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Introduction

One of the key objectives of statistical process monitoring (SPM) is to detect any irregularity in a process as quickly as possible. Control charts are used to identify the causes of variation in the process. Two sources of variation can be distinguished in SPM, namely the common (or chance) causes and assignable (or special) causes of variation. Unlike the assignable causes, common causes cannot be avoided. When the process runs in the presence of common causes only, the process is considered to be in-control (IC). Otherwise, the process is said to be outof-control (OOC). It is well-known that a double sampling (DS) chart (or scheme) is one of the most powerful tools used in SPM to detect any variation (or change) in the process as soon as possible. The DS 𝑋 ̅ scheme was introduced by [START_REF] Daudin | Double Sampling 𝑋 ̅ charts[END_REF] in an effort to improve the detection abilities of a standard Shewhart scheme in detecting small and moderate shifts in the process mean. The majority of literature on DS schemes is based on the assumption of known IC process parameters (i.e. Case K), see for example: [START_REF] Costa | 𝑋 ̅ charts with variable sampling size[END_REF], [START_REF] Irianto | An optimal double sampling 𝑿 ̅ control chart[END_REF], [START_REF] He | Design of double-and triple-sampling 𝑿 ̅ control charts using genetic algorithms[END_REF], [START_REF] Carot | Combined double sampling and variable sampling interval chart[END_REF], [START_REF] Khoo | A synthetic double sampling control chart for the process mean[END_REF], [START_REF] Lee | An economic design of combined double sampling and variable sampling interval X control chart[END_REF], Khoo et al. (2013a), [START_REF] Costa | The steady-state behavior of the synthetic and sidesensitive double sampling 𝑋 ̅ charts[END_REF], [START_REF] Costa | The double sampling range chart[END_REF], [START_REF] You | Run length distribution of synthetic double sampling chart[END_REF], [START_REF] Chong | A study on the run length properties of the side sensitive group runs double sampling (SSGRDS) control chart[END_REF], Haq andKhoo (2018, 2019), [START_REF] Malela-Majika | Side-sensitive synthetic double sampling 𝑋 ̅ control charts[END_REF], [START_REF] Malela-Majika | Modified side-sensitive synthetic double sampling monitoring scheme for simultaneously monitoring the process mean and variability[END_REF], etc. Although there is a lots of research work based on Case K, in practice, the process parameters are generally unknown (i.e. Case U).

The Case U scenario requires monitoring schemes to be applied in a two-phase approach, i.e.

Phase I and Phase II (see [START_REF] Jensen | Effects of parameter estimation on control chart properties: A literature review[END_REF] and [START_REF] Psarakis | Some recent developments on the effects of parameter estimation on control charts[END_REF] for a review of parameter estimation effect articles). In Phase I, monitoring schemes are implemented retrospectively in order to estimate the distribution parameters using an IC reference sample. However, in Phase II, monitoring schemes are implemented prospectively to continuously monitor any departures from an IC state using the parameters estimated in Phase I. There have been number of articles that investigated the Case U scenario in the context of DS schemes, see for example, Khoo et al. (2013b), [START_REF] Teoh | Optimal designs of the median run length based double sampling 𝑋 ̅ chart for minimizing the average sample size[END_REF][START_REF] Teoh | Optimal design of the double sampling 𝑋 ̅ chart with estimated parameters based on median run length[END_REF][START_REF] Teoh | A median run lengthbased double-sampling 𝑋 ̅ chart with estimated parameters for minimizing the average sample size[END_REF]Teoh et al. ( , 2016aTeoh et al. ( , 2016b)), [START_REF] Castagliola | The double sampling 𝑆 2 chart with estimated process variance[END_REF], [START_REF] You | Synthetic double sampling 𝑋 ̅ chart with estimated process parameters[END_REF], [START_REF] You | Performance of synthetic double sampling chart with estimated parameters based on expected average run length[END_REF] and, [START_REF] Lee | Double sampling np chart with estimated process parameter[END_REF]. These latter articles studied the DS scheme in Case U for a variety of design criterion and contexts, e.g. optimized DS scheme based on unconditional average run-length (𝐴𝑅𝐿), unconditional median run-length, unconditional standard deviation of the run-length (𝑆𝐷𝑅𝐿), unconditional expected 𝐴𝑅𝐿 (𝐸𝐴𝑅𝐿), minimization of the average sample size (𝐴𝑆𝑆), average number of observations to signal (𝐴𝑁𝑂𝑆), etc.

It is worth noting that all the articles on Case U DS schemes mentioned in the previous paragraph, used the non-side-sensitive design discussed in [START_REF] Daudin | Double Sampling 𝑋 ̅ charts[END_REF]. More recently, [START_REF] Malela-Majika | A new double sampling 𝑋 ̅ control chart for monitoring an abrupt change in the process location[END_REF] showed that the basic DS 𝑋 ̅ scheme can be divided into two main groups, i.e. non-side-sensitive and side-sensitive designs. Since the abovementioned articles have thoroughly discussed the design and implementation of the nonside-sensitive DS (hereafter NSSDS) 𝑋 ̅ scheme; in this paper, we investigate the design and implementation of the side-sensitive DS (hereafter SSDS) 𝑋 ̅ scheme using the (5 th , 25 th , 50 th , 75 th , 95 th ) percentiles, 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆, the average extra quadratic loss (𝐴𝐸𝑄𝐿), performance comparison index (PCI) and average ratio of the average run-length (ARARL) metrics.

The rest of this paper is structured as follows: Section 2 presents the operation, design and runlength properties of the SSDS 𝑋 ̅ scheme in Case K and Case U; while, Section 3, presents the overall performance metrics. The optimization model is given in Section 4. Section 5 assesses the IC, OOC performance of the SSDS 𝑋 ̅ scheme and compares their overall performance with the NSSDS 𝑋 ̅ scheme and other established monitoring schemes in Case U. In Section 6, a case study is given using real-life data to demonstrate the implementation and design of the Case U SSDS 𝑋 ̅ scheme. A synthetic version of the proposed SSDS 𝑋 ̅ scheme is briefly discussed in Section 7. Finally, some concluding remarks and recommendations are given in Section 8. Assume that the observations, i.e. 𝑌 𝑖𝑗 , of the quality characteristic 𝑋 ̅ are independently and identically distributed (i.i.d.) from a 𝑁(𝜇 0 , 𝜎 0 ) distribution, where 𝜇 0 and 𝜎 0 represent the IC mean and the IC standard deviation, respectively. The SSDS 𝑋 ̅ chart is a two-stage monitoring scheme with mutually exclusive regions as shown in Figure 1: 𝐴 = (-𝐿 1 , 𝐿 1 ), 𝐵 + = [𝐿 1 , 𝐿), 𝐵 -= (-𝐿, -𝐿 1 ], 𝐶 = (-∞, -𝐿] ∪ [𝐿, +∞) in Stage 1, where 𝐿 1 and 𝐿 (with 𝐿 ≥ 𝐿 1 > 0) are the Stage 1 warning and control limits, respectively; and 𝐷 + = [𝐿 2 , +∞), 𝐷 -= (-∞, 𝐿 2 ), 𝐸 -= (-∞, -𝐿 2 ], 𝐸 + = (-𝐿 2 , +∞), where 𝐿 2 (with 𝐿 2 > 0) is the Stage 2 control limit. From the 𝑌 𝑖𝑗 observations, a first subgroup sample of size 𝑛 1 is collected at the 𝑖 𝑡ℎ sampling time (denoted as 𝑌 1𝑖𝑗 , 𝑖 = 1, 2, …, and 𝑗 = 1, 2, …, 𝑛 1 ). If the standardized charting statistic based on the first sample falls on Region B -or B + , then a second subgroup sample of size 𝑛 2 (where 𝑛 2 ≥ 𝑛 1 ) is also collected at the 𝑖 𝑡ℎ sampling time (denoted as 𝑌 2𝑖𝑗 , 𝑖 = 1, 2, …, and 𝑗 = 1, 2, …, 𝑛 2 ). Then the SSDS 𝑋 ̅ scheme uses these two stages to decide whether the process is IC or OOC, and each stage's charting statistic is as follows.

The SSDS

Stage 1: Let 𝑌 ̅ 1𝑖 = ∑ 𝑌 1𝑖𝑗 𝑛 1 ⁄ 𝑛 1 𝑗=1

be the mean of the first sample of subgroup size 𝑛 1 at the 𝑖 𝑡ℎ sampling time. Hence, in Case K, the standardized statistic for the first sample at the 𝑖 𝑡ℎ sampling time is then given by

𝑍 1𝑖 = 𝑌 ̅ 1𝑖 -𝜇 0 𝜎 0 √ 𝑛 1 ⁄ (1) 
where 𝑌 ̅ 1𝑖 ~𝑁(𝜇 0 + 𝛿𝜎 0 , 𝜎 0 √ 𝑛 1

) and 𝛿 = |𝜇 1 -𝜇 0 | 𝜎 0 ⁄ represents the magnitude of the standardized mean shift with the OOC mean 𝜇 1 (𝜇 1 = 𝜇 0 + 𝛿𝜎 0 ), so that 𝛿 = 0 means that the process is IC. In this case, 𝑍 1𝑖 follows a standard normal distribution (i.e.

𝑍 1𝑖 ~𝑁(0,1)). However, when 𝛿 ≠ 0, the process is OOC and 𝑍 1𝑖 ~𝑁(𝛿, 1).

Stage 2: At the 𝑖 𝑡ℎ sampling time of the second sample, the sample mean, i.e.

