̂ ∈ Φ are computed thanks to the optimization process described in
Paragraph 6.1.

4 Extrapolation principle for conditional extreme quantiles

Suppose now that X is a random variable associated with an explanatory random vector Y ∈ Π ⊂
Rdy , dy ≥ 1. Denoting by F (· | y) the conditional c.d.f of X given {Y = y} for some y ∈ Π, the
conditional quantile function is defined by q(· | y) = inf {x ∈ R : F (x | y) ≥ ·} and the conditional
tail quantile function is defined for all t ≥ 1 by U(t | y) := q(1 − 1/t | y). The usual unconditional
extrapolation principles can be extended to this new setting basing on maximum domain attraction
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assumptions [13, 29]. More specifically, when the conditional distribution of X given {Y = y} is
assumed to be heavy-tailed, which is our framework in the sequel, the Weissman estimator (6) can be
adapted as follows:

q̂W
φ̂
(1− αn; 1− δn | y) = q̂(1− δn | y) (δn/αn)γ̂(y),

see [14, 26]. The above conditional Weissman estimator relies on two quantities: q̂(1 − δn | y) which
is an estimator of the intermediate conditional quantile q(1 − δn | y) and γ̂(y), an estimator of the
conditional tail-index γ(y).

Estimation of intermediate conditional quantiles. Among the numerous methods dedi-
cated to the estimation of conditional quantiles, two main lines of works can be identified. On the
first hand, direct methods characterize the conditional quantile of level α ∈ (0, 1) as the solution of an
optimization problem:

q(1− α | y) = arg min
τ∈R

E [ρ̌1−α (X − τ) | Y = y] ,

where v ∈ R 7→ ρ̌1−α(v) := v
(
1− α− 1(−∞,0]{v}

)
is the so-called check-function. Estimators of the

conditional quantile are then obtained by replacing the conditional expectation by some non-parametric
estimator and solving the associated optimization problem, see among others [43, 46] for spline based
methods and [64] for kernel smoothing techniques. On the other hand, the indirect method consists in
first estimating the conditional c.d.f F (· | y), and then compute the estimated quantile via numerical
inversion. Nonparametric estimators of F (· | y) include for instance kernel estimators [56] and nearest
neighbor estimators [6].

Estimation of the conditional tail-index. Moving windows and nearest neighbors approaches
have been developed in a fixed design setting [25, 26]. Kernel methods are proposed in [14, 30, 31, 34]
to tackle the random design case. Finally, these methods have been adapted to the situation where
the covariate is a random field or infinite dimensional, see respectively [52] and [27, 28].

In the next section, we show how to combine an indirect method to estimate the intermediate
quantile (and more precisely, the nearest neighbor estimator, see Section 7) with a NN to estimate
conditional extrapolation schemes following the ideas of Section 3. We also refer to [21, Section 3.5]
for the approximation of the nearest neighbors distribution using the Hellinger distance and to [23]
for the investigation of their asymptotic properties. Other indirect estimators of conditional extreme
quantiles using nearest neighbor techniques are investigated in [26, 29] while direct estimators of
conditional extreme quantiles are proposed in [58, 59].

5 Neural network estimators of conditional extreme quantiles

We present two approaches to estimate conditional extreme quantiles by a NN. The first one is the
conditional extension of the model presented in Section 3. The second one takes advantage of a
location-dispersion model assumption to get rid of the covariate in the extrapolation step.

5.1 Estimation with Conditional Extrapolation Neural Networks (CENN)

Similarly to (1), the conditional tail quantile function U(· | y) is assumed to be regularly-varying with
a conditional tail-index γ(y) > 0 i.e. U(t | y) = tγ(y)L(t | y), where L(· | y) is a positive conditional
slowly-varying function such that ∀z > 0,

lim
t→∞

L(tz | y)

L(t | y)
= 1.

7



Similarly to (3), the conditional log-spacings function is defined as

(x1, x2, y) ∈ R2
+ × Rdy 7→ f(x1, x2 | y) = logU(exp(x1 + x2) | y)− logU(exp(x2) | y)

= γ(y)x1 + ϕ(x1, x2 | y),

with

ϕ(x1, x2 | y) := log

(
L(exp(x1 + x2) | y)

L(exp(x2) | y)

)
,

and it follows that

q(1− αn; 1− δn | y) = q(1− δn | y) (δn/αn)γ(y) exp
(
ϕ
(

log (δn/αn) , log (1/δn) | y
))
. (22)

The same methodology as in Section 2 is applied here, where the conditional extension of the J-th
order condition (15) can be written as

logU(tz | y)− logU(t | y) = γ(y) log z +

J∑
j=2

j∏
`=2

A`(t | y)Rj(z | y) + o

 J∏
j=2

Aj(t | y)

 , (23)

as t→∞ for all z > 0, with

Rj(z | y) =

∫ z

1

z
ρ2(y)−1
2

∫ z2

1

z
ρ3(y)−1
3 · · ·

∫ zj−1

1

z
ρj(y)−1
j dzj . . . dz3 dz2,

and

Aj(t | y) = cj(y)tρj(y), (24)

for all j = 2, . . . , J . Therefore, since all the parameters {(w(1)
i , w

(2)
i , w

(3)
i , w

(4)
i ), i = 1, . . . , J(J − 1)/2}

and γ depend now of the covariate, the idea is to replace in (18) and (19) each parameter by an
appropriate NN in order to approximate the conditional quantity. Hence, we consider

f̃NNJ
φ̃

(x1, x2 | y) = ϕ̃NNJ

θ̃
(x1, x2 | y) + w̃NN

θ̃(0)
(y)x1,

with

ϕ̃NNJ

θ̃
(x1, x2 | y) :=

J(J−1)/2∑
i=1

w̃NN

θ̃
(1)
i

(y)
(
σe
(
w̃NN

θ̃
(2)
i

(y)x1 + w̃NN

θ̃
(3)
i

(y)x2

)
− σe

(
w̃NN

θ̃
(4)
i

(y)x2

))
,

where, for all j ∈ {1, . . . , 4} and i ∈ {1, . . . , J(J − 1)/2}, w̃NN

θ̃(0)
and w̃NN

θ̃
(j)
i

are 2J(J − 1) + 1 deep ReLU

NNs with respectively d(0) and d(j) neurons in each of the p(0) and p(j) hidden layers. Recall that the
ReLU activation function is defined by x ∈ R 7→ σR(x) = max(x, 0). Unlike (12), we apply −σR(·)
in the output layer of w̃NN

θ̃
(2)
i

, w̃NN

θ̃
(3)
i

, w̃NN

θ̃
(4)
i

in order to force a negative output. Thus, taking advantage

of (22), we can build an approximation of the conditional extreme quantile q(1− αn | y):

q̃NNJ
φ̃

(1− αn; 1− δn | y) = q(1− δn | y) exp
(
f̃NNJ
φ̃

(log(δn/αn), log(1/δn) | y)
)
. (25)

The approximating NN includes J(J − 1)/2
(∑4

j=1 p
(j)d(j) + 2

)
+ d(0) neurons and

C J2
∑4
j=1 p

(j)(d(j))2 parameters, where C > 0 is a constant independent of J, d(j), p(j) for all j =
1, . . . , 4. As a consequence of Proposition 1, we thus have the following convergence result on the NN
approximation of the extreme quantile:
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Theorem 3. Assume the J-th order condition (23) holds together with (24) for some J ≥ 2. Addition-

ally, suppose all functions w
(1)
i (·), w()

i (·), w(3)
i (·), w(4)

i (·)), i = 1, . . . , J(J−1)/2, and γ(·) are continuous
on the compact set Π ⊂ Rdy . Let ρ̄sup = supy∈Π ρ̄J(y). Then, for all y ∈ Π, there exists a conditional
deep feedforward NN approximation (25) of the conditional extreme quantile q(1 − αn | y) including
2J(J − 1) + 1 sub-networks built for all j ∈ {0, . . . , 4} with fixed d(j) = 2dy + 10 number of neurons in
each of the hidden layers of depths

p(0)
n = p(2)

n > cα
ρ̄sup/2
n (log(δn/αn))

1/2
,

p(1)
n > cα

ρ̄sup/2
n ,

p(3)
n = p(4)

n > cα
ρ̄sup/2
n (log(1/δn))

1/2
,

where c > 0 is an arbitrary constant, αn → 0 and δn/αn →∞ as n→∞ such that

α
ρ̄sup
n inf

φ̃∈Φ
sup
y∈Π

∣∣∣log q(1− αn | y)− log q̃NNJ
φ̃

(1− αn; 1− δn | y)
∣∣∣ = O (1) .

In this general conditional setting, a minimum depth (of magnitude ' α
ρ̄sup/2
n ) is required for the

CENN to approximate the extreme quantile with a given error (of order ' α
−ρ̄sup
n ) while, in the

previous situation, a one layer NN was sufficient. We are in a position to define the conditional NN
extrapolation quantile estimator

q̂NNJ
φ̂

(1− αn; 1− δn | y) := q̂(1− δn | y) exp
(
f̃NNJ
φ̂

(log (δn/αn) , log (1/δn) | y)
)
.

where q̂(1− δn | y) is an estimator of the intermediate conditional quantile.

