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Abstract. This is a joint introduction to classical and free probability, which are twin
sisters. We discuss in detail the foundations and main results of both theories, by insisting
on their common features, and by using a light formalism, based on standard calculus.
We include as well a brief discussion of more advanced aspects.



Preface

Probability theory, and the probabilistic way of thinking, have seen a considerable
surge in the last years, with virtually every single branch of mathematics being affected.
It goes without saying that everything mathematics coming from quantum mechanics,
which actually accounts for a big part of pure mathematics as we know it, has some
probability behind, and this has become more and more visible during recent years. The
same goes of course for statistical mechanics, once again somehow by definition. As in
what regards classical mechanics, a look at the night sky, with the idea in mind that some
of the things going on there might be after all of a quite probabilistic nature, leads to a lot
of interesting questions too. Finally, old branches of pure mathematics, such as number
theory, are increasingly becoming more analytic, and more probabilistic too.

At the technical level, probability theory comes in many flavors. However, if there is
one thing to be known, having interesting mathematics and physics behind, this is the
fact that classical probability theory has a “twin sister”, namely free probability.

Free probability was introduced by Voiculescu in the mid 80s, with motivation coming
from general quantum mechanics, and more specifically with a number of operator algebra
questions in mind. Among the main discoveries of Voiculescu was the fact that Wigner’s
semicircle law, coming from advanced quantum physics and random matrices, appears
as the “free analogue” of the normal law. This has led to a lot of interest and activity
in free probability, with the subject having now deep ties to operator algebras, random
matrices, quantum groups, noncommutative geometry, and virtually any other branch of
mathematics coming from quantum mechanics, or statistical mechanics.

The present book is an introduction to free probability, with the aim of keeping things
as simple and concrete as possible, while still being complete. Our goals will be on
one hand that of explaining the definition and main properties of free probability, in
analogy with the definition and main properties of classical probability, and by keeping
the presentation as elementary as possible, and on the other hand to go, at least a little bit,
into each of the above-mentioned classes of examples and applications, namely operator
algebras, random matrices, quantum groups and noncommutative geometry.
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4 PREFACE

The book covers what can be taught during a 1-year graduate course, with this idea
in mind, explaining both the theory, and the examples and applications. There are also
several options for compacting things for a 1-semester course, and more on this later.

The first half of the book contains basic material, all beautiful and useful things,
leading to free probability. Part I is concerned with classical probability, or rather with
selected topics from classical probability, which extend well to the free case. These in-
clude the standard classical limiting theorems (CLT, CCLT, PLT, CPLT), all done via
the moment method and combinatorics, and then a discussion regarding Lie groups, and
Weingarten calculus. Part II is an introduction to the random matrices, benefiting from
the probability theory learned in Part I, and making a transition towards the free proba-
bility theory from Parts III-IV. The main results here are the classical limiting theorems
of Wigner and Marchenko-Pastur, both done via the moment method and combinatorics,
and with a look into the block-modified random matrices too.

The second half of the book is concerned with free probability itself, and applications.
Part III deals with the definition and main properties of free probability, central here
being the free analogues of the classical limiting theorems (CLT, CCLT, PLT, CPLT),
following Voiculescu. Our approach is based on standard calculus and light operator
algebra theory, making somehow a compromise between the two standard approaches,
from the books of Voiculescu-Dykema-Nica and Nica-Speicher, which are respectively
heavier on operator algebras, and using combinatorics instead of calculus. We will explain
in particular the Bercovici-Pata bijection, and the block-modified random matrix models
for the corresponding main free laws. As for Part IV, this deals with applications to
quantum groups, noncommutative geometry, operator algebras and subfactors.

All in all, many things in this book, meant to correspond to a 1-year graduate course.
For a 1-semester course, the roadmap would be selected topics from Parts I-II, depending
on knowledge and taste, then Part III in detail, and with the look into Part IV too.

I learned myself free probability long ago, as a graduate student, with my first re-
search paper being something on the subject. Later I started doing quantum groups, and
sometimes random matrices too, with free probability always in mind. I am grateful to
Mireille Capitaine, Benôıt Collins, Steve Curran, Ion Nechita and Roland Speicher, for
substantial joint work on the subject. Many thanks go as well to my cats. No serious
science can be done without advice from a cat or two.
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Part I

Classical probability



The Magical Mystery Tour
Is coming to take you away
Coming to take you away

Take you today



CHAPTER 1

The normal law

1a. Probability theory

Generally speaking, probability theory is best learned by flipping coins and throwing
dices. At a more advanced level, which is playing cards, we have:

Theorem 1.1. The probabilities at poker are as follows:

(1) One pair: 0.533.
(2) Two pairs: 0.120.
(3) Three of a kind: 0.053.
(4) Full house: 0.006.
(5) Straight: 0.005.
(6) Four of a kind: 0.001.
(7) Flush: 0.000.
(8) Straight flush: 0.000.

