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A side-sensitive double sampling 𝑿̅ monitoring scheme with estimated process 

parameters 

 

Motsepa C.M.1, Malela-Majika J.-C.1, Castagliola P.2, Shongwe S.C1. 

 

Abstract 

In statistical process monitoring (SPM), most of the monitoring schemes are designed assuming 

that the process parameters for the underlying distribution are known (i.e. Case K). In a variety 

of contexts, it has been shown that when the parameters used to design the control limits are 

unknown (i.e. Case U), this greatly affects the monitoring schemes properties. Hence, in this 

paper, we study the parameter estimation effect of the side-sensitive double sampling (SSDS) 

𝑋̅ monitoring scheme for detecting changes in the process mean when distribution design 

parameters are estimated from an in-control retrospective sample. A thorough investigation is 

conducted using the unconditional run-length properties (i.e. average, standard deviation and 

percentiles), average sample size (ASS) and average number of observations to signal (ANOS) 

through exact integral formulas and simulations. In addition, the average extra quadratic loss 

(AEQL), average ratio of the average run-length (ARARL) and performance comparison index 

(PCI) are used to quantify the run-length of the SSDS scheme from an overall performance 

perspective. Comparisons with other established monitoring schemes when parameters are 

unknown indicate that the SSDS scheme has a better overall performance. An illustrative 

example is also given to facilitate the design and implementation of the new scheme. An 

additional section briefly discussing the synthetic version of the SSDS scheme is also provided. 

 

Keywords: Double sampling scheme; side-sensitive double sampling scheme; overall 

performance measures; estimated process parameters; Phase I; Phase II. 

 

1. Introduction 

One of the key objectives of statistical process monitoring (SPM) is to detect any irregularity 

in a process as quickly as possible. Control charts are used to identify the causes of variation 

in the process. Two sources of variation can be distinguished in SPM, namely the common (or 

chance) causes and assignable (or special) causes of variation. Unlike the assignable causes, 

common causes cannot be avoided. When the process runs in the presence of common causes 

only, the process is considered to be in-control (IC). Otherwise, the process is said to be out-

of-control (OOC). It is well-known that a double sampling (DS) chart (or scheme) is one of the 

most powerful tools used in SPM to detect any variation (or change) in the process as soon as 

possible. The DS 𝑋̅ scheme was introduced by Daudin (1992) in an effort to improve the 

detection abilities of a standard Shewhart scheme in detecting small and moderate shifts in the 
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process mean. The majority of literature on DS schemes is based on the assumption of known 

IC process parameters (i.e. Case K), see for example: Costa (1994), Irianto and Shinozaki 

(1998), He, Grigoryan and Sigh (2002), Carot, Jabaloyes and Carot (2002), Khoo et al. (2011), 

Lee, Torng and Liao (2012), Khoo et al. (2013a), Costa and Machado (2015), Costa (2017), 

You (2017), Chong et al. (2018), Haq and Khoo (2018, 2019), Malela-Majika and Rapoo 

(2019), Malela-Majika (2019), etc. Although there is a lots of research work based on Case K, 

in practice, the process parameters are generally unknown (i.e. Case U).  

The Case U scenario requires monitoring schemes to be applied in a two-phase approach, i.e. 

Phase I and Phase II (see Jensen et al. (2006) and Psarakis, Vyniou and Castagliola (2013) for 

a review of parameter estimation effect articles). In Phase I, monitoring schemes are 

implemented retrospectively in order to estimate the distribution parameters using an IC 

reference sample. However, in Phase II, monitoring schemes are implemented prospectively to 

continuously monitor any departures from an IC state using the parameters estimated in Phase 

I. There have been number of articles that investigated the Case U scenario in the context of 

DS schemes, see for example, Khoo et al. (2013b), Teoh et al. (2013, 2014, 2015, 2016a, 

2016b), Castagliola, Oprime and Khoo (2017), You et al. (2016), You (2018) and, Lee and 

Khoo (2019). These latter articles studied the DS scheme in Case U for a variety of design 

criterion and contexts, e.g. optimized DS scheme based on unconditional average run-length 

(𝐴𝑅𝐿), unconditional median run-length, unconditional standard deviation of the run-length 

(𝑆𝐷𝑅𝐿), unconditional expected 𝐴𝑅𝐿 (𝐸𝐴𝑅𝐿), minimization of the average sample size (𝐴𝑆𝑆), 

average number of observations to signal (𝐴𝑁𝑂𝑆), etc. 

It is worth noting that all the articles on Case U DS schemes mentioned in the previous 

paragraph, used the non-side-sensitive design discussed in Daudin (1992). More recently, 

Malela-Majika, Motsepa and Graham (2019) showed that the basic DS 𝑋̅ scheme can be 

divided into two main groups, i.e. non-side-sensitive and side-sensitive designs. Since the 

abovementioned articles have thoroughly discussed the design and implementation of the non-

side-sensitive DS (hereafter NSSDS) 𝑋̅ scheme; in this paper, we investigate the design and 

implementation of the side-sensitive DS (hereafter SSDS) 𝑋̅ scheme using the (5th, 25th, 50th, 

75th, 95th) percentiles, 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆, the average extra quadratic loss (𝐴𝐸𝑄𝐿), 

performance comparison index (PCI) and average ratio of the average run-length (ARARL) 

metrics.         

The rest of this paper is structured as follows: Section 2 presents the operation, design and run-

length properties of the SSDS 𝑋̅ scheme in Case K and Case U; while, Section 3, presents the 
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overall performance metrics. The optimization model is given in Section 4. Section 5 assesses 

the IC, OOC performance of the SSDS 𝑋̅ scheme and compares their overall performance with 

the NSSDS 𝑋̅ scheme and other established monitoring schemes in Case U. In Section 6, a case 

study is given using real-life data to demonstrate the implementation and design of the Case U 

SSDS 𝑋̅ scheme. A synthetic version of the proposed SSDS 𝑋̅ scheme is briefly discussed in 

Section 7. Finally, some concluding remarks and recommendations are given in Section 8.   

2. The SSDS 𝑿̅ monitoring scheme 

2.1. Design of the SSDS 𝑿̅ scheme with known process parameters  

Charting regions and charting statistics in Stage 1 and Stage 2  

Assume that the observations, i.e. 𝑌𝑖𝑗, of the quality characteristic 𝑋̅ are independently and 

identically distributed (i.i.d.) from a 𝑁(𝜇0, 𝜎0) distribution, where 𝜇0  and 𝜎0 represent the IC 

mean and the IC standard deviation, respectively. The SSDS 𝑋̅ chart is a two-stage monitoring 

scheme with mutually exclusive regions as shown in Figure 1:  𝐴 = (−𝐿1, 𝐿1), 𝐵+ = [𝐿1, 𝐿), 

𝐵− = (−𝐿, −𝐿1], 𝐶 = (−∞, −𝐿] ∪ [𝐿, +∞) in Stage 1, where 𝐿1 and 𝐿 (with 𝐿 ≥ 𝐿1 > 0) are 

the Stage 1 warning and control limits, respectively; and 𝐷+ = [𝐿2, +∞), 𝐷− = (−∞, 𝐿2), 

𝐸− = (−∞, −𝐿2], 𝐸+ = (−𝐿2, +∞), where 𝐿2 (with 𝐿2 > 0) is the Stage 2 control limit.  

 

 
Figure 1. The charting regions of the SSDS 𝑋̅ scheme for Stage 1 and Stage 2 

 

From the 𝑌𝑖𝑗 observations, a first subgroup sample of size 𝑛1 is collected at the 𝑖𝑡ℎ sampling 

time (denoted as 𝑌1𝑖𝑗, 𝑖 = 1, 2, …, and 𝑗 = 1, 2, …, 𝑛1). If the standardized charting statistic 
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based on the first sample falls on Region B− or B+, then a second subgroup sample of size 𝑛2 

(where 𝑛2 ≥ 𝑛1) is also collected at the 𝑖𝑡ℎ sampling time (denoted as 𝑌2𝑖𝑗, 𝑖 = 1, 2, …, and 

𝑗 = 1, 2, …, 𝑛2). Then the SSDS 𝑋̅ scheme uses these two stages to decide whether the process 

is IC or OOC, and each stage’s charting statistic is as follows. 

Stage 1: Let 𝑌̅1𝑖 = ∑ 𝑌1𝑖𝑗 𝑛1⁄𝑛1
𝑗=1  be the mean of the first sample of subgroup size 𝑛1 at the 𝑖𝑡ℎ 

sampling time. Hence, in Case K, the standardized statistic for the first sample at the 

𝑖𝑡ℎ sampling time is then given by  

𝑍1𝑖 =
𝑌̅1𝑖 − 𝜇0

𝜎0 √𝑛1⁄
 (1) 

where 𝑌̅1𝑖~𝑁(𝜇0 + 𝛿𝜎0 ,
𝜎0

√𝑛1
) and 𝛿 = |𝜇1 − 𝜇0| 𝜎0⁄  represents the magnitude of the 

standardized mean shift with the OOC mean 𝜇1 (𝜇1 = 𝜇0 + 𝛿𝜎0), so that 𝛿 = 0 means 

that the process is IC. In this case, 𝑍1𝑖 follows a standard normal distribution (i.e. 

𝑍1𝑖~𝑁(0,1)). However, when 𝛿 ≠ 0, the process is OOC and 𝑍1𝑖~𝑁(𝛿, 1).  

Stage 2: At the 𝑖𝑡ℎ sampling time of the second sample, the sample mean, i.e. 𝑌̅2𝑖 =

∑ 𝑌2𝑖𝑗 𝑛2⁄𝑛2
𝑗=1 , and the combined sample mean, i.e. 𝑌̅𝑖 = (𝑛1𝑌̅1𝑖 + 𝑛2𝑌̅2𝑖)/(𝑛1 + 𝑛2) are 

calculated, respectively. Hence, in Case K, the standardized charting statistic for the 

combined samples at the 𝑖𝑡ℎ sampling time is then given by 

𝑍𝑖 =
𝑌̅𝑖 − 𝜇0

𝜎0 √𝑛1 + 𝑛2⁄
. (2) 

where 𝑌̅𝑖~𝑁(𝜇0 + 𝛿𝜎0 ,
𝜎0

√𝑛1+𝑛2
). When the process is IC, 𝑍𝑖~𝑁(0, 1) since 𝛿 = 0 and 

when the process is OOC, 𝑍𝑖~𝑁(𝛿, 1). 

That is, there are two distinct standardized charting statistics (i.e. 𝑍1𝑖 and 𝑍𝑖) used during Stage 

1 and Stage 2 (if needed), respectively (see Figure 1).  

Run-length properties  

Let 𝑃0𝑘 represents the probability that the process is regarded as IC at stage 𝑘, where 𝑘 = 1, 2. 

Then,  𝑃0 = 𝑃01 + 𝑃02 is the probability that the process is IC, where: 

𝑃01 = 𝑃(𝑍1𝑖 ∈ A) = Φ[𝐿1 + 𝛿√𝑛1] − Φ[−𝐿1 + 𝛿√𝑛1], (3) 

and  

                   𝑃02 = 𝑃[𝑍1𝑖 ∈ B+ and 𝑍𝑖 ∈ D−] + 𝑃[𝑍1𝑖 ∈ B− and 𝑍𝑖 ∈ E+]

= ∫
𝑍1𝑖∈𝐵++ {Φ[𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]}  𝜙(𝑧)𝑑𝑧

+ ∫
𝑍1𝑖∈𝐵−− {1 − Φ[−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]}  𝜙(𝑧)𝑑𝑧 

(4) 
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where Φ(.) and 𝜙(.) are the c.d.f. (cumulative distribution function) and p.d.f. (probability 

density function) of the standard normal random variable, respectively; 𝑟2 = 𝑛1 + 𝑛2, 𝑐 =

𝑟 √𝑛2⁄ , 𝐵++ = (𝐿1 + 𝛿√𝑛1, 𝐿 + 𝛿√𝑛1] and 𝐵−− = [−𝐿 + 𝛿√𝑛1, −𝐿1 + 𝛿√𝑛1). Hence,   

𝑃0 = Φ[𝐿1 + 𝛿√𝑛1] − Φ[−𝐿1 + 𝛿√𝑛1] + ∫
𝑍1𝑖∈𝐵++ {Φ[𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]}  𝜙(𝑧)𝑑𝑧

+ ∫
𝑍1𝑖∈𝐵−− {1 − Φ[−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]}  𝜙(𝑧)𝑑𝑧. 

(5) 

Given that the SSDS 𝑋̅ scheme is a Shewhart-type one, its run-length (RL) follows a geometric 

distribution. Therefore, the c.d.f. of the RL distribution (denoted 𝐹𝑅𝐿(ℓ)) is obtained as  

𝐹𝑅𝐿(ℓ) = 𝑃(𝑅𝐿 ≤  ℓ) = 1 − 𝑃0,
 ℓ (6) 

where ℓ ∈ {1, 2, 3, … }. Then, the (100𝜌)𝑡ℎ percentile of the RL distribution, ℓ𝜌, is given by 

𝑃(𝑅𝐿 ≤ ℓ𝜌 − 1) ≤ 𝜌 and 𝑃(𝑅𝐿 ≤ ℓ𝜌) > 𝜌. (7) 

It follows that, the ARL, SDRL and ASS at each sampling time are given by  

𝐴𝑅𝐿 =
1

1 − 𝑃0
, (8) 

𝑆𝐷𝑅𝐿 =
√𝑃0

1 − 𝑃0
, (9) 

𝐴𝑆𝑆 = 𝑛1 + 𝑛2𝑃2, (10) 

respectively, where 𝑃2 = 𝑃(𝑍1𝑖 ∈ 𝐵− ∪ 𝐵+) is the probability of taking the second sample, and 

it is given by 

𝑃2 = Φ(𝐿 + 𝛿√𝑛1) − Φ(𝐿1 + 𝛿√𝑛1) + Φ(−𝐿1 + 𝛿√𝑛1) − Φ(−𝐿 + 𝛿√𝑛1). 

 

2.2. Design of the SSDS 𝑿̅ control chart with estimated process parameters 

2.2.1 Phase I and Phase II operation of the SSDS 𝑿̅ monitoring scheme 

Phase I parameter estimation 

Since the IC process parameters, 𝜇0 and 𝜎0, are usually unknown they have to be estimated 

from m Phase I subgroup samples, each of size 𝑛, i.e. {𝑋𝑖𝑗}𝑗=1,2,…,𝑛
𝑖=1,2,…,𝑚

. The estimated IC process 

parameters, 𝜇̂0 and 𝜎̂0, are given by  

𝜇̂0 =
1

𝑚𝑛
∑ ∑ 𝑋𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (11) 

and  
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𝜎̂0 = √
1

𝑚(𝑛 − 1)
∑ ∑(𝑋𝑖𝑗 − 𝑋̅𝑖)

2
𝑛

𝑗=1

𝑚

𝑖=1

, (12) 

respectively, where 𝑋̅𝑖 = ∑ 𝑋𝑖𝑗/𝑛𝑛
𝑗=1 .   

Phase II charting statistics and operation procedure: Stage 1 and Stage 2 

Let 𝑌𝑖𝑗 be the Phase II observations from i.i.d. 𝑁(𝜇1 , 𝜎0), where 𝜇1 is the OOC mean (i.e. 𝜇1 =

𝜇0 + 𝛿𝜎0) with 𝛿 = |𝜇1 − 𝜇0|/𝜎0 the magnitude of the standardized mean shift from 𝜇0 to 𝜇1. 

In Phase II of the SSDS 𝑋̅ monitoring scheme, there are two distinct standardized charting 

statistics in Case U (i.e. 𝑍̂1𝑖 and 𝑍̂𝑖, shown below) used during Stage 1 and Stage 2, respectively 

(see Figure 1).  