5.2 Estimation with Location-Dispersion Neural Networks (LDNN)

The location-dispersion regression model introduced in [57] assumes that

X = a(Y ) + b(Y )Z, (26)

where a : Π→ R and b : Π→ R+ are defined respectively as the regression and the dispersion functions
while Z ∈ R is a real random variable. Denoting by qZ(·) and UZ(·) respectively the quantile and tail
quantile functions of Z, it follows from (26) that

U(t | y) = a(y) + b(y)UZ(t), (27)

or equivalently q(1−αn |y) = a(y)+b(y)qZ(1−αn) and, therefore, considering three levels of quantiles
0 < αn < δn < τn < 1 yields

q(1− αn | y)− q(1− δn | y)

q(1− δn | y)− q(1− τn | y)
=

qZ(1−αn)
qZ(1−δn) − 1

1− qZ(1−τn)
qZ(1−δn)

=

UZ(1/αn)
UZ(1/δn) − 1

1− UZ(1/τn)
UZ(1/δn)

=
exp (fZ(log(δn/αn), log(1/δn)))− 1

1− exp (fZ(log(δn/τn), log(1/δn)))
,

where fZ is defined similarly to (3) by

(x1, x2) ∈ R2
+ 7→ fZ(x1, x2) = logUZ(exp(x1 + x2))− logUZ(exp(x2)).

Let us stress that the above quantity does not depend on the covariate. Introducing

(x1, x2, x3) ∈ R3
+ 7→ g(x1, x2, x3) =

exp(fZ(x1, x2))− 1

1− exp(fZ(x3, x2))
,

one has

q(1− αn | y)− q(1− δn | y)

q(1− δn | y)− q(1− τn | y)
= g
(

log(δn/αn), log(1/δn), log(δn/τn)
)
,
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and rearranging the terms yields

q(1− αn | y) = q(1− δn | y)

(
1 +

(
1− q(1− τn | y)

q(1− δn | y)

)
g(log(δn/αn), log(1/δn), log(δn/τn))

)
. (28)

One can take advantage of (28) to estimate approximate conditional extreme quantiles from the
location-dispersion regression model when Z is assumed to be heavy-tailed. We thus let UZ(t) =
tγLZ(t) with γ > 0 and LZ ∈ RV0. It straightforwardly follows from (27) that U(· |y) ∈ RVγ meaning
that X given Y = y is heavy-tailed with tail-index independent of the covariate [1]. In other words,
X inherits its tail behavior from Z and thus does not depend on the covariate y. Let us also note
that, from (27), the regular variation property yields U(t | y)/UZ(t) → b(y) as t → ∞. The location-
dispersion regression model (26) can thus be interpreted as a particular case of the proportional tails
model [18]. It is a convenient way to model heteroscedastic extremes, see [16, 24, 32] for alternative
solutions.

Following the methodology introduced in the unconditional case (see Section 3), it is possible
to build an approximation of the conditional extreme quantile q(1 − αn | y) using two intermediate
conditional quantiles q(1− δn | y) and q(1− τn | y):

q̃NNJ
φ̃

(1− αn; 1− δn, 1− τn | y) = q(1− δn | y)

(
1 +

(
1− q(1− τn | y)

q(1− δn | y)

)
g̃NNJ
φ̃

(
log(δn/αn), log(1/δn), log(δn/τn)

))
,

with

g̃NNJ
φ̃

(
log(δn/αn), log(1/δn), log(δn/τn)

)
=

exp
(
f̃NNJ
φ̃

(log(δn/αn), log(1/δn))
)
− 1

1− exp
(
f̃NNJ
φ̃

(log(δn/τn), log(1/δn))
) ,

and where f̃NNJ
φ̃

is defined in (18) and (19). The approximating NN includes d = J(J − 1)/2 neurons

and C J2 parameters, where C > 0 is a constant independent of J . We can thus extend the result of
Theorem 2 in the conditional framework.

Theorem 4. Assume (26) and conditions of Theorem 2 hold for UZ . Suppose a(·) and b(·) are
continuous functions on Π and that b(·) is lower bounded by a positive constant. Then, for all y ∈ Π,
there exists a one hidden-layer feedforward neural network approximation q̃NNJ

φ̃
(1−αn; 1− δn, 1− τn |y)

of the conditional extreme quantile q(1− αn | y) such that

inf
φ̃∈Φ

sup
y∈Π

∣∣∣log q(1− αn | y)− log q̃NNJ
φ̃

(1− αn; 1− δn, 1− τn | y)
∣∣∣ = O(α−ρ̄Jn ) +O(τ−ρ̄J−γn δγn) (29)

with αn → 0, δn/τn → 0 and δn/αn →∞ as n→∞.

It is then possible to tune the value of the additional sequence δn to balance both error terms in (29):

Corollary 5. Assume the assumptions of Theorem 4 hold.

• If γ + ρ̄J > 0, then letting δn = α
−ρ̄J/γ
n τ

1+ρ̄J/γ
n yields

αρ̄Jn inf
φ̃∈Φ

sup
y∈Π

∣∣∣log q(1− αn | y)− log q̃NNJ
φ̃

(1− αn; 1− δn, 1− τn | y)
∣∣∣ = O(1).

• If γ + ρ̄J ≤ 0, then letting δn = ξnαn and τn = ξ2
nαn with ξn →∞ arbitrarily slowly as n→∞

yields

αρ̄Jn inf
φ̃∈Φ

sup
y∈Π

∣∣∣log q(1− αn | y)− log q̃NNJ
φ̃

(1− αn; 1− δn, 1− τn | y)
∣∣∣ = O(ξ−2ρ̄J−γ

n ).

Up to the ξn term, one can recover the convergence rate αρ̄Jn of the unconditional case, see Theorem 2.
The conditional NN extreme quantile estimator is defined as

q̂NNJ
φ̂

(1− αn; 1− δn, 1− τn | y) = q̂(1− δn | y)

(
1 +

(
1− q̂(1− τn | y)

q̂(1− δn | y)

)
g̃NNJ
φ̂

(
log(δn/αn), log(1/δn), log(δn/τn)

))
,

where again the intermediate conditional quantiles q(1− δn |y) and q(1− τn |y) can be estimated using
the nearest neighbor estimator, see Section 7 for an illustration on real data.
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6 Validation on simulated data (unconditional case)

The finite sample behviour of the (unconditional) extreme quantile NN estimator is illustrated on
simulated data. To this end, we first describe both the model implementation and the model selection
technique. Then, we briefly present some other bias-reduced estimators taken from the extreme-value
literature. Next, we list the heavy-tailed distributions as well as the performance criteria used to
compare all considered estimators.

6.1 Implementation of the NN estimator of extreme quantiles

Let us describe the implementation of the NN estimator of (unconditional) extreme quantiles intro-
duced in Section 3. The NN approximation f̃NNJ

φ̃
of the log-spacing function is fitted to the data by

minimizing some distance between two estimations of the N = (n− 1)(n− 2)/2 log-spacings:

φ̂ = arg min
φ̃∈Φ

1

N

n−1∑
k=2

k−1∑
i=1

∣∣∣Ŝi,k − f̃NNJφ̃
(log(k/i), log(n/k))

∣∣∣s , s ∈ {1, 2}, (30)

where, for i = 1, . . . , k−1 and k = 2, . . . , n−1, Ŝi,k := log (Xn−i+1,n)− log (Xn−k+1,n) is the empirical
estimate of log q(1− i/n)− log q(1− k/n).

All numerical experiments have been conducted on the Cholesky computing cluster from Ecole
Polytechnique http://meso-ipp.gitlab.labos.polytechnique.fr/user_doc. It is composed by 4
nodes, where each one includes 2 CPU Intel Xeon Gold 6230 @ 2.1GHz, 20 cores and 4 Nvidia Tesla v100
graphics card. All the code was implemented in Python 3.8.2 and using the library PyTorch 1.7.1. We
used the optimizer Adam [45] with default parameters β1 = 0.9 and β2 = 0.999 for all tests performed
during M = 500 iterations. Additionally, the ranges of the neural network hyperparameters explored
to find the best model are reported in Table 2. See Figure 2 (right panel) for an illustration of the NN
estimation of the log-spacing function associated with a Burr distribution.

0 1 2 3 4

0

2

4

6

8

0 1 2 3 4

0

2

4

6

8

Figure 2: Log-spacing function associated with a Burr distribution (γ = 1, ρ = −1/4). Black
curve: theoretical function x1 7→ f(x1, log(n/k)), green dots: empirical pointwise estimation
(log(k/i), logXn−i+1,n − logXn−k+1,n), purple dots: NN estimation f̃NNJ

φ̂
(log(k/i), log(n/k)) with

i = 1, . . . , k − 1, k = 100 and n = 500.

Setting J batch size loss function
Non-conditional {2, 3, 4, 5} {256, 512, 1024} s ∈ {1, 2}

Conditional {2, 3, 4, 5} {256, 512, 1024}] s = 1

Table 2: Hyperparameters ranges used for tuning NNs across the experiments.
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Model selection Algorithm 1 selects the parameters φ̂ = φ̂m?(A?) associated with the best archi-
tecture A? in Table 2 and iteration m? ∈ {1, . . . ,M} corresponding to the smallest mediane absolute
deviation

MAD

({
q̂NNJ
φ̂m

(
1− αn; 1− k

n

)
, k ∈ {k1, . . . , k2}

})
,

where, for any finite set E ⊂ R, the mediane absolute deviation is defined as

MAD(E) = median
e∈E

|e−median(E)| . (31)

In all the experiments, we used k1 = [3n/100] and k2 = [3n/4].