Proof. Let us consider indeed our deck of 32 cards:

7, 8, 9, 10, J,Q,K,A

The total number of possibilities is:(
32

5

)
=

32 · 31 · 30 · 29 · 28

2 · 3 · 4 · 5
= 32 · 31 · 29 · 7

(1) For having a pair, the number of possibilities is:

N =

(
8

1

)(
4

2

)
×
(

7

3

)(
4

1

)3

= 8 · 6 · 35 · 64

Thus, the probability of having a pair is:

P =
8 · 6 · 35 · 64

32 · 31 · 29 · 7
=

6 · 5 · 16

31 · 29
=

480

899
= 0.533

(2) For having two pairs, the number of possibilities is:

N =

(
8

2

)(
4

2

)2

×
(

24

1

)
= 28 · 36 · 24

11



12 1. THE NORMAL LAW

Thus, the probability of having two pairs is:

P =
28 · 36 · 24

32 · 31 · 29 · 7
=

36 · 3
31 · 29

=
108

899
= 0.120

(3) For having three of a kind, the number of possibilities is:

N =

(
8

1

)(
4

3

)
×
(

7

2

)(
4

1

)2

= 8 · 4 · 21 · 16

Thus, the probability of having three of a kind is:

P =
8 · 4 · 21 · 16

32 · 31 · 29 · 7
=

3 · 16

31 · 29
=

48

899
= 0.053

(4) For having full house, the number of possibilities is:

N =

(
8

1

)(
4

3

)
×
(

7

1

)(
4

2

)
= 8 · 4 · 7 · 6

Thus, the probability of having full house is:

P =
8 · 4 · 7 · 6

32 · 31 · 29 · 7
=

6

31 · 29
=

6

899
= 0.006

(5) For having a straight, the number of possibilities is:

N = 4

[(
4

1

)4

− 4

]
= 16 · 63

Thus, the probability of having a straight is:

P =
16 · 63

32 · 31 · 29 · 7
=

9

2 · 31 · 29
=

9

1798
= 0.005

(6) For having four of a kind, the number of possibilities is:

N =

(
8

1

)(
4

4

)
×
(

7

1

)(
4

1

)
= 8 · 7 · 4

Thus, the probability of having four of a kind is:

P =
8 · 7 · 4

32 · 31 · 29 · 7
=

1

31 · 29
=

1

899
= 0.001

(7) For having a flush, the number of possibilities is:

N = 4

[(
8

4

)
− 4

]
= 4 · 66

Thus, the probability of having a flush is:

P =
4 · 66

32 · 31 · 29 · 7
=

33

4 · 31 · 29 · 7
=

9

25172
= 0.000
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(8) For having a straight flush, the number of possibilities is:

N = 4 · 4

Thus, the probability of having a straight flush is:

P =
4 · 4

32 · 31 · 29 · 7
=

1

2 · 31 · 29 · 7
=

1

12586
= 0.000

Thus, we have obtained the numbers in the statement. �

Summarizing, probability is basically about binomials and factorials, and ultimately
about numbers. We will see later on that, in connection with more advanced questions,
of continuous nature, some standard calculus comes into play as well.

Let us discuss now the general theory. The fundamental result in probability is the
Central Limit Theorem (CLT), and our first task will be that of explaining this. With
the idea in mind of doing things a bit abstractly, our starting point will be:

Definition 1.2. Let X be a probability space, that is to say, a space with a probability
measure, and with the corresponding integration denoted E, and called expectation.

(1) The random variables are the real functions f ∈ L∞(X).
(2) The moments of such a variable are the numbers Mk(f) = E(fk).
(3) The law of such a variable is the measure given by Mk(f) =

∫
R x

kdµf (x).

Here the fact that µf exists indeed is not trivial. By linearity, we would like to have
a real probability measure making hold the following formula, for any P ∈ R[X]:

E(P (f)) =

∫
R
P (x)dµf (x)

By using a continuity argument, it is enough to have this formula for the characteristic
functions χI of the arbitrary measurable sets of real numbers I ⊂ R:

E(χI(f)) =

∫
R
χI(x)dµf (x)

Thus, we would like to have a measure µf such that:

P(f ∈ I) = µf (I)

But this latter formula can serve as a definition for µf , and we are done. Alternatively,
assuming some familiarity with measure theory, µf is simply the push-forward of the
probability measure on X, via the random variable f : X → R.

Next in line, we need to talk about independence. Once again with the idea of doing
things a bit abstractly, the definition here is as follows:
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Definition 1.3. Two variables f, g ∈ L∞(X) are called independent when

E(fkgl) = E(fk) · E(gl)

happens, for any k, l ∈ N.

Once again, this definition hides some non-trivial things. Indeed, by linearity, we
would like to have a formula as follows, valid for any polynomials P,Q ∈ R[X]:

E(P (f)Q(g)) = E(P (f)) · E(Q(g))

By continuity, it is enough to have this formula for characteristic functions χI , χJ of
the arbitrary measurable sets of real numbers I, J ⊂ R:

E(χI(f)χJ(g)) = E(χI(f)) · E(χJ(g))

Thus, we are led to the usual definition of independence, namely:

P(f ∈ I, g ∈ J) = P(f ∈ I) · P(g ∈ J)

All this might seem a bit abstract, but in practice, the idea is of course that f, g must
be independent, in an intuitive, real-life sense. As a first result now, we have:

Proposition 1.4. Assuming that f, g ∈ L∞(X) are independent, we have

µf+g = µf ∗ µg
where ∗ is the convolution of real probability measures.