𝑌 ̅ 2𝑖 = ∑ 𝑌 2𝑖𝑗 𝑛 2 ⁄ 𝑛 2 𝑗=1
, and the combined sample mean, i.e. 𝑌 ̅ 𝑖 = (𝑛 1 𝑌 ̅ 1𝑖 + 𝑛 2 𝑌 ̅ 2𝑖 )/(𝑛 1 + 𝑛 2 ) are calculated, respectively. Hence, in Case K, the standardized charting statistic for the combined samples at the 𝑖 𝑡ℎ sampling time is then given by

𝑍 𝑖 = 𝑌 ̅ 𝑖 -𝜇 0 𝜎 0 √ 𝑛 1 + 𝑛 2 ⁄ . ( 2 
)
where 𝑌 ̅ 𝑖 ~𝑁(𝜇 0 + 𝛿𝜎 0 ,

𝜎 0 √ 𝑛 1 +𝑛 2
). When the process is IC, 𝑍 𝑖 ~𝑁(0, 1) since 𝛿 = 0 and when the process is OOC, 𝑍 𝑖 ~𝑁(𝛿, 1).

That is, there are two distinct standardized charting statistics (i.e. 𝑍 1𝑖 and 𝑍 𝑖 ) used during Stage 1 and Stage 2 (if needed), respectively (see Figure 1).

Run-length properties

Let 𝑃 0𝑘 represents the probability that the process is regarded as IC at stage 𝑘, where 𝑘 = 1, 2.

Then, 𝑃 0 = 𝑃 01 + 𝑃 02 is the probability that the process is IC, where:

𝑃 01 = 𝑃(𝑍 1𝑖 ∈ A) = Φ[𝐿 1 + 𝛿√𝑛 1 ] -Φ[-𝐿 1 + 𝛿√𝑛 1 ], (3) 
and

𝑃 02 = 𝑃[𝑍 1𝑖 ∈ B + and 𝑍 𝑖 ∈ D -] + 𝑃[𝑍 1𝑖 ∈ B -and 𝑍 𝑖 ∈ E + ] = ∫ 𝑍 1𝑖 ∈𝐵 ++ {Φ[𝑐𝐿 2 + 𝑟𝑐𝛿 -𝑧√𝑛 1 𝑛 2 ⁄ ]} 𝜙(𝑧)𝑑𝑧 + ∫ 𝑍 1𝑖 ∈𝐵 --{1 -Φ[-𝑐𝐿 2 + 𝑟𝑐𝛿 -𝑧√𝑛 1 𝑛 2 ⁄ ]} 𝜙(𝑧)𝑑𝑧 (4) 
where Φ(.) and 𝜙(.) are the c.d.f. (cumulative distribution function) and p.d.f. (probability density function) of the standard normal random variable, respectively;

𝑟 2 = 𝑛 1 + 𝑛 2 , 𝑐 = 𝑟 √ 𝑛 2 ⁄ , 𝐵 ++ = (𝐿 1 + 𝛿 √ 𝑛 1 , 𝐿 + 𝛿 √ 𝑛 1 ] and 𝐵 --= [-𝐿 + 𝛿 √ 𝑛 1 , -𝐿 1 + 𝛿 √ 𝑛 1 ). Hence, 𝑃 0 = Φ[𝐿 1 + 𝛿√𝑛 1 ] -Φ[-𝐿 1 + 𝛿√𝑛 1 ] + ∫ 𝑍 1𝑖 ∈𝐵 ++ {Φ[𝑐𝐿 2 + 𝑟𝑐𝛿 -𝑧√𝑛 1 𝑛 2 ⁄ ]} 𝜙(𝑧)𝑑𝑧 + ∫ 𝑍 1𝑖 ∈𝐵 --{1 -Φ[-𝑐𝐿 2 + 𝑟𝑐𝛿 -𝑧√𝑛 1 𝑛 2 ⁄ ]} 𝜙(𝑧)𝑑𝑧.
(5)

Given that the SSDS 𝑋 ̅ scheme is a Shewhart-type one, its run-length (RL) follows a geometric distribution. Therefore, the c.d.f. of the RL distribution (denoted 𝐹 𝑅𝐿 (ℓ)) is obtained as

𝐹 𝑅𝐿 (ℓ) = 𝑃(𝑅𝐿 ≤ ℓ) = 1 -𝑃 0, ℓ (6) 
where ℓ ∈ {1, 2, 3, … }. Then, the (100𝜌) 𝑡ℎ percentile of the RL distribution, ℓ 𝜌 , is given by

𝑃(𝑅𝐿 ≤ ℓ 𝜌 -1) ≤ 𝜌 and 𝑃(𝑅𝐿 ≤ ℓ 𝜌 ) > 𝜌. (7) 
It follows that, the ARL, SDRL and ASS at each sampling time are given by

𝐴𝑅𝐿 = 1 1 -𝑃 0 , (8) 
𝑆𝐷𝑅𝐿 = √𝑃 0 1 -𝑃 0 , (9) 
𝐴𝑆𝑆 = 𝑛 1 + 𝑛 2 𝑃 2 , (10) 
respectively, where 𝑃 2 = 𝑃(𝑍 1𝑖 ∈ 𝐵 -∪ 𝐵 + ) is the probability of taking the second sample, and it is given by 𝑃 2 = Φ(𝐿 + 𝛿√𝑛 1 ) -Φ(𝐿 1 + 𝛿√𝑛 1 ) + Φ(-𝐿 1 + 𝛿√𝑛 1 ) -Φ(-𝐿 + 𝛿√𝑛 1 ). 

Design of the SSDS

and

𝜎 ̂0 = √ 1 𝑚(𝑛 -1) ∑ ∑(𝑋 𝑖𝑗 -𝑋 ̅ 𝑖 ) 2 𝑛 𝑗=1 𝑚 𝑖=1 , (12) 
respectively, where 𝑋 ̅ 𝑖 = ∑ 𝑋 𝑖𝑗 /𝑛 𝑛 𝑗=1

.

Phase II charting statistics and operation procedure: Stage 1 and Stage 2

Let 𝑌 𝑖𝑗 be the Phase II observations from i.i.d. 𝑁(𝜇 1 , 𝜎 0 ), where 𝜇 1 is the OOC mean (i.e. 𝜇 1 = 𝜇 0 + 𝛿𝜎 0 ) with 𝛿 = |𝜇 1 -𝜇 0 |/𝜎 0 the magnitude of the standardized mean shift from 𝜇 0 to 𝜇 1 .

In Phase II of the SSDS 𝑋 ̅ monitoring scheme, there are two distinct standardized charting statistics in Case U (i.e. 𝑍 ̂1𝑖 and 𝑍 ̂𝑖, shown below) used during Stage 1 and Stage 2, respectively (see Figure 1).

Stage 1: Similarly as in Case K, 𝑌 ̅ 1𝑖 = ∑ 𝑌 1𝑖𝑗 𝑛 1 ⁄ 𝑛 1 𝑗=1
; however, the standardized statistic for the first sample at the 𝑖 𝑡ℎ sampling time in Case U is given by

𝑍 ̂1𝑖 = 𝑌 ̅ 1𝑖 -𝜇0 𝜎 ̂0 √ 𝑛 1 ⁄ . ( 13 
)
Stage 2: Similarly, at the 𝑖 𝑡ℎ sampling time of the second sample, the sample mean is given by

𝑌 ̅ 2𝑖 = ∑ 𝑌 2𝑖𝑗 𝑛 2 ⁄ 𝑛 2 𝑗=1
, so that the combined sample mean is given by 𝑌 ̅ 𝑖 = (𝑛 1 𝑌 ̅ 1𝑖 + 𝑛 2 𝑌 ̅ 2𝑖 )/(𝑛 1 + 𝑛 2 ). Thus, the standardized charting statistic in Case U at the 𝑖 𝑡ℎ sampling time is given by

𝑍 ̂𝑖 = 𝑌 ̅ 𝑖 -𝜇̂0 𝜎 ̂0 √ 𝑛 1 + 𝑛 2 ⁄ . (14) 
Thus, based on the description above, the operational procedure of the Case U SSDS 𝑋 ̅ scheme is given as follows:

1. From the IC retrospective data with m samples, estimate the IC mean and standard deviation of the process using Equations ( 11) and ( 12), respectively.

2. In the prospective phase, take a sample of size 𝑛 1 and calculate the sample mean 𝑌 ̅ 1𝑖 at the 𝑖 𝑡ℎ sampling time at Stage 1.

3. If 𝑍 ̂1𝑖 ∈ A, the process is considered as IC.

4. If 𝑍 ̂1𝑖 ∈ C, the process is said to be OOC and then the necessary corrective action must be taken to find and remove the assignable causes.

5. If 𝑍 ̂1𝑖 ∈ B -∪ B + , take a second sample of size 𝑛 2 (𝑛 2 ≥ 𝑛 1 ) and calculate the sample mean 𝑌 ̅ 2𝑖 at the 𝑖 𝑡ℎ sampling time of the second sample.

6. At the 𝑖 𝑡ℎ sampling time, calculate the combined sample mean 𝑌 ̅ 𝑖 and then 𝑍 ̂𝑖.

7. The process is declared IC if: 

Unconditional run-length properties of the SSDS X ̅ scheme

In order to calculate the unconditional RL properties, we need to first derive the conditional ones, see [START_REF] Jensen | Effects of parameter estimation on control chart properties: A literature review[END_REF]. Hence, the conditional c.d.f. of 𝑍 ̂1𝑖 , given 𝜇0 and 𝜎 ̂0 is defined as

𝐹 𝑍 ̂1𝑖 (𝑧|𝜇̂0, 𝜎 ̂0) = Φ (U√ 𝑛 1 𝑚𝑛 + 𝑉𝑧 -𝛿√𝑛 1 ). ( 15 
)
where 𝑈 = (𝜇0 -𝜇 0 ) ), then 𝑈~𝑁(0,1) so that the p.d.f. of the random variable 𝑈 is simply,

𝑓 𝑈 (𝑢) = 𝜙(𝑢). (17) 
Zhang et al. (2011) used the fact that 𝑉 2 = (𝜎 ̂0 𝜎 0 ⁄ ) 2 has a gamma distribution with parameters 𝑚(𝑛 -1)/2 and 2/[𝑚(𝑛 -1)] to show that the p.d.f. of 𝑉 is defined as

𝑓 𝑣 (𝑣|𝑚, 𝑛) = 2𝑣𝑓 𝛾 [𝑣 2 | 𝑚(𝑛 -1) 2 , 2 𝑚(𝑛 -1) ], (18) 
where 𝑓 𝛾 (. ) is the p.d.f. of the gamma distribution with parameters . For more details on the conditional RL properties for DS schemes, readers are referred to [START_REF] You | Synthetic double sampling 𝑋 ̅ chart with estimated process parameters[END_REF].