Stage 1: Similarly as in Case K, 𝑌̅1𝑖 = ∑ 𝑌1𝑖𝑗 𝑛1⁄𝑛1
𝑗=1 ; however, the standardized statistic for the 

first sample at the 𝑖𝑡ℎ sampling time in Case U is given by  

𝑍̂1𝑖 =
𝑌̅1𝑖 − 𝜇̂0

𝜎̂0 √𝑛1⁄
. (13) 

Stage 2: Similarly, at the 𝑖𝑡ℎ sampling time of the second sample, the sample mean is given by 

𝑌̅2𝑖 = ∑ 𝑌2𝑖𝑗 𝑛2⁄𝑛2
𝑗=1 , so that the combined sample mean is given by 𝑌̅𝑖 = (𝑛1𝑌̅1𝑖 +

𝑛2𝑌̅2𝑖)/(𝑛1 + 𝑛2). Thus, the standardized charting statistic in Case U at the 

𝑖𝑡ℎ sampling time is given by 

𝑍̂𝑖 =
𝑌̅𝑖 − 𝜇̂0

𝜎̂0 √𝑛1 + 𝑛2⁄
. (14) 

Thus, based on the description above, the operational procedure of the Case U SSDS 𝑋̅ scheme 

is given as follows:  

1. From the IC retrospective data with m samples, estimate the IC mean and standard 

deviation of the process using Equations (11) and (12), respectively. 

2. In the prospective phase, take a sample of size 𝑛1 and calculate the sample mean 𝑌̅1𝑖 at 

the 𝑖𝑡ℎ sampling time at Stage 1. 

3. If 𝑍̂1𝑖 ∈ A, the process is considered as IC. 

4. If 𝑍̂1𝑖 ∈ C, the process is said to be OOC and then the necessary corrective action must 

be taken to find and remove the assignable causes. 

5. If 𝑍̂1𝑖 ∈ B− ∪ B+, take a second sample of size 𝑛2(𝑛2 ≥ 𝑛1) and calculate the sample 

mean 𝑌̅2𝑖 at the 𝑖𝑡ℎ sampling time of the second sample. 

6. At the 𝑖𝑡ℎ sampling time, calculate the combined sample mean 𝑌̅𝑖 and then 𝑍̂𝑖. 

7. The process is declared IC if: 
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(a) If 𝑍̂1𝑖 ∈ B+ and 𝑍̂𝑖 ∈ D− , or 

(b) If 𝑍̂1𝑖 ∈ B− and 𝑍̂𝑖 ∈ E+ 

However, the process is declared OOC: 

(c) If 𝑍̂1𝑖 ∈ B+ and 𝑍̂𝑖 ∈ D+ , or 

(d) If 𝑍̂1𝑖 ∈ B− and 𝑍̂𝑖 ∈ E−. 

In essence, if the plotting statistic falls in region B+ (region B−) in Stage 1, then it can only fall 

in regions D− or D+ (regions E+ or E−) only, in Stage 2, respectively. Conversely, if in Stage 

1, 𝑍̂1𝑖 ∈ B+, then in Stage 2, we have  𝑍̂𝑖 ∉ {E+, E−}. Similarly, if in Stage 1, 𝑍̂1𝑖 ∈ B−, then in 

Stage 2, we have  𝑍̂𝑖 ∉ {D−, D+}. The flow chart illustrating the steps involved in the operation 

of the Case U SSDS 𝑋̅ monitoring scheme is shown in Figure 2. 

 

 
Figure 2. Flow chart for the proposed SSDS 𝑋̅ monitoring scheme 
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2.2.2 Unconditional run-length properties of the SSDS X̅ scheme                                       

In order to calculate the unconditional RL properties, we need to first derive the conditional 

ones, see Jensen et al. (2006). Hence, the conditional c.d.f. of 𝑍̂1𝑖, given 𝜇̂0 and 𝜎̂0 is defined 

as 

𝐹𝑍̂1𝑖
(𝑧|𝜇̂0, 𝜎̂0) = Φ (U√

𝑛1

𝑚𝑛
+ 𝑉𝑧 − 𝛿√𝑛1). (15) 

where 𝑈 = (𝜇̂0 − 𝜇0)
√𝑚𝑛

𝜎0
 and 𝑉 = 𝜎̂0 𝜎0⁄ . Consequently, the conditional p.d.f. of 𝑍̂1𝑖, given 

𝜇̂0 and 𝜎̂0 is given by 

𝑓𝑍̂1𝑖
(𝑧|𝜇̂0, 𝜎̂0) = 𝑉𝜙 (U√

𝑛1

𝑚𝑛
+ 𝑉𝑧 − 𝛿√𝑛1). (16) 

Since 𝜇̂0~𝑁(𝜇0,
𝜎0

2

𝑚𝑛
), then 𝑈~𝑁(0,1) so that the p.d.f. of the random variable 𝑈 is simply,  

𝑓𝑈(𝑢) = 𝜙(𝑢). (17) 

Zhang et al. (2011) used the fact that  𝑉2 = (𝜎̂0 𝜎0⁄ )2 has a gamma distribution with parameters 

𝑚(𝑛 − 1)/2 and 2/[𝑚(𝑛 − 1)] to show that the p.d.f. of 𝑉 is defined as 

𝑓𝑣(𝑣|𝑚, 𝑛) = 2𝑣𝑓𝛾 [𝑣2|
𝑚(𝑛 − 1)

2 ,
2

𝑚(𝑛 − 1)
], (18) 

where 𝑓𝛾(. ) is the p.d.f. of the gamma distribution with parameters 
𝑚(𝑛−1)

2
 and 

2

𝑚(𝑛−1)
.  For 

more details on the conditional RL properties for DS schemes, readers are referred to You et 

al. (2016). 

Next, to derive the unconditional c.d.f. of the RL of the proposed monitoring scheme, we need 

to first derive the unconditional probability of the IC process. Let 𝑃̂0𝑘 denote the probability 

that the process with estimated parameters remains IC at the sampling stage 𝑘 (with 𝑘 = {1, 

2}), i.e. a Case U extension of Equation (5). Then, the probability that the process is IC is given 

by 

𝑃̂0 = 𝑃̂01 + 𝑃̂02 (19) 

where, 

𝑃̂01 = Φ (𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝐿1 − 𝛿√𝑛1) − Φ (𝑈√

𝑛1

𝑚𝑛
− 𝑉𝐿1 − 𝛿√𝑛1) 

(20) 

𝑃̂02 = ∫ 𝑃̂𝐷−𝑓𝑍̂1𝑖
(𝑧|𝜇̂0, 𝜎̂0)𝑑𝑧

.

𝑍∈𝐵++

+ ∫ 𝑃̂𝐸+𝑓𝑍̂1𝑖
(𝑧|𝜇̂0, 𝜎̂0)𝑑𝑧

.

𝑍∈𝐵−−

 

with   

𝑃̂𝐷− = Φ [𝑈√
𝑛2

𝑚𝑛
+ 𝑉 (

𝐿2√𝑛1 + 𝑛2 − 𝑧√𝑛1

√𝑛2

) − 𝛿√𝑛2] 
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and 

𝑃̂𝐸+ = 1 − Φ [𝑈√
𝑛2

𝑚𝑛
− 𝑉 (

𝐿2√𝑛1 + 𝑛2 − 𝑧√𝑛1

√𝑛2

) − 𝛿√𝑛2]. 

Then, the unconditional c.d.f. of the SSDS 𝑋̅ monitoring scheme for Case U is given by 

𝐹𝑅𝐿(ℓ) = ∫ ∫ (1 − 𝑃̂0
ℓ)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢,

+∞

0

+∞

−∞

 (21) 

where ℓ ∈ {1, 2, 3, … . , }, 𝑓𝑈(𝑢) and 𝑓𝑉(𝑣) are defined in Equations (17) and (18), respectively. 

Therefore, the unconditional 𝐴𝑅𝐿 and 𝑆𝐷𝑅𝐿 of the proposed SSDS 𝑋̅ monitoring scheme with 

estimated process parameters are given by 

𝐴𝑅𝐿 = ∫ ∫ (
1

1 − 𝑃̂0

) 𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

 (22) 

and  

𝑆𝐷𝑅𝐿 = [∫ ∫ (
1 + 𝑃̂0

1 − 𝑃̂0

) 𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

− 𝐴𝑅𝐿2]

1/2

. (23) 

The Case U 𝐴𝑆𝑆 is given by 

𝐴𝑆𝑆 = ∫ ∫ (𝑛1 + 𝑛2𝑃̂2)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

 (24) 

where 𝑃̂2 is the probability of taking the second sample, which is given by 𝑃̂2 =

𝑃(𝑍̂1𝑖 ∈ 𝐵− ∪ 𝐵+|𝜇̂0, 𝜎̂0), or simply, 

𝑃̂2 = Φ (𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝐿 − 𝛿√𝑛1) − Φ (𝑈√

𝑛1

𝑚𝑛
+ 𝑉𝐿1 − 𝛿√𝑛1)

+ Φ (𝑈√
𝑛1

𝑚𝑛
− 𝑉𝐿1 − 𝛿√𝑛1) − Φ (U√

𝑛1

𝑚𝑛
− 𝑉𝐿 − 𝛿√𝑛1). 

(25) 

Then, the 𝐴𝑁𝑂𝑆 is given by  

𝐴𝑁𝑂𝑆 = ∫ ∫ (𝑛1 + 𝑛2𝑃̂2) (
1

1 − 𝑃̂0

) 𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

. (26) 

Since the 𝐴𝑁𝑂𝑆 depends on the 𝐴𝑆𝑆 and 𝐴𝑅𝐿 values, a larger 𝐴𝑁𝑂𝑆 value implies that either 

the monitoring scheme is inefficient and/or the cost of inspection is higher.       

 

3. Measures of the overall performance 

The ARL (see Equation (22)) is defined as the average number of samples required before an 

OOC signal is issued in the process. It is well-known that the RL distribution of a monitoring 

scheme is generally highly right-skewed in Case U; see for example Jones, Champ and Rigdon 

(2004). As a result, many researchers prefer to use more meaningful performance measures 
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(such as the percentiles of the RL which includes the median run-length (MRL)) to better 

evaluate the performance of the schemes. Furthermore, the ARL has been widely criticized by 

many authors, see for example, Wu et al. (2008) and Machado and Costa (2014). The ARL was 

simply criticized because of its ineffectiveness in assessing the overall performance, especially 

when the aim of the study is to assess the performance of a monitoring scheme over a range of 

shifts. Several authors have revealed that if a monitoring scheme is designed based on one 

specific size of a mean shift, it will perform poorly when the actual size of the shift is 

significantly different from the assumed size (see Reynolds and Lou (2010), Ryu, Wan and 

Kim (2010), Machado and Costa (2014) and Shongwe, Malela-Majika and Rapoo (2019)). 

Therefore, many researchers have recommended the use of a quality loss function (QLF) 

instead of the ARL to assess the performance of a monitoring scheme. A QLF describes the 

relationship between the shift size and the quality impact. The average extra quadratic loss 

(AEQL) is an alternative measure of the ARL used to assess the overall performance of a 

monitoring scheme for a range of shifts. Therefore, when the aim of a study is to measure the 

overall performance of a scheme over a range of shifts (say, 0 ≤ 𝛿 ≤ 2.5), the objective 

function can be defined in terms of the 𝐴𝐸𝑄𝐿 given by   

𝐴𝐸𝑄𝐿 = ∫ ∫ ∫ 𝑊(𝛿) (
1

1 − 𝑃̂0

) 𝑓(𝛿)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢 𝑑𝛿
+∞

0

+∞

−∞

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

 (27) 

where 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 are the lower and upper boundary of the range of shifts under 

consideration and 𝑊(𝛿) (with 𝑊(𝛿) = 𝛿2) represents the weight function associated with 𝛿. 

Since it is generally assumed that all location shifts (mean shifts) occur with equal probability; 

hence, a uniform distribution of  𝛿 is implied, i.e. 𝑓(𝛿) = 1 (𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛)⁄ . 

In order to measure the relative effectiveness of two different schemes, Wu et al. (2008) 

suggested the use of the PCI, which is the ratio between the AEQL of a competing monitoring 

scheme and the AEQL of the benchmark scheme under the same settings. In this paper, the 

proposed scheme is used as the benchmark. The 𝑃𝐶𝐼 is then defined by 

𝑃𝐶𝐼 =
𝐴𝐸𝑄𝐿

𝐴𝐸𝑄𝐿∗
 (28) 

where 𝐴𝐸𝑄𝐿∗ is the 𝐴𝐸𝑄𝐿 of the benchmark scheme. In addition to the 𝐴𝐸𝑄𝐿 and the 𝑃𝐶𝐼, 

many authors also suggested the use of the 𝐴𝑅𝐴𝑅𝐿 to measure the overall performance of a 

benchmark scheme against other competing schemes; see Wu et al. (2008). The 𝐴𝑅𝐴𝑅𝐿 is 

given by 
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𝐴𝑅𝐴𝑅𝐿 =
1

𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛
∑

𝐴𝑅𝐿(𝛿)

𝐴𝑅𝐿∗(𝛿)

𝛿𝑚𝑎𝑥

𝛿=𝛿𝑚𝑖𝑛

 (29) 

where 𝐴𝑅𝐿∗ is the ARL of the benchmark scheme. Note that, if the 𝑃𝐶𝐼  and/or 𝐴𝑅𝐴𝑅𝐿 is larger 

than one, the competing scheme will produce larger ARLs over the range of shifts under 

consideration, which means that the benchmark scheme outperforms the competing scheme for 

that particular range; otherwise, if PCI is less than one, then the competing scheme is more 

sensitive than the benchmark scheme.  

 

4. Bi-objective model of the proposed SSDS 𝑿̅ monitoring scheme 

There are three control limits 𝐿1, 𝐿 and 𝐿2 and two sample sizes 𝑛1 and 𝑛2 that need to be 

specified for a specific 𝐴𝑆𝑆0 in order to design the SSDS 𝑋̅ monitoring scheme. The efficiency 

of the proposed SSDS 𝑋̅ scheme depends on the combination (𝑚, 𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2 ). There are 

two main steps in the optimal design of the proposed scheme: Firstly, the nominal IC 𝐴𝑅𝐿 

(𝐴𝑅𝐿0) is set to a high desired value, such as 370.4 or 500; secondly, the combination that 

yields an 𝐴𝑅𝐿0 as close as possible to the nominal 𝐴𝑅𝐿0 value and the smallest OOC ARL 

(𝐴𝑅𝐿𝛿) for a given mean shift 𝛿 and a minimum 𝐴𝐸𝑄𝐿 value is considered to be the optimal 

combination. Therefore, the optimization model is presented as follows:  

(𝐿1
∗ , 𝐿∗, 𝐿2

∗ ) = argmin
𝑚,𝑛1,𝑛2,𝐿1,𝐿,𝐿2

(𝐴𝑅𝐿1, 𝐴𝐸𝑄𝐿)  (30) 

subjects to  

𝐴𝑅𝐿0 = 𝜏 (31) 

and  

𝐴𝑆𝑆0 = 𝜉, (32) 

where 𝐴𝑆𝑆0 represents the expected IC ASS, 𝜉 is the prespecified 𝐴𝑆𝑆0 value and 𝜏 represents 

the nominal 𝐴𝑅𝐿0 value. Note that the 𝐴𝑆𝑆0 and OOC 𝐴𝑆𝑆 (𝐴𝑆𝑆𝛿) are used because the sample 

size is not fixed in advance (it can be 𝑛1 or 𝑛1 + 𝑛2). This plays an important role in the 

estimation of the cost of inspection. 

The search of the optimal parameters can be summarized in three main steps given as follows: 

1. Fix 𝑚 and for some specific sample sizes (i.e., 𝑛1 and 𝑛2) and mean shift (𝛿 = 0), find 

all possible combinations of the design parameters that yield an attained 𝐴𝑅𝐿0 value of 

370.4 for a prespecified value of the 𝐴𝑆𝑆0. These combination of parameters (𝐿1, 𝐿, 𝐿2) 

are called local design parameters; 
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2. For each combination of the local design parameters, compute the 𝐴𝑅𝐿𝛿 (where 𝛿 = 

0.1 to 2.5 with a step shift of 0.1) and then calculate the corresponding 𝐴𝐸𝑄𝐿 value; 

3. Select the combination that yields the minimum 𝐴𝐸𝑄𝐿 value to be the combination of 

the optimal design parameters (𝐿1
∗ , 𝐿∗, 𝐿2

∗ ). 