Proof. We have the following computation, using the independence of f, g:

Mk(f + g) = E((f + g)k)

=
∑
l

(
k

l

)
E(f lgk−l)

=
∑
l

(
k

l

)
Ml(f)Mk−l(g)

On the other hand, by using the Fubini theorem, we have as well:∫
R
xkd(µf ∗ µg)(x) =

∫
R×R

(x+ y)kdµf (x)dµg(y)

=
∑
l

(
k

l

)∫
R
xkdµf (x)

∫
R
yldµg(y)

=
∑
l

(
k

l

)
Ml(f)Mk−l(g)

Thus the measures µf+g and µf ∗µg have the same moments, Mk(µf+g) = Mk(µf ∗µg),
and it follows that these two measures coincide, as stated. �
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Here is now a second result on independence, which is something more advanced:

Theorem 1.5. Assuming that f, g ∈ L∞(X) are independent, we have

Ff+g = FfFg

where Ff (x) = E(eixf ) is the Fourier transform.

Proof. We have the following computation, using Proposition 1.4 and Fubini:

Ff+g(x) =

∫
R
eixydµf+g(y)

=

∫
R
eixyd(µf ∗ µg)(y)

=

∫
R×R

eix(y+z)dµf (y)dµg(z)

=

∫
R
eixydµf (y)

∫
R
eixzdµg(z)

= Ff (x)Fg(x)

Thus, we are led to the conclusion in the statement. �

This was for the foundations of probability theory, quickly explained. For further
reading, a classical book is Feller [47]. A nice, more modern book is Durrett [44].

1b. Central limits

The main result in classical probability is the Central Limit Theorem (CLT), that we
will explain now. Let us first discuss the normal distributions, that we will see later to
appear as limiting laws in the CLT. We will need the following standard result:

Proposition 1.6. We have polar coordinates in 2 dimensions,{
x = r cos t

y = r sin t

the corresponding Jacobian being J = r.

Proof. This is elementary, the Jacobian being:

J =

∣∣∣∣∣∣
∂r cos t
∂r

∂r cos t
∂t

∂r sin t
∂r

∂r sin t
∂t

∣∣∣∣∣∣
=

∣∣∣∣cos t −r sin t
sin t r cos t

∣∣∣∣
= r

Thus, we have indeed the formula in the statement. �
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As an application, and best calculus ever, we can compute the Gauss integral:

Theorem 1.7. We have the following formula,∫
R
e−x

2

dx =
√
π

called Gauss integral formula.

Proof. Let I be the above integral. By using polar coordinates, we have:

I2 =

∫
R

∫
R
e−x

2−y2dxdy

=

∫ 2π

0

∫ ∞
0

e−r
2

rdrdt

= 2π

∫ ∞
0

(
−e
−r2

2

)′
dr

= 2π

[
0−

(
−1

2

)]
= π

Thus, we are led to the formula in the statement. �

We can now introduce the normal distributions, as follows:

Definition 1.8. The normal law of parameter 1 is the following measure:

g1 =
1√
2π
e−x

2/2dx

More generally, the normal law of parameter t > 0 is the following measure:

gt =
1√
2πt

e−x
2/2tdx

These are also called Gaussian distributions, with “g” standing for Gauss.

As a first comment, these laws are usually denoted N (0, 1) and N (0, t), but since we
will be doing in this book all kinds of probability, namely classical and free, real and
complex, discrete and continuous, and so on, we will have to deal with lots of interesting
probability measures, and we will be using simplified notations for them.

Let us mention as well that the normal laws traditionally have 2 parameters, the mean
and the variance. Here we do not need the mean, all our theory using centered laws.
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As a second remark, the above laws have indeed mass 1, as they should. This follows
indeed from the Gauss formula, which gives, with x =

√
2t y:∫

R
e−x

2/2tdx =

∫
R
e−y

2√
2t dy

=
√

2t

∫
R
e−y

2

dy

=
√

2t×
√
π

=
√

2πt

Generally speaking, the normal laws appear as bit everywhere, in real life. The reasons
behind this come from the Central Limit Theorem (CLT), that we will explain in a
moment, after developing some more general theory. As a first result, we have:

Proposition 1.9. We have the variance formula

V (gt) = t

valid for any t > 0.

Proof. The first moment is 0, because our normal law gt is centered. As for the
second moment, this can be computed as follows:

M2 =
1√
2πt

∫
R
x2e−x

2/2tdx

=
1√
2πt

∫
R
(tx)

(
−e−x2/2t

)′
dx

=
1√
2πt

∫
R
te−x

2/2tdx

=

√
t

2π

∫
R
e−x

2/2tdx

=

√
t

2π
×
√

2πt

= t

We conclude from this that the variance is V = t. �

Here is now another result, which is widely useful in practice:

Theorem 1.10. We have the following formula, valid for any t > 0:

Fgt(x) = e−tx
2/2

In particular, the normal laws satisfy gs ∗ gt = gs+t, for any s, t > 0.
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Proof. The Fourier transform formula can be established as follows:

Fgt(x) =
1√
2πt

∫
R
e−y

2/2t+ixydy

=
1√
2πt

∫
R
e−(y/

√
2t−
√
t/2ix)2−tx2/2dy

=
1√
2πt

∫
R
e−z

2−tx2/2
√

2tdz

=
1√
π
e−tx

2/2

∫
R
e−z

2

dz

= e−tx
2/2

As for the last assertion, this follows from Theorem 1.5, logFgt being linear in t. �

We are now ready to state and prove the CLT, as follows:

Theorem 1.11 (CLT). Given real random variables f1, f2, f3, . . . ∈ L∞(X) which are
i.i.d., centered, and with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

fi ∼ gt

where gt is the Gaussian law of parameter t.