Next, to derive the unconditional c.d.f. of the RL of the proposed monitoring scheme, we need to first derive the unconditional probability of the IC process. Let 𝑃 ̂0𝑘 denote the probability that the process with estimated parameters remains IC at the sampling stage 𝑘 (with 𝑘 = {1, 2}), i.e. a Case U extension of Equation (5). Then, the probability that the process is IC is given by

𝑃 ̂0 = 𝑃 ̂01 + 𝑃 ̂02 (19) 
where,

𝑃 ̂01 = Φ (𝑈√ 𝑛 1 𝑚𝑛 + 𝑉𝐿 1 -𝛿√𝑛 1 ) -Φ (𝑈√ 𝑛 1 𝑚𝑛 -𝑉𝐿 1 -𝛿√𝑛 1 ) (20) 𝑃 ̂02 = ∫ 𝑃 ̂𝐷-𝑓 𝑍 ̂1𝑖 (𝑧|𝜇̂0, 𝜎 ̂0)𝑑𝑧 . 𝑍∈𝐵 ++ + ∫ 𝑃 ̂𝐸+𝑓 𝑍 ̂1𝑖 (𝑧|𝜇̂0, 𝜎 ̂0)𝑑𝑧 . 𝑍∈𝐵 -- with 𝑃 ̂𝐷-= Φ [𝑈√ 𝑛 2 𝑚𝑛 + 𝑉 ( 𝐿 2√ 𝑛 1 + 𝑛 2 -𝑧 √ 𝑛 1 √ 𝑛 2 ) -𝛿√𝑛 2 ]
and

𝑃 ̂𝐸+ = 1 -Φ [𝑈√ 𝑛 2 𝑚𝑛 -𝑉 ( 𝐿 2√ 𝑛 1 + 𝑛 2 -𝑧 √ 𝑛 1 √ 𝑛 2 ) -𝛿√𝑛 2 ].
Then, the unconditional c.d.f. of the SSDS 𝑋 ̅ monitoring scheme for Case U is given by

𝐹 𝑅𝐿 (ℓ) = ∫ ∫ (1 -𝑃 ̂0ℓ )𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) 𝑑𝑣 𝑑𝑢, +∞ 0 +∞ -∞ (21) 
where ℓ ∈ {1, 2, 3, … . , }, 𝑓 𝑈 (𝑢) and 𝑓 𝑉 (𝑣) are defined in Equations ( 17) and ( 18), respectively.

Therefore, the unconditional 𝐴𝑅𝐿 and 𝑆𝐷𝑅𝐿 of the proposed SSDS 𝑋 ̅ monitoring scheme with estimated process parameters are given by

𝐴𝑅𝐿 = ∫ ∫ ( 1 1 -𝑃 ̂0) 𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) 𝑑𝑣 𝑑𝑢 +∞ 0 +∞ -∞ (22) 
and

𝑆𝐷𝑅𝐿 = [∫ ∫ ( 1 + 𝑃 ̂0 1 -𝑃 ̂0) 𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) 𝑑𝑣 𝑑𝑢 +∞ 0 +∞ -∞ -𝐴𝑅𝐿 2 ] 1/2 . ( 23 
)
The Case U 𝐴𝑆𝑆 is given by

𝐴𝑆𝑆 = ∫ ∫ (𝑛 1 + 𝑛 2 𝑃 ̂2)𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) 𝑑𝑣 𝑑𝑢 +∞ 0 +∞ -∞ (24) 
where 𝑃 ̂2 is the probability of taking the second sample, which is given by 𝑃 ̂2 = 𝑃(𝑍 ̂1𝑖 ∈ 𝐵 -∪ 𝐵 + |𝜇0, 𝜎 ̂0), or simply,

𝑃 ̂2 = Φ (𝑈√ 𝑛 1 𝑚𝑛 + 𝑉𝐿 -𝛿√𝑛 1 ) -Φ (𝑈√ 𝑛 1 𝑚𝑛 + 𝑉𝐿 1 -𝛿√𝑛 1 ) + Φ (𝑈√ 𝑛 1 𝑚𝑛 -𝑉𝐿 1 -𝛿√𝑛 1 ) -Φ (U√ 𝑛 1 𝑚𝑛 -𝑉𝐿 -𝛿√𝑛 1 ). (25) 
Then, the 𝐴𝑁𝑂𝑆 is given by

𝐴𝑁𝑂𝑆 = ∫ ∫ (𝑛 1 + 𝑛 2 𝑃 ̂2) ( 1 1 -𝑃 ̂0) 𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) 𝑑𝑣 𝑑𝑢 +∞ 0 +∞ -∞ . ( 26 
)
Since the 𝐴𝑁𝑂𝑆 depends on the 𝐴𝑆𝑆 and 𝐴𝑅𝐿 values, a larger 𝐴𝑁𝑂𝑆 value implies that either the monitoring scheme is inefficient and/or the cost of inspection is higher.

Measures of the overall performance

The ARL (see Equation ( 22)) is defined as the average number of samples required before an OOC signal is issued in the process. It is well-known that the RL distribution of a monitoring scheme is generally highly right-skewed in Case U; see for example [START_REF] Jones | The run length distribution of the CUSUM with estimated parameters[END_REF]. As a result, many researchers prefer to use more meaningful performance measures (such as the percentiles of the RL which includes the median run-length (MRL)) to better evaluate the performance of the schemes. Furthermore, the ARL has been widely criticized by many authors, see for example, [START_REF] Wu | Optimisation designs of the combined Shewhart-CUSUM control charts[END_REF] and [START_REF] Machado | A side-sensitive synthetic chart combined with an X chart[END_REF]. The ARL was simply criticized because of its ineffectiveness in assessing the overall performance, especially when the aim of the study is to assess the performance of a monitoring scheme over a range of shifts. Several authors have revealed that if a monitoring scheme is designed based on one specific size of a mean shift, it will perform poorly when the actual size of the shift is significantly different from the assumed size (see [START_REF] Reynolds | An evaluation of GLR control chart combined with X chart[END_REF], [START_REF] Ryu | Optimal design of a CUSUM chart for a mean shift of unknown size[END_REF], [START_REF] Machado | A side-sensitive synthetic chart combined with an X chart[END_REF] and Shongwe, Malela-Majika and Rapoo ( 2019)).

Therefore, many researchers have recommended the use of a quality loss function (QLF) instead of the ARL to assess the performance of a monitoring scheme. A QLF describes the relationship between the shift size and the quality impact. The average extra quadratic loss (AEQL) is an alternative measure of the ARL used to assess the overall performance of a monitoring scheme for a range of shifts. Therefore, when the aim of a study is to measure the overall performance of a scheme over a range of shifts (say, 0 ≤ 𝛿 ≤ 2.5), the objective function can be defined in terms of the 𝐴𝐸𝑄𝐿 given by

𝐴𝐸𝑄𝐿 = ∫ ∫ ∫ 𝑊(𝛿) ( 1 1 -𝑃 ̂0) 𝑓(𝛿)𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) 𝑑𝑣 𝑑𝑢 𝑑𝛿 +∞ 0 +∞ -∞ 𝛿 𝑚𝑎𝑥 𝛿 𝑚𝑖𝑛 (27) 
where 𝛿 𝑚𝑖𝑛 and 𝛿 𝑚𝑎𝑥 are the lower and upper boundary of the range of shifts under consideration and 𝑊(𝛿) (with 𝑊(𝛿) = 𝛿 2 ) represents the weight function associated with 𝛿.

Since it is generally assumed that all location shifts (mean shifts) occur with equal probability; hence, a uniform distribution of 𝛿 is implied, i.e. 𝑓(𝛿) = 1 (𝛿 𝑚𝑎𝑥 -𝛿 𝑚𝑖𝑛 ) ⁄ .

In order to measure the relative effectiveness of two different schemes, [START_REF] Wu | Optimisation designs of the combined Shewhart-CUSUM control charts[END_REF] suggested the use of the PCI, which is the ratio between the AEQL of a competing monitoring scheme and the AEQL of the benchmark scheme under the same settings. In this paper, the proposed scheme is used as the benchmark. The 𝑃𝐶𝐼 is then defined by

𝑃𝐶𝐼 = 𝐴𝐸𝑄𝐿 𝐴𝐸𝑄𝐿 * (28)
where 𝐴𝐸𝑄𝐿 * is the 𝐴𝐸𝑄𝐿 of the benchmark scheme. In addition to the 𝐴𝐸𝑄𝐿 and the 𝑃𝐶𝐼, many authors also suggested the use of the 𝐴𝑅𝐴𝑅𝐿 to measure the overall performance of a benchmark scheme against other competing schemes; see [START_REF] Wu | Optimisation designs of the combined Shewhart-CUSUM control charts[END_REF]. The 𝐴𝑅𝐴𝑅𝐿 is given by

𝐴𝑅𝐴𝑅𝐿 = 1 𝛿 𝑚𝑎𝑥 -𝛿 𝑚𝑖𝑛 ∑ 𝐴𝑅𝐿(𝛿) 𝐴𝑅𝐿 * (𝛿) 𝛿 𝑚𝑎𝑥 𝛿=𝛿 𝑚𝑖𝑛 (29)
where 𝐴𝑅𝐿 * is the ARL of the benchmark scheme. Note that, if the 𝑃𝐶𝐼 and/or 𝐴𝑅𝐴𝑅𝐿 is larger than one, the competing scheme will produce larger ARLs over the range of shifts under consideration, which means that the benchmark scheme outperforms the competing scheme for that particular range; otherwise, if PCI is less than one, then the competing scheme is more sensitive than the benchmark scheme.