 

5. Performance study  

5.1 Performance analysis of the SSDS 𝐗̅  monitoring scheme 

In this section, the performance of the SSDS 𝑋̅ monitoring scheme is investigated in Case U 

by setting the nominal 𝐴𝑅𝐿0 value to 370.4 with a maximum mean shift of 2.5 (i.e. 𝛿𝑚𝑎𝑥 = 

2.5) and  𝐴𝑆𝑆0 values of 5 and 8, see Tables 1 to 4; where, for illustration purpose, m is set at 

50 and 100 for Case U SSDS 𝑋̅ scheme, and m is assumed to approach infinity (∞) for Case 

K. The first row of each cell gives the 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆 and 𝐴𝑁𝑂𝑆 values and the second row 

gives the 5th, 25th, 50th, 75th and 95th percentiles (denoted by (P5, P25, P50, P75, P95)) of the 

RL distribution of the Case U SSDS 𝑋̅ scheme. Note that the Case K properties discussed in 

Section 2.1 are given in the last column. Equations (21) to (23) are used to compute the IC and 

OOC characteristics of the RL distribution. Moreover, the ASS, ANOS and AEQL values are 

computed using Equations (24), (26) and (27), respectively.  

For instance (see the second column of Table 1), for a Phase I sample of size 50 (i.e. m = 50), 

when (𝑛1,𝑛2) = (5, 5), (𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥) = (0, 2.5) and 𝐴𝑆𝑆0 = 5, it is found (using the optimization 

model in Equations (30) to (32)) that (𝐿1
∗ , 𝐿∗, 𝐿2

∗ ) = (2.9093, 3.0111, 2.9309) so that the proposed 

SSDS 𝑋̅ scheme satisfies 𝐴𝑅𝐿0 = 370.4 with a minimum 𝐴𝐸𝑄𝐿 = 70.72. However, when 𝑛2 is 

increased to 8, for the same values of m, 𝑛1, 𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥, and 𝐴𝑆𝑆0, it is found that (𝐿1
∗ , 𝐿∗, 𝐿2

∗ ) 

= (2.9101, 3.0108, 2.6310) so that the proposed scheme also satisfies 𝐴𝑅𝐿0 = 370.4 with a 

minimum 𝐴𝐸𝑄𝐿 = 69.06 (see the third column of Table 1).  

From Table 1, it can be seen that when m = 50 and 𝐴𝑆𝑆0 = 5, if (𝑛1,𝑛2) = (5, 5) there is 5% 

chance that the Case U SSDS 𝑋̅ scheme gives a signal for the first time on the 18th subgroup 

and a 95% chance that it signals on the 1102 subgroup in Phase II when the process is IC (shift 

= 0). For a small shift of size 0.3, there are 5% and 95% chances that the proposed scheme 

gives a signal on the 11th and 563th subgroups, respectively. For m = 100 with an 𝐴𝑆𝑆0 of 5, 

when (𝑛1,𝑛2) = (5, 5) (i.e. fourth column of Table 1) and with a mean shift of 0.3, there are 5% 

and 95% chances that the Case U SSDS 𝑋̅ scheme gives a signal on the 7th and 388th subgroups, 

respectively. For a moderate mean shift of 0.9, there are 5% and 95% chances that the Case U 

SSDS 𝑋̅ scheme signals on the first and eighteenth subgroups, respectively. These findings 
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confirm that the larger the Phase I sample size, the more sensitive the proposed scheme. As the 

mean shift increases, the proposed scheme becomes more sensitive. When we keep 𝑛1= 5 and 

increase 𝑛2 (say 𝑛2 = 8) for m = 50, for a mean shift of 0.3, there is 95% chance that the 

proposed scheme gives a signal on the 546th subgroup in the prospective phase. This reveals an 

improvement in the sensitivity of the proposed scheme when the Stage 2 sample size increases. 

In Case K, when 𝛿 = 0.3, (𝑛1,𝑛2) = (5, 8) and (3, 10) with 𝐴𝑆𝑆0 = 5, there is 5% chance that 

the SSDS 𝑋̅ scheme gives a signal on the fourth sample, see the last column of Tables 1 and 2, 

respectively. However, there is 95% chance that the SSDS 𝑋̅ scheme gives a signal on the 260th 

and 183rd sample, respectively. This shows that the proposed scheme performs better in Case 

K. From Tables 3 and 4, it can be seen that when the expected sample size (i.e. 𝐴𝑆𝑆0) increases, 

the sensitivity of the proposed scheme increases as well. For small Phase I sample sizes (i.e. m 

= 25, on the second column of Tables 3 and 4), the detection ability of the proposed scheme is 

poor as compared to m = 50 and 100 on columns 3 to 6, respectively.  

In terms of the 𝐴𝑅𝐿 values, for small and moderate shifts in the process mean, the larger the 

Phase I sample (i.e. m), the more sensitive the Case U SSDS 𝑋̅ scheme. However, for large 

shifts in the process mean, the proposed scheme performs uniformly better regardless of the 

Phase I sample size. For small and moderate shifts, the proposed scheme is less sensitive in 

Case U than in Case K. This under-performance is due to the effect of estimation that 

deteriorates the performance of a monitoring scheme.  

In terms of the 𝑆𝐷𝑅𝐿 values, it can be seen that the practitioner-to-practitioner variability in 

the performance of the proposed scheme decreases as the Phase I sample size increases. The 

OOC 𝑆𝐷𝑅𝐿 (𝑆𝐷𝑅𝐿𝛿) drop rapidly as the Phase I sample size increases. Therefore, the larger 

the Phase I sample size, the more reliable the results. The larger the 𝐴𝑆𝑆0, the smaller the 

variability in the performance outputs. In terms of the 𝐴𝑁𝑂𝑆 values, the larger the Phase I 

sample, the smaller the OOC 𝐴𝑁𝑂𝑆. For very small shifts (i.e. 0 < 𝛿 < 0.2), the smaller the 

𝐴𝑆𝑆0 value, the smaller the 𝐴𝑁𝑂𝑆 value. When 𝛿 ≥ 0.2, the larger the 𝐴𝑆𝑆0 value, the smaller 

the 𝐴𝑁𝑂𝑆 value, which means that when the process is OOC, the proposed scheme is more 

efficient and cost effective for larger values of 𝐴𝑆𝑆0.  

In terms of the overall performance, i.e. AEQL, the proposed SSDS 𝑋̅ scheme performs better 

for large Phase I sample sizes and/or large expected number of samples. As the Phase I sample 

size increases, the Case U properties converge towards to the Case K properties. Therefore, it 

is very important to study the effect of the Phase I sample size on the performance of the 
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proposed scheme in order to know the amount of Phase I observations required to reach the 

Case K performance. This topic is under investigation and will be reported in a separate article. 



15 

 

  Table 1. The exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters of the proposed scheme when 

m∈{50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛1, 𝑛2) ∈{(5,5); (5, 8)}, 𝐴𝑆𝑆0=5 and 𝛿𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿0 value of 370.4  
(ARL, SDRL, ASS, ANOS) 

(P5, P25, P50, P75, P95) 

Type of design Case U Case K 

Shift(δ)  m = 50  m = 100 m = ∞ 

               0.00 
(370.4, 369.98, 5.00, 1847.56)  

(18, 107, 254, 510, 1102)  

 

(370.4, 371,36, 5.00, 

1853.22) 

(20, 106, 257, 516, 1093) 

 

(370.4, 375.44, 5.01, 1862.09)  

(19, 103, 256, 518, 1122)   

 

(370.4, 373.22, 5.02, 1858.68)   

(19, 107, 254, 513, 1121)   

 

(370.4, 367.15, 5.02, 1859.37)  

(20, 108, 257, 515, 1121)  

  0.10 
(347.63, 340.25,5.00, 1740.89) 

(24, 132, 314, 620, 1337) 

333 

(340.83, 345.39,5.01, 

1608.47) 

(23, 127, 303, 603, 1329) 

 

(279.97, 278.84, 5.01,1504.20) 

(20, 109, 257, 522, 1139) 

 

(273.23, 272.54, 5.02,1472.99) 

(20, 109, 258, 516, 1124) 

 

(292.46, 288.87, 5.02, 1467.67) 

(16, 89, 205, 405, 870) 

  0.20 
(333.23,329.98, 5.00, 1669.22) 

(17, 96, 233, 457, 998) 

, 

(321.71, 322.17, 

5.01,1613.34) 

(16, 91, 222, 449, 948) 

 

(243.47, 242.17, 5.08, 1221.64) 

(12, 73, 170, 334, 723) 

 

(241.81, 241.39, 5.03, 1215.90) 

(13, 71, 169, 333, 714) 

 

(159.38, 159.45, 5.03, 801.43) 

(8, 46, 110, 223, 474) 

( ) 

() 

 

 0.30 
(187.70, 189.80, 5.02, 941.31) 

(11, 55, 129, 260, 563) 

5. 

(182.85, 182,73, 5.02, 

918.68) 

(10, 53, 128, 252, 546) 

 

(131.10, 131.65, 5.03, 659.31) 

(7, 38, 91, 182, 388) 

 

(123.83, 124.38, 5.05, 624.92) 

(7, 35, 84, 172, 375) 

 

(86.17, 86.73, 5.05, 434.89) 

(4, 25, 59, 121, 260) 

  0.40 
(102.65, 100.97, 5.02, 515) 

(6, 30, 72, 143, 307) 

 

(97.23, 97.40, 5.03, 489.93) 

(5, 28, 68, 133, 292) 

 

(69.75, 69.28, 5.05, 352.05) 

(4, 20, 48, 97, 208) 

 

(66.91, 66.79, 5.08, 339.64) 

(4, 20, 46, 93, 202) 

 

(47.67, 47.36, 5.08, 241.97) 

(3, 14, 33, 66, 143) 

  0.50 
(56.26, 56.21, 5.03, 283.38) 

(3, 16, 39, 77, 170) 

5.0 

(54.73, 54.16, 5.06, 276.92) 

(3, 16, 38, 75, 165) 

 

(39.00, 38.92, 5.07, 197.91) 

(3, 12, 27, 52, 117) 

 

(36.99, 36.08, 5.11, 189.36) 

(2, 11, 26, 51, 109) 

 

(28.02, 27.18, 5.12, 143.40) 

(2, 9, 20, 39, 82) 

19  0.60 
(32.50, 31.65, 5.05, 164.27) 

(2, 10, 23, 45, 97) 

 

(30.88, 30.61, 5.09, 157.11) 

(2, 9, 21, 43, 93) 

 

(22.99, 22.69, 5.11, 117.47) 

(2, 7, 16, 31, 69) 

 

(21.98, 21.46, 5.18, 113.80) 

(2, 7, 15, 30, 64) 

 

(17.30, 16.94, 5.18, 89.54) 

(1, 5, 12, 24, 52) 

  0.70 
(19.63, 19.02, 5.07, 99.65) 

(1, 6, 14, 27, 58) 

 

(19.16, 18.80, 5.12, 98.15) 

(1, 6, 13, 27, 55) 

 

(14.20, 13.41, 5.16, 73.21) 

(1, 5, 10, 19, 41) 

 

(13.46, 13.03, 5.25, 70.66) 

(1, 4, 9, 18, 40) 

 

(11.26, 10.62, 5.25, 59.13) 

(1, 4, 8, 15, 33) 

  0.80 
(12.62, 12.11, 5.10, 64.38) 

(1, 4, 9, 17, 36) 

5. 

(12.18, 11.60, 5.16, 62.91) 

(1, 4, 9, 17, 35) 

 

(9.15, 8.52, 5.21, 47.68) 

(1, 3, 7, 12, 26) 

 

(8.59, 7.96, 5.34, 45.85) 

(1, 3, 6, 12, 24) 

 

(7.52, 7.05, 5.34, 40.14) 

(1, 3, 5, 10, 22) 

  0.90 
(8.34, 7.76, 5.13, 42.83) 

(1, 3, 6, 11, 24) 

55 

(7.94, 7.42, 5.21, 41.34) 

(1, 3, 6, 11, 23) 

 

(6.31, 5.78, 5.27, 33.28) 

(1, 2, 4, 9, 18) 

 

(6.03, 5.55, 5.43, 32.76) 

(1, 2, 4, 8, 17) 

 

(5.31, 4.85, 5.43, 28.84) 

(1, 2, 4, 7, 15) 

  1.00 
(5.83, 5.38, 5.15, 30.08) 

(1, 2, 4, 8, 16) 

5. 

(5.66, 5.13, 5.25, 29.73) 

(1, 2, 4, 8, 16) 

 

(4.46, 3.93, 5.42, 14.24) 

(1, 2, 3, 6, 13) 

 

(4.28, 3.81, 5.53, 23.69) 

(1, 2, 3, 6, 12) 

 

(4.03, 3.48, 5.53, 22.30) 

(1, 2, 3, 5, 11) 

  1.20 
(3.22, 2.72, 5.20, 16.72) 

(1, 1, 2, 4, 9) 

 

(3.21, 2.62, 5.31, 17.03) 

(1, 1, 2, 4, 8) 

 

(2.62, 2.07, 5.45, 9.64) 

(1, 1, 2, 3, 7) 

 

(2.56, 1.98, 5.68, 14.56) 

(1, 1, 2, 3, 6) 

 

(2.40, 1.81, 5.68, 13.66) 

(1, 1, 2, 3, 6) 

  1.40 
(2.04, 1.46, 5.20, 10.61) 

(1, 1, 2, 3, 5) 

5 

(2.04, 1.44, 5.32, 10.87) 

(1, 1, 2, 3, 5) 

 

(1.77, 1.17, 5.39, 9.64) 

(1, 1, 1, 2, 4) 

 

(1.78, 1.18, 5.72, 10.19) 

(1, 1, 1, 2, 4) 

 

(1.71, 1.08, 5.71, 9.77) 

(1, 1, 1, 2, 4) 

  1.60 
(1.50, 0.88, 5.17, 7.77) 

(1, 1, 1, 2, 3) 

 

(1.51, 0.88, 5.27, 7.95) 

(1, 1, 1, 2, 3) 

 

(1.39, 0.73, 5.39, 7.47) 

(1, 1, 1, 2, 3) 

 

(1.37, 0.71, 5.62, 7.68) 

(1, 1, 1, 2, 3) 

 

(1.34, 0.68, 5.62, 7.51) 

(1, 1, 1, 1, 3) 

  1.80 
(1.25, 0.55, 5.12, 6.37) 

(1, 1, 1, 1, 2) 

 

(1.24, 0.54, 5.18, 6.42) 

(1, 1, 1, 1, 2) 

 

(1.17, 0.45, 5.27, 6.18) 

(1, 1, 1, 1, 2) 

 

(1.17, 0.45, 5.44, 6.39) 

(1, 1, 1, 1, 2) 

 

(1.16, 0.43, 5.44, 6.32) 

(1, 1, 1, 1, 2) 

  2.00 
(1.11, 0.34, 5.06, 5.60) 

(1, 1, 1, 1, 2) 

5 

(1.11, 0.35, 5.10, 5.65) 

(1, 1, 1, 1, 2) 

 

(1.07, 0.28, 5.16, 5.53) 

(1, 1, 1, 1, 2) 

 

(1.07, 0.27, 5.61, 5.25) 

(1, 1, 1, 1, 2) 

 

 

(1.06, 0.26, 5.25, 5.58) 

(1, 1, 1, 1, 2) 

  2.50 
(1.01, 0.08, 5.01, 5.04) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.08, 5.01, 5.05) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.07, 5.02, 5.04) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.06, 5.03, 5.04) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.05, 5.03, 5.04) 

(1, 1, 1, 1, 1) 

 AEQL 70.72 69.06 59.59 55.28 49.91 

(𝒏𝟏, 𝒏𝟐) (5, 5) (5, 8) (5, 5) (5, 8) (5, 8) 