Proof. In terms of moments, the Fourier transform is given by:

Ff (x) = E

(
∞∑
k=0

(ixf)k

k!

)

=
∞∑
k=0

(ix)kE(fk)

k!

=
∞∑
k=0

ikMk(f)

k!
xk

Thus, the Fourier transform of the variable in the statement is:

F (x) =

[
Ff

(
x√
n

)]n
=

[
1− tx2

2n
+O(n−2)

]n
' e−tx

2/2

But this function being the Fourier transform of gt, we obtain the result. �
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Let us discuss now some further properties of the normal law, which are of more
specialized nature. We first have the following result:

Proposition 1.12. The even moments of the normal law are the numbers

Mk(gt) = tk/2 × k!!

where the double factorials are by definition given by

k!! = (k − 1)(k − 3)(k − 5) . . .

and the odd moments vanish.

Proof. We have the following computation, valid for any integer k ∈ N:

Mk =
1√
2πt

∫
R
xke−x

2/2tdx

=
1√
2πt

∫
R
(txk−1)

(
−e−x2/2t

)′
dx

=
1√
2πt

∫
R
t(k − 1)xk−2e−x

2/2tdx

= t(k − 1)× 1√
2πt

∫
R
xk−2e−x

2/2tdx

= t(k − 1)Mk−2

Now recall from the proof of Proposition 1.9 above that we have M0 = 1, M1 = 0.
Thus by recurrence, we are led to the conclusions in the statement. �

We have the following alternative formulation of the above result:

Proposition 1.13. The moments of the normal law are the numbers

Mk(gt) = tk/2|P2(k)|
where P2(k) is the set of pairings of {1, . . . , k}.

Proof. Let us count the pairings of {1, . . . , k}. In order to have such a pairing, we
must pair 1 with one of the numbers 2, . . . , k, and then use a pairing of the remaining
k − 2 numbers. Thus, we have the following recurrence formula:

|P2(k)| = (k − 1)|P2(k − 2)|
As for the initial data, this is P1 = 0, P2 = 1. Thus for k even, we obtain:

|P2(k)| = k!!

As for k odd, here we have |P2(k)| = 0. Thus, we are led to the result. �

We are not done yet, and here is one more improvement of the above:
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Theorem 1.14. The moments of the normal law are the numbers

Mk(gt) =
∑

π∈P2(k)

t|π|

where P2(k) is the set of pairings of {1, . . . , k}, and |.| is the number of blocks.

Proof. This follows indeed from Proposition 1.13 above, because the number of
blocks of a pairing of {1, . . . , k} is trivially k/2, independently of the pairing. �

We will see later on that many other interesting probability distributions are subject
to similar formulae regarding their moments, involving partitions, and a lot of interesting
combinatorics. Discussing this will be in fact a main theme of the present book.

1c. Spherical integrals

As already mentioned, due to the CLT, the normal laws appear a bit everywhere, in
real life. In a purely mathematical context, the simplest way of recovering these laws is
by looking at the coordinates over the real spheres SN−1

R , in the N →∞ limit.

At N = 2 the sphere is the unit circle T, and with z = eit the coordinates are cos t, sin t.
Let us first integrate powers of these coordinates. We have here:

Proposition 1.15. We have the following formulae,∫ π/2

0

cosp t dt =

∫ π/2

0

sinp t dt =
(π

2

)ε(p) p!!

(p+ 1)!!

where ε(p) = 1 if p is even, and ε(p) = 0 if p is odd, and where

m!! = (m− 1)(m− 3)(m− 5) . . .

with the product ending at 2 if m is odd, and ending at 1 if m is even.

Proof. Let us first compute the integral on the left in the statement:

Ip =

∫ π/2

0

cosp t dt

We do this by partial integration. We have the following formula:

(cosp t sin t)′ = p cosp−1 t(− sin t) sin t+ cosp t cos t

= p cosp+1 t− p cosp−1 t+ cosp+1 t

= (p+ 1) cosp+1 t− p cosp−1 t

By integrating between 0 and π/2, we obtain the following formula:

(p+ 1)Ip+1 = pIp−1
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Thus we can compute Ip by recurrence, and we obtain in this way:

Ip =
p− 1

p
Ip−2

=
p− 1

p
· p− 3

p− 2
Ip−4

=
p− 1

p
· p− 3

p− 2
· p− 5

p− 4
Ip−6

...

=
p!!

(p+ 1)!!
I1−ε(p)

On the other hand, at p = 0 we have the following formula:

I0 =

∫ π/2

0

1 dt =
π

2

Also, at p = 1 we have the following formula:

I1 =

∫ π/2

0

cos t dt = 1

Thus, we obtain the result, by recurrence. As for the second formula, regarding powers
of sin t, this follows from the first one, with the change of variables t = π

2
− s. �

More generally now, we have the following result, which fully computes the integrals
of arbitrary polynomials of the two coordinates over the unit circle:

Theorem 1.16. We have the following formula,∫ π/2

0

cosp t sinq t dt =
(π

2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!

where ε(p) = 1 if p is even, and ε(p) = 0 if p is odd, and where

m!! = (m− 1)(m− 3)(m− 5) . . .

with the product ending at 2 if m is odd, and ending at 1 if m is even.