Bi-objective model of the proposed SSDS 𝑿 ̅ monitoring scheme

There are three control limits 𝐿 1 , 𝐿 and 𝐿 2 and two sample sizes 𝑛 1 and 𝑛 2 that need to be specified for a specific 𝐴𝑆𝑆 0 in order to design the SSDS 𝑋 ̅ monitoring scheme. The efficiency of the proposed SSDS 𝑋 ̅ scheme depends on the combination (𝑚, 𝑛 1 , 𝑛 2 , 𝐿 1 , 𝐿, 𝐿 2 ). There are two main steps in the optimal design of the proposed scheme: Firstly, the nominal IC 𝐴𝑅𝐿 (𝐴𝑅𝐿 0 ) is set to a high desired value, such as 370.4 or 500; secondly, the combination that yields an 𝐴𝑅𝐿 0 as close as possible to the nominal 𝐴𝑅𝐿 0 value and the smallest OOC ARL (𝐴𝑅𝐿 𝛿 ) for a given mean shift 𝛿 and a minimum 𝐴𝐸𝑄𝐿 value is considered to be the optimal combination. Therefore, the optimization model is presented as follows:

(𝐿 1 * , 𝐿 * , 𝐿 2 * ) = argmin 𝑚,𝑛 1 ,𝑛 2 ,𝐿 1 ,𝐿,𝐿 2 (𝐴𝑅𝐿 1 , 𝐴𝐸𝑄𝐿) (30) 
subjects to

𝐴𝑅𝐿 0 = 𝜏 (31) 
and

𝐴𝑆𝑆 0 = 𝜉, (32) 
where 𝐴𝑆𝑆 0 represents the expected IC ASS, 𝜉 is the prespecified 𝐴𝑆𝑆 0 value and 𝜏 represents the nominal 𝐴𝑅𝐿 0 value. Note that the 𝐴𝑆𝑆 0 and OOC 𝐴𝑆𝑆 (𝐴𝑆𝑆 𝛿 ) are used because the sample size is not fixed in advance (it can be 𝑛 1 or 𝑛 1 + 𝑛 2 ). This plays an important role in the estimation of the cost of inspection.

The search of the optimal parameters can be summarized in three main steps given as follows:

1. Fix 𝑚 and for some specific sample sizes (i.e., 𝑛 1 and 𝑛 2 ) and mean shift (𝛿 = 0), find all possible combinations of the design parameters that yield an attained 𝐴𝑅𝐿 0 value of 370.4 for a prespecified value of the 𝐴𝑆𝑆 0 . These combination of parameters (𝐿 1 , 𝐿, 𝐿 2 ) are called local design parameters;

2. For each combination of the local design parameters, compute the 𝐴𝑅𝐿 𝛿 (where 𝛿 = 0.1 to 2.5 with a step shift of 0.1) and then calculate the corresponding 𝐴𝐸𝑄𝐿 value;

3. Select the combination that yields the minimum 𝐴𝐸𝑄𝐿 value to be the combination of the optimal design parameters (𝐿 1 * , 𝐿 * , 𝐿 2 * ).

Performance study

Performance analysis of the SSDS 𝐗 ̅ monitoring scheme

In this section, the performance of the SSDS 𝑋 ̅ monitoring scheme is investigated in Case U by setting the nominal 𝐴𝑅𝐿 0 value to 370.4 with a maximum mean shift of 2.5 (i.e. 𝛿 𝑚𝑎𝑥 = 2.5) and 𝐴𝑆𝑆 0 values of 5 and 8, see Tables 1 to 4; where, for illustration purpose, m is set at 50 and 100 for Case U SSDS 𝑋 ̅ scheme, and m is assumed to approach infinity (∞) for Case K. The first row of each cell gives the 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆 and 𝐴𝑁𝑂𝑆 values and the second row gives the 5 th , 25 th , 50 th , 75 th and 95 th percentiles (denoted by (P5, P25, P50, P75, P95)) of the RL distribution of the Case U SSDS 𝑋 ̅ scheme. Note that the Case K properties discussed in Section 2.1 are given in the last column. Equations ( 21) to ( 23) are used to compute the IC and OOC characteristics of the RL distribution. Moreover, the ASS, ANOS and AEQL values are computed using Equations ( 24), ( 26) and ( 27), respectively.

For instance (see the second column of Table 1), for a Phase I sample of size 50 (i.e. m = 50), when (𝑛 1 ,𝑛 2 ) = (5, 5), (𝛿 𝑚𝑖𝑛 , 𝛿 𝑚𝑎𝑥 ) = (0, 2.5) and 𝐴𝑆𝑆 0 = 5, it is found (using the optimization model in Equations ( 30) to (32)) that (𝐿 1 * , 𝐿 * , 𝐿 2 * ) = (2.9093, 3.0111, 2.9309) so that the proposed SSDS 𝑋 ̅ scheme satisfies 𝐴𝑅𝐿 0 = 370.4 with a minimum 𝐴𝐸𝑄𝐿 = 70.72. However, when 𝑛 2 is increased to 8, for the same values of m, 𝑛 1 , 𝛿 𝑚𝑖𝑛 , 𝛿 𝑚𝑎𝑥 , and 𝐴𝑆𝑆 0 , it is found that (𝐿 1 * , 𝐿 * , 𝐿 2 * ) = (2.9101, 3.0108, 2.6310) so that the proposed scheme also satisfies 𝐴𝑅𝐿 0 = 370.4 with a minimum 𝐴𝐸𝑄𝐿 = 69.06 (see the third column of Table 1).

From Table 1, it can be seen that when m = 50 and 𝐴𝑆𝑆 0 = 5, if (𝑛 1 ,𝑛 2 ) = (5, 5) there is 5% chance that the Case U SSDS 𝑋 ̅ scheme gives a signal for the first time on the 18 th subgroup and a 95% chance that it signals on the 1102 subgroup in Phase II when the process is IC (shift = 0). For a small shift of size 0.3, there are 5% and 95% chances that the proposed scheme gives a signal on the 11 th and 563 th subgroups, respectively. For m = 100 with an 𝐴𝑆𝑆 0 of 5, when (𝑛 1 ,𝑛 2 ) = (5, 5) (i.e. fourth column of Table 1) and with a mean shift of 0.3, there are 5% and 95% chances that the Case U SSDS 𝑋 ̅ scheme gives a signal on the 7 th and 388 th subgroups, respectively. For a moderate mean shift of 0.9, there are 5% and 95% chances that the Case U SSDS 𝑋 ̅ scheme signals on the first and eighteenth subgroups, respectively. These findings confirm that the larger the Phase I sample size, the more sensitive the proposed scheme. As the mean shift increases, the proposed scheme becomes more sensitive. When we keep 𝑛 1 = 5 and increase 𝑛 2 (say 𝑛 2 = 8) for m = 50, for a mean shift of 0.3, there is 95% chance that the proposed scheme gives a signal on the 546 th subgroup in the prospective phase. This reveals an improvement in the sensitivity of the proposed scheme when the Stage 2 sample size increases.

In Case K, when 𝛿 = 0.3, (𝑛 1 ,𝑛 2 ) = (5, 8) and (3, 10) with 𝐴𝑆𝑆 0 = 5, there is 5% chance that the SSDS 𝑋 ̅ scheme gives a signal on the fourth sample, see the last column of Tables 1 and2, respectively. However, there is 95% chance that the SSDS 𝑋 ̅ scheme gives a signal on the 260 th and 183 rd sample, respectively. This shows that the proposed scheme performs better in Case K. From Tables 3 and4, it can be seen that when the expected sample size (i.e. 𝐴𝑆𝑆 0 ) increases, the sensitivity of the proposed scheme increases as well. For small Phase I sample sizes (i.e. m = 25, on the second column of Tables 3 and4), the detection ability of the proposed scheme is poor as compared to m = 50 and 100 on columns 3 to 6, respectively.

In terms of the 𝐴𝑅𝐿 values, for small and moderate shifts in the process mean, the larger the Phase I sample (i.e. m), the more sensitive the Case U SSDS 𝑋 ̅ scheme. However, for large shifts in the process mean, the proposed scheme performs uniformly better regardless of the Phase I sample size. For small and moderate shifts, the proposed scheme is less sensitive in Case U than in Case K. This under-performance is due to the effect of estimation that deteriorates the performance of a monitoring scheme.

In terms of the 𝑆𝐷𝑅𝐿 values, it can be seen that the practitioner-to-practitioner variability in the performance of the proposed scheme decreases as the Phase I sample size increases. The OOC 𝑆𝐷𝑅𝐿 (𝑆𝐷𝑅𝐿 𝛿 ) drop rapidly as the Phase I sample size increases. Therefore, the larger the Phase I sample size, the more reliable the results. The larger the 𝐴𝑆𝑆 0 , the smaller the variability in the performance outputs. In terms of the 𝐴𝑁𝑂𝑆 values, the larger the Phase I sample, the smaller the OOC 𝐴𝑁𝑂𝑆. For very small shifts (i.e. 0 < 𝛿 < 0.2), the smaller the 𝐴𝑆𝑆 0 value, the smaller the 𝐴𝑁𝑂𝑆 value. When 𝛿 ≥ 0.2, the larger the 𝐴𝑆𝑆 0 value, the smaller the 𝐴𝑁𝑂𝑆 value, which means that when the process is OOC, the proposed scheme is more efficient and cost effective for larger values of 𝐴𝑆𝑆 0 .