6.2 Competitors

Seven bias reduced extreme quantile estimators are considered. They can be sorted in two main
families. First, one can plug a bias-reduced estimator of the tail-index γ in the Weissman estimator (6).
As an example, basing on the second order condition (7) and (8), the Corrected-Hill estimator is
proposed in [7]:

γ̂CH(k) = γ̂H(k)

(
1− β̂2

1− ρ̂2

(n
k

)ρ̂2)
,

where ρ̂2 and β̂2 are the respective estimators of the parameters ρ2 and β2. Similarly, [36] and [35]
introduced a tuning parameter p ≥ 0 in γ̂CH to get respectively the reduced-bias mean-of-order-p and
partially reduced-biais estimators denoted by γ̂CHp and γ̂PRBp . To select p in γ̂CHp and γ̂PRBp , one can
either follow a path stability criterion [36, Algorithm 4.2] or plug an “optimal” deterministic value [36,
Page 1739], denoted by p?. In this latter case, the corresponding estimators are denoted by γ̂CHp? and
γ̂PRBp? .

Second, one may reduce simultaneously the extrapolation bias and the bias coming from the
estimation of the tail-index. This idea is implemented in the Corrected Weissman estimator (CW),
see (11), discussed in Section 2. More recently, a Refined Weissman (RW) estimator has been proposed
in [2] featuring an adapted choice of the intermediate sequence kH in the Hill estimator

kH = k

(
−ρ̂2

1− ρ̂2

log (k/(nαn))

1− (k/(nαn))ρ̂2

)1/ρ̂2

,

different from the intermediate sequence k used in the intermediate quantile estimator.
Replacing the Hill estimator in (6) by γ̂CH(k), γ̂CHp(k), γ̂PRBp(k), γ̂CHp? (k), γ̂PRBp? (k), γ̂H(kH) leads re-

spectively to the estimators q̂CH
φ̂
, q̂

CHp

φ̂
, q̂

PRBp

φ̂
, q̂

CHp?

φ̂
, q̂

PRBp?

φ̂
, q̂RW
φ̂

. See [2] for a detailed account on these

bias-reduced extreme quantile estimators.

6.3 Experimental design

The comparative study is achieved on six heavy-tailed distributions. The first five distributions: Burr,
Frchet, Fisher, generalized Pareto distribution (GPD), Inverse Gamma, and Student belong to the
Hall-Welsh class [40, 41] which assumes that there exist c1 > 0, c2 6= 0 such that

U(t) = c1t
γ (1 + c2t

ρ2 + o(tρ2)) .

These five distributions satisfy the second-order condition (7) with (8), see Table 1 for their definitions
and associated values of γ and ρ2. The sixth distribution, denoted by NHW(γ, ρ2), is defined for
all γ ≥ exp(−2)/2 and ρ2 < 0 by its tail quantile function U(t) = tγ exp(A2(t)/ρ2) where A2(t) =
ρ2t

ρ2 log(t)/2, t ≥ 1, is the auxiliary function associated with the second-order condition (7). It thus
appears that the NHW distribution does not belong to the Hall-Welsh class and does not verify (8)
either.

Based on the simulation study of [2], we focus on the following settings corresponding to the most
challenging situations for extreme-value estimators: large values of γ and/or large values of ρ2:

12



• Burr distribution γ ∈ {1/8, 1/4, 1/2} and ρ2 = −1/8,

• NHW distribution γ = 1 and ρ2 ∈ {−1/8,−1/4,−1/2,−1,−2}.

• Fisher distribution with ν1 = 1 and ν2 ∈ {2, 16} leading to (γ, ρ2) ∈ {1/8, 1} × {−1/8,−1},

• GPD with γ = 1/8 leading to ρ2 = −1/8,

• Inverse Gamma distribution with ζ = 1 leading to γ = 1 and ρ2 = −1,

• Student distribution with ν = 1 yielding γ = 1 and ρ2 = −2.

Note that the case γ = 1 in the Fréchet and GPD distributions coincides respectively with the Inverse
Gamma and Burr distributions (see Table 1). For each of these 21 considered configurations, R = 500
replicated data sets of size n = 500 are simulated and the associated extreme quantile of order 1−αn =
1 − 1/(2n) is estimated using the NN estimator, the Weissman estimator and the seven bias-reduced
estimators described in the above paragraph.

The performance of the extreme quantile estimators is assessed using the Relative median-squared
error (RMedSE):

RMedSE

(
q̂φ̂,

1

2n

)
= median
r∈{1,...,R}


 q̂(r)

φ̂
(1− 1

2n ; 1− k?(r)
n )

q(1− 1
2n )

− 1

2
 , (32)

where q̂
(r)

φ̂
(1− 1

2n ; 1− k?(r)
n ) denotes an estimator of q(1− 1

2n ) (either the NN estimator or some of its

competitors) computed with the anchor index k?(r) selected using [2, Algorithm 1] with initial points
a(0) = [3n/100] and c(0) = [3n/4] on the rth replication, r ∈ {1, . . . , R}.

6.4 Results

The RMedSE results are provided in Table 3 for all considered distributions. It appears that the NN
approach is an efficient tool for estimating extreme quantiles in difficult heavy-tailed situations where
other estimators almost all fail. The NN estimator indeed provides the best results in 12 out of 21
times. As a comparison, RW, CW, W and PRBp? estimators provide the best results respectively
only in 3, 3, 2 and 1 out of 21 times. Moreover, Figure 3 illustrates that the NN estimator features
a nice stability in terms of bias and RMedSE for a wide range of k values on selected situations from
Table 3. This phenomenon may be highly appreciated even when our estimator is not ranked first on
the RMedSE criteria basis, see for instance the top pannel of Figure 3.

As a conclusion, even though the NN method is numerically more expensive than its competitors,
it provides a very effective estimator for all heavy-tailed situations. Additionally, note that in the
above simulations, the NNs are built with only 2 to 20 neurons (recall that J ∈ {2, . . . , 5}), which
remains acceptable from the computational cost point of view.

7 Illustration on rainfall data (conditional case)

The conditional NN estimators are tested on daily rainfall observations from 1958 to 2000 in the
Cévennes-Vivarais region (southern part of France), see Figure 1. The region covers 256 × 283 km2

where the Rhône River flows between two major mountainous massifs: the Massif Central and the
Alps, respectively in the western and eastern sides. The northwestern quarter is a quite homogeneous
high plateau, whereas the southern part is a large river plain bordered by the Mediterranean Sea.
This region is historically very sensitive to extreme precipitations and flash floods [50]. More precisely,
the rainfall distribution exhibits different statistical properties, depending on both the time scale
(whether hourly or daily) and the spatial scale (whether in a flat region closer to the sea, or further in
the mountains) [9]. Although daily rainfall maxima used to be modeled with a Gumbel distribution
(exponential tails) [47, Section 7.2.2], better fits with heavy-tailed distributions are now preferred in
order to tackle the underestimation of the extreme rainfall levels with light-tailed distributions [9, 48].
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NN W RW CW CH CHp PRBp CHp? PRBp?

Burr (γ = 1/8)

ρ = −1/8 0.0392 - 0.0364 - 0.5375 0.2713 0.3745 0.3578 0.1203

Burr (γ = 1/4)

ρ = −1/8 0.1567 - 0.1421 - - - - - 0.6357

Burr (γ = 1/2)

ρ = −1/8 0.2847 - 0.4298 - - - - - -

Burr (γ = 1)

ρ = −1/8 0.3133 - 0.8625 - - - - - -
ρ = −1/4 0.1962 - 0.5423 - - - - - 0.6617
ρ = −1/2 0.2142 - 0.3291 - 0.0949 0.1021 0.1488 0.0874 0.1185
ρ = −1 0.1877 - 0.2438 0.1289 0.4120 0.3737 0.3761 0.3658 0.4261
ρ = −2 0.1432 0.2065 0.1488 0.2115 0.3394 0.3384 0.2893 0.2933 0.3058

NHW (γ = 1/8)

ρ = −1/8 0.0275 - 0.0340 0.0699 0.2442 0.2194 0.3285 0.2202 0.3157

NHW (γ = 1/4)

ρ = −1/8 0.0570 - 0.0816 0.1482 0.3290 3209 0.3890 0.3212 0.3935

NHW (γ = 1/2)

ρ = −1/8 0.1168 - 0.1794 0.3683 0.5309 0.5284 0.5697 0.5155 0.5586

NHW (γ = 1)

ρ = −1/8 0.2709 - 0.3885 0.5644 0.7789 0.7016 0.7379 0.7891 0.8039
ρ = −1/4 0.2163 - 0.3095 0.4888 0.6851 0.6920 0.6825 0.6897 0.7252
ρ = −1/2 0.1615 0.5927 0.2217 0.2481 0.4589 0.4939 0.4803 0.4595 0.4727
ρ = −1 0.1596 0.0679 0.1557 0.1549 0.2340 0.2582 0.444 0.2302 0.2353
ρ = −2 0.1082 0.0738 0.1302 0.1576 0.2112 0.1953 0.2080 0.1865 0.1879

Fisher (ρ = −γ)