Proof. This is standard, by doing a partial integration, and then proving the result
by a double recurrence, on both p and q. Let us set indeed:

Ipq =

∫ π/2

0

cosp t sinq t dt

In order to do the partial integration, observe that we have:

(cosp t sinq t)′ = p cosp−1 t(− sin t) sinq t+ cosp t · q sinq−1 t cos t

= −p cosp−1 t sinq+1 t+ q cosp+1 t sinq−1 t
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By integrating between 0 and π/2, we obtain, for p, q > 0:

pIp−1,q+1 = qIp+1,q−1

Thus, we can compute Ipq by recurrence. When q is even we have:

Ipq =
q − 1

p+ 1
Ip+2,q−2

=
q − 1

p+ 1
· q − 3

p+ 3
Ip+4,q−4

=
q − 1

p+ 1
· q − 3

p+ 3
· q − 5

p+ 5
Ip+6,q−6

...

=
p!!q!!

(p+ q)!!
Ip+q

But the last term comes from Proposition 1.15, and we obtain the result:

Ipq =
p!!q!!

(p+ q)!!
Ip+q

=
p!!q!!

(p+ q)!!

(π
2

)ε(p+q) (p+ q)!!

(p+ q + 1)!!

=
(π

2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!

Observe that this gives the result for p even as well, by symmetry. Indeed, we trivially
have Ipq = Iqp, by using the following change of variables:

t =
π

2
− s

In the remaining case now, where both p, q are odd, we can use once again the formula
pIp−1,q+1 = qIp+1,q−1, and the recurrence goes as follows:

Ipq =
q − 1

p+ 1
Ip+2,q−2

=
q − 1

p+ 1
· q − 3

p+ 3
Ip+4,q−4

=
q − 1

p+ 1
· q − 3

p+ 3
· q − 5

p+ 5
Ip+6,q−6

...

=
p!!q!!

(p+ q − 1)!!
Ip+q−1,1
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In order to compute the last term, observe that we have:

Ip1 =

∫ π/2

0

cosp t sin t dt

= − 1

p+ 1

∫ π/2

0

(cosp+1 t)′ dt

=
1

p+ 1

Thus, we can finish our computation in the case p, q odd, as follows:

Ipq =
p!!q!!

(p+ q − 1)!!
Ip+q−1,1

=
p!!q!!

(p+ q − 1)!!
· 1

p+ q

=
p!!q!!

(p+ q + 1)!!

Thus, we obtain the formula in the statement, the exponent of π/2 appearing there
being ε(p)ε(q) = 0 · 0 = 0 in the present case, and this finishes the proof. �

In order to deal now with the higher spheres, we will use spherical coordinates:

Theorem 1.17. We have spherical coordinates in N dimensions,

x1 = r cos t1
x2 = r sin t1 cos t2
...

xN−1 = r sin t1 sin t2 . . . sin tN−2 cos tN−1

xN = r sin t1 sin t2 . . . sin tN−2 sin tN−1

the corresponding Jacobian being given by the following formula:

J(r, t) = rN−1 sinN−2 t1 sinN−3 t2 . . . sin2 tN−3 sin tN−2

Proof. The fact that we have indeed spherical coordinates is clear. Regarding the
Jacobian, the proof is similar to the one from 2 dimensions, by developing the determinant
over the last column, and then by proceeding by recurrence. Indeed, we have:

JN = r sin t1 . . . sin tN−2 sin tN−1 × sin tN−1JN−1

+ r sin t1 . . . sin tN−2 cos tN−1 × cos tN−1JN−1

= r sin t1 . . . sin tN−2(sin2 tN−1 + cos2 tN−1)JN−1

= r sin t1 . . . sin tN−2JN−1

Thus, we obtain the formula in the statement, by recurrence. �
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As a first application, we can compute the volume of the sphere:

Theorem 1.18. The volume of the unit sphere in RN is given by

V

2N
=
(π

2

)[N/2] 1

(N + 1)!!

with our usual convention m!! = (m− 1)(m− 3)(m− 5) . . . for the double factorials.

Proof. This is standard, by using spherical coordinates, then Fubini, and then the
formula in Theorem 1.16 in order to conclude. Indeed, if we denote by Q the positive
part of the sphere, obtained by cutting the sphere in 2N parts, we have:

V

2N
=

∫
Q

1

=

∫ 1

0

∫ π/2

0

. . .

∫ π/2

0

rN−1 sinN−2 t1 . . . sin tN−2 drdt1 . . . dtN−1

=

∫ 1

0

rN−1 dr

∫ π/2

0

sinN−2 t1 dt1 . . .

∫ π/2

0

sin tN−2dtN−2

∫ π/2

0

1dtN−1

=
1

N
×
(π

2

)[N/2]

× (N − 2)!!

(N − 1)!!
· (N − 3)!!

(N − 2)!!
. . .

2!!

3!!
· 1!!

2!!
· 1

=
1

N
×
(π

2

)[N/2]

× 1

(N − 1)!!