(𝑳𝟏, L)                                                   

𝑳𝟐 

(2.9093, 3.0111)  

2.9309                                                                                                            

(2.9101, 3.0108)  

2.6310                                                                                                            

(2.9096, 3.1354)  

2.9103                                                                                                            

(2.9098, 3.1361)  

2.7101                                                                                                            

(2.9099, 3.1354)  

1.9002                                                                                                            
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Table 2. The exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters  of the proposed chart when m∈ {50, 

100} and 𝑚 = ∞ (i.e. Case K), (𝑛1, 𝑛2) ∈{(3,5); (3, 10)}, 𝐴𝑆𝑆0=5 and 𝛿𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿0 value of 370.4 
(ARL, SDRL, ASS, ANOS)  

(P5, P25, P50, P75, P95) 

Type of design Case U Case K 

Shift(δ) m = 50  m = 100 m = ∞ 

 

0.00  

(370.4, 369.67, 5.11, 1898.25) 

(20, 108, 255, 513, 1103) 

 

(370.4, 372.08, 4.95, 1841.79) 

(20, 105, 258, 517, 1115) 

 

(370.4, 370.85, 5.08, 1874.94) 

(20, 108, 258, 500, 1112) 

 

(370.4, 373.06, 5.03, 1850.61) 

(18, 104, 253, 507, 1115) 

 

(370.4, 369.43, 5.03, 1873.42) 

(19, 107, 259, 518, 1107) 

 
0.10 

(349.72, 344.22, 5.14, 1512.51) 

(23, 133, 312, 618, 1342) 

 

(357.29, 354.83, 5.06, 1693) 

(26, 136, 320, 628, 1362) 

 

(280.74, 279.53, 5.12, 1450.46) 

(19, 109, 263, 533, 1128) 

5.22,,,  

(267.35, 268.21, 5.09, 1370.19) 

(20, 106, 255, 515, 1102) 

 

(267.48, 262.02, 5.09, 1361.74) 

(14, 75, 190, 374, 791) 

 
0.20 

(329.95, 328.82, 5.23, 1728.44) 

(17, 93, 226, 460, 1000) 

( ) 

() 

 

(317.14, 318.04, 5.20, 1650.42) 

(16, 91, 219, 438, 943) 

( ) 

() 

 

(222.82, 222.43, 5.22, 1163.72) 

(12, 65, 154, 309, 662) 

( ) 

() 

 

(235.37, 234.30, 5.28, 1243.25) 

(13, 70, 164, 325, 699) 

( ) 

() 

 

(132.85, 130.81, 5.28, 701.74) 

(7, 39, 93, 184, 397) 

( ) 

() 

 

0.30 
(184.41, 188.05, 5.39, 994.05) 

(11, 52, 125, 252, 566) 

 

(154.15, 153.63, 5.51, 848.96) 

(9, 44, 107, 213, 472) 

 

(110.50, 109.24, 5.38, 594.59) 

(6, 33, 79, 153, 325) 

 

(122.11, 120.98, 5.59, 682.53) 

(7, 35, 85, 170, 370) 

 

(61.16, 60.69, 5.59, 341.88) 

(4, 18, 42, 86, 183) 

 
0.40 

(96.62, 95.25, 5.59, 539.68) 

(6, 29, 68, 133, 287) 

 

(71.17, 70.62, 5.91, 420.53) 

(4, 21, 49, 100, 212) 

 

(55.06, 54.33, 5.59, 307.52) 

(3, 16, 39, 76, 164) 

 

(60.09, 59.23, 5.99, 360.35) 

(4, 17, 42, 84, 178) 

 

(29.18, 27.98, 5.99, 175.01) 

(2, 9, 21, 41, 84) 

 
0.50 

(49.86, 48.63, 5.81, 289.59) 

(3, 15, 35, 69, 145) 

19 

(32.75, 32.34, 6.39, 209.19) 

(2, 10, 23, 45, 99) 

19 

(29.09, 29.01, 5.82, 169.38) 

(2, 9, 20, 40, 87) 

19 

(28.90, 28.79, 6.48, 187.32) 

(2, 9, 20, 40, 86) 

19 

(14.68, 14.39, 6.48, 95.14) 

(1, 5, 10, 20, 44) 

19 
0.60 

(27.34, 27.00, 6.04, 165.15)  

(2, 8, 19, 38, 81) 

  

 (16.65, 16.14, 6.92, 115.15) 

(1, 5, 12, 23, 49)   

 

(16.68, 16.30, 6.07, 101.34)  

(1, 5, 12, 23, 49)  

 

(15.47, 14.96, 7.01, 108.49)  

(1, 5, 11, 21, 45)  

 

(8.34, 7.76, 7.01, 58.49)  

(1, 3, 6, 11, 24) 

 
0.70 

(15.95, 15.41, 6.27, 99.91) 

(1, 5, 11, 22, 47)  

 

(9.15, 8.57, 7.46, 68.30) 

(1, 3, 7, 13, 27) 

 

(9.92, 9.48, 6.32, 62.74) 

(1, 3, 7, 14, 28) 

 

(8.53, 8.09, 7.56, 64.56) 

(1, 3, 6, 12, 25) 

 

(5.03, 4.45, 7.57, 38.08) 

(1, 2, 4, 7, 14) 

 
0.80 

(9.62, 9.07, 6.46, 62.19) 

(1, 3, 7, 13, 27) 

 

(5.51, 5.03, 7.99, 44.03) 

(1, 2, 4, 7, 16) 

 

(6.27, 5.75, 6.56, 41.11) 

(1, 2, 4, 9, 18) 

 

(5.07, 4.56, 8.10, 41.09) 

(1, 2, 4, 7, 14) 

 

(3.38, 2.81, 8.10, 27.40) 

(1, 1, 2, 4, 9) 

 
0.90 

(6.29, 5.79, 6.62, 41.62) 

(1, 2, 4, 8, 18) 

 

(3.57, 2.99, 8.47, 30.23) 

(1, 1, 3, 5, 9) 

 

(4.99, 2.42, 6.76, 28.58) 

(1, 1, 2, 4, 8) 

 

(3.40, 2.81, 8.59, 29.18) 

(1, 1, 3, 4, 9) 

 

(2.41, 1.84, 8.59, 20.70) 

(1, 1, 2, 3, 6) 

 
1.00 

(4.18, 3.60, 6.72, 28.09) 

(1, 2, 3, 6, 11) 

 

(2.57, 2.01, 8.87, 22.82) 

(1, 1, 2, 3, 7) 

 

(4.23, 3.62, 6.92, 20.66) 

(1, 2, 3, 6, 11) 

 

(2.46, 1.90, 8.99, 22.08) 

(1, 1, 2, 3, 6) 

 

(1.91, 1.31, 8.99, 17.18) 

(1, 1, 1, 2, 5) 

 
1.20 

(2.28, 1.72, 6.75, 15.41) 

(1, 1, 2, 3, 6) 

 

(1.62, 1.01, 9.33, 15.09) 

(1, 1, 1, 2, 4) 

 

(1.83, 1.24, 7.06, 12.89) 

(1, 1, 1, 2, 4) 

 

(1.54, 0.91, 9.45, 14.57) 

(1, 1, 1, 2, 3) 

 

(1.36, 0.69, 9.46, 12.83) 

(1, 1, 1, 2, 3) 

 
1.40 

(1.54, 0.90, 6.50, 9.99) 

(1, 1, 1, 2, 3)  

 

(1.25, 0.55, 9.24, 11.55) 

(1, 1, 1, 1, 2)  

 

(1.34, 0.68, 6.96, 9.32) 

(1, 1, 1, 2, 3)  

 

(1.22, 0.51, 9.37, 11.41) 

(1, 1, 1, 1, 2)  

 

(1.17, 0.44, 9.37, 10.93) 

(1, 1, 1, 1, 2)  

 
1.60 

(1.20, 0.49, 6.04, 7.25) 

(1, 1, 1, 1, 2) 

 

(1.11, 0.36, 8.62, 9.61) 

(1, 1, 1, 1, 2) 

 

(1.12, 0.37, 6.61, 7.42) 

(1, 1, 1, 1, 2) 

 

(1.09, 0.31, 8.75, 9.56) 

(1, 1, 1, 1, 2) 

 

(1.07, 0.27, 8.76, 9.39) 

(1, 1, 1, 1, 2)  

 
1.80 

(1.08, 0.29, 5.43, 5.85) 

(1, 1, 1, 1, 2) 

 

(1.05, 0.23, 7.62, 8.02) 

(1, 1, 1, 1, 1) 

 

(1.04, 0.21, 6.07, 6.32) 

(1, 1, 1, 1, 1) 

 

(1.04, 0.20, 7.75, 8.04) 

(1, 1, 1, 1, 1) 

 

(1.03, 0.19, 7.75, 8.01) 

(1, 1, 1, 1, 1)  

 

 2.00 
(1.02, 0.15, 4.78, 4.89) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.15, 6.46, 6.60) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.16, 5.42, 5.48) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.13, 6.57, 6.69) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.12, 6.57, 6.66) 

(1, 1, 1, 1, 1)  

 
2.50 

(1.00, 0.02, 3.55, 3.55) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.04, 4.09, 4.10) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.01, 3.93, 3.93) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.04, 4.15, 4.16) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.04, 4.15, 4.16) 

(1, 1, 1, 1, 1)  

 AEQL 62.32 50.50 46.82 45.79 35.03 

(𝒏𝟏, 𝒏𝟐) (3, 5) (3, 10) (3, 5) (3, 10) (3, 10) 

(𝑳𝟏, L)                                                   

𝑳𝟐 

(0.8018, 3.1071)  

3.2650                                                                                                            

(1.2903, 3.1079)  

3.2210                                                                                                            

(0.8093, 3.4354)  

3.1721                                                                                                     

(1.2693, 3.1354)  

3.5001                                                                                                     

(1.2693, 3.1354)  

3.1600                                                                                                            

 



17 

 

Table 3. The exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters  of the proposed chart when m∈{25, 

50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛1, 𝑛2) ∈{(5,5); (5, 8)}, 𝐴𝑆𝑆0=8 and 𝛿𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿0 value of 370.4 
(ARL, SDRL, ASS, ANOS) 

(P5, P25, P50, P75, P95) 

Type of design Case U Case K 

Shift(δ) m = 25 m = 50 m = 100 m = ∞ 

 

0.00  
(370.4, 373.18, 8.41, 3126.71) 

(20, 106, 256, 517, 1115) 

 

(370.4, 370.84, 7.99, 2961.50) 

(20, 108, 257, 508, 1116) 

 

(370.4, 365.99, 8.00, 2933.87) 

(21, 109, 256, 505, 1086) 

 

(370.4, 378.83, 7.99, 3014.07) 

(18, 107, 256, 522, 1134) 

 

(370.4, 361.99, 8.00, 2914.36) 

(19, 106, 251, 512, 1077) 

 

(370.4, 368.56, 8.00, 2956.70) 

(20, 110, 258, 509, 1085) 

  0.10 
(266.04, 266.36,8.44, 2246.64) 

(13, 77, 181, 367, 806) 

8 

(168.63, 165.29, 8.04,1356.19) 

(9, 50, 119, 236, 502) 

 

(138.89,137.37, 8.10, 1124.34) 

(8, 41, 97, 192, 417) 

 

(168.88, 180.20, 8.04,1438.60) 

(10, 51, 125, 249, 531) 

 

(132.11, 157.06,8.10, 1662.76) 

(35, 187, 444, 901, 671) 

 

(133.41, 119.10, 8.10, 

1608.56) 

(12, 68, 156, 307, 674) 

 
 0.20 

(128.55, 128.04, 8.55,1098.77) 

(7, 39, 89, 179, 383) 

( ) 

() 

 

(73.81, 74.87, 8.17, 602.87) 

(4, 21, 50, 102, 219) 

 

(59.36, 57.63, 8.37, 454.94) 

(3, 16, 38, 75, 163) 

( ) 

() 

 

(49.41, 79.13, 8.17, 648.65) 

(5, 23, 55, 110, 238) 

( ) 

() 

 

(56.80, 88.21, 8.37, 480.60) 

(21, 115, 75, 143, 230) 

( ) 

() 

 

(56.76, 55.42, 8.37, 734.41) 

(5, 25, 61, 120, 227) 

( ) 

() 

 

 0.30 
(58.67, 57.42, 8.70, 510.52) 

(4, 18, 41, 81, 174) 

 

(35.23, 34.95, 8.36, 294.47) 

(2, 11, 25, 49, 103) 

 

(26.06, 25.35, 8.79, 211.56) 

(2, 7, 17, 33, 70) 

 

(27.00, 36.72, 8.36, 309.25) 

(2, 11, 26, 51, 109) 

 

(24.63, 24.04,8.79, 389.23) 

(8, 43, 103, 203, 437) 

 

(24.35, 23.01, 8.79, 319.64) 

(2, 11, 25, 51, 108) 

  0.40 
(28.64, 28.41, 8.88, 254.43) 

(2, 8, 20, 39, 86) 

 

(18.06, 17.63, 8.58, 155.04) 

(1, 6, 12, 25, 54) 

 

(13.73, 12.26, 9.32, 109.35) 

(1, 4, 8, 16, 34) 

 

(18.87, 18.22, 8.58, 161.96) 

(1, 6, 13, 26, 56) 

 

(12.32, 56.60, 9.32, 134.38) 

(3, 17, 40, 79, 171) 

 

(12.02, 11.36, 9.32, 158.68) 

(1, 5, 12, 24, 49) 

  0.50 
(15.01, 14.43, 9.07, 136.12) 

(1, 5, 11, 21, 43) 

19 

(9.96, 9.31, 8.82, 87.86) 

(1, 3, 7, 14, 28) 

 

(7.41, 5.86, 9.91, 63.54) 

(1, 2, 5, 9, 18) 

19 

(10.42, 10.08, 8.82, 91.89) 

(1, 3, 7, 14, 30) 

19 

(6.42, 23.99, 9.91, 101.98) 

(2, 7, 17, 33, 72) 

19 

(6.80, 5.33, 9.91, 87.20) 

(1, 3, 6, 12, 25) 

19  0.60 
(9.60, 8.16, 9.23, 79.42) 

(1, 3, 6, 12, 25) 

 

(5.92, 5.41, 9.03, 53.43) 

(1, 2, 4, 8, 17) 

 

(4.95, 4.44, 10.51, 41.49) 

(1, 1, 3, 5, 11) 

 

(6.25, 5.81, 9.03, 56.44) 

(1, 2, 4, 8, 18) 

 

(4.18, 11.65, 10.50, 67.92) 

(1, 4, 9, 17, 36) 

 

(4.06, 3.65, 10.50, 53.19) 

(1, 2, 4, 7, 14) 

  0.70 
(5.31, 4.89, 9.35, 49.63) 

(1, 2, 4, 7, 15) 

 

(3.93, 3.42, 9.19, 36.09) 

(1, 1, 3, 5, 11) 

 

(2.94, 2.03, 11.07, 28.73) 

(1, 1, 2, 3, 7) 

 

(4.04, 3.57, 9.19, 37.16) 

(1, 1, 3, 5, 11) 

 

(2.61, 6.04, 11.06, 43.13) 

(1, 2, 5, 9, 19) 

 

(2.25, 1.74, 11.06, 36.01) 

(1, 1, 2, 4, 9) 

  0.80 
(3.53, 3.04, 9.40, 33.17) 

(1, 1, 3, 5, 10) 

 

(2.94, 2.22, 9.29, 25.41) 

(1, 1, 2, 4, 7) 

 

(1.99, 1.43, 11.56, 22.22) 

(1, 1, 1, 2, 5) 

 

(2.77, 2.22, 9.29, 25.71) 

(1, 1, 2, 4, 7) 

 

(2.00, 3.43, 11.55, 26.20) 

(1, 1, 3, 5, 11) 

 

(1.98, 1.69, 11.55, 26.32) 

(1, 1, 2, 3, 6) 

  0.90 
(2.91, 1.97, 9.38, 23.57) 