γ = 1/8 0.0506 - 0.0765 - - - - - 0.6126
γ = 1 0.1792 - 0.2871 0.0882 0.2722 0.2736 0.2323 0.2378 0.3409

GPD (ρ = −γ)

γ = 1/8 0.0391 - 0.0364 - 0.5375 0.2534 0.3266 0.3578 0.1203

Inverse Gamma (ρ = −γ)

γ = 1 0.1863 0.9259 0.1731 0.1269 0.2163 0.2317 0.2232 0.2030 0.2181

Student (ρ = −2γ)

γ = 1 0.1515 0.5781 0.1961 0.3565 0.5654 0.5024 0.5273 0.5157 0.5439

Table 3: RMedSE associated with nine estimators of the extreme quantile q(αn = 1/(2n)) on six
heavy-tailed distributions. The best result is emphasized in bold. RMedSEs larger than 1 are not
reported.
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Figure 3: Illustration on simulated data sets of size n = 500 from a Burr distribution with γ = 1 and
ρ ∈ {−2,−1/4}, a NHW distribution with γ = 1 and ρ = −1/8, and a GPD distribution with γ = 1/8
(from top to bottom). Median of the estimators (left panel) of the extreme quantile (black dashed line)
at level 1− αn = 1− 1/(2n) and RMedSE (right panel), as functions of k ∈ {2, . . . , n− 1}, computed
on R = 500 replications, associated with W (blue), RW (red) and NN (purple) estimators.
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The dataset is provided by the French meteorological service Météo-France and includes both
the nD = 15, 706 daily rainfall measurements in millimeters and the location of nS = 524 stations,
leading to a dataset of size n = nD × nS . We observe that the daily rainfalls are the highest over the
eastern slope of the Massif Central (Cévennes mountains range), which is a known phenomena in this
region [50]. In this context, the variable of interest X is the one-dimensional daily rainfall and the
covariate Y is the three-dimensional geographical location (longitude, latitude and altitude).

7.1 Data processing

As mentioned in Section 4, the conditional intermediate quantiles can no longer be estimated globally
by order statistics. Therefore, the idea is to consider a small neighborhood around the geographical
location of interest y and estimate q(· | y) locally by order statistics. To define this neighborhood, we
fixed the number of neighbors nK and apply the nearest neighbors estimator on the covariate Y to
cluster all the stations using the Mahalanobis distance D(Yt, Yt′) :=

√
(Yt − Yt′)>Σ−1(Yt − Yt′) for

all (t, t′) ∈ {1, . . . , nS}2, where Σ−1 is the inverse of the corresponding covariance matrix. Next, we
merge all the historical values of the nK − 1 closest stations of each station t ∈ {1, . . . , nS}, leading to
no = nD × nK observations which are assumed to be i.i.d within each neighborhood. We denote by
by X(1,no)(Yt) ≤ · · · ≤ X(no,no)(Yt) the order statistics associated with a given station t = 1, . . . , nS .
In addition, we introduce nh ∈ {1, . . . , no − 1} and focus on the highest unique historical rainfalls(
X(no−i+1,no)(Yt), i = 1, . . . , nh

)
, for each station t = 1, . . . , nS . The estimation of the conditional

extreme quantile is investigated at level 1− αn = 1− 1/no by storing in a test set all maximum order
statistics X(no,no)(Yt) for further comparison; and keeping the remaining (nh − 1) ones in a train set
for computation of the estimates.

Tail-index estimation Before moving to the implementation of the conditional extrapolation
neural networks, it is necessary to check whether the data are heavy-tailed. Additionally, we verify
that the tail-index γ is independent from the covariate Y in all the considered nK-neighborhoods as
assumed in the location-dispersion model of Section 5.2. To this end, we first fix nh = 100 and, for
nK ∈ {10, 15, . . . , 50}, compute the Hill estimator γ̂Ht (k

?), where k? is selected by [2, Algorithm 1], for
each station t = 1, . . . , nS (see Figure 4a for illustration on one station). Based on a graphical diagnosis
(Figure 4b), we select nK = 45 which highlights the lowest spread and skewness of the Hill estimates.
The distribution of the estimated tail indices obtained with nh = 100 and nK = 45 (Figure 4c) has a
small standard-deviation (0.031) around its mean (0.189), which confirms the hypothesis of a constant
tail-index in the Cévennes-Vivarais region. Second, we validate the choice of nh = 100 graphically
(Figure 4d) leading to a small standard-deviation (0.029) of the slopes associated with the quantile-
quantile plots around their mean (0.195).

In the next two paragraphs, we propose an estimation of the conditional extreme quantile q(1 −
1/no | Yt) at each station t = {1, . . . , nS} based on the two methodologies discussed in Section 5.1
and 5.2. Even if the assumption on γ is imposed only in the location-dispersion model, we keep the
same dataset built with nh = 100 and nK = 45 for both approaches.

7.2 Conditional Extrapolation Neural Network (CENN)

Let us describe the implementation of the NN estimator of the (conditional) extreme quantile intro-
duced in Section 4. Starting from the real data processed in the previous paragraph, first normalize
the covariate Y between 0 and 1 for a training stability purposes [49]. Second, compute within each
neighborhood t = 1, . . . , nS the N = nSnh(nh − 1)/2 empirical estimates

Ŝ(i,k)(Yt) := log
(
X(no−i+1,no)(Yt)

)
− log

(
X(no−k+1,no)(Yt)

)
,

of the conditional log-spacings log q(1 − i/no | Yt) − log q(1 − k/no | Yt), for i = 1, . . . , k − 1 and
k = 2, . . . , nh. Next, build both the test set containing the N test = nS(nh − 1) empirical estimates
Ŝ(1,k)(Yt) of the log-spacings, and the train set containing the remaining N train = nS(nh−1)(nh−2)/2
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Figure 4: Illustrations on real data. Top left: Example of Hill estimator as a function of k = 2, . . . , nh−
1, within the neighborhood of a given station with nh = 100 and nK = 45. The selected k? is depicted
by the red circle. Top right: Box-plots of estimated γ̂H’s as functions of nK with nh = 100. Bottom left:
Histogram of estimated γ̂H’s for all stations t = 1, . . . , nS with nK = 45 and nh = 100. Bottom right:
quantile-quantile plot log(nh/i) 7→ log(X(no−i+1,no)(Yt))− log(X(no−nh+1,no)(Yt)) for all t = 1, . . . , nS ,
i = 1, . . . , nh − 1 with nh = 100 and nK = 45.

ones. Thus, the conditional NN approximation f̃NNJ
φ̃

of the conditional log-spacing function is fitted to

the training data by minimizing the L1 distance between two estimations of the log-spacings

φ̂ = arg min
φ̃∈Φ

1

N train

nS∑
t=1

nh∑
k=3

k−1∑
i=2

∣∣∣Ŝ(i,k)(Yt)− f̃NNJφ̃
(log(k/i), log(no/k), Yt)

∣∣∣ . (33)

Model selection Algorithm 2 selects the parameters φ̂ = φ̂m?(A?) associated with the best ar-
chitecture A? in Table 2 and iteration m? ∈ {1, . . . ,M} corresponding to the smallest mediane MAD
over all stations:

median
t∈{1,...,nS}

MAD

({
q̂NNJ
φ̂m

(
1− 1

no
; 1− k

no
| Yt
)
, k ∈ {k1, . . . , k2}

})
,

see (31) for the definition of the MAD operator. In all experiments we used k1 = [3nh/100] and
k2 = [3nh/4]. The performance criteria (32) is adapted to the conditional case as

RMedSE

(
q̂NNJ
φ̂m?

, t,
1

no

)
= median
t∈{1,...,nS}

 q̂NNJφ̂m?
(1− 1

no
; 1− k?(t)

no
| Yt)

X(no,no)(Yt)
− 1

2

, (34)

where q̂NNJ
φ̂m?

(1− 1/no; 1 − k?(t)/no | Yt) denotes the NN estimation computed on the selected anchor

index k?(t) ∈ {k1, . . . , k2} using [2, Algorithm 1] with initial points a(0) = k1 and c(0) = k2, at the t-th
station, t ∈ {1, . . . , nS}.
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7.3 Location-Dispersion Neural Network (LDNN)

Let us describe the implementation of the Location-Dispersion NN estimator of the conditional extreme
quantile introduced in Section 5.2. Starting from the real data processed in Section 7.1, first compute
the N = nSnh(nh − 1)(nh − 2)/6 empirical estimates

Ĝ(i,j,k)(Yt) :=
X(no−i+1,no)(Yt)−X(no−k+1,no)(Yt)

X(no−k+1,no)(Yt)−X(no−j+1,no)(Yt)
.

of the modified conditional spacings

(i, k, j, t) 7→ q(1− i/no | Yt)− q(1− k/no | Yt)
q(1− k/no | Yt)− q(1− j/no | Yt)

,

within each neighborhood t = 1, . . . , nS for all i = 1, . . . , k−1, k = 2, . . . , j−1 and j = 3, . . . , nh. Next,
perform a similar train-test splitting as the one in Section 5.1 , resulting in N train = nS(nh − 1)(nh −
2)(nh − 3)/6 and N test = nS(nh − 1)(nh − 2)/2. Thus, the Location-Dispersion NN approximation
g̃NNJ
φ̃

of g is fitted to the training data by minimizing the L1 distance between two estimations of the

spacings

φ̂ = arg min
φ̃∈Φ

1

N train

nS∑
t=1

nh∑
j=4

j−1∑
k=3

k−1∑
i=2

∣∣∣Ĝ(i,j,k)(Yt)− g̃NNJφ̃
(log(k/i), log(no/k), log(k/j))

∣∣∣ , (35)

where

g̃NNJ
φ̃

(log(k/i), log(no/k), log(k/j)) =
exp

(
f̃NNJ
φ̃1

(log(k/i), log(no/k))
)
− 1

1− exp
(
f̃NNJ
φ̃2

(log(k/j), log(no/k))
) (36)

is the Location-Dispersion NN approximation with φ̃ = {φ̃1, φ̃2}. For a larger flexibility, we built two
NN in (36) with a similar architecture but with a different initialization of weights {φ̃1, φ̃2}. During
the training, it may happen that ĜNNJ ,(i,j,k)(φ̃) is not defined if f̃NNJ

φ̂
(log(k/j), log(no/k)) = 0 in (36)

for some pair (k, j). In this case, we do not take into account the gradient associated with these inputs
in the optimization part.