In terms of the overall performance, i.e. AEQL, the proposed SSDS 𝑋 ̅ scheme performs better for large Phase I sample sizes and/or large expected number of samples. As the Phase I sample size increases, the Case U properties converge towards to the Case K properties. Therefore, it is very important to study the effect of the Phase I sample size on the performance of the proposed scheme in order to know the amount of Phase I observations required to reach the Case K performance. This topic is under investigation and will be reported in a separate article. 

ARL profiles of the Case U SSDS 𝑿 ̅ scheme using Case K optimal design parameters

In this sub-section, we investigate the ARL profile behaviour of the proposed SSDS 𝑋 ̅ scheme when the Case U performance is obtained using the Case K optimal design parameters (as discussed in Malela-Majika et al. ( 2019)) instead of the Case U optimal design parameters. To evaluate the impact of using the Case K optimal design parameters in Case U, the percentage difference (%𝐷𝑖𝑓𝑓) between the Case U OOC 𝐴𝑅𝐿 (denoted as 𝐴𝑅𝐿 𝛿 𝑈 ) and Case K OOC 𝐴𝑅𝐿 (denoted as 𝐴𝑅𝐿 𝛿 𝐾 ) is calculated as follows: Moreover, the results in Table 5 show that, as the Phase I sample size increases, the %𝐷𝑖𝑓𝑓 decreases considerably. For a large Phase I sample size (e.g. 𝑚 = 400), the %𝐷𝑖𝑓𝑓 is less than 1%, meaning that the Case U SSDS 𝑋 ̅ scheme performs as if the optimal design parameters were known. Therefore, it is very important to know the number of Phase I observations for which the proposed scheme performs as if it was in Case K. As we can see from Table 5, this will depend on the average sample size as well as the Stage 1 and Stage 2 sample sizes. The finding from Table 5 also shows that the larger the average sample size, the higher the %𝐷𝑖𝑓𝑓. Therefore, to secure stability and better OOC performance in Phase II for the proposed SSDS 𝑋 ̅ scheme, the operator must either use a high desired Phase I sample size or choose the appropriate design parameters as suggested in Tables 1 to 4.

%𝐷𝑖𝑓𝑓 = ( 𝐴𝑅𝐿 𝛿 𝑈 -𝐴𝑅𝐿 𝛿 𝐾 𝐴𝑅𝐿 𝛿 𝐾 ) × 100 (33)

Performance comparison

In this section, the proposed Case U SSDS 𝑋 ̅ scheme is compared to a number of well-known Case U monitoring schemes including the existing NSSDS 𝑋 ̅ , NSS and side-sensitive synthetic Shewhart 𝑋 ̅ , exponentially weighted moving average 𝑋 ̅ (denoted as 𝑋 ̅ -EWMA (𝜆) where 𝜆 represents the smoothing parameter) with 𝜆 = 0.1 and 0.5, cumulative sum 𝑋 ̅ (denoted as 𝑋 ̅ -CUSUM) monitoring schemes with estimated process parameters. The competing schemes are compared in terms of the AEQL, the ARARL and PCI values. Note that the monitoring scheme with a small AEQL value is considered to be superior in performance for the range of shifts under consideration. In this example, the proposed scheme is considered to be the benchmark scheme. Therefore, for the chosen competing schemes, if its PCI and ARARL values are less than one, then that particular competing scheme is declared as more efficient than the proposed Case U SSDS 𝑋 ̅ scheme. However, if the PCI and ARARL values are greater than one, then the competing scheme is declared as less efficient than the proposed SSDS 𝑋 ̅ scheme. When the PCI and ARARL values are equal to one, then the competing scheme and the proposed SSDS 𝑋 ̅ scheme are equivalent. For a fair comparison, the performance of the competing schemes are investigated when (𝛿 𝑚𝑖𝑛 ,𝛿 𝑚𝑎𝑥 ) = (0,2.5), m∈{50,100}, 𝐴𝑆𝑆 0 ∈{5,8} corresponding to 𝑛 ∈{5,8}, 𝑛 1 ∈{3,5}, 𝑛 2 ∈{5, 8} and a nominal 𝐴𝑅𝐿 0 = 370.4. The shifts sizes are divided into three groups which are "small" (0< 𝛿 ≤ 0.7), "small to moderate" (0< 𝛿 ≤1.6), and "small to large" (0< 𝛿 ≤2.5). In Table 6, the proposed scheme is compared to the foregoing monitoring schemes in terms of the overall performance. The results corresponding to the best monitoring scheme are highlighted in bold. * Small: (0<𝛿 ≤0.7), Small to Moderate: (0<𝛿 ≤1.6) and Small to Large: (0<𝛿 ≤2.5).

From Table 6, it can be seen that regardless of the sample sizes, the EWMA (0.1) monitoring scheme outperforms the proposed scheme for "small" shift (𝛿 𝑚𝑎𝑥 = 0.7) in the process mean.

However, for "small to moderate" shifts (i.e. 𝛿 𝑚𝑎𝑥 = 1.6) as well as for the "small to large" shifts (i.e. 𝛿 𝑚𝑎𝑥 = 2.5), the proposed monitoring scheme outperforms all the competing schemes considered in this paper. These findings are also valid in Case K, i.e. the proposed SSDS 𝑋 ̅ monitoring scheme is superior to all the considered competing schemes in Case K.

Due to restriction on the number of pages, the table for the Case K performance comparison is not provided in this paper; but for more details on this, readers are referred to Malela-Majika et al. (2019).

The findings in Table 6 are also confirmed in terms of the ARARL and PCI values. When comparing the existing DS 𝑋 ̅ scheme to the proposed scheme, we can observe the following:

for "small" shifts, the SSDS 𝑋 ̅ monitoring scheme improves the existing DS 𝑋 ̅ scheme between 10% and 17%. From "small to moderate" shifts, the overall improvement is between 5% and 9%. From "small to large" shifts, the overall improvement is between 7% and 15%.

Illustrative example

In this section, the implementation and application of the proposed SSDS 𝑋 ̅ scheme is illustrated using the data set from [START_REF] Zaman | An adaptive EWMA scheme-based CUSUM accumulation error for efficient monitoring of process location[END_REF]. The data gives the information on the inside diameter of cylinder bores in an engine block and contain thirty-five samples, each of size n = 5. In this implementation example, each sample is considered to be a master sample which is divided into two subgroups of sizes 2 and 3 (i.e. 𝑛 1 = 2 and 𝑛 2 = 3), in Stages 1 and 2, respectively, such that 𝑛 = 𝑛 1 + 𝑛 2 = 5. The estimated IC process mean and standard deviation (using Equations ( 11) and ( 12)) for the inside diameter of cylinder bores are 𝜇0 = 200.15 and 𝜎 ̂0 = 3.47 millimeters (mm), respectively. The shift detection ability of the proposed Case U SSDS 𝑋 ̅ scheme is also compared to the one of the existing Case U NSSDS 𝑋 ̅ scheme.

For (𝑛 1 , 𝑛 2 ) = (2, 3) and ASS0 = 3, the optimal combinations (𝐿 and Table 7).

This example shows that the proposed SSDS 𝑋 ̅ scheme is more sensitive than the existing NSSDS 𝑋 ̅ scheme in monitoring Phase II samples when the unknown design parameters are estimated from an IC Phase I sample. Therefore, practitioners in the industrial and nonindustrial environments are advised to use the proposed SSDS 𝑋 ̅ monitoring scheme instead of the existing NSSDS 𝑋 ̅ scheme regardless of the of the size of the shift to be detected.

Synthetic SSDS scheme when parameters are unknown

The SSDS 𝑋 ̅ control chart can be further extended by adding a synthetic scheme, i.e. by adding a CRL (conforming run-length) scheme with a single integer control limit 𝐻 ≥ 1. These schemes were originally proposed in [START_REF] Wu | A synthetic control chart for detecting small shifts in the process mean[END_REF] and more recently reviewed in [START_REF] Rakitzis | An overview of synthetic-type control charts: Techniques and Methodology[END_REF]. [START_REF] Khoo | A synthetic double sampling control chart for the process mean[END_REF] were the first to integrate the operation of a NSSDS scheme with the CRL scheme using the regions given in Figure 4(a) to formulate the non-sidesensitive (NSS) synthetic double sampling (DS) scheme. The latter scheme was also discussed in You (2017) from a different perspective. [START_REF] Costa | The steady-state behavior of the synthetic and sidesensitive double sampling 𝑋 ̅ charts[END_REF] and Malela-Majika and Rapoo (2019) proposed the side-sensitive versions of [START_REF] Khoo | A synthetic double sampling control chart for the process mean[END_REF] scheme that had an improved performance. These side-sensitive versions are called the standard, revised and modified side-sensitive (denoted by SSS, RSS and MSS) synthetic DS schemesthese are shown in Figures 4(b) and (c), respectively. For Case U, the NSS synthetic DS scheme is studied in You et al. (2015) and [START_REF] You | Performance of synthetic double sampling chart with estimated parameters based on expected average run length[END_REF]. In this section, we briefly focus on the MSS synthetic DS scheme.

While the basic double sampling schemes have two main designs for the charting regions (i.e.

NSSDS and SSDS) and three design parameters (i.e. 𝐿, 𝐿 1 , 𝐿 2 ); however, the synthetic DS schemes have four main designs for the charting regions (i.e. NSS, SSS, RSS and MSS) and four design parameters (i.e. 𝐿, 𝐿 1 , 𝐿 2 , H). Moreover, the synthetic DS schemes do not issue an OOC signal at the first sample point that falls on the nonconforming regions (i.e., the 'OOC regions' in Figure 1). That is, the process waits until a second sample point falls on the nonconforming region and, if these two nonconforming samples are relatively close to each other (say, CRL ≤ H), then an OOC signal is triggered. The charting regions are divided into ten intervalssee Figure 4(c), i.e.