(1, 1, 2, 3, 6) 

 

(2.25, 1.44, 9.29, 19.07) 

(1, 1, 2, 3, 5) 

 

(1.80, 0.87, 11.97, 17.92) 

(1, 1, 1, 2, 3) 

 

(2.10, 1.56, 9.30, 19.57) 

(1, 1, 2, 3, 5) 

 

(1.70, 2.15, 11.95, 22.30) 

(1, 1, 2, 4, 7) 

 

(1.74, 1.12, 11.96, 20.82) 

(1, 1, 1, 2, 4) 

  1.00 
(2.09, 1.31, 9.28, 17.57) 

(1, 1, 1, 2, 4) 

 

(1.95, 1.03, 9.22, 15.17) 

(1, 1, 1, 2, 4) 

 

(1.59, 0.61, 12.30, 15.85) 

(1, 1, 1, 1, 2) 

 

(1.65, 1.05, 9.22, 15.24) 

(1, 1, 1, 2, 4) 

 

(1.33, 1.31, 12.26, 23.61) 

(1, 1, 1, 2, 5) 

 

(1.30, 0.74, 12.26, 17.16) 

(1, 1, 1, 2, 3) 

  1.20 
(1.33, 0.67, 8.82, 11.69) 

(1, 1, 1, 1, 3) 

 

(1.30, 0.52, 8.80, 10.74) 

(1, 1, 1, 1, 2) 

 

(1.28, 0.29, 12.71, 13.71) 

(1, 1, 1, 1, 2) 

 

(1.22, 0.52, 8.80, 10.73) 

(1, 1, 1, 1, 2) 

 

(1.10, 0.62, 12.60, 16.36) 

(1, 1, 1, 1, 3) 

 

(1.12, 0.37, 12.60, 14.10) 

(1, 1, 1, 1, 2) 

  1.40 
(1.19, 0.33, 8.08, 8.91) 

(1, 1, 1, 1, 2)  

 

(1.09, 0.27, 8.08, 8.61) 

(1, 1, 1, 1, 2) 

 

(1.09, 0.14, 12.90, 13.14) 

(1, 1, 1, 1, 1)  

 

(1.07, 0.27, 8.08, 8.61) 

(1, 1, 1, 1, 2)  

 

(1.08, 0.29, 12.57, 13.56) 

(1, 1, 1, 1, 2)  

 

(1.03, 0.16, 12.57, 12.89) 

(1, 1, 1, 1, 1)  

  1.60 
(1.12, 0.15, 7.21, 7.38) 

(1, 1, 1, 1, 1) 

 

(1.07, 0.13, 7.21, 7.33) 

(1, 1, 1, 1, 1) 

 

(1.06, 0.06, 12.97, 13.02) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.13, 7.21, 7.32) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.14, 12.18, 12.39) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.08, 12.18, 12.26) 

(1, 1, 1, 1, 1)  

  1.80 
(1.09, 0.07, 6.39, 6.42) 

(1, 1, 1, 1, 1) 

 

(1.05, 0.04, 6.39, 6.40) 

(1, 1, 1, 1, 1) 

 

(1.04, 0.02, 12.99, 12.99) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.05, 6.39, 6.40) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.06, 11.39, 11.44) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.03, 11.39, 11.40) 

(1, 1, 1, 1, 1)  

  2.00 
(1.07, 0.02, 5.75, 5.75) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.01, 5.75, 5.75) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.02, 12.99, 13.00) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.02, 5.75, 5.75) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.01, 10.22, 10.23) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.02, 10.22, 10.23) 

(1, 1, 1, 1, 1)  

  2.50 
(1.04, 0.00. 5.08, 5.08) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.00, 5.08, 5.08) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.00, 12.99, 12.99) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.00, 5.08, 5.08) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.00, 6.88, 6.88) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.00, 6.88, 6.88) 

(1, 1, 1, 1, 1)  

 AEQL 39.63 36.96 33.59 32.84 30.19 29.07 

(𝒏𝟏, 𝒏𝟐) (5, 5) (5, 5) (5, 8) (5, 5) (5, 8) (5, 8) 

             (𝑳𝟏, L)                                                 

             𝑳𝟐 

(0.4093, 3.4354)  

3.2221                                                                                                            

(0.524, 3.435)  

3.243                                                                                                            

(0.8870, 10.5920)  

3.1850                                                                                                            

(2.9835, 3.0083)  

2.0027                                                                                                            

(0.887, 4.866)  

3.375                                                                                                            

(0.887, 4.866)  

2.975                                                                                                            
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Table 4. Exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), the Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters of the proposed chart when m∈{25, 

50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛1, 𝑛2) ∈{(3,5); (3, 10)}, 𝐴𝑆𝑆0 = 8 and 𝛿𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿0 value of 370.4 
(ARL, SDRL, ASS, ANOS) 

(P5, P25, P50, P75, P95) 

Type of design Case U Case K 

Shift(δ) m = 25 m = 50 m = 100 m = ∞ 

 

0.00  

  

(370.4, 377.30, 7.98, 2995.65)  

(20, 107, 262, 516, 1131)  

0) 

 

(370.4, 373.36, 7.98, 2979.38)  

(19, 108, 257, 516, 1126)  

 

(370.4, 371.12, 8.00, 2947.74)  

(20, 105, 254, 513, 1111)  

 

 (370.4, 367.01, 7.98, 2968.61)  

(20, 108, 263, 515, 1124)  

 

(370.4, 364.11, 8.00, 2938.58)  

(19, 106, 257, 507, 1090) 

 

(370.4, 374.68, 8.00, 2982.43)  

(20, 110, 253, 515, 1126)  

  0.10  
(273.72, 274.99, 7.98, 2183.83) 

(15, 79, 191, 378, 808) 

 

(270.11, 271.52, 7.98, 2155.02) 

(15, 80, 187, 376, 800) 

 

(134.70, 135.11, 8.07, 1086.59) 

(7, 39, 94, 188, 405) 

 

(195.76, 196.16, 7.98, 1561.82) 

(10, 55, 135, 271, 592) 

 

(131.27, 131.95, 8.07, 1020.31) 

(8, 43, 105, 209, 446) 

 

(129.99, 121.92, 8.07, 1074.63) 

(11, 64, 151, 303, 466) 

  0.20 
(150.52, 150.47, 7.97, 1200.79) 

(8, 43, 105, 207, 455) 

( ) 

() 

 

(150.22, 148.41, 7.97, 1197.84) 

(8, 44, 105, 208, 448) 

( ) 

() 

 

(52.96, 52.31, 8.25, 473.12) 

(3, 16, 37, 74, 158) 

( ) 

() 

 

(99.86, 99.42, 7.97, 796.25) 

(6, 30, 69, 137, 302) 

( ) 

() 

 

(50.03, 49.70, 8.25, 447.20) 

(4, 18, 41, 81, 173) 

( ) 

() 

 

(49.29, 49.09, 8.25, 437.00) 

(5, 26, 61, 122, 165) 

( ) 

() 

 

 0.30 
(79.85, 79.34, 7.96, 635.99) 

(5, 24, 55, 111, 237) 

 

(77.18, 75.54, 7.96, 614.69) 

(4, 22, 54, 107, 228) 

 

(23.82, 23.60, 8.55, 203.66) 

(2, 7, 17, 33, 70) 

 

(50.80, 49.60, 7.95, 404.60) 

(3, 15, 36, 71, 151) 

 

(21.47, 20.86, 8.55, 226.32) 

(2, 8, 19, 36, 78) 

 

(20.87, 19.06, 8.55, 323.77) 

(2, 11, 27, 53, 111) 

  0.40 
(42.89, 43.41, 7.95, 340.97) 

(3, 12, 30, 59, 127) 

 

(41.25, 39.51, 7.95, 327.96) 

(3, 12, 29, 58, 122) 

7 

(11.71, 11.36, 8.93, 104.60) 

(1, 4, 8, 16, 35) 

 

(27.53, 26.61, 7.95, 218.88) 

(2, 8, 19, 38, 80) 

 

(11.96, 11.43, 8.93, 115.75) 

(1, 4, 9, 18, 38) 

 

(11.84, 10.28, 8.93, 119.39) 

(1, 5, 13, 24, 52) 

  0.50 
(23.54, 23.11, 7.93, 186.62) 

(2, 7, 16, 32, 69) 

19 

(23.29, 22.92, 7.93, 184.63) 

(2, 7, 16, 32, 68) 

19 

(6.54, 6.14, 9.38, 61.30) 

(1, 2, 5, 9, 19) 

19 

(15.74, 15.24, 7.93, 124.78) 

(1, 5, 11, 21, 46) 

19 

(6.07, 5.51, 9.38, 66.35) 

(1, 2, 5, 9, 20) 

19 

(6.20, 5.87, 9.38, 86.24) 

(1, 3, 6, 12, 27) 

19  0.60 
(13.47, 13.07, 7.89, 106.35) 

(1, 4, 10, 18, 40) 

 

(13.23, 12.71, 7.89, 104.40) 

(1, 4, 9, 18, 38) 

 

(3.95, 3.37, 9.86, 38.93) 

(1, 1, 3, 5, 11) 

 

(9.48, 9.03, 7.89, 74.86) 

(1, 3, 7, 13, 28) 

 

(3.84, 2.70, 9.86, 37.79) 

(1, 2, 3, 6, 12) 

 

(3.80, 2.86, 9.86, 36.21) 

(1, 2, 4, 7, 15) 

  0.70 
(8.32, 7.79, 7.84, 65.22) 

(1, 3, 6, 11, 24) 

 

(8.25, 7.76, 7.84, 64.67) 

(1, 3, 6, 11, 24) 

 

(2.69, 2.16, 10.34, 27.85) 

(1, 1, 2, 3, 7) 

 

(6.02, 5.41, 7.84, 47.22) 

(1, 2, 4, 8, 17) 

 

(2.62, 1.89, 10.34, 27.20) 

(1, 1, 2, 4, 7) 

 

(2.61, 1.90, 10.34, 35.28) 

(1, 1, 2, 4, 9) 

  0.80 
(5.45, 4.89, 7.77, 42.40) 

(1, 2, 4, 7, 15) 

 

(5.42, 4.94, 7.77, 42.16) 

(1, 2, 4, 7, 15) 

 

(1.97, 1.40, 10.81, 21.29) 

(1, 1, 1, 2, 5) 

 

(4.10, 3.63, 7.77, 31.85) 

(1, 1, 3, 5, 11) 

 

(2.06, 1.48, 10.81, 22.32) 

(1, 1, 2, 3, 5) 

 

(2.32, 1.77, 10.81, 25.12) 

(1, 1, 2, 3, 6) 

  0.90 
(3.77, 3.24, 7.68, 28.95) 

(1, 1, 3, 5, 10) 

 

(3.73, 3.19, 7.68, 28.64) 

(1, 1, 3, 5, 10) 

 

(1.65, 0.92, 11.25, 17.42) 

(1, 1, 1, 2, 3) 

 

(2.93, 2.38, 7.68, 22.48) 

(1, 1, 2, 4, 8) 

 

(1.62, 1.00, 11.25, 18.24) 

(1, 1, 1, 2, 4) 

 

(1.78, 1.17, 11.25, 19.97) 

(1, 1, 1, 2, 4) 

  1.00 
(2.27, 2.15, 7.56, 20.58) 

(1, 1, 2, 4, 7) 

 

(2.74, 2.19, 7.56, 20.73) 

(1, 1, 2, 4, 7) 

 

(1.42, 0.65, 11.63, 15.40) 

(1, 1, 1, 1, 3) 

 

(2.22, 1.65, 7.56, 16.81) 

(1, 1, 2, 3, 6) 

 

(1.36, 0.71, 11.63, 15.83) 

(1, 1, 1, 2, 3) 

 

(1.47, 0.83, 11.63, 17.13) 

(1, 1, 1, 2, 3) 

  1.20 
(1.74, 1.14, 7.22, 12.55) 

(1, 1, 1, 2, 4) 

 

(1.71, 1.10, 7.22, 12.36) 

(1, 1, 1, 2, 4) 

 

(1.21, 0.34, 12.23, 13.49) 

(1, 1, 1, 1, 2) 

 

(1.51, 0.88, 7.22, 10.87) 

(1, 1, 1, 2, 3) 

 

(1.12, 0.37, 12.23, 13.71) 

(1, 1, 1, 1, 2) 

 

(1.16, 0.44, 12.23, 14.24) 

(1, 1, 1, 1, 2) 

  1.40 
(1.28, 0.60, 6.73, 8.63) 

(1, 1, 1, 1, 2)  

 

(1.28, 0.60, 6.73, 8.58) 

(1, 1, 1, 1, 2)  

 

(1.05, 0.18, 12.60, 13.01) 

(1, 1, 1, 1, 1)  

 

(1.19, 0.48, 6.73, 8.03)  

(1, 1, 1, 1, 2)  

 

(1.04, 0.21, 12.60, 13.12) 

(1, 1, 1, 1, 1) 

 

(1.06, 0.25, 12.60, 13.31) 

(1, 1, 1, 1, 2) 

  1.60 
(1.10, 0.32, 6.12, 6.71) 

(1, 1, 1, 1, 2)  

 

(1.10, 0.33, 6.12, 6.74) 

(1, 1, 1, 1, 2)  

 

(1.03, 0.10, 12.81, 12.94) 

(1, 1, 1, 1, 1)  

 

(1.07, 0.26, 6.12, 6.53) 

(1, 1, 1, 1, 2) 

 

(1.01, 0.12, 12.81, 12.99) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.14, 12.81, 13.07) 

(1, 1, 1, 1, 1) 

  1.80 
(1.03, 0.17, 5.44, 5.59) 

(1, 1, 1, 1, 1)  

 

(1.03, 0.18, 5.44, 5.60) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.07, 12.88, 12.94) 

(1, 1, 1, 1, 1)  

 

(1.02, 0.13, 5.44, 5.54) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.07, 12.88, 12.95) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.08, 12.88, 12.97) 

(1, 1, 1, 1, 1) 

  2.00 
(1.01, 0.08, 4.77, 4.78) 

(1, 1, 1, 1, 1)  

 

(1.01, 0.09, 5.10, 4.80) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.03, 12.85, 12.86) 

(1, 1, 1, 1, 1)  

 

(1.00, 0.07, 4.77, 4.79) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.05, 12.85, 12.88) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.04, 12.85, 12.87) 

(1, 1, 1, 1, 1) 

  2.50 
(1.00, 0.01, 3.54, 3.54) 

(1, 1, 1, 1, 1)  

 

(1.00, 0.01, 3.54, 3.54) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.01, 12.17, 12.17) 

(1, 1, 1, 1, 1)  

 

(1.00, 0.00, 3.53, 3.54) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.01, 12.17, 12.17) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.01, 12.17, 12.17) 

(1, 1, 1, 1, 1) 

 AEQL 41.22 40.88 28.10 34.83 27.68 27.21 

(𝒏𝟏, 𝒏𝟐) (3, 5) (3, 5) (3, 10) (3, 5) (3, 10) (3, 10) 

             (𝑳𝟏, L)                                                           

            𝑳𝟐 

(0.02527, 3.088) 

3.2100 
(0.02549, 3.091) 

3.2010 

(0.6740, 5.7150)  

3.3102                                                                                                            

(0.02544, 3.088)  

3.1503                                                                                                           
(0.6736, 5.7150)  

2.999                                                                                                            

(0.6742, 5.7155)  

2.945                                                                                                            
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5.2 ARL profiles of the Case U SSDS 𝑿̅ scheme using Case K optimal design parameters 

In this sub-section, we investigate the ARL profile behaviour of the proposed SSDS 𝑋̅ scheme 

when the Case U performance is obtained using the Case K optimal design parameters (as 

discussed in Malela-Majika et al. (2019)) instead of the Case U optimal design parameters. To 

evaluate the impact of using the Case K optimal design parameters in Case U, the percentage 

difference (%𝐷𝑖𝑓𝑓) between the Case U OOC 𝐴𝑅𝐿 (denoted as 𝐴𝑅𝐿𝛿𝑈
) and Case K OOC 𝐴𝑅𝐿 

(denoted as 𝐴𝑅𝐿𝛿𝐾
) is calculated as follows: 

%𝐷𝑖𝑓𝑓 = (
𝐴𝑅𝐿𝛿𝑈

− 𝐴𝑅𝐿𝛿𝐾

𝐴𝑅𝐿𝛿𝐾

) × 100 (33) 

Table 5 displays the 𝐴𝑅𝐿𝛿𝑈
 and 𝐴𝑅𝐿𝛿𝐾

 (last column) values using the Case K optimal design 

parameters when 𝑛 ∈ {2, 5}, 𝑛1 ∈ {2, 5}, 𝑛2 ∈ {2, 5, 8, 11} and nominal 𝐴𝑅𝐿0 of 370.4. In 

Table 5, 𝑚 = ∞ denotes the parameters known case (i.e. Case K). From Table 5, it can be 

noticed that the proposed SSDS 𝑋̅ scheme yields very large 𝐴𝑅𝐿𝛿𝑈
 for small Phase I sample 

size. For instance, when 𝛿 = 0.5 and (𝑛, 𝑛1, 𝑛2) = (2, 2, 2) for a nominal 𝐴𝑅𝐿0 value of 370.4, 

the SSDS 𝑋̅ scheme yields ARL values of 160.2 and 79.41 when 𝑚 = 25 and 𝑚 = ∞, 

respectively; revealing a 101.7% percentage difference as compared to the Case K ARL value. 