Model selection Similarly to the previous case, Algorithm 3 selects the parameters φ̂ := φ̂m?(A?)
associated with the best architecture A? in Table 2 and iteration m? ∈ {1, . . . ,M} corresponding to
the median MAD:

median
t∈{1,...,nS}

MAD

({
q̂NNJ
φ̂m

(
1− 1

no
; 1− k

no
; 1− j

no
| Yt
)
, k ∈ {k1, . . . , k2} , j′ ∈ {j1, . . . , j2} , k < j

})
,

with k1 = [3nh/100], k2 = [3nh/4], j1 = [nh/2] and j2 = nh. Moreover, in order to select the
two anchors points k? and j?, we introduce Algorithm 4 with kU = [3nh/100], kD = [3nh/4], jL =
[4nh/100] and jR = nh, which is a 2-dimensional extension of [2, Algorithm 1]. The performance
criteria considered now is similar to (34):

RMedSE

(
q̂NNJ
φ̂

, t,
1

no

)
= median
t∈{1,...,nS}

 q̂NNJφ̂
(1− 1

no
; 1− k?(t)

no
; 1− j?(t)

no
| Yt)

X(no,no)(Yt)
− 1

2

.

7.4 Results

The selected hyperparameters of both CENN and LDNN models are respectively {J = 5,batch size =
512} and {J = 2,batch size = 1, 024}. While the former has an heavy parametrization (2, 050 pa-
rameters estimated from 2, 541, 924 data), the latter requires a large training dataset (10 parameters
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estimated from 82, 188, 876 data). In the following, we first study the conditional extrapolation perfor-
mance in the tails of both neural networks at observed stations (local extrapolation). Then, we show
an application to spatial interpolation through the CENN model (global extrapolation).

Local extrapolation Figure 5 displays the squared relative error

t 7→

(
q̂NNJ
φ̂

(1− 1/no; · | Yt)

X(no,no)(Yt)
− 1

)2

, (37)

between two estimates of the conditional extreme quantile of order 1 − 1/no for each station t =
{1, . . . , nS} according to CENN and LDNN models. It appears that both models are very efficient for
estimating conditional extreme quantiles. Additionally, the good results of the LDNN model confirm
the assumption of a tail-index independent of the covariate.

Global extrapolation We extend the previous analysis to the estimation of conditional extreme
quantiles at all pixels in Figure 1, thus including ungauged locations. While this can be achieved with
the two models, we limit ourselves to presenting the results associated the CENN method, see Figure 6.
The idea is to consider all 11, 598, 961 pixels in the high resolution map of Figure 1, and provide an
estimation of the conditional extreme quantile of order 1 − αn = 1 − 1/no, at locations not two far
from a raingauge station. More specifically, the estimation is performed at points y of the covariate
such that

D(y, Yt?) ≤ κσMAD(t?)/
√
nK , (38)

with t? = arg mint∈{1,...,nS}D(y, Yt), σMAD(t
?) = MAD({DnK−k+1,nK

t? , k ∈ {1, . . . , nK − 1}}) and where

DnK−k+1,nK
t? is the Mahalanobis distance between Yt? and its k-th nearest neighbor. In practice, we use

κ = 8, leading to the extrapolation at 6, 636, 817 points. Observe that the largest daily precipitations
occur in the Cévennes mountains range, which is in line with both Figure 1 and the literature [50].

8 Conclusion

We have introduced, up to our knowledge, the first neural network approach dedicated to extreme
quantile estimation in both non-conditional and conditional settings. In particular, two neural networks
of conditional extreme quantiles are proposed in order to tackle the cases where the tail-index depends
or is independent of the covariate. From the theoretical point of view, the uniform convergence rates of
the approximations underpinning the estimators are established within an extreme-value framework.
From the practical point of view, our estimators have been tested both on simulated and real data;
showing in the former case that the non-conditional NN estimator outperforms most of usual estimators
in challenging heavy-tailed situations. In the rainfall data application, we have shown that both
conditional NN estimators reproduce properly the tails at raingauge stations, and are moreover able
to perform spatial interpolation to estimate extreme rainfalls at ungauged locations.

Our further work will consist in extending our NN approximations of extreme quantiles to other risk
measures such as expected shortfall, or expectiles and then implementing the associated estimators. To
complete the current theoretical analysis which ensures accurate approximation in the univariate case,
our further work will be dedicated to investigate (in the non-conditional case) multivariate extreme
quantile estimation basing on recent characterizations through optimal transport [42].
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by BNP Paribas. This work has been partially supported by MIAI @ Grenoble Alpes (ANR-19-P3IA-
0003).

19



3°E

4°E

5°E

6°E

44°N

45°N

0

2000

m
e

te
rs

N
Montpellier

Mediterranean Sea

0.0

0.2

0.4

0.6

0.8

1.0

 Relative error

(a) CENN (RMedSE=0.0047)

3°E

4°E

5°E

6°E

44°N

45°N

0

2000

m
e

te
rs

N
Montpellier

Mediterranean Sea

0.0

0.2

0.4

0.6

0.8

1.0

 Relative error

(b) LDNN (RMedSE=0.0022)

Figure 5: Estimation of the conditional extreme quantile at order 1− αn = 1− 1/no at each station.
Relative error (37) with respect to both the CENN (top) and the LDNN (bottom) models.
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A Algorithms

A.1 Model selection

We noticed that the proposed model selection techniques may be misleading during the first iterations
when the NN is not well trained yet, leading to the same output for all anchor points k. Therefore, we
decided to restrict the search of m? after 10 iterations (step 3 of Algorithm 1, step 7 of Algorithm 2
and Algorithm 3).

Algorithm 1: Model selection (non-conditional case)

Input: approximation order: J,
extrapolation quantile level: αn ∈ (0, 1),
initial left point: k1 ∈ {2, . . . , n− 2},
initial right point: k2 ∈ {3, . . . , n− 1}

Output: selected parameters: φ̂m?(A?)
1 for all architecture A in Table 2 do
2 for m = 1 : M do

Optimize (30) to get φ̂m(A)

Zm(A)← MAD
({
q̂NNJ
φ̂m(A)

(
1− αn; 1− k

n

)
, k ∈ {k1, . . . , k2}

})
3 (m?,A?)← arg min

(m∈{10,...,M},A)
Zm(A)

Algorithm 2: Model selection (CENN)

Input: order condition: J,
extrapolation quantile level: αn ∈ [0, 1],
initial left point: k1 ∈ {2, . . . , nh − 1},
initial right point: k2 ∈ {3, . . . , nh}

Output: selected parameters: φ̂m?(A?)
1 for all architecture A in Table 2 do
2 for m = 1 : M do

3 Optimize (33) to get φ̂m(A)
4 for t = 1 : nS do

5 Z
(t)
m (A)← MAD

({
q̂NNJ
φ̂m(A)

(
1− αn; 1− k

no
| Yt
)
, k ∈ {k1, . . . , k2}

})
6 Z̄m(A)← median

t∈{1,...,nS}

{
Z(t)
m (A)

}
7 (m?,A?)← arg min

(m∈{10,...,M},A)
Z̄m(A)
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Algorithm 3: Model selection (LDNN)

Input: order condition: J,
extrapolation quantile level: αn ∈ [0, 1],
initial left point: k1 ∈ {2, . . . , nh − 3},
initial right point: k2 ∈ {3, . . . , nh − 2}
initial upper point: j1 ∈ {4, . . . , nh − 1},
initial down point: j2 ∈ {5, . . . , nh}

Output: selected parameters: φ̂m?(A?)
1 for all architecture A in Table 2 do
2 for m = 1 : M do

3 Optimize (35) to get φ̂m(A?)
4 for t = 1 : nS do

5 Z
(t)
m (A)← MAD

({
q̂NNJ
φ̂m(A)

(
1− αn; 1− k

no
; 1− j

no
| Yt
)
,

k ∈ {k1, . . . , k2} , j′ ∈ {j1, . . . , j2} , k < j
})

6 Z̄m(A)← median
t∈{1,...,nS}

{
Z(t)
m (A)

}
7 (m?,A?)← arg min

(m∈{10,...,M},A)
Z̄m(A)
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A.2 Selection of the sample fractions

Algorithm 4: Selection of k and j using random forests 2D

Input: triangular matrix: Z = {Zk,j}(k,j)∈{2,...,j−1}×{3,...,n−1},
number of trees: T ∈ N \ {0},
initial top point: k

(0)
T ∈ {2, . . . , n− 3},

initial down point: k
(0)
D ∈ {3, . . . , n− 2},

initial left point: j
(0)
L ∈ {4, . . . , n− 1},

initial right point: j
(0)
R ∈ {5, . . . , n}

Output: selected points: k?, j?