C + = [𝐿,+∞), B + = [𝐿 1 , 𝐿), A + = [0, 𝐿 1 ), A -= (-𝐿 1 , 0], B - = (-𝐿 2 , -𝐿 1 ], C -= (-∞,-𝐿], D + = [𝐿 2 , +∞), E + = [0, 𝐿 2 ), E -= (-𝐿 2 , 0] and D -= (-∞, -𝐿 2 ].

Operation of the MSS synthetic DS scheme

The Phase I implementation of the MSS synthetic DS scheme is the same that discussed above for the SSDS scheme; however, the Phase II operation is as follows:

1. Set the optimal design parameters (𝑚, 𝑛 1 , 𝑛 2 , 𝐿 1 , 𝐿 2 , 𝐿, 𝐻).

2. Take a sample of size 𝑛 1 and calculate the standardised statistic using Equation (13) at the 𝑖 𝑡ℎ sampling time of the first sample. 

Run-length properties of the MSS synthetic DS scheme

In order to obtain the run-length properties of the MSS synthetic DS 𝑋 ̅ scheme, the Markov chain matrix similar in principle to that proposed in Malela-Majika and Rapoo (2019) can be used. This method consist of defining a transition probability matrix (TPM) which is denoted as 𝑷, with 2𝐻 + 1 transient states and one absorbing state. Therefore, the TPM of the MSS synthetic DS 𝑋 ̅ scheme has the following structure:

𝑷 = [ 𝑸 𝒓 𝟎 𝑇 1 ] = 0 0 ⋯ 0 0 𝑝 0 𝑝 1𝐿 0 ⋯ 0 0 𝑝 1𝑈 𝑝 0𝑈 0 ⋯ 0 0 𝑝 0𝐿 𝑝 1𝐿 0 ⋯ 0 0 𝑝 1𝑈 0 𝑝 0𝑈 ⋯ 0 0 𝑝 0𝐿 𝑝 1𝐿 0 ⋯ 0 0 𝑝 1𝑈 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 0 0 ⋯ 𝑝 0𝑈 0 𝑝 0𝐿 𝑝 1𝐿 0 ⋯ 0 0 𝑝 1𝑈 0 0 ⋯ 0 𝑝 1𝑈 𝑝 0 𝑝 1𝐿 0 ⋯ 0 0 0 0 0 ⋯ 0 𝑝 1𝑈 𝑝 0𝑈 0 𝑝 0𝐿 ⋯ 0 0 𝑝 1𝐿 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 0 0 … 0 𝑝 1𝑈 𝑝 0𝑈 0 0 … 𝑝 0𝐿 0 𝑝 1𝐿 0 0 ⋯ 0 𝑝 1𝑈 𝑝 0𝑈 0 0 ⋯ 0 𝑝 0𝐿 𝑝 1𝐿 0 0 ⋯ 0 𝑝 1𝑈 𝑝 0 0 0 ⋯ 0 0 𝑝 1𝐿 0 0 ⋯ 0 0 0 0 0 ⋯ 0 0 1 ( 34 
)
where 𝟎 = (0 0 … 0) 𝑇 , 𝑸 is the (2𝐻 + 1) × (2𝐻 + 1) matrix of transient probabilities, 𝒓 is a (2𝐻 + 1) × 1 vector that satisfies 𝒓 = 𝟏 -𝑸𝟏 with 𝟏 = (1 1 … 1) 𝑇 and the elements of the TPM are defined as: 

𝑝 0𝐿 = Φ(𝛿√𝑛 1 ) -Φ(-𝐿 1 + 𝛿√𝑛 1 ) + ∫ 𝐴 * -Φ (𝑟𝑐𝛿 -𝑧√ 𝑛 1 𝑛 2 ) 𝜙 ( 
where q T = (0,…,0,1,0,…,0) with the unique "1" located at the (𝐻 + 1) th position of the TPM, ℓ ∈ {1, 2, 3, …}, 𝑓 𝑈 (𝑢) and 𝑓 𝑉 (𝑣) are defined in Equations ( 17) and ( 18 respectively, where 𝐼 is a (2𝐻 + 1) × (2𝐻 + 1) identity matrix. For more details on the above discussion, readers are referred to [START_REF] Davis | Evaluating and improving the synthetic control chart[END_REF], [START_REF] Zhang | The synthetic 𝑋 ̅ chart with estimated parameters[END_REF]), You et al. (2015), [START_REF] You | Performance of synthetic double sampling chart with estimated parameters based on expected average run length[END_REF], [START_REF] Shongwe | A modified side-sensitive synthetic chart to monitor the process mean[END_REF], [START_REF] Rakitzis | An overview of synthetic-type control charts: Techniques and Methodology[END_REF] and Malela-Majika and Rapoo (2019).

Performance comparison

In this section, the performance of the MSS synthetic DS 𝑋 ̅ scheme is briefly investigated and compared to one of the proposed SSDS 𝑋 ̅ scheme. Table 8 shows that the sensitivity of the MSS synthetic DS 𝑋 ̅ scheme depends on the Phase I sample size (i.e., 𝑚) and the CRL scheme control limit (i.e., 𝐻). The larger the value of m, the more sensitive the MSS synthetic DS 𝑋 ̅ scheme is. Moreover, the larger the design parameter H, the more sensitive the MSS synthetic DS 𝑋 ̅ scheme becomes. From Table 8, it can also be seen that the MSS synthetic DS 𝑋 ̅ scheme outperforms the proposed SSDS 𝑋 ̅ scheme for small shifts (i.e. 0 < 𝛿 ≤ 0.75) and moderate shifts (i.e. 0.75 < 𝛿 < 1.2) in the process mean for the given 𝐻 values. However, when 𝐻 = 1, for moderately large shifts (i.e. 1.2 ≤ 𝛿 < 1.5), the proposed SSDS 𝑋 ̅ monitoring scheme is slightly better than the MSS synthetic DS 𝑋 ̅ scheme; whereas, when 𝐻 = 2, the two monitoring schemes are similar in performance. For large shifts in the process mean, i.e. 𝛿 > 1.5, the two schemes are also similar in performance when 𝐻 ∈ {1, 2}. It can also be observed that in terms of the 𝐴𝐸𝑄𝐿 values (i.e. overall performance), the MSS synthetic DS 𝑋 ̅ scheme performs better than the SSDS 𝑋 ̅ scheme regardless of the magnitude of 𝐻. In terms of the 𝑃𝑅𝐿 values, the MSS synthetic DS 𝑋 ̅ scheme performs better than the proposed SSDS 𝑋 ̅ scheme for both small and moderate shifts. For large shifts, the two monitoring schemes perform almost similarly in detecting OOC signals in the process mean.

Conclusion and recommendations

In this paper, a SSDS 𝑋 ̅ monitoring scheme is proposed under the assumption of unknown process parameters. The performance of the proposed scheme is investigated in terms of the different characteristics of the run-length distribution as well as the ANOS, ASS and AEQL values. In terms of the AEQL, PCI and ARARL values, the proposed Case U SSDS 𝑋 ̅ scheme outperforms the competing schemes considered in this paper in many cases. Moreover, in terms of the ASS and ANOS values, the proposed monitoring scheme is found to be cost effective and sensitive compared to the competing schemes considered in this paper. Practitioners in the industrial and non-industrial environments, are recommended that when the parameters are unknown and need to be estimated, the reference sample size m must be sufficiently large (at least m = 100) in order to get more accurate estimates and stability in the performance of the proposed monitoring scheme as for such large Phase I sample sizes, the resulting performance is closer to the parameters known scenario. Finally, it is briefly shown that the synthetic version of the proposed scheme (i.e. MSS synthetic DS scheme) has a relatively better performance than the SSDS scheme; hence this indicate that the double sampling procedure combined with other procedures like synthetic schemes (as well as, say, variable sampling size and interval (VSSI), group-runs, etc.,) need to be thoroughly investigated to assess the extent that these enhancement techniques can improve the performance of double sampling schemes in Case U.

Since the assumption of normality is often violated in practice, researchers are also recommended to design the proposed monitoring scheme for non-normal data. Moreover, this study assumes that observations are from i.i.d. subgroups, it is equally important to investigate the scenario when the subgroup samples are autocorrelated.
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Figure 1 .

 1 Figure 1. The charting regions of the SSDS 𝑋 ̅ scheme for Stage 1 and Stage 2

  𝑿 ̅ control chart with estimated process parameters 2.2.1 Phase I and Phase II operation of the SSDS 𝑿 ̅ monitoring scheme Phase I parameter estimation Since the IC process parameters, 𝜇 0 and 𝜎 0 , are usually unknown they have to be estimated from m Phase I subgroup samples, each of size 𝑛, i.e. {𝑋 𝑖𝑗 } 𝑗=1,2,…,𝑛 𝑖=1,2,…,𝑚 . The estimated IC process parameters, 𝜇0 and 𝜎 ̂0, are given by

  (a) If 𝑍 ̂1𝑖 ∈ B + and 𝑍 ̂𝑖 ∈ D -, or (b) If 𝑍 ̂1𝑖 ∈ B -and 𝑍 ̂𝑖 ∈ E + However, the process is declared OOC: (c) If 𝑍 ̂1𝑖 ∈ B + and 𝑍 ̂𝑖 ∈ D + , or (d) If 𝑍 ̂1𝑖 ∈ B -and 𝑍 ̂𝑖 ∈ E -. In essence, if the plotting statistic falls in region B + (region B -) in Stage 1, then it can only fall in regions D -or D + (regions E + or E -) only, in Stage 2, respectively. Conversely, if in Stage 1, 𝑍 ̂1𝑖 ∈ B + , then in Stage 2, we have 𝑍 ̂𝑖 ∉ {E + , E -}. Similarly, if in Stage 1, 𝑍 ̂1𝑖 ∈ B -, then in Stage 2, we have 𝑍 ̂𝑖 ∉ {D -, D + }. The flow chart illustrating the steps involved in the operation of the Case U SSDS 𝑋 ̅ monitoring scheme is shown in Figure 2.