Moreover, the results in Table 5 show that, as the Phase I sample size increases, the %𝐷𝑖𝑓𝑓 

decreases considerably. For a large Phase I sample size (e.g. 𝑚 = 400), the %𝐷𝑖𝑓𝑓 is less than 

1%, meaning that the Case U SSDS 𝑋̅ scheme performs as if the optimal design parameters 

were known. Therefore, it is very important to know the number of Phase I observations for 

which the proposed scheme performs as if it was in Case K. As we can see from Table 5, this 

will depend on the average sample size as well as the Stage 1 and Stage 2 sample sizes. The 

finding from Table 5 also shows that the larger the average sample size, the higher the %𝐷𝑖𝑓𝑓.  

Table 5. Case U and Case K OOC 𝐴𝑅𝐿 (first row) and %𝐷𝑖𝑓𝑓 (second row) of the SSDS scheme 

using the Case K optimal design parameters when 𝑛 ∈ {2, 5}, 𝑛1 ∈ {2, 5} and 𝑛2 ∈ {2, 5, 8, 11} 

when 𝑁𝐴𝑅𝐿0 = 370.4 

𝒏 (𝒏𝟏, 𝒏𝟐) 
Case K Optimal 

parameters (𝑳𝟏, 𝑳, 𝑳𝟐) 
𝜹 𝒎 

25 50 100 200 300 400 ∞ 

2 

(2, 2) (2.910, 3.057, 2.405) 

0.5 160.20 112.64 101.41 82.01 81.11 80.01 79.41 

 101.7% 41.8% 27.7% 3.3% 2.1% 0.8%  

1.0 30.14 30.19 24.58 18.71 17.14 15.48 15.43 

 95.3% 95.7% 59.3% 21.3% 11.1% 0.3%  

1.5 11.16 8.19 6.37 5.54 5.00 4.74 4.73 

 135.9% 73.2% 34.7% 17.1% 5.7% 0.2%  

2.0 5.13 3.31 3.00 2.64 2.39 2.20 2.18 

 135.3% 51.8% 37.6% 21.1% 9.6% 0.9%  

2.5 3.36 2.24 2.24 2.03 1.88 1.41 1.40 

   140.0% 60.0% 60.0% 45.0% 34.3% 0.7%  

(2, 8) (2.975, 3.005, 2.931) 

0.5 164.20 95.02 87.64 83.63 82.23 81.09 80.34 

 104.4% 18.3% 9.1% 4.1% 2.4% 0.9%  

1.0 32.11 26.62 23.13 19.24 17.44 16.03 15.97 
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 101.1% 66.7% 44.8% 20.5% 9.2% 0.4%  

1.5 12.94 9.04 7.18 5.70 5.02 4.82 4.77 

 171.3% 89.5% 50.5% 19.5% 5.2% 1.0%  

2.0 6.07 3.56 2.98 2.66 2.37 2.29 2.27 

 167.4% 56.8% 31.3% 17.2% 4.4% 0.9%  

2.5 4.01 2.62 2.21 2.05 1.76 1.44 1.43  
   180.4% 83.2% 54.5% 43.4% 23.1% 0.7%  

(2, 11) (2.991, 3.00, 2.998) 

0.5 165.18 96.21 88.07 83.61 82.00 81.18 80.74 

 104.6% 19.2% 9.1% 3.6% 1.6% 0.5%  

1.0 34.05 28.19 24.13 19.31 18.07 16.73 16.66 

 104.4% 69.2% 44.8% 15.9% 8.5% 0.4%  

1.5 13.71 12.63 7.25 5.82 5.38 5.00 4.96 

 176.4% 154.6% 46.2% 17.3% 8.5% 0.8%  

2.0 6.60 6.11 2.99 2.67 2.49 2.31 2.29 

 188.2% 166.8% 30.6% 16.6% 8.7% 0.9%  

2.5 4.26 4.38 2.29 2.24 2.03 1.76 1.75 

    143.4% 150.3% 30.9% 28.0% 16.0% 0.6%  

 

Table 5. (continues) 

𝒏 (𝒏𝟏, 𝒏𝟐) 
Case K Optimal 

parameters (𝑳𝟏, 𝑳, 𝑳𝟐) 
𝜹 𝒎 

25 50 100 200 300 400 ∞ 

5 

(2, 11) (1.094, 3.234, 3.010) 

0.5 116.33 30.21 22.07 22.51 21.02 19.40 19.35 

 501.2% 56.1% 14.1% 16.3% 8.6% 0.3%  

1.0 24.42 4.23 3.72 3.31 2.89 2.44 2.39 

 921.8% 77.0% 55.6% 38.5% 20.9% 2.1%  

1.5 9.06 2.51 2.04 1.69 1.61 1.49 1.48 

 512.2% 69.6% 37.8% 14.2% 8.8% 0.7%  

2.0 3.10 2.08 1.63 1.39 1.26 1.13 1.12 

 176.8% 85.7% 45.5% 24.1% 12.5% 0.9%  

2.5 2.00 1.61 1.39 1.22 1.12 1.04 1.02 

 96.1% 57.8% 36.3% 19.6% 9.8% 2.0%  

(5, 5) (2.993, 3.001, 3.000) 

0.5 120.76 41.47 32.04 29.11 27.77 26.43 26.29 

 359.3% 57.7% 21.9% 10.7% 5.6% 0.5%  

1.0 22.01 9.21 6.36 4.71 4.04 3.87 3.86 

 470.2% 138.6% 64.8% 22.0% 4.7% 0.3%  

1.5 8.86 4.92 2.28 1.61 1.50 1.42 1.42 

 523.9% 246.5% 60.6% 13.4% 5.6% 0.0%  

2.0 3.97 2.73 1.94 1.40 1.26 1.10 1.09 

 264.2% 150.5% 78.0% 28.4% 15.6% 0.9%  

2.5 3.45 1.87 1.47 1.19 1.10 1.03 1.02 

   235.0% 81.6% 42.7% 15.5% 6.8% 0.0%  

(5, 8) (2.993, 3.001, 2.998) 

0.5 104.31 26.42 21.72 20.17 19.08 18.71 18.61 

 460.5% 42.0% 16.7% 8.4% 2.5% 0.5%  

1.0 21.79 7.26 5.48 5.01 3.04 2.09 2.09 

 942.6% 247.4% 162.2% 139.7% 45.5% 0.0%  

1.5 7.08 4.54 2.19 2.01 1.63 1.24 1.22 

 475.6% 269.1% 78.0% 63.4% 32.5% 0.8%  

2.0 3.31 2.80 1.79 1.53 1.36 1.07 1.06 

 212.3% 164.2% 68.9% 44.3% 28.3% 0.9%  

2.5 2.48 1.74 1.41 1.34 1.20 1.02 1.01 

   145.5% 72.3% 39.6% 32.7% 18.8% 1.0%  

(5, 11) (2.996, 3.000, 2.999) 

0.5 99.17 25.45 21.39 19.15 17.82 17.23 17.21 

 476.2% 47.9% 24.3% 11.3% 3.5% 0.1%  

1.0 22.84 7.42 5.47 4.93 3.00 2.11 2.11 

 982.5% 251.7% 159.2% 133.6% 42.2% 0.0%  

1.5 6.59 4.50 2.16 1.97 1.61 1.15 1.14 

 478.1% 294.7% 89.5% 72.8% 41.2% 0.9%  

2.0 3.22 2.77 1.77 1.49 1.33 1.09 1.07 

 198.1% 156.5% 63.9% 38.0% 23.1% 0.9%  

2.5 2.29 1.70 1.39 1.33 1.21 1.02 1.00 

    126.7% 68.3% 37.6% 31.7% 19.8% 1.0%  
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Therefore, to secure stability and better OOC performance in Phase II for the proposed SSDS 

𝑋̅ scheme, the operator must either use a high desired Phase I sample size or choose the 

appropriate design parameters as suggested in Tables 1 to 4. 

 

5.3 Performance comparison 

In this section, the proposed Case U SSDS 𝑋̅ scheme is compared to a number of well-known 

Case U monitoring schemes including the existing NSSDS 𝑋̅, NSS and side-sensitive synthetic 

Shewhart 𝑋̅, exponentially weighted moving average 𝑋̅ (denoted as 𝑋̅-EWMA (𝜆) where 𝜆 

represents the smoothing parameter) with 𝜆 = 0.1 and 0.5, cumulative sum 𝑋̅ (denoted as 𝑋̅-

CUSUM) monitoring schemes with estimated process parameters. The competing schemes are 

compared in terms of the AEQL, the ARARL and PCI values. Note that the monitoring scheme 

with a small AEQL value is considered to be superior in performance for the range of shifts 

under consideration. In this example, the proposed scheme is considered to be the benchmark 

scheme. Therefore, for the chosen competing schemes, if its PCI and ARARL values are less 

than one, then that particular competing scheme is declared as more efficient than the proposed 

Case U SSDS 𝑋̅ scheme. However, if the PCI and ARARL values are greater than one, then the 

competing scheme is declared as less efficient than the proposed SSDS 𝑋̅ scheme. When the 

PCI and ARARL values are equal to one, then the competing scheme and the proposed SSDS 

𝑋̅ scheme are equivalent. For a fair comparison, the performance of the competing schemes are 

investigated when (𝛿𝑚𝑖𝑛,𝛿𝑚𝑎𝑥) = (0,2.5), m∈{50,100}, 𝐴𝑆𝑆0 ∈{5,8} corresponding to 

𝑛 ∈{5,8},  𝑛1 ∈{3,5}, 𝑛2 ∈{5, 8} and a nominal 𝐴𝑅𝐿0 = 370.4. The shifts sizes are divided 

into three groups which are “small” (0< 𝛿 ≤ 0.7), “small to moderate” (0< 𝛿 ≤1.6), and 

“small to large” (0< 𝛿 ≤2.5). In Table 6, the proposed scheme is compared to the foregoing 

monitoring schemes in terms of the overall performance. The results corresponding to the best 

monitoring scheme are highlighted in bold.   
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Table 6. Case U monitoring schemes performance comparison when n = 𝐴𝑆𝑆0 ∈ {5, 8}, 𝑛1 ∈ {3, 5}, 𝑛2 ∈ {5, 8}, m ∈ {50, 100}, 𝛿𝑚𝑖𝑛 = 0 and 

𝛿𝑚𝑎𝑥 = 2.5 with a nominal 𝐴𝑅𝐿0 of 370.4 

 

*Shift 

Performance 

measures 

 Control charts 

(𝒏𝟏, 𝒏𝟐) 

 

m NSS 

Synthetic 𝑿̅ 

SS 

Synthetic 𝑿̅ 

𝑿̅-

EWMA(0.1) 

𝑿̅-

EWMA(0.5) 
𝑿̅-CUSUM NSSDS 𝑿̅ SSDS 𝑿̅ 

 𝑨𝑺𝑺𝟎 = 𝒏 

Small 
AEQL 98.21 82.33 70.56 119.12 96.01 84.13 76.23 

(3, 5) 

 

50 

ARARL 1.24 1.10 0.91 1.48 1.23 1.13 1.00  
 PCI 1.29 1.08 0.93 1.56 1.26 1.10 1.00  

Small to 

moderate 

AEQL 104.24 80.32 76.79 120.24 103.72 74.22 70.76  
ARARL 1.49 1.17 1.11 1.64 1.50 1.08 1.00 5 

PCI 1.47 1.14 1.09 1.70 1.47 1.05 1.00  

Small to 

large 

AEQL 86.04 70.43 94.18 110.44 100.37 67.99 62.32  
ARARL 1.41 1.11 1.47 1.68 1.56 1.13 1.00  

PCI 1.38 1.13 1.51 1.77 1.61 1.09 1.00  

Small 
AEQL 72.89 68.16 60.30 73.05 71.18 68.29 62.46 

(5, 8) 

 
ARARL 1.20 1.14 0.95 1.21 1.14 1.12 1.00  

PCI 1.17 1.09 0.97 1.17 1.14 1.09 1.00  

Small to 

moderate 

AEQL 71.51 60.16 61.47 79.09 66.34 59.35 54.24  
ARARL 1.34 1.15 1.14 1.52 1.20 1.12 1.00 8 

PCI 1.32 1.11 1.13 1.46 1.22 1.09 1.00  

Small to 

large 

AEQL 45.04 40.37 50.56 61.40 59.48 38.55 33.59  
ARARL 1.36 1.31 1.40 1.72 1.63 1.17 1.00  

PCI 1.34 1.20 1.45 1.71 1.65 1.15 1.00  

Small 
AEQL 75.43 67.68 54.44 103.57 86.12 71.07 63.40 

(3, 5) 

 

 

100 

ARARL 1.17 1.03 0.82 1.57 1.32 1.14 1.00  
 PCI 1.19 1.07 0.86 1.63 1.36 1.12 1.00  

Small to 

moderate 

AEQL 79.69 61.21 59.85 85.59 75.05 56.10 51.94  
ARARL 1.49 1.23 1.21 1.43 1.36 1.13 1.00 5 

PCI 1.53 1.18 1.15 1.65 1.44 1.08 1.00  

Small to 

large 

AEQL 67.65 51.18 71.02 83.51 68.71 53.95 46.82  
ARARL 1.48 1.12 1.41 1.74 1.49 1.19 1.00  

PCI 1.44 1.09 1.52 1.78 1.47 1.15 1.00  

Small 
AEQL 72.43 65.68 53.51 99.43 88.09 70.12 61.25 

(5, 8) 

 
ARARL 1.21 1.10 0.84 1.58 1.41 1.17 1.00  

PCI 1.18 1.07 0.87 1.62 1.44 1.14 1.00  

Small to 

moderate 

AEQL 75.45 59.06 60.76 83.28 71.26 53.23 49.59  
ARARL 1.46 1.21 1.26 1.56 1.47 1.10 1.00 8 

PCI 1.52 1.19 1.23 1.68 1.44 1.07 1.00  

Small to 

large 

AEQL 65.69 59.34 68.13 74.79 66.52 51.48 47.19  
ARARL 1.42 1.19 1.45 1.47 1.36 1.06 1.00  

PCI 1.39 1.26 1.44 1.58 1.41 1.09 1.00  

 * Small: (0<𝛿 ≤0.7), Small to Moderate: (0<𝛿 ≤1.6) and Small to Large: (0<𝛿 ≤2.5). 
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From Table 6, it can be seen that regardless of the sample sizes, the EWMA (0.1) monitoring 

scheme outperforms the proposed scheme for “small” shift (𝛿𝑚𝑎𝑥 = 0.7) in the process mean. 