=
(π

2

)[N/2] 1

(N + 1)!!

Here we have used the following formula for computing the exponent of π/2, where
ε(p) = 1 if p is even and ε(p) = 0 if p is odd, as in Theorem 1.16 above:

ε(0) + ε(1) + ε(2) + . . .+ ε(N − 2)

= 1 + 0 + 1 + . . .+ ε(N − 2)

=

[
N − 2

2

]
+ 1

=

[
N

2

]
Thus, we obtain the formula in the statement. �

Let us discuss now the computation of the arbitrary polynomial integrals, over the
spheres of arbitrary dimension. The result here is as follows:
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Theorem 1.19. The spherical integral of xi1 . . . xik vanishes, unless each index a ∈
{1, . . . , N} appears an even number of times in the sequence i1, . . . , ik. We have∫

SN−1
R

xi1 . . . xik dx =
(N − 1)!!l1!! . . . lN !!

(N + Σli − 1)!!

with la being this number of occurrences.

Proof. We can restrict attention to the case la ∈ 2N, since the other integrals vanish.
The integral in the statement can be written in spherical coordinates, as follows:

I =
2N

V

∫ π/2

0

. . .

∫ π/2

0

xl11 . . . x
lN
N J dt1 . . . dtN−1

In this formula V is the volume of the sphere, J is the Jacobian, and the 2N factor
comes from the restriction to the 1/2N part of the sphere where all the coordinates are
positive. According to the formula in Theorem 1.18, the normalization constant is:

2N

V
=

(
2

π

)[N/2]

(N + 1)!!

As for the unnormalized integral, this is given by:

I ′ =

∫ π/2

0

. . .

∫ π/2

0

(cos t1)l1(sin t1 cos t2)l2

...

(sin t1 sin t2 . . . sin tN−2 cos tN−1)lN−1

(sin t1 sin t2 . . . sin tN−2 sin tN−1)lN

sinN−2 t1 sinN−3 t2 . . . sin
2 tN−3 sin tN−2

dt1 . . . dtN−1

By rearranging the terms, we obtain:

I ′ =

∫ π/2

0

cosl1 t1 sinl2+...+lN+N−2 t1 dt1∫ π/2

0

cosl2 t2 sinl3+...+lN+N−3 t2 dt2

...∫ π/2

0

coslN−2 tN−2 sinlN−1+lN+1 tN−2 dtN−2∫ π/2

0

coslN−1 tN−1 sinlN tN−1 dtN−1
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Now by using the formula in Theorem 1.16, this gives:

I ′ =
l1!!(l2 + . . .+ lN +N − 2)!!

(l1 + . . .+ lN +N − 1)!!

(π
2

)ε(N−2)

l2!!(l3 + . . .+ lN +N − 3)!!

(l2 + . . .+ lN +N − 2)!!

(π
2

)ε(N−3)

...
lN−2!!(lN−1 + lN + 1)!!

(lN−2 + lN−1 + lN + 2)!!

(π
2

)ε(1)

lN−1!!lN !!

(lN−1 + lN + 1)!!

(π
2

)ε(0)

Now observe that the various double factorials multiply up to quantity in the state-
ment, modulo a (N − 1)!! factor, and that the π

2
factors multiply up to:

F =
(π

2

)[N/2]

Thus by multiplying with the normalization constant, we obtain the result. �

We can now recover the normal laws, geometrically, as follows:

Theorem 1.20. The moments of the hyperspherical variables are∫
SN−1
R

xki dx =
(N − 1)!!k!!

(N + k − 1)!!

and the rescaled variables yi = xi√
N

become normal and independent with N →∞.

Proof. The moment formula in the statement follows from Theorem 1.19. As a
consequence, with N →∞ we have the following estimate:∫

SN−1
R

xki dx ' Nk/2 × k!!

= Nk/2Mk(g1)

Thus, the rescaled variables xi/
√
N become normal with N →∞, as claimed. As for

the proof of the asymptotic independence, this is standard too, once again by using the
formula in Theorem 1.19. Indeed, the joint moments of x1, . . . , xN are given by:∫

SN−1
R

xl11 . . . x
lN
N dx =

(N − 1)!!l1!! . . . lN !!

(N + Σli − 1)!!

' NΣli × l1!! . . . lN !!
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By rescaling, the joint moments of the variables yi = xi/
√
N are given by:∫

SN−1
R

yl11 . . . y
lN
N dx ' l1!! . . . lN !!

Thus, we have multiplicativity, and so independence with N →∞, as claimed. �

As a last result about the normal laws, we can recover these as well in connection with
the rotation groups. Indeed, we have the following reformulation of Theorem 1.20:

Theorem 1.21. We have the integration formula∫
ON

Uk
ijdU =

(N − 1)!!k!!

(N + k − 1)!!

and the rescaled variables Vij =
Uij√
N

become normal and independent with N →∞.

Proof. We use here the basic fact that the rotations U ∈ ON act on the points
of the real sphere p ∈ SN−1

R , with the stabilizer of p = (1, 0, . . . , 0) being the subgroup
ON−1 ⊂ ON . In algebraic terms, this gives an identification as follows:

SN−1
R = ON/ON−1

In functional analytic terms, this result provides us with an embedding as follows, for
any i, which makes correspond the respective integration functionals:

C(SN−1
R ) ⊂ C(ON)

xi → U1i

With this identification made, the result follows from Theorem 1.20. �

We will see later, following [37], [95], that the relation between the orthogonal group
ON and the normal laws goes well beyond Theorem 1.21. And we will see as well, following
[15], [19] and related papers, that there are also “free versions” of all this.