1 for t = 1 : T do

j
(t)
L ∼ randint(j

(0)
L , j

(0)
R − 1)

j
(t)
R ∼ randint(j

(t)
L + 1, j

(0)
R )

k
(t)
D ∼ randint(k

(0)
T + 1, k

(0)
D ∨ j

(t)
L )

k
(t)
T ∼ randint(k

(0)
T , k

(t)
D − 1)

k(t), j(t) ← Tree2D(Z, j(t)L , j
(t)
R , k

(t)
T , k

(t)
D )

2 k? ← median(k(1), . . . , k(T )), j? ← median(j(1), . . . , j(T ))
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Algorithm 5: Tree2D

Input: triangular matrix: Z = {Zk,j}(k,j)∈{2,...,j−1}×{3,...,n},
initial top point: k

(0)
T ∈ {2, . . . , n− 3},

initial down point: k
(0)
D ∈ {3, . . . , n− 2},

initial left point: j
(0)
L ∈ {4, . . . , n− 1},

initial right point: j
(0)
R ∈ {5, . . . , n}

Output: selected points: k, j

1 kM ←
[
kT+kD

2

]
, jM ←

[
jL+jR

2

]
2 while (kM − kT) > 1 or (jM − jL) > 1 do

VTL ← EmpiricalVariance2D(Z, kM, kT, jM, jL)
VTR ← EmpiricalVariance2D(Z, kM, kT, jR, jM)
VDL ← EmpiricalVariance2D(Z, kD, kM, jM, jL)
VDR ← EmpiricalVariance2D(Z, kD, kM, jR, jM)
if min (VTL, VTR, VDL, VDR) = VTL then

kD ← kM , jR ← jM

else if min (VTL, VTR, VDL, VDR) = VTR then
kD ← kM, jL ← jM

else if min (VTL, VTR, VDL, VDR) = VDL then
kT ← kM, jR ← jM

else
kU ← kM, jL ← jM

3 kM ←
[
kT+kD

2

]
, jM ←

[
jL+jR

2

]

Algorithm 6: EmpiricalVariance2D

Input: triangular matrix: Z = {Zk,j}(k,j)∈{2,...,j−1}×{3,...,n},
initial points: (ka, kb, ja, jb) ∈ N4,

Output: empirical variance: σ̂2

1 Compute

Z̄ ← 1

(ka − kb) + (ja − jb) + 2

ka∑
k=kb

ja∑
j=jb

Zk,j .

2 Compute

σ̂2 ← 1

(ka − kb) + (ja − jb) + 2

ka∑
k=kb

ja∑
j=jb

(
Zk,j − Z̄

)2
,
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B Proofs

Lemma 6. Let Kt(s) := (st − 1)/t be defined for all s ≥ 1 and t < 0. Then, for all z ≥ 1 and ρj < 0
for j ≥ 2, one can equivalently express (16) as:

Rj(z) =

j∑
`=2

a`,jKρ̄`(z),

where ρ̄` = ρ2 + · · ·+ ρ`, and for some coefficients a`,j ∈ R.

Proof. For all s ≥ 1, p < 0 and q < 0, one has∫ s

1

zpKq(z) dz =
1

q
(Kp+q+1(s)−Kp+1(s)) . (39)

Replacing in (16) yields for all j ≥ 2 and y ≥ 1,

Rj(z) =

∫ z

1

zρ2−1
2

∫ z2

1

zρ3−1
3 · · ·

∫ zj−2

1

z
ρj−1−1
j−1 Kρj (zj−1) dzj−1 . . . dz3 dz2,

with ∫ zj−1

1

z
ρj−1
j dzj =

z
ρj
j−1 − 1

ρj
= Kρj (zj−1).

Assume ρj < 0 for all j ≥ 2, then from (39), one can show by recursion that,

Rj(z) =
1

ρj

(
. . .

(
1

ρ̄j − ρ̄3

(
Kρ̄j (z)−R2(z)

ρ̄j − ρ̄2
−R3(z)

)
− . . .

)
−Rj−1(z)

)
, for j ≥ 4,

R2(z) = Kρ̄2(z) =
zρ2 − 1

ρ2
,

R3(z) =
1

ρ3

(
Kρ̄3(z)−Kρ̄2(z)

)
,

which concludes the proof. �

Proof of Proposition 1. Combining the J-th order condition (15) and [22, Theorem 2.1], we get
that, for every ε > 0, there exists t0 > 0 such that, for all t ≥ t0 and tz ≥ t0,

logU(tz)− logU(t) = γ log z +

J∑
j=2

j∏
`=2

A`(t)Rj(z) + ∆(z, t)

J∏
j=2

Aj(t),

with

|∆(z, t)| :=

∣∣∣∣∣ 1

AJ(t)

(
. . .

(
1

A3(t)

(
logU(tz)− logU(t)− γ log z

A2(t)
−R2(z)

)
−R3(z)

)
− . . .

)
−RJ(z)

∣∣∣∣∣
≤ εzρ̄J+ε. (40)

Thus, (1) yields

log

(
L(tz)

L(t)

)
=

J∑
j=2

j∏
`=2

A`(t)Rj(z) + ∆(z, t)

J∏
j=2

Aj(t),
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or equivalently, considering t = exp(x2), z = exp(x1) and taking account of (4):

ϕ(x1, x2) = log

(
L(exp(x1 + x2))

L(exp(x2))

)
=

J∑
j=2

j∏
`=2

A`(exp(x2))Rj(exp(x1)) + ∆(exp(x1), exp(x2))

J∏
j=2

Aj(exp(x2)). (41)

Using assumption (17) and replacing in (41), it follows:

ϕ(x1, x2) =

J∑
j=2

j∏
`=2

c` exp(ρ`x2)Rj(exp(x1)) + ∆(exp(x1), exp(x2))

J∏
j=2

Aj(exp(x2)),

and thus, letting ρ̄j = ρ2 + · · ·+ ρj and c̄j = c2× . . .×cj , one has

ϕ(x1, x2) =

J∑
j=2

c̄j exp(ρ̄jx2)Rj(exp(x1)) + ∆(exp(x1), exp(x2))

J∏
j=2

Aj(exp(x2)).

Introduce

ϕ̃NNJ
θ (x1, x2) =

J∑
j=2

c̄j exp(ρ̄jx2)Rj(exp(x1)),

so that

ϕ(x1, x2) = ϕ̃NNJ
θ (x1, x2) + ∆(exp(x1), exp(x2))

J∏
j=2

Aj(exp(x2)).

Taking account of Lemma 6, we have

ϕ̃NNJ
θ (x1, x2) =

J∑
j=2

c̄j exp(ρ̄jx2)

j∑
`=2

a`,jKρ̄`(exp(x1)),

=

J∑
j=2

j∑
`=2

c̄ja`,j
ρ̄`

(exp(ρ̄`x1 + ρ̄jx2)− exp(ρ̄jx2)) .

Re-indexing, we get

ϕ̃NNJ
θ (x1, x2) =

J(J−1)/2∑
i=1

w
(1)
i

(
exp

(
w

(2)
i x1 + w

(3)
i x2

)
− exp(w

(4)
i x2)

)
, (42)

with, w
(1)
i ∈ R, w

(2)
i < 0, w

(3)
i < 0, w

(4)
i < 0 for all i = 1, . . . , J(J − 1)/2. Replacing (13) in (42) yields

the expression (18) of ϕ̃NNJ
θ in terms of eLU functions. The result is proved. �

Proof of Theorem 2. Let (εn) be a sequence in (0,−ρ̄J). We have, in view of the triangle inequal-
ity:

inf
φ̃∈Φ

∣∣∣log q(1− αn)− log q̃NNJ
φ̃

(1− αn; 1− δn)
∣∣∣ = inf

φ̃∈Φ

∣∣∣f(log(δn/αn), log(1/δn))− f̃NNJ
φ̃

(log(δn/αn), log(1/δn))
∣∣∣

≤ inf
w̃0∈R+

|γ − w̃0| log(δn/αn)

+ inf
θ̃∈Θ

∣∣∣ϕ(log(δn/αn), log(1/δn))− ϕ̃NNJ

θ̃
(log(δn/αn), log(1/δn))

∣∣∣
≤

∣∣ϕ(log(δn/αn), log(1/δn))− ϕ̃NNJ
θ (log(δn/αn), log(1/δn))

∣∣
≤ |∆(δn/αn, 1/δn)|

∣∣∣∣∣∣
J∏
j=2

Aj(1/δn)

∣∣∣∣∣∣ ,
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from Proposition 1. Moreover, since δn/αn →∞ and 1/δn →∞, for n large enough,

|∆(δn/αn, 1/δn)| ≤ εn
(
δn
αn

)ρ̄J+εn

, (43)

while, under assumption (17), ∣∣∣∣∣∣
J∏
j=2

Aj(1/δn)