Figure 2 .

 2 Figure 2. Flow chart for the proposed SSDS 𝑋 ̅ monitoring scheme

  SSDS 𝑋 ̅ scheme Figure 3. The Case U NSSDS and SSDS 𝑋 ̅ schemes using the data set on the inside diameter of cylinder bores in an engine block

  3. (a) If 𝑍 ̂1𝑖 ∈ A + , the 𝑖 𝑡ℎ sample is an upper conforming, hence return to Step 2. (b) If 𝑍 ̂1𝑖 ∈ A -, the 𝑖 𝑡ℎ sample is a lower conforming, hence return to Step 2. 4. (a) If 𝑍 ̂1𝑖 ∈ C + , the 𝑖 𝑡ℎ sample is an upper nonconforming; then go to Step 7(a). (b) If 𝑍 ̂1𝑖 ∈ C -, the 𝑖 𝑡ℎ sample is a lower nonconforming; then go to Step 7(b).

  Φ(-𝐿 + 𝛿√𝑛 1 ) + ∫ 𝐵 * -Φ (-𝑐𝐿 2 + 𝑟𝑐𝛿 -𝑧√ 𝑛 1 𝑛 2 ) 𝜙(𝑧)𝑑𝑧, 𝑝 1𝑈 = 1 -Φ(𝐿 + 𝛿√𝑛 1 ) + ∫ 𝐵 * + [1 -Φ (𝑐𝐿 2 𝑝 0𝐿 + 𝑝 0𝑈 ,where𝐴 * -= (-𝐿 1 + 𝛿 √ 𝑛 1 , 0], 𝐴 * + = [𝛿 √ 𝑛 1 , 𝐿 1 + 𝛿 √ 𝑛 1 ), 𝐵 * -= [-𝐿 + 𝛿 √ 𝑛 1 ,-𝐿 1 + 𝛿 √ 𝑛 1 )and 𝐵 * + = (𝐿 1 + 𝛿 √ 𝑛 1 , 𝐿 + 𝛿 √ 𝑛 1 ].Thus, the zero-state c.d.f. for calculating the percentile run-length is given by 𝐹 𝑅𝐿 (ℓ) = 1 -∫ ∫ (𝒒 𝑇 𝑸 ℓ 𝟏)𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) 𝑑𝑣 𝑑𝑢,

  ). Consequently, the unconditional ARL and SDRL of the MSS synthetic DS scheme are given by 𝐴𝑅𝐿 = ∫ ∫ 𝒒 𝑇 (𝑰 -𝑸) -1 𝟏 𝑓 𝑈 (𝑢) 𝑓 𝑉 (𝑣) 𝑑𝑣 𝑑𝑢,

  

  

  

Table 1 .

 1 The exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters of the proposed scheme when m∈{50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛 1 , 𝑛 2 ) ∈{(5,5); (5, 8)}, 𝐴𝑆𝑆 0 =5 and 𝛿 𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿 0 value of 370.4

	(ARL, SDRL, ASS, ANOS)
	(P5, P25, P50, P75, P95)

Table 2 .

 2 The exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters of the proposed chart when m∈ {50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛 1 , 𝑛 2 ) ∈{(3,5); (3, 10)}, 𝐴𝑆𝑆 0 =5 and 𝛿 𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿 0 value of 370.4

	(ARL, SDRL, ASS, ANOS)
	(P5, P25, P50, P75, P95)

Table 3 .

 3 The exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters of the proposed chart when m∈{25, 50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛 1 , 𝑛 2 ) ∈{(5,5); (5, 8)}, 𝐴𝑆𝑆 0 =8 and 𝛿 𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿 0 value of 370.4

	(ARL, SDRL, ASS, ANOS)
	(P5, P25, P50, P75, P95)

Table 4 .

 4 Exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), the Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters of the proposed chart when m∈{25, 50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛 1 , 𝑛 2 ) ∈{(3,5); (3, 10)}, 𝐴𝑆𝑆 0 = 8 and 𝛿 𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿 0 value of 370.4

	(ARL, SDRL, ASS, ANOS)
	(P5, P25, P50, P75, P95)

Table 5

 5 displays the 𝐴𝑅𝐿 𝛿 𝑈 and 𝐴𝑅𝐿 𝛿 𝐾 (last column) values using the Case K optimal design parameters when 𝑛 ∈ {2, 5}, 𝑛 1 ∈ {2, 5}, 𝑛 2 ∈ {2, 5, 8, 11} and nominal 𝐴𝑅𝐿 0 of 370.4. In

Table 5 ,

 5 𝑚 = ∞ denotes the parameters known case (i.e. Case K). From Table5, it can be noticed that the proposed SSDS 𝑋 ̅ scheme yields very large 𝐴𝑅𝐿 𝛿 𝑈 for small Phase I sample

size. For instance, when 𝛿 = 0.5 and (𝑛, 𝑛 1 , 𝑛 2 ) = (2, 2, 2) for a nominal 𝐴𝑅𝐿 0 value of 370.4, the SSDS 𝑋 ̅ scheme yields ARL values of 160.2 and 79.41 when 𝑚 = 25 and 𝑚 = ∞, respectively; revealing a 101.7% percentage difference as compared to the Case K ARL value.

Table 5 .

 5 Case U and Case K OOC 𝐴𝑅𝐿 (first row) and %𝐷𝑖𝑓𝑓 (second row) of the SSDS scheme using the Case K optimal design parameters when 𝑛 ∈ {2, 5}, 𝑛 1 ∈ {2, 5} and 𝑛 2 ∈ {2, 5, 8, 11}when 𝑁𝐴𝑅𝐿 0 = 370.4

	𝒏	(𝒏 𝟏 , 𝒏 𝟐 )	Case K Optimal parameters (𝑳 𝟏 , 𝑳, 𝑳 𝟐 )	𝜹	25	50	100	𝒎 200	300	400	∞
				0.5	160.20	112.64	101.41	82.01	81.11	80.01	79.41
					101.7%	41.8%	27.7%	3.3%	2.1%	0.8%	
				1.0	30.14	30.19	24.58	18.71	17.14	15.48	15.43
					95.3%	95.7%	59.3%	21.3%	11.1%	0.3%	
		(2, 2)	(2.910, 3.057, 2.405)	1.5	11.16	8.19	6.37	5.54	5.00	4.74	4.73
					135.9%	73.2%	34.7%	17.1%	5.7%	0.2%	
	2			2.0	5.13	3.31	3.00	2.64	2.39	2.20	2.18
					135.3%	51.8%	37.6%	21.1%	9.6%	0.9%	
				2.5	3.36	2.24	2.24	2.03	1.88	1.41	1.40
					140.0%	60.0%	60.0%	45.0%	34.3%	0.7%	
				0.5	164.20	95.02	87.64	83.63	82.23	81.09	80.34
		(2, 8)	(2.975, 3.005, 2.931)		104.4%	18.3%	9.1%	4.1%	2.4%	0.9%	
				1.0	32.11	26.62	23.13	19.24	17.44	16.03	15.97

Table 5 . (continues)

 5 

	𝒏	(𝒏 𝟏 , 𝒏 𝟐 )	Case K Optimal parameters (𝑳 𝟏 , 𝑳, 𝑳 𝟐 )	𝜹	25	50	100	𝒎 200	300	400	∞
				0.5	116.33	30.21	22.07	22.51	21.02	19.40	19.35
					501.2%	56.1%	14.1%	16.3%	8.6%	0.3%	
				1.0	24.42	4.23	3.72	3.31	2.89	2.44	2.39
					921.8%	77.0%	55.6%	38.5%	20.9%	2.1%	
		(2, 11)	(1.094, 3.234, 3.010)	1.5	9.06	2.51	2.04	1.69	1.61	1.49	1.48
					512.2%	69.6%	37.8%	14.2%	8.8%	0.7%	
				2.0	3.10	2.08	1.63	1.39	1.26	1.13	1.12
					176.8%	85.7%	45.5%	24.1%	12.5%	0.9%	
				2.5	2.00	1.61	1.39	1.22	1.12	1.04	1.02
					96.1%	57.8%	36.3%	19.6%	9.8%	2.0%	
				0.5	120.76	41.47	32.04	29.11	27.77	26.43	26.29
					359.3%	57.7%	21.9%	10.7%	5.6%	0.5%	
				1.0	22.01	9.21	6.36	4.71	4.04	3.87	3.86
					470.2%	138.6%	64.8%	22.0%	4.7%	0.3%	
		(5, 5)	(2.993, 3.001, 3.000)	1.5	8.86	4.92	2.28	1.61	1.50	1.42	1.42
					523.9%	246.5%	60.6%	13.4%	5.6%	0.0%	
				2.0	3.97	2.73	1.94	1.40	1.26	1.10	1.09
					264.2%	150.5%	78.0%	28.4%	15.6%	0.9%	
				2.5	3.45	1.87	1.47	1.19	1.10	1.03	1.02
	5				235.0%	81.6%	42.7%	15.5%	6.8%	0.0%	
				0.5	104.31	26.42	21.72	20.17	19.08	18.71	18.61
					460.5%	42.0%	16.7%	8.4%	2.5%	0.5%	
				1.0	21.79	7.26	5.48	5.01	3.04	2.09	2.09
					942.6%	247.4%	162.2%	139.7% 45.5%	0.0%	
		(5, 8)	(2.993, 3.001, 2.998)	1.5	7.08	4.54	2.19	2.01	1.63	1.24	1.22
					475.6%	269.1%	78.0%	63.4%	32.5%	0.8%	
				2.0	3.31	2.80	1.79	1.53	1.36	1.07	1.06
					212.3%	164.2%	68.9%	44.3%	28.3%	0.9%	
				2.5	2.48	1.74	1.41	1.34	1.20	1.02	1.01
					145.5%	72.3%	39.6%	32.7%	18.8%	1.0%	
				0.5	99.17	25.45	21.39	19.15	17.82	17.23	17.21
					476.2%	47.9%	24.3%	11.3%	3.5%	0.1%	
				1.0	22.84	7.42	5.47	4.93	3.00	2.11	2.11
					982.5%	251.7%	159.2%	133.6% 42.2%	0.0%	
		(5, 11)	(2.996, 3.000, 2.999)	1.5	6.59	4.50	2.16	1.97	1.61	1.15	1.14
					478.1%	294.7%	89.5%	72.8%	41.2%	0.9%	
				2.0	3.22	2.77	1.77	1.49	1.33	1.09	1.07
					198.1%	156.5%	63.9%	38.0%	23.1%	0.9%	
				2.5	2.29	1.70	1.39	1.33	1.21	1.02	1.00
					126.7%	68.3%	37.6%	31.7%	19.8%	1.0%	

Table 6 .