1d. Complex variables

We have seen so far a number of interesting results regarding the normal laws, and
their geometric interpretation. As a last topic of this chapter, let us discuss now the
complex analogues of all this. To start with, we have the following definition:

Definition 1.22. The complex Gaussian law of parameter t > 0 is

Gt = law

(
1√
2

(a+ ib)

)
where a, b are independent, each following the law gt.

As in the real case, these measures form convolution semigroups:
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Theorem 1.23. The complex Gaussian laws have the property

Gs ∗Gt = Gs+t

for any s, t > 0, and so they form a convolution semigroup.

Proof. This follows indeed from the real result, namely gs ∗ gt = gs+t, established in
the above, simply by taking real and imaginary parts. �

We have the following complex analogue of the CLT:

Theorem 1.24 (CCLT). Given complex random variables f1, f2, f3, . . . ∈ L∞(X)
which are i.i.d., centered, and with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

fi ∼ Gt

where Gt is the complex Gaussian law of parameter t.

Proof. This follows indeed from the real CLT, established in the above, simply by
taking real and imaginary parts. �

Regarding now the moments, the situation is more complicated than in the real case,
because in order to have good results, we have to deal with both the complex variables,
and their conjugates. Let us formulate the following definition:

Definition 1.25. The moments a complex variable f ∈ L∞(X) are the numbers

Mk = E(fk)

depending on colored integers k = ◦ • • ◦ . . . , with the conventions

f ∅ = 1 , f ◦ = f , f • = f̄

and multiplicativity, in order to define the colored powers fk.

Observe that, since the variables f, f̄ commute, we can permute terms, and restrict
the attention to exponents of type k = . . . ◦ ◦ ◦ • • • • . . . , if we want to. However, our
result about the complex Gaussian laws, and other complex laws, later on, will actually
look better without doing is, and so we will use Definition 1.25 above, as formulated.

Given a colored integer k = ◦ • • ◦ . . . , we say that a pairing π ∈ P2(k) is matching
when it pairs ◦ − • symbols. With these conventions, we have the following result:

Theorem 1.26. The moments of the complex normal law are the numbers

Mk(Gt) =
∑

π∈P2(k)

t|π|

where P2(k) are the matching pairings of {1, . . . , k}, and |.| is the number of blocks.
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Proof. This is something basic and well-known, and there are many possible proofs
here, which are all instructive. We present below a rather elementary proof, which is the
most in tune with our approach to probability here, and for more theory, and alternative
proofs, we refer to [44], [47]. And with the comment that we will come back to this on
several occasions, later on, first in chapter 7 below when talking about the Wick formula,
and then in chapter 12 below when talking about the moment-cumulant formula.

(1) We recall from the above that the moments of the real Gaussian law g1, with
respect to integer exponents k ∈ N, are the following numbers:

mk = |P2(k)|

Numerically, we have the following formula, explained as well in the above:

mk =

{
k!! (k even)

0 (k odd)

(2) We will show here that in what concerns the complex Gaussian law G1, similar
results hold. Numerically, we will prove that we have the following formula, where a
colored integer k = ◦ • • ◦ . . . is called uniform when it contains the same number of ◦
and • , and where |k| ∈ N is the length of such a colored integer:

Mk =

{
(|k|/2)! (k uniform)

0 (k not uniform)

Now since the matching partitions π ∈ P2(k) are counted by exactly the same numbers,
and this for trivial reasons, we will obtain the formula in the statement, namely:

Mk = |P2(k)|

(3) This was for the plan. In practice now, we must compute the moments, with
respect to colored integer exponents k = ◦ • • ◦ . . . , of the variable in the statement:

c =
1√
2

(a+ ib)

As a first observation, in the case where such an exponent k = ◦••◦ . . . is not uniform
in ◦, • , a rotation argument shows that the corresponding moment of c vanishes. To be
more precise, the variable c′ = wc can be shown to be complex Gaussian too, for any
w ∈ C, and from Mk(c) = Mk(c

′) we obtain Mk(c) = 0, in this case.
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(4) In the uniform case now, where the exponent k = ◦ • • ◦ . . . consists of p copies of
◦ and p copies of • , the corresponding moment can be computed as follows:

Mk =

∫
(cc̄)p

=
1

2p

∫
(a2 + b2)p

=
1

2p

∑
s

(
p

s

)∫
a2s

∫
b2p−2s

=
1

2p

∑
s

(
p

s

)
(2s)!!(2p− 2s)!!

=
1

2p

∑
s

p!

s!(p− s)!
· (2s)!

2ss!
· (2p− 2s)!

2p−s(p− s)!

=
p!