∣∣∣∣∣∣ = |c̄J | δ−ρ̄Jn ,

where c̄J = c2 × · · · × cJ . As a conclusion,

αρ̄Jn inf
φ̂∈Φ

∣∣∣log q(1− αn)− log q̃NNJ
φ̃

(1− αn; 1− δn)
∣∣∣ ≤ c̄Jεn( δn

αn

)εn
,

and letting εn = exp(−W(log(δn/αn))) → 0 as n → ∞, where W is the Lambert-W function [11],
yields log(1/εn)/εn = log(δn/αn), the result is proved. �

Proof of Theorem 3. Introducing

ϕn(y) = ϕ (log(δn/αn), log(1/δn) | y) ,

ϕ̃NNJ

n,θ̃
(y) = ϕ̃NNJ

θ̃
(log(δn/αn), log(1/δn) | y) ,

Vn(y) = ∆(δn/αn, 1/δn | y)

J∏
j=2

Aj(1/δn | y),

Hn,i(y) = σe
(
w

(2)
i (y) log(δn/αn) + w

(3)
i (y) log(1/δn)

)
− σe

(
w

(4)
i (y) log(1/δn)

)
, (44)

H̃NN

n,θ̃
(2−4)
i

(y) = σe
(
w̃NN

θ̃
(2)
i

(y) log(δn/αn) + w̃NN

θ̃
(3)
i

(y) log(1/δn)
)
− σe

(
w̃NN

θ̃
(4)
i

(y) log(1/δn)
)
, (45)

for all i = 1, . . . , J(J−1)/2 and where ∆(δn/αn, 1/δn |y) is defined similarly to (40) in the unconditional

case. Remark that all functions w(0)(·) = γ(·) and w
(j)
i (·), i = 1, . . . , J(J − 1)/2, j = 1, . . . , 4 are

assumed to be continuous on Π w.r.t. the covariate y. It is known from [63, Theorem 2] that there
exists a deep ReLU neural network that can uniformly approximate any of these continuous functions
on a compact set with an error

ε(p(j)
n ) := max

i=1,...,J(J−1)/2
inf
θ̃
(j)
i

sup
y∈Π

∣∣∣w(j)
i (y)− w̃NN

θ̃
(j)
i

(y)
∣∣∣ = O((p(j)

n )−2) (46)

requiring 2dy + 10 neurons in each of the p
(j)
n hidden layers, j ∈ {0, . . . , 4}. This error is optimal with

respect to the depth [63, Theorem 1(a)]. We have, in view of the triangle inequality:

inf
φ̃∈Φ

sup
y∈Π

∣∣∣log q(1− αn | y)− log q̃NNJ
φ̃

(1− αn; 1− δn | y)
∣∣∣ ≤ inf

θ̃(0)
sup
y∈Π

∣∣γ(y)− w̃NN

θ̃(0)
(y)
∣∣ log(δn/αn)

+ inf
θ̃

sup
y∈Π

∣∣∣ϕn(y)− ϕ̃NNJ

n,θ̃
(y)
∣∣∣ .

The first term can easily be controlled thanks to (46):

inf
θ̃(0)

sup
y∈Π

∣∣γ(y)− w̃NN

θ̃(0)
(y)
∣∣ log(δn/αn) ≤ ε(p(0)

n ) log(δn/αn).
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Next, rearranging and applying the triangle inequality entail

inf
θ̃

sup
y∈Π

∣∣∣ϕn(y)− ϕ̃NNJ

n,θ̃
(y)
∣∣∣ = inf

θ̃
sup
y∈Π

∣∣∣∣∣∣
J(J−1)/2∑

i=1

w
(1)
i (y)Hn,i(y)−

J(J−1)/2∑
i=1

w̃NN

θ̃
(1)
i

(y)H̃NN

n,θ̃
(2−4)
i

(y) + Vn(y)

∣∣∣∣∣∣
= inf

θ̃
sup
y∈Π

∣∣∣∣∣
J(J−1)/2∑

i=1

(
w

(1)
i (y)− w̃NN

θ̃
(1)
i

)
Hn,i(y)

+

J(J−1)/2∑
i=1

(
Hn,i(y)− H̃NN

n,θ̃
(2−4)
i

(y)
)
w̃NN

θ̃
(1)
i

(y) + Vn(y)

∣∣∣∣∣
≤
J(J−1)/2∑

i=1

inf
θ̃
(1)
i

sup
y∈Π

∣∣∣w(1)
i (y)− w̃NN

θ̃
(1)
i

∣∣∣ sup
y∈Π
|Hn,i(y)| (47)

+

J(J−1)/2∑
i=1

inf
θ̃
(2−4)
i

sup
y∈Π

∣∣∣Hn,i(y)− H̃NN

n,θ̃
(2−4)
i

(y)
∣∣∣ inf
θ̃(1)

sup
y∈Π

∣∣∣w̃NN

θ̃
(1)
i

(y)
∣∣∣ (48)

+ sup
y∈Π
|Vn(y)| . (49)

The three terms (47), (48) and (49) are considered separately. First, note that

sup
y∈Π
|Hn,i(y)| ≤ 1, (50)

since w
(j)
i (y) ≤ 0 for all i = 1, . . . , J(J − 1)/2, j = 1, 2, 3 and y ∈ Π in (44). Combining (46) and (50)

yields

(47) ≤ ε(p(1)
n )

J(J − 1)

2
.

Next, focusing on (48), and taking account of

(
w̃NN

θ̃
(2)
i

(·), w̃NN

θ̃
(3)
i

(·), w̃NN

θ̃
(4)
i

(·)
)
∈ R3

− by construction, one

has for all i = 1, . . . , J(J − 1)/2,

inf
θ̃
(2−4)
i

sup
y∈Π

∣∣∣Hn,i(y)− H̃NN

n,θ̃
(2−4)
i

(y)
∣∣∣

≤ inf
θ̃
(2−3)
i

sup
y∈Π

∣∣∣exp
(
w

(2)
i (y) log(δn/αn) + w

(3)
i (y) log(1/δn)

)
− exp

(
w̃NN

θ̃
(2)
i

(y) log(δn/αn) + w̃NN

θ̃
(3)
i

(y) log(1/δn)
)∣∣∣

+ inf
θ̃
(4)
i

sup
y∈Π

∣∣∣exp
(
w

(4)
i (y) log(1/δn)

)
− exp

(
w̃NN

θ̃
(4)
i

(y) log(1/δn)
)∣∣∣

≤ inf
θ̃
(2−3)
i

sup
y∈Π

∣∣∣1− exp
(

log(δn/αn)
(
w̃NN

θ̃
(2)
i

(y)− w(2)
i (y)

)
+ log(1/δn)

(
w̃NN

θ̃
(3)
i

(y)− w(3)
i (y)

))∣∣∣ (51)

+ inf
θ̃
(4)
i

sup
y∈Π

∣∣∣1− exp
(

log(1/δn)
(
w̃NN

θ̃
(4)
i

(y)− w(4)
i (y)

))∣∣∣ . (52)

Let us first consider

h
n,θ̃

(2−3)
i

(y) = log(δn/αn)
(
w̃NN

θ̃
(2)
i

(y)− w(2)
i (y)

)
+ log(1/δn)

(
w̃NN

θ̃
(3)
i

(y)− w(3)
i (y)

)
,

and remark that log(δn/αn)ε(p
(2)
n )→ 0 and log(1/δn)ε(p

(3)
n )→ 0 as n→∞ imply

sup
y∈Π

∣∣∣hn,θ̃(2−3)
i

(y)
∣∣∣ ≤ log(δn/αn)ε(p(2)

n ) + log(1/δn)ε(p(3)
n ) ≤ log 2
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for n large enough. Since |1− exp(u)| ≤ 2 |u| for any |u| ≤ log 2, it follows

(51) = inf
θ̃
(2−3)
i

sup
y∈Π

∣∣∣1− exp
(
h
n,θ̃

(2−3)
i

(y)
)∣∣∣ ≤ 2

(
log(δn/αn)ε(p(2)

n ) + log(1/δn)ε(p(3)
n )
)
.

Second, applying the same method to control (52) yields

inf
θ̃
(2−4)
i

sup
y∈Π

∣∣∣Hn,i(y)− H̃NN

n,θ̃
(2−4)
i

(y)
∣∣∣ ≤ 2

(
log(δn/αn)ε(p(2)

n ) + log(1/δn)
(
ε(p(3)

n ) + ε(p(4)
n )
))

,

since log(1/δn)ε(p
(4)
n )→ 0 as n→∞. Moreover, in view of (46) we have

inf
θ̃
(1)
i

sup
y∈Π

∣∣∣w̃NN

θ̃
(1)
i

(y)
∣∣∣ ≤ sup

y∈Π

∣∣∣w(1)
i (y)

∣∣∣+ ε(p(1)) ≤ C1 + ε(p(1)
n ),

where C1 ≥ 0 is a constant since w
(1)
i (·) is by assumption a continuous function on a compact set.

Together with (51) and (52), this entails

(48) ≤ J(J − 1)
(

log(δn/αn)ε(p(2)
n ) + log(1/δn)

(
ε(p(3)

n ) + ε(p(4)
n )
))(

C1 + ε(p(1)
n )
)
.