However, for “small to moderate” shifts (i.e. 𝛿𝑚𝑎𝑥 = 1.6) as well as for the “small to large” 

shifts (i.e. 𝛿𝑚𝑎𝑥 = 2.5), the proposed monitoring scheme outperforms all the competing 

schemes considered in this paper. These findings are also valid in Case K, i.e. the proposed 

SSDS 𝑋̅ monitoring scheme is superior to all the considered competing schemes in Case K. 

Due to restriction on the number of pages, the table for the Case K performance comparison is 

not provided in this paper; but for more details on this, readers are referred to Malela-Majika 

et al. (2019).  

The findings in Table 6 are also confirmed in terms of the ARARL and PCI values. When 

comparing the existing DS 𝑋̅ scheme to the proposed scheme, we can observe the following: 

for “small” shifts, the SSDS 𝑋̅ monitoring scheme improves the existing DS 𝑋̅ scheme between 

10% and 17%. From “small to moderate” shifts, the overall improvement is between 5% and 

9%. From “small to large” shifts, the overall improvement is between 7% and 15%.  

 

6. Illustrative example 

In this section, the implementation and application of the proposed SSDS 𝑋̅ scheme is 

illustrated using the data set from Zaman et al. (2017). The data gives the information on the 

inside diameter of cylinder bores in an engine block and contain thirty-five samples, each of 

size n = 5. In this implementation example, each sample is considered to be a master sample 

which is divided into two subgroups of sizes 2 and 3 (i.e. 𝑛1 = 2 and 𝑛2 = 3), in Stages 1 and 

2, respectively, such that 𝑛 = 𝑛1 + 𝑛2 = 5. The estimated IC process mean and standard 

deviation (using Equations (11) and (12)) for the inside diameter of cylinder bores are 𝜇̂0 = 

200.15 and 𝜎̂0 = 3.47 millimeters (mm), respectively. The shift detection ability of the proposed 

Case U SSDS 𝑋̅ scheme is also compared to the one of the existing Case U NSSDS  𝑋̅ scheme.   

For (𝑛1, 𝑛2) = (2, 3) and ASS0 = 3, the optimal combinations (𝐿1
∗ , 𝐿∗, 𝐿2

∗ ) of the Case U SSDS 

𝑋̅ scheme and the Case U NSSDS 𝑋̅  scheme are found to be equal to (2.212, 2.576, 2.305) and 

(2.306, 2.614, 2.418), respectively, so that these schemes both satisfied 𝐴𝑅𝐿0 = 370.4. A plot 

of the charting statistics 𝑍1𝑖 and 𝑍𝑖  (i.e. for Stages 1 and 2) of the two monitoring schemes are 

shown in Figure 3. Table 7 illustrates the operation of the Case U’s Phase II NSSDS and SSDS 

𝑋̅ schemes using the data set on the inside diameter of cylinder bores.  
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It is seen that the NSSDS 𝑋̅ scheme does not give a signal at Stage 1. However, at the 16th, 

19th and 26th sampling time, there was a need for a second sample and the process moved to 

Stage 2. The plotting statistics of the NSSDS 𝑋̅ scheme at Stage 2, 𝑍𝑖, at the 16th, 19th and 26th 

sampling time are equal to –0.425, 1.015 and 3.176, respectively. It can be seen that 𝑍16 and 

𝑍19 plot between −𝐿2 =-2.418 and 𝐿2 =2.418, which means that the DS 𝑋̅ scheme does not 

signal on the 16th and 19th sampling time. Since 𝑍26 plots above 𝐿2, the NSSDS 𝑋̅ scheme gives 

a signal at the 26th sampling time (see Figure 3(a) and Table 7) for the first time in Stage 2. 
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(b) SSDS 𝑋̅ scheme 

Figure 3. The Case U NSSDS and SSDS 𝑋̅ schemes using the data set on the inside diameter 

of cylinder bores in an engine block 

 

 



25 

 
Table 7. Illustration of the operation of the NSSDS and SSDS 𝑋̅ schemes using the data set on the inside diameter of cylinder bores in an engine block 

 NSSDS 𝑋̅ chart SSDS 𝑋̅ chart 

Sample 
No 

𝑋̅1𝑖 𝑍1𝑖 
Take a 2nd  

Sample 
𝑋̅2𝑖 𝑋̅𝑖 𝑍𝑖 

Stage 1: 

NSSDS 𝑋̅ 

signal 

Stage 2: 

NSSDS 𝑋̅ 

signal 

𝑋̅1𝑖 𝑍1𝑖 
Take a 2nd  

Sample 
𝑋̅2𝑖 𝑋̅𝑖 𝑍𝑖 

Stage 1: 

SSDS 𝑋̅ 

signal 

Stage 2: 

SSDS 𝑋̅ 

signal 

1 203.5 1.3637 N    N   203.5 1.3637 N    N   

2 200.5 0.1409 N    N   200.5 0.1409 N    N   

3 201.5 0.5485 N    N   201.5 0.5485 N    N   

4 204 1.5674 N    N   204 1.5674 N    N   

5 197.5 -1.0818 N    N   197.5 -1.0818 N    N   

6 200.5 0.1409 N    N   200.5 0.1409 N    N   

7 202 0.7523 N    N   202 0.7523 N    N   

8 196.5 -1.4894 N    N   196.5 -1.4894 N    N   

9 199.5 -0.2667 N    N   199.5 -0.2667 N    N   

10 199 -0.4705 N    N   199 -0.4705 N    N   

11 204.5 1.7712 N    N   204.5 1.7712 N    N   

12 200.5 0.1409 N    N   200.5 0.1409 N    N   

13 200.5 0.1409 N    N   200.5 0.1409 N    N   

14 200.5 0.1409 N    N   200.5 0.1409 N    N   

15 200 -0.0629 N    N   200 -0.0629 N    N   

16 194 -2.5084 Y 203.67 199.8 -0.4253 N N 194 -2.5084 Y 203.67 199.8 -0.4253 N N 

17 202 0.7523 N    N   202 0.7523 N    N   

18 199.5 -0.2667 N    N   199.5 -0.2667 N    N   

19 206.5 2.5864 Y 197.33 201 1.0152 N N 206.5 2.5864 N    Y   

20 202 0.7523 N    N   202 0.7523 N    N   

21 201.5 0.5485 N    N   201.5 0.5485 N    N   

22 199.5 -0.2667 N    N   199.5 -0.2667 N    N   

23 198 -0.8780 N    N   198 -0.8780 N    N   

24 199 -0.4705 N    N   199 -0.4705 N    N   

25 200 -0.0629 N    N   200 -0.0629 N    N   

26 206 2.3826 Y 200.67 202.8 3.1760 N Y 206 2.3826 Y 200.67 202.8 3.1760 N Y 

27 203.5 1.3637 N    N   203.5 1.3637 N    N   

28 200 -0.0629 N    N   200 -0.0629 N    N   

29 198.5 -0.6743 N    N   198.5 -0.6743 N    N   

30 200 -0.0629 N    N   200 -0.0629 N    N   

31 200 -0.0629 N    N   200 -0.0629 N    N   

32 195.5 -1.8970 N    N   195.5 -1.8970 N    N   

33 200.5 0.1409 N    N   200.5 0.1409 N    N   

34 199 -0.4705 N    N   199 -0.4705 N    N   

35 202 0.7523 N       N   202 0.7523 N    N   

Note: N = No and Y = Yes. 
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The proposed SSDS 𝑋̅ scheme moves for the first time to Stage 2 at the 16th sampling time. At 

this sampling time, 𝑍16 is equal to -0.425. Since 𝑍16 ∈ (−𝐿2, 𝐿2) = (-2.305, 2.305), the proposed 

SSDS 𝑋̅ scheme does not give a signal on the 16th sampling time. However, on the 19th 

sampling time, Z1i (with, i = 19) equal to 2.5864 plots above L2 = 2.305. Therefore, the SSDS 

𝑋̅  scheme give a signal for the first time at the 19th sampling time in Stage 1 (see Figure 3(b) 

and Table 7). 

This example shows that the proposed SSDS 𝑋̅ scheme is more sensitive than the existing 

NSSDS 𝑋̅ scheme in monitoring Phase II samples when the unknown design parameters are 

estimated from an IC Phase I sample. Therefore, practitioners in the industrial and non-

industrial environments are advised to use the proposed SSDS 𝑋̅ monitoring scheme instead of 

the existing NSSDS 𝑋̅ scheme regardless of the of the size of the shift to be detected. 

 

7. Synthetic SSDS scheme when parameters are unknown 

The SSDS 𝑋̅ control chart can be further extended by adding a synthetic scheme, i.e. by adding 

a CRL (conforming run-length) scheme with a single integer control limit 𝐻 ≥ 1. These 

schemes were originally proposed in Wu and Spedding (2000) and more recently reviewed in 

Rakitzis et al. (2019). Khoo et al. (2011) were the first to integrate the operation of a NSSDS 

scheme with the CRL scheme using the regions given in Figure 4(a) to formulate the non-side-

sensitive (NSS) synthetic double sampling (DS) scheme. The latter scheme was also discussed 

in You (2017) from a different perspective. Costa and Machado (2015) and Malela-Majika and 

Rapoo (2019) proposed the side-sensitive versions of Khoo et al. (2011) scheme that had an 

improved performance. These side-sensitive versions are called the standard, revised and 

modified side-sensitive (denoted by SSS, RSS and MSS) synthetic DS schemes – these are 

shown in Figures 4(b) and (c), respectively. For Case U, the NSS synthetic DS scheme is 

studied in You et al. (2015) and You (2018). In this section, we briefly focus on the MSS 

synthetic DS scheme.     
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(a) NSS synthetic DS regions 

 
(b) SSS and RSS synthetic DS regions 

 
(c) MSS synthetic DS regions 

Figure 4: The charting regions in stages 1 and 2 of the synthetic DS scheme 
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While the basic double sampling schemes have two main designs for the charting regions (i.e. 

NSSDS and SSDS) and three design parameters (i.e. 𝐿, 𝐿1, 𝐿2); however, the synthetic DS 

schemes have four main designs for the charting regions (i.e. NSS, SSS, RSS and MSS) and 

four design parameters (i.e. 𝐿, 𝐿1, 𝐿2, H). Moreover, the synthetic DS schemes do not issue an 

OOC signal at the first sample point that falls on the nonconforming regions (i.e., the ‘OOC 

regions’ in Figure 1). That is, the process waits until a second sample point falls on the 

nonconforming region and, if these two nonconforming samples are relatively close to each 

other (say, CRL ≤ H), then an OOC signal is triggered. The charting regions are divided into 

ten intervals – see Figure 4(c), i.e. C+ = [𝐿,+∞), B+ = [𝐿1, 𝐿), A+ = [0, 𝐿1), A− = (−𝐿1, 0], B− 

= (−𝐿2, −𝐿1], C− = (−∞,−𝐿], D+ = [𝐿2, +∞), E+ = [0, 𝐿2), E− = (−𝐿2, 0] and D− = (−∞, 

−𝐿2].  

 

7.1 Operation of the MSS synthetic DS scheme 

The Phase I implementation of the MSS synthetic DS scheme is the same that discussed above 

for the SSDS scheme; however, the Phase II operation is as follows: 

1. Set the optimal design parameters (𝑚, 𝑛1, 𝑛2, 𝐿1, 𝐿2, 𝐿, 𝐻). 

2. Take a sample of size 𝑛1 and calculate the standardised statistic using Equation (13) at 

the 𝑖𝑡ℎ sampling time of the first sample. 

3. (a) If 𝑍̂1𝑖 ∈ A+, the 𝑖𝑡ℎ sample is an upper conforming, hence return to Step 2. 

(b) If 𝑍̂1𝑖 ∈ A−, the 𝑖𝑡ℎ sample is a lower conforming, hence return to Step 2. 

4. (a) If 𝑍̂1𝑖 ∈ C+, the 𝑖𝑡ℎ sample is an upper nonconforming; then go to Step 7(a). 

(b) If 𝑍̂1𝑖 ∈ C−, the 𝑖𝑡ℎ sample is a lower nonconforming; then go to Step 7(b). 

5. If 𝑍̂1𝑖 ∈ B+ or if 𝑍̂1𝑖 ∈ B−, take a second sample of size 𝑛2 (𝑛2 > 𝑛1) and calculate the 

standardised statistic using Equation (14) at the 𝑖𝑡ℎ sampling time at Stage 2. 

6. (a) If 𝑍̂1𝑖 ∈ B+ and 𝑍̂𝑖 ∈ D+, the 𝑖𝑡ℎ sample is an upper nonconforming; then go to Step 

7(a).  

(b) If 𝑍̂1𝑖 ∈ B− and 𝑍̂𝑖 ∈ D−, the 𝑖𝑡ℎ sample is a lower nonconforming; then go to Step 

7(b). Otherwise, return to Step 2. 

7. (a) Count the number of upper conforming samples between two consecutive upper 

nonconforming samples including the second upper nonconforming sample (i.e., denote 

this as 𝐶𝑅𝐿𝑈
𝑀𝑆𝑆).  
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(b) Count the number of lower conforming samples between two consecutive lower 

nonconforming samples including the present lower nonconforming sample (i.e., 

denote this as 𝐶𝑅𝐿𝐿
𝑀𝑆𝑆). 

8. If 𝐶𝑅𝐿𝑈
𝑀𝑆𝑆 ≤ 𝐻 (or 𝐶𝑅𝐿𝐿

𝑀𝑆𝑆 ≤ 𝐻), the process is OOC; then go to Step 9. Otherwise, 

the process is IC, hence return to Step 2. 

9. Identify and remove the assignable cause(s); then go to Step 2.  

 

7.2 Run-length properties of the MSS synthetic DS scheme  

In order to obtain the run-length properties of the MSS synthetic DS 𝑋̅ scheme, the Markov 

chain matrix similar in principle to that proposed in Malela-Majika and Rapoo (2019) can be 

used. This method consist of defining a transition probability matrix (TPM) which is denoted 

as 𝑷, with 2𝐻 + 1 transient states and one absorbing state. Therefore, the TPM of the MSS 

synthetic DS 𝑋̅ scheme has the following structure: 

𝑷 = [
𝑸 𝒓

𝟎𝑇 1
] = 

 0 0 ⋯ 0 0 𝑝0 𝑝1𝐿 0 ⋯ 0 0 𝑝1𝑈  

 𝑝0𝑈 0 ⋯ 0 0 𝑝0𝐿 𝑝1𝐿 0 ⋯ 0 0 𝑝1𝑈  

 0 𝑝0𝑈 ⋯ 0 0 𝑝0𝐿 𝑝1𝐿 0 ⋯ 0 0 𝑝1𝑈  

 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

 0 0 ⋯ 𝑝0𝑈 0 𝑝0𝐿 𝑝1𝐿 0 ⋯ 0 0 𝑝1𝑈  

 0 0 ⋯ 0 𝑝1𝑈 𝑝0 𝑝1𝐿 0 ⋯ 0 0 0  

 0 0 ⋯ 0 𝑝1𝑈 𝑝0𝑈 0 𝑝0𝐿 ⋯ 0 0 𝑝1𝐿  

 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

 0 0 … 0 𝑝1𝑈 𝑝0𝑈 0 0 … 𝑝0𝐿 0 𝑝1𝐿  

 0 0 ⋯ 0 𝑝1𝑈 𝑝0𝑈 0 0 ⋯ 0 𝑝0𝐿 𝑝1𝐿  

 0 0 ⋯ 0 𝑝1𝑈 𝑝0 0 0 ⋯ 0 0 𝑝1𝐿  

 0 0 ⋯ 0 0 0 0 0 ⋯ 0 0 1  
 

(34) 

where 𝟎 = (0 0 … 0)𝑇, 𝑸 is the (2𝐻 + 1) × (2𝐻 + 1) matrix of transient probabilities, 𝒓 is a 

(2𝐻 + 1) × 1 vector that satisfies 𝒓 = 𝟏 − 𝑸𝟏 with 𝟏 = (1 1 …  1)𝑇 and the elements of the 

TPM are defined as: 

𝑝0𝐿 = Φ(𝛿√𝑛1) − Φ(−𝐿1 + 𝛿√𝑛1) + ∫
𝐴∗−Φ (𝑟𝑐𝛿 − 𝑧√

𝑛1

𝑛2
) 𝜙(𝑧)𝑑𝑧, 

𝑝0𝑈 = Φ(𝐿1 + 𝛿√𝑛1) − Φ(𝛿√𝑛1) + ∫
𝐴∗+ [Φ (𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√

𝑛1

𝑛2
) − Φ (𝑟𝑐𝛿 − 𝑧√

𝑛1

𝑛2
)] 𝜙(𝑧)𝑑𝑧, 

𝑝1𝐿 = Φ(−𝐿 + 𝛿√𝑛1) + ∫
𝐵∗−Φ (−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√

𝑛1

𝑛2
) 𝜙(𝑧)𝑑𝑧, 
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𝑝1𝑈 = 1 − Φ(𝐿 + 𝛿√𝑛1) + ∫
𝐵∗+ [1 − Φ (𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√

𝑛1

𝑛2
)] 𝜙(𝑧)𝑑𝑧, 

𝑝0 = 𝑝0𝐿 + 𝑝0𝑈, 

where 𝐴∗− = (−𝐿1 + 𝛿√𝑛1, 0], 𝐴∗+ = [𝛿√𝑛1, 𝐿1 + 𝛿√𝑛1), 𝐵∗− = [−𝐿 + 𝛿√𝑛1,−𝐿1 + 𝛿√𝑛1) 

and 𝐵∗+ = (𝐿1 + 𝛿√𝑛1, 𝐿 + 𝛿√𝑛1]. 