 6 Case U monitoring schemes performance comparison when n = 𝐴𝑆𝑆 0 ∈ {5, 8}, 𝑛 1 ∈ {3, 5}, 𝑛 2 ∈ {5, 8}, m ∈ {50, 100}, 𝛿 𝑚𝑖𝑛 = 0 and 𝛿 𝑚𝑎𝑥 = 2.5 with a nominal 𝐴𝑅𝐿 0 of 370.4

	*Shift	Performance measures	NSS Synthetic 𝑿 ̅	SS Synthetic 𝑿 ̅	𝑿 ̅ -EWMA(0.1)	Control charts EWMA(0.5) 𝑿 ̅ -𝑿 ̅ -CUSUM	NSSDS 𝑿 ̅	SSDS 𝑿 ̅	(𝒏 𝟏 , 𝒏 𝟐 )	𝑨𝑺𝑺 𝟎 = 𝒏	m
		AEQL	98.21	82.33	70.56	119.12	96.01	84.13	76.23		
	Small	ARARL	1.24	1.10	0.91	1.48	1.23	1.13	1.00		
		PCI	1.29	1.08	0.93	1.56	1.26	1.10	1.00		
	Small to moderate	AEQL ARARL PCI	104.24 1.49 1.47	80.32 1.17 1.14	76.79 1.11 1.09	120.24 1.64 1.70	103.72 1.50 1.47	74.22 1.08 1.05	70.76 1.00 1.00	(3, 5)	5
	Small to large	AEQL ARARL PCI AEQL	86.04 1.41 1.38 72.89	70.43 1.11 1.13 68.16	94.18 1.47 1.51 60.30	110.44 1.68 1.77 73.05	100.37 1.56 1.61 71.18	67.99 1.13 1.09 68.29	62.32 1.00 1.00 62.46			50
	Small	ARARL	1.20	1.14	0.95	1.21	1.14	1.12	1.00		
		PCI	1.17	1.09	0.97	1.17	1.14	1.09	1.00		
	Small to moderate	AEQL ARARL PCI	71.51 1.34 1.32	60.16 1.15 1.11	61.47 1.14 1.13	79.09 1.52 1.46	66.34 1.20 1.22	59.35 1.12 1.09	54.24 1.00 1.00	(5, 8)	8
	Small to large	AEQL ARARL PCI	45.04 1.36 1.34	40.37 1.31 1.20	50.56 1.40 1.45	61.40 1.72 1.71	59.48 1.63 1.65	38.55 1.17 1.15	33.59 1.00 1.00		
		AEQL	75.43	67.68	54.44	103.57	86.12	71.07	63.40		
	Small	ARARL	1.17	1.03	0.82	1.57	1.32	1.14	1.00		
		PCI	1.19	1.07	0.86	1.63	1.36	1.12	1.00		
	Small to moderate	AEQL ARARL PCI	79.69 1.49 1.53	61.21 1.23 1.18	59.85 1.21 1.15	85.59 1.43 1.65	75.05 1.36 1.44	56.10 1.13 1.08	51.94 1.00 1.00	(3, 5)	5
	Small to large	AEQL ARARL PCI	67.65 1.48 1.44	51.18 1.12 1.09	71.02 1.41 1.52	83.51 1.74 1.78	68.71 1.49 1.47	53.95 1.19 1.15	46.82 1.00 1.00		
		AEQL	72.43	65.68	53.51	99.43	88.09	70.12	61.25			100
	Small	ARARL	1.21	1.10	0.84	1.58	1.41	1.17	1.00		
		PCI	1.18	1.07	0.87	1.62	1.44	1.14	1.00		
	Small to moderate	AEQL ARARL PCI	75.45 1.46 1.52	59.06 1.21 1.19	60.76 1.26 1.23	83.28 1.56 1.68	71.26 1.47 1.44	53.23 1.10 1.07	49.59 1.00 1.00	(5, 8)	8
	Small to large	AEQL ARARL PCI	65.69 1.42 1.39	59.34 1.19 1.26	68.13 1.45 1.44	74.79 1.47 1.58	66.52 1.36 1.41	51.48 1.06 1.09	47.19 1.00 1.00		

  𝑍 1𝑖 and 𝑍 𝑖 (i.e. for Stages 1 and 2) of the two monitoring schemes are shown in Figure3. Table7illustrates the operation of the Case U's Phase II NSSDS and SSDS 𝑋 ̅ schemes using the data set on the inside diameter of cylinder bores.It is seen that the NSSDS 𝑋 ̅ scheme does not give a signal at Stage 1. However, at the 16th, 19 th and 26 th sampling time, there was a need for a second sample and the process moved to Stage 2. The plotting statistics of the NSSDS 𝑋 ̅ scheme at Stage 2, 𝑍 𝑖 , at the 16 th , 19 th and 26 th sampling time are equal to -0.425, 1.015 and 3.176, respectively. It can be seen that 𝑍 16 and 𝑍 19 plot between -𝐿 2 =-2.418 and 𝐿 2 =2.418, which means that the DS 𝑋 ̅ scheme does not signal on the 16 th and 19 th sampling time. Since 𝑍 26 plots above 𝐿 2 , the NSSDS 𝑋 ̅ scheme gives a signal at the 26 th sampling time (see Figure3(a) and Table7) for the first time in Stage 2.

	1 * , 𝐿 * , 𝐿 2 * ) of the Case U SSDS
	𝑋 ̅ scheme and the Case U NSSDS 𝑋 ̅ scheme are found to be equal to (2.212, 2.576, 2.305) and
	(2.306, 2.614, 2.418), respectively, so that these schemes both satisfied 𝐴𝑅𝐿 0 = 370.4. A plot
	of the charting statistics

Table 7 .

 7 Illustration of the operation of the NSSDS and SSDS 𝑋 ̅ schemes using the data set on the inside diameter of cylinder bores in an engine blockThe proposed SSDS 𝑋 ̅ scheme moves for the first time to Stage 2 at the 16 th sampling time. At this sampling time, 𝑍 16 is equal to -0.425. Since 𝑍 16 ∈ (-𝐿 2 , 𝐿 2 ) = (-2.305, 2.305), the proposed SSDS 𝑋 ̅ scheme does not give a signal on the 16 th sampling time. However, on the 19 th sampling time, Z1i (with, i = 19) equal to 2.5864 plots above L2 = 2.305. Therefore, the SSDS 𝑋 ̅ scheme give a signal for the first time at the 19 th sampling time in Stage 1 (see Figure3(b) 

	NSSDS 𝑋 ̅ chart

  5. If 𝑍 ̂1𝑖 ∈ B + or if 𝑍 ̂1𝑖 ∈ B -, take a second sample of size 𝑛 2 (𝑛 2 > 𝑛 1 ) and calculate the standardised statistic using Equation (14) at the 𝑖 𝑡ℎ sampling time at Stage 2.6. (a) If 𝑍 ̂1𝑖 ∈ B + and 𝑍 ̂𝑖 ∈ D + , the 𝑖 𝑡ℎ sample is an upper nonconforming; then go to Step

	(b) Count the number of lower conforming samples between two consecutive lower
	nonconforming samples including the present lower nonconforming sample (i.e.,
	denote this as 𝐶𝑅𝐿 𝐿 𝑀𝑆𝑆 ).
	8. If 𝐶𝑅𝐿 𝑈 𝑀𝑆𝑆 ≤ 𝐻 (or 𝐶𝑅𝐿 𝐿 𝑀𝑆𝑆 ≤ 𝐻), the process is OOC; then go to Step 9. Otherwise,
	the process is IC, hence return to Step 2.
	9. Identify and remove the assignable cause(s); then go to Step 2.
	7(a).
	(b) If 𝑍 ̂1𝑖 ∈ B -and 𝑍 ̂𝑖 ∈ D -, the 𝑖 𝑡ℎ sample is a lower nonconforming; then go to Step
	7(b). Otherwise, return to Step 2.
	7. (a) Count the number of upper conforming samples between two consecutive upper
	nonconforming samples including the second upper nonconforming sample (i.e., denote
	this as 𝐶𝑅𝐿 𝑈 𝑀𝑆𝑆 ).

Table 8 .

 8 Performance comparison between the SSDS 𝑋 ̅ and MSS synthetic 𝑋 ̅ schemes when 𝑛 = 5, 𝑚 ∈ {50, 100}, 𝐻 ∈ {1, 2} for a nominal 𝐴𝑅𝐿 0 = 370.4

	(ARL, SDRL)
	(P5, P25, P50, P75, P95)
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