Finally, under assumption (24), the last term (49) can be rewritten using

Vn(y) = ∆ (δn/αn, 1/δn | y) δ−ρ̄J (y)
n c̄J(y),

with c̄J(y) =
∏J
j=2 cj(y) and ρ̄J(y) =

∑J
j=2 ρj(y). Taking advantage of (43) yields

sup
y∈Π
|∆ (δn/αn, 1/δn | y)| (δn/αn)

−ρ̄J (y) ≤ εn (δn/αn)
εn , (53)

where εn = exp(−W(log(δn/αn))) is defined in Proposition 1. Therefore,

sup
y∈Π
|Vn(y)| ≤ sup

y∈Π
|∆ (δn/αn, 1/δn | y)| δ−ρ̄J (y)

n sup
y∈Π

c̄J(y)

≤ sup
y∈Π
|∆ (δn/αn, 1/δn | y)|

(
δn
αn

)−ρ̄J (y)

sup
y∈Π

α−ρ̄J (y)
n sup

y∈Π
c̄J(y),

and combining with (53), it yields

sup
y∈Π
|Vn(y)| ≤ csup εn (δn/αn)

εn α−ρ̄supn ,

where c̄sup := supy∈Π c̄J(y) and ρ̄sup := supy∈Π ρ̄J(y). All in all, one has

inf
θ̃

sup
y∈Π

∣∣∣ϕ(y)− ϕ̃NNJ

θ̃
(y)
∣∣∣

= O
(
ε(p(1)

n )
)

+O
(

log(δn/αn)ε
(
p(2)
n

))
+O

(
log(1/δn)

(
ε
(
p(3)
n

)
+ ε
(
p(4)
n

)))
+O

(
α−ρ̄supn

)
,

leading to

αρ̄sup
n inf

φ̃∈Φ
sup
y∈Π

∣∣∣log q(1− αn | y)− log q̃NNJ
φ̃

(1− αn; 1− δn | y)
∣∣∣

= O
(
αρ̄sup
n log(δn/αn)

(
ε
(
p(0)
n

)
+ ε
(
p(2)
n

)))
+O

(
αρ̄supn log(1/δn)

(
ε(p(3)

n ) + ε(p(4)
n )
))

+O
(
αρ̄sup
n ε(p(1)

n )
)

+O (1)

= O
(
αρ̄sup
n log(δn/αn)

((
p(0)
n

)−2

+
(
p(2)
n

)−2
))

+O
(
αρ̄supn log(1/δn)

((
p(3)
n

)−2

+
(
p(4)
n

)−2
))

+O
(
αρ̄sup
n

(
p(1)
n

)−2
)

+O (1) ,

and the result follows. �
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Proof of Theorem 4. Introducing

gn = g(log(δn/αn), log(1/δn), log(δn/τn)),

g̃n(φ̃) = g̃NNJ
φ̃

(log(δn/αn), log(1/δn), log(δn/τn)),

fδn,· = fZ(log(δn/·), log(1/δn)),

f̃δn,·(φ̃) = f̃NNJ
φ̃

(log(δn/·), log(1/δn)),

ωn(φ̃) =
g̃n(φ̃)

gn
− 1,

λn(y) =
q(1− τn | y)

q(1− δn | y)
,

we have

inf
φ̃∈Φ

sup
y∈Π

∣∣∣log q(1− αn | y)− log q̃NNJ
φ̃

(1− αn; 1− δn, 1− τn | y)
∣∣∣

= inf
φ̃∈Φ

sup
y∈Π

∣∣∣log(1 + (1− λn(y))gn)− log(1 + (1− λn(y))g̃n(φ̃))
∣∣∣

= inf
φ̃∈Φ

sup
y∈Π

∣∣∣∣∣log

(
1 + (1− λn(y))(1 + ωn(φ̃))gn

1 + (1− λn(y))gn

)∣∣∣∣∣
= inf
φ̃∈Φ

sup
y∈Π

∣∣∣∣∣log

(
1 +

(1− λn(y))ωn(φ̃)gn
1 + (1− λn(y))gn

)∣∣∣∣∣
= inf
φ̃∈Φ

sup
y∈Π

∣∣∣∣∣log

(
1 +

(1− λn(y))ωn(φ̃)

(1/gn) + (1− λn(y))

)∣∣∣∣∣
=: inf

φ̃∈Φ
sup
y∈Π

∣∣∣log
(

1 + Λn(φ̃ | y)
)∣∣∣ . (54)

Besides, remark that

inf
φ̃∈Φ

sup
y∈Π

∣∣∣Λn(φ̃ | y)
∣∣∣ = inf

φ̃∈Φ

∣∣∣ωn(φ̃)
∣∣∣ 1− infy∈Π λn(y)

(1/gn) + (1− infy∈Π λn(y))

and infy∈Π λn(y)→ 0 as n→∞ since b(·) is lower bounded on Π. Since δn/τn → 0 and δn/αn →∞,
we get gn →∞ so that

inf
φ̃∈Φ

sup
y∈Π

∣∣∣Λn(φ̃ | y)
∣∣∣ ∼ inf

φ̃∈Φ

∣∣∣ωn(φ̃)
∣∣∣ ,

as n→∞. Let us now consider

dδn,·(φ̃) =
exp(f̃δn,·(φ̃))− 1

exp(fδn,·)− 1
,

so that ωn(φ̃) = dδn,αn(φ̃)/dδn,τn(φ̃)−1. Let us then remark that |exp(u)− 1| ≤ 2 |u| for any |u| ≤ log 2
implies

inf
φ̃∈Φ

∣∣∣exp(f̃δn,·(φ̃)− fδn,·)− 1
∣∣∣ ≤ inf

φ̃∈Φ

|f̃δn,·(φ̃)−fδn,·|≤log 2

∣∣∣exp(f̃δn,·(φ̃)− fδn,·)− 1
∣∣∣

≤ 2 inf
φ̃∈Φ

|f̃δn,·(φ̃)−fδn,·|≤log 2

∣∣∣f̃δn,·(φ̃)− fδn,·
∣∣∣

=: ηδn,·
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with ηδn,· → 0 as n→∞ from Theorem 2. As a consequence, one has

inf
φ̃∈Φ

∣∣∣dδn,·(φ̃)− 1
∣∣∣ = inf

φ̃∈Φ

∣∣∣∣∣∣
exp(fδn,·)

(
exp

(
f̃δn,·(φ̃)− fδn,·

)
− 1
)

exp(fδn,·)− 1

∣∣∣∣∣∣ ≤ ηδn,·
1− exp(−fδn,·)

.

Now, fδn,αn →∞ and fδn,τn → −∞ since δn/αn →∞ and δn/τn → 0 as n→∞ which entails that

inf
φ̃∈Φ

∣∣∣dδn,αn(φ̃)− 1
∣∣∣ = O(ηδn,αn),

inf
φ̃∈Φ

∣∣∣dδn,τn(φ̃)− 1
∣∣∣ = O (ηδn,τn exp(fδn,τn)) .

Besides, applying twice the triangle inequality yields∣∣∣∣∣dδn,αn(φ̃)

dδn,τn(φ̃)
− 1

∣∣∣∣∣ ≤ |dδn,αn(φ̃)− 1|
1− |dδn,τn(φ̃)− 1|

+
|dδn,τn(φ̃)− 1|

1− |dδn,τn(φ̃)− 1|

and therefore

inf
φ̃∈Φ

∣∣∣ωn(φ̃)
∣∣∣ = O(ηδn,αn) +O (ηδn,τn exp(fδn,τn))

= O(α−ρ̄Jn ) +O(τ−ρ̄J−γn δγnLZ(1/τn)/LZ(1/δn)),

from Theorem 2. Since ρ̄2 < 0, one can show using Karamata’s representation [15, Equation (B.1.9)]
that the slowly-varying function LZ tends to a constant at infinity, so that

inf
φ̃∈Φ

∣∣∣ωn(φ̃)
∣∣∣ = O(α−ρ̄Jn ) +O(τ−ρ̄J−γn δγn),

which, in turn, implies that

inf
φ̃∈Φ

sup
y∈Π

∣∣∣Λn(φ̃ | y)
∣∣∣→ 0

as n → ∞. All in all, and taking account of |log(1 + u)| ≤ 2 |u| for any |u| ≤ 1/2, one has in view
of (54):

inf
φ̃∈Φ

sup
y∈Π

∣∣∣log q(1− αn | y)− log q̃NNJ
φ̃

(1− αn; 1− δn, 1− τn | y)
∣∣∣

≤ 2 inf
φ̃∈Φ

sup
y∈Π

∣∣∣Λn(φ̃, y)
∣∣∣

≤ 3 inf
φ̃∈Φ

∣∣∣ωn(φ̃)
∣∣∣

= O(α−ρ̄Jn ) +O(τ−ρ̄J−γn δγn),

which proves the result. �

Proof of Corollary 5. (i) If γ + ρ̄J > 0, balancing the two terms in (29) yields

δn = α−ρ̄J/γn τ1+ρ̄J/γ
n .

One can then check that:

δn/τn = (αn/τn)−ρ̄J/γ → 0,

δn/αn = (τn/αn)1+ρ̄J/γ →∞,

since αn/τn → 0 as n→∞.
(ii) If γ + ρ̄J ≤ 0, then, necessarily α−ρ̄Jn = o(τ−ρ̄J−γn δγn). Therefore, letting δn = ξnαn and τn = ξ2

nαn
with ξn →∞ as n→∞ proves the result. �
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