Thus, the zero-state c.d.f. for calculating the percentile run-length is given by   

𝐹𝑅𝐿(ℓ) = 1 − ∫ ∫ (𝒒𝑇𝑸ℓ𝟏)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢,
+∞

0

+∞

−∞

 (35) 

where qT = (0,…,0,1,0,…,0) with the unique “1” located at the (𝐻 + 1)th position of the TPM, 

ℓ ∈ {1, 2, 3, …}, 𝑓𝑈(𝑢) and 𝑓𝑉(𝑣) are defined in Equations (17) and (18). Consequently, the 

unconditional ARL and SDRL of the MSS synthetic DS scheme are given by 

𝐴𝑅𝐿 = ∫ ∫ 𝒒𝑇(𝑰 − 𝑸)−1𝟏 𝑓𝑈(𝑢) 𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢,
+∞

0

+∞

−∞

 
 

and (36) 

𝑆𝐷𝑅𝐿 = ∫ ∫ [2𝒒𝑇(𝑰 − 𝑸)−2𝑸𝟏 − 𝐴𝑅𝐿2 + 𝐴𝑅𝐿]
1
2 𝑓𝑈(𝑢) 𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢,

+∞

0

+∞

−∞

 
 

respectively, where 𝐼 is a (2𝐻 + 1) × (2𝐻 + 1) identity matrix. For more details on the above 

discussion, readers are referred to Davis and Woodall (2002), Zhang et al. (2011), You et al. 

(2015), You (2018), Shongwe and Graham (2018), Rakitzis et al. (2019) and Malela-Majika 

and Rapoo (2019). 

 

7.3 Performance comparison 

In this section, the performance of the MSS synthetic DS 𝑋̅ scheme is briefly investigated and 

compared to one of the proposed SSDS 𝑋̅ scheme. Table 8 shows that the sensitivity of the 

MSS synthetic DS 𝑋̅ scheme depends on the Phase I sample size (i.e., 𝑚) and the CRL scheme 

control limit (i.e., 𝐻). The larger the value of m, the more sensitive the MSS synthetic DS 𝑋̅ 

scheme is. Moreover, the larger the design parameter H, the more sensitive the MSS synthetic 

DS 𝑋̅ scheme becomes. 
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Table 8. Performance comparison between the SSDS 𝑋̅ and MSS synthetic 𝑋̅ schemes when 𝑛 = 5, 𝑚 ∈ {50, 100}, 𝐻 ∈ {1, 2} for a nominal 

𝐴𝑅𝐿0 = 370.4 
(ARL, SDRL)  

(P5, P25, P50, P75, P95)                                  

 m = 50 

 

 

m = 100 

Shift(δ

) 
SSDS MSS Synthetic DS: (H = 1) MSS Synthetic DS: (H = 2) SSDS MSS Synthetic DS: (H = 1) MSS Synthetic DS: (H = 2) 

0.00 
(370.4, 369.67) 

(20, 108, 255, 513, 1103) 

 

(370.76, 430.96) 

(2, 62, 227, 530, 1230) 

 

(369.72, 452.90) 

(2, 51, 213, 523, 1270) 

 

(370.4, 370.85) 

(20, 108, 258, 500, 1112) 

 

(369.09, 412.76) 

(2, 69, 237, 527, 1195) 

 

(370.94, 427.14) 

(2, 61, 230, 532, 1227) 

 
0.10 

(349.72, 344.22) 
(23, 133, 312, 618, 1342) 

 

(299.01, 357.95) 
(2, 45, 176, 422, 1013) 

 

(298.03, 372.74) 
(2, 35, 168, 422, 1055) 

 

(280.74, 279.53) 
(19, 109, 263, 533, 1128) 

5.22,,,  

(284.66, 325.68) 
(2, 52, 183, 416, 965) 

 

(278.88, 317.70) 
(2, 44, 175, 406, 941) 

 
0.20 

(329.95, 328.82) 

(17, 93, 226, 460, 1000) 
( ) 

() 

 

(189.20, 233.80) 

(2, 24, 108, 269, 654) 
( ) 

() 

 

(187.46, 253.50) 

(2, 18, 97, 258, 680) 
( ) 

() 

 

(222.82, 222.43) 

(12, 65, 154, 309, 662) 
( ) 

() 

 

(177.47, 207.22) 

(2, 27, 107, 254.600) 
( ) 

() 

 

(168.32, 205.79) 

(2, 19, 97, 238, 587) 
( ) 

() 

 

0.30 
(184.41, 188.05) 

(11, 52, 125, 252, 566) 

 

(101.92, 134.13) 

(1, 10, 52, 141, 370) 

 

(99.44, 142.18) 

(1, 8, 46, 134, 372) 

 

(110.50, 109.24) 

(6, 33, 79, 153, 325) 

 

(88.89, 109.26) 

(1, 10, 51, 126, 311) 

 

(85.69, 109.62) 

(1, 8, 45, 121, 307) 

 
0.40 

(96.62, 95.25) 
(6, 29, 68, 133, 287) 

 

(53.60, 75.29) 
(1, 5, 25, 72, 200) 

 

(51.13, 78.08) 
(1, 5, 20, 66, 199) 

 

(55.06, 54.33) 
(3, 16, 39, 76, 164) 

 

(44.16, 56.79) 
(1, 5, 23, 62, 159) 

 

(41.85, 56.13) 
(1, 5, 19, 58, 157) 

 
0.50 

(49.86, 48.63) 

(3, 15, 35, 69, 145) 

19 

(28.40, 40.23) 

(1, 3, 13, 37, 108) 

19 

(27.17, 43.52) 

(1, 3, 11, 34, 108) 

19 

(29.09, 29.01) 

(2, 9, 20, 40, 87) 

19 

(23.15, 30.03) 

(1, 3, 11, 32, 84) 

19 

(21.89, 30.05) 

(1, 3, 10, 30, 84) 

19 
0.60 

(27.34, 27.00)  
(2, 8, 19, 38, 81) 

 

(16.04, 23.03)  
(1, 2, 7, 21, 59) 

  

 (15.16, 24.05) 
(1, 2, 7, 19, 59)   

 

(16.68, 16.30)  
(1, 5, 12, 23, 49)  

 

(13.31, 16.78)  
(1, 2, 7, 18, 48)  

 

(12.37, 16.13)  
(1, 2, 6, 16, 47) 

 
0.70 

(15.95, 15.41) 

(1, 5, 11, 22, 47)  
 

(9.91, 13.83) 

(1, 2, 5, 12, 37)  
 

(9.22, 13.21) 

(1, 2, 4, 11, 35) 
 

(9.92, 9.48) 

(1, 3, 7, 14, 28) 
 

(8.46, 10.28) 

(1, 2, 5, 11, 29) 
 

(8.08, 10.06) 

(1, 2, 4, 11, 28) 
 

0.80 
(9.62, 9.07) 

(1, 3, 7, 13, 27) 

 

(6.55, 8.43) 

(1, 1, 3, 8, 23) 

 

(6.10, 8.23) 

(1, 1, 3, 8, 23) 

 

(6.27, 5.75) 

(1, 2, 4, 9, 18) 

 

(5.66, 6.47) 

(1, 1, 3, 7, 18) 

 

(5.65, 6.43) 

(1, 1, 3, 7, 19) 

 
0.90 

(6.29, 5.79) 

(1, 2, 4, 8, 18) 
 

(4.68, 5.61) 

(1, 1, 3, 6, 15) 
 

(4.30, 5.64) 

(1, 1, 2, 6, 15) 
 

(4.99, 2.42) 

(1, 1, 2, 4, 8) 
 

(4.19, 4.51) 

(1, 1, 3, 5, 13) 
 

(4.20, 4.64) 

(1, 1, 2, 5, 13) 
 

1.00 
(4.18, 3.60) 

(1, 2, 3, 6, 11) 

 

(3.56, 4.04) 

(1, 1, 2, 4, 11) 

 

(3.24, 3.65) 

(1, 1, 2, 4, 11) 

 

(4.23, 3.62) 

(1, 2, 3, 6, 11) 

 

(3.20, 3.27) 

(1, 1, 2, 4, 10) 

 

(3.21, 3.03) 

(1, 1, 2, 4, 10) 

 
1.20 

(2.28, 1.72) 
(1, 1, 2, 3, 6) 

 

(2.25, 2.16) 
(1, 1, 1, 3, 7) 

 

(2.05, 2.01) 
(1, 1, 1, 2, 6) 

 

(1.83, 1.24) 
(1, 1, 1, 2, 4) 

 

(2.19, 1.63) 
(1, 1, 1, 3, 6) 

 

(2.13, 1.66) 
(1, 1, 1, 2, 6) 

 
1.40 

(1.54, 0.90) 

(1, 1, 1, 2, 3)  
 

(1.55, 1.14) 

(1, 1, 1, 2, 4)  
 

(1.50, 1.09) 

(1, 1, 1, 2, 4)  
 

(1.34, 0.68) 

(1, 1, 1, 2, 3)  
 

(1.60, 1.15) 

(1, 1, 1, 2, 4)  
 

(1.61, 1.14) 

(1, 1, 1, 2, 4)  
 

1.60 
(1.20, 0.49) 

(1, 1, 1, 1, 2) 

 

(1.27, 0.72) 
(1, 1, 1, 1, 3) 

 

(1.21, 0.65) 
(1, 1, 1, 1, 3) 

 

(1.12, 0.37) 
(1, 1, 1, 1, 2) 

 

(1.31, 0.73) 
(1, 1, 1, 1, 3) 

 

(1.31, 0.71) 
(1, 1, 1, 1, 3)  

 
1.80 

(1.08, 0.29) 

(1, 1, 1, 1, 2) 
 

(1.10, 0.42) 

(1, 1, 1, 1, 2) 
 

(1.07, 0.38) 

(1, 1, 1, 1, 2) 
 

(1.04, 0.21) 

(1, 1, 1, 1, 1) 
 

(1.16, 0.48) 

(1, 1, 1, 1, 2) 
 

(1.16, 0.46) 

(1, 1, 1, 1, 2)  
 

 2.00 
(1.02, 0.15) 

(1, 1, 1, 1, 1) 

 

(1.04, 0.26) 

(1, 1, 1, 1, 2) 

 

(1.04, 0.22) 

(1, 1, 1, 1, 2) 

 

(1.02, 0.16) 

(1, 1, 1, 1, 1) 

 

(1.08, 0.31) 

(1, 1, 1, 1, 2) 

 

(1.09, 0.32) 

(1, 1, 1, 1, 2)  

 
2.50 

(1.00, 0.02) 
(1, 1, 1, 1, 1) 

 

(1.01, 0.11) 
(1, 1, 1, 1, 1) 

 

(1.00, 0.04) 
(1, 1, 1, 1, 1) 

 

(1.00, 0.01) 
(1, 1, 1, 1, 1) 

 

(1.01, 0.10) 
(1, 1, 1, 1, 1) 

 

(1.01, 0.11) 
(1, 1, 1, 1, 1)  

 AEQL 62.32 46.81 44.9 

 
46.82 42.52 41.43 

(𝑳𝟏, L)                                                   

𝑳𝟐 

(0.8018, 3.1071) 
3.2650 

(1.9326, 1.9599) 
2.4193 

(1.9534, 2.0948) 
2.4987 

(0.8093, 3.4354) 
3.1721 

(1.9173, 1.9639) 
2.3714 

(2.0112, 2.0583) 
2.4304 
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From Table 8, it can also be seen that the MSS synthetic DS 𝑋̅ scheme outperforms the 

proposed SSDS 𝑋̅ scheme for small shifts (i.e. 0 < 𝛿 ≤ 0.75) and moderate shifts (i.e. 0.75 <

𝛿 < 1.2) in the process mean for the given 𝐻 values. However, when 𝐻 = 1, for moderately 

large shifts (i.e. 1.2 ≤ 𝛿 < 1.5), the proposed SSDS 𝑋̅ monitoring scheme is slightly better 

than the MSS synthetic DS 𝑋̅ scheme; whereas, when 𝐻 = 2, the two monitoring schemes are 

similar in performance. For large shifts in the process mean, i.e. 𝛿 > 1.5, the two schemes are 

also similar  in performance when 𝐻 ∈ {1, 2}. It can also be observed that in terms of the 𝐴𝐸𝑄𝐿 

values (i.e. overall performance), the MSS synthetic DS 𝑋̅ scheme performs better than the 

SSDS 𝑋̅ scheme regardless of the magnitude of 𝐻. In terms of the 𝑃𝑅𝐿 values, the MSS 

synthetic DS 𝑋̅ scheme performs better than the proposed SSDS 𝑋̅ scheme for both small and 

moderate shifts. For large shifts, the two monitoring schemes perform almost similarly in 

detecting OOC signals in the process mean. 

 

8. Conclusion and recommendations 

In this paper, a SSDS 𝑋̅ monitoring scheme is proposed under the assumption of unknown 

process parameters. The performance of the proposed scheme is investigated in terms of the 

different characteristics of the run-length distribution as well as the ANOS, ASS and AEQL 

values. In terms of the AEQL, PCI and ARARL values, the proposed Case U SSDS 𝑋̅ scheme 

outperforms the competing schemes considered in this paper in many cases. Moreover, in terms 

of the ASS and ANOS values, the proposed monitoring scheme is found to be cost effective and 

sensitive compared to the competing schemes considered in this paper. Practitioners in the 

industrial and non-industrial environments, are recommended that when the parameters are 

unknown and need to be estimated, the reference sample size m must be sufficiently large (at 

least m = 100) in order to get more accurate estimates and stability in the performance of the 

proposed monitoring scheme as for such large Phase I sample sizes, the resulting performance 

is closer to the parameters known scenario. Finally, it is briefly shown that the synthetic version 

of the proposed scheme (i.e. MSS synthetic DS scheme) has a relatively better performance 

than the SSDS scheme; hence this indicate that the double sampling procedure combined with 

other procedures like synthetic schemes (as well as, say, variable sampling size and interval 

(VSSI), group-runs, etc.,) need to be thoroughly investigated to assess the extent that these 

enhancement techniques can improve the performance of double sampling schemes in Case U.  

Since the assumption of normality is often violated in practice, researchers are also 

recommended to design the proposed monitoring scheme for non-normal data. Moreover, this 
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study assumes that observations are from i.i.d. subgroups, it is equally important to investigate 

the scenario when the subgroup samples are autocorrelated.   
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