4p

∑
s

(
2s

s

)(
2p− 2s

p− s

)
(5) In order to finish now the computation, let us recall that we have the following

formula, coming from the generalized binomial formula, or from the Taylor formula:

1√
1 + t

=
∞∑
k=0

(
2k

k

)(
−t
4

)k
By taking the square of this series, we obtain the following formula:

1

1 + t
=

∑
ks

(
2k

k

)(
2s

s

)(
−t
4

)k+s

=
∑
p

(
−t
4

)p∑
s

(
2s

s

)(
2p− 2s

p− s

)
Now by looking at the coefficient of tp on both sides, we conclude that the sum on the

right equals 4p. Thus, we can finish the moment computation in (4), as follows:

Mp =
p!

4p
× 4p = p!

(6) As a conclusion, if we denote by |k| the length of a colored integer k = ◦ • • ◦ . . . ,
the moments of the variable c in the statement are given by:

Mk =

{
(|k|/2)! (k uniform)

0 (k not uniform)
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On the other hand, the numbers |P2(k)| are given by exactly the same formula. Indeed,
in order to have matching pairings of k, our exponent k = ◦ • • ◦ . . . must be uniform,
consisting of p copies of ◦ and p copies of •, with p = |k|/2. But then the matching
pairings of k correspond to the permutations of the • symbols, as to be matched with ◦
symbols, and so we have p! such matching pairings. Thus, we have the same formula as
for the moments of c, and we are led to the conclusion in the statement. �

There are many other things that can be said about the complex normal laws, and we
will be back to this, on several occasions. Getting now to geometric interpretations, we
have the following result, in relation with the spheres, and the rotations:

Theorem 1.27. The rescalings zi/
√
N of the complex sphere coordinates

zi : SN−1
C → C

as well as the rescalings Uij/
√
N of the unitary group coordinates

Uij : UN → C
become complex Gaussian and independent with N →∞.

Proof. We have two assertions to be proved, the idea being as follows:

(1) In what regards the result about the complex spheres, this can be deduced from
the result for the real spheres, by using the standard identification SN−1

C = S2N−1
R .

(2) As for the result about the unitary groups, this follows from the result for the
spheres, by using the same quotient space argument as in the real case. �

As already mentioned in the real context, it is possible to get beyond such results, by
using advanced group theory. We will be back to this, in chapters 3-4 below. It is also
possible to formulate “free versions” of all the above, and we will do this later.

Summarizing, all this was for the basics of probability theory, quickly explained. For
further theory, the best is to go to a dedicated probability theory book, such as the
classical book of Feller [47], or the more modern book by Durrett [44].

Alternatively, you can learn more probability from the preliminary chapters of more
specialized probability-based books, and with the comment here that, among probabilists,
the random matrix people know well their job, and are very close to what we will be
doing in this book. Well-known introductions to random matrices include the classical
and delightful book by Mehta [66], the more modern and rock-solid book by Anderson,
Guionnet and Zeitouni [1], the book by Mingo and Speicher [69], and many more.

Needless to say, you can also learn good probability from physicists, or other scien-
tists. In fact, probability theory was accepted only recently, in the late 20th century,
as a respectable branch of mathematics, and if there are some scientists who have taken
probability seriously, and this since ever, these are the physicists.
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1e. Exercises

Things have been quite classical in this opening chapter, and there are just a few
further things that need to be learned. First, in connection with the CLT, we have:

Exercise 1.28. Look up the CLT, which was done here in moments, learn how the
convergence can be improved, and write a brief account of that.

This is a bit vague, but at this stage, learning more theory would be a good thing.

As another fundamental exercise, but on a different theme, we have:

Exercise 1.29. Prove that the area of the unit sphere in RN is given by

A =
(π

2

)[N/2] 2N

(N − 1)!!

with our usual convention for double factorials, N !! = (N − 1)(N − 3)(N − 5) . . .

Here you can either recycle our proof for V , by making changes where needed, or
deduce the result from our result for V . In any case, think first at N = 2.

As a tougher exercise now, still in relation with spherical integrals, we have:

Exercise 1.30. Establish the following integration formula over the sphere SN−1
R ⊂

RN , with respect to the normalized measure, valid for any exponents ki ∈ N,∫
SN−1
R

|xk11 . . . xkNN | dx =

(
2

π

)Σ(k1,...,kN )
(N − 1)!!k1!! . . . kN !!

(N + Σki − 1)!!

where Σ = [odds/2] if N is odd and Σ = [(odds+1)/2] if N is even, where “odds” denotes
the number of odd numbers in the sequence k1, . . . , kN .

Observe that this generalizes the integration formula for monomials that we established
in the above, because odd powers lead to 0 integrals. The proof can only be similar.

Finally, in relation with the hyperspherical laws, we have:

Exercise 1.31. Compute the density of the hyperspherical law at N = 4, that is, the
law of one of the coordinates over the unit sphere S3

R ⊂ R4.

If you find something very interesting, as an answer here, do not be surprised. After
all, S3

R is the sphere of space-time, having its own magic. We will be back to this.



CHAPTER 2

The Poisson law

2a. Poisson limits

We have seen so far that the centered normal laws gt and their complex analogues
Gt, which appear from the Central Limit Theorem (CLT), have interesting combinatorial
properties, and appear in several group-theoretical and geometric contexts.

We discuss now the discrete counterpart of these results. The mathematics here will
involve the Poisson laws pt, which appear via the Poisson Limit Theorem (PLT), and their
generalized versions pν , called compound Poisson laws, which appear via the Compound
Poisson Limit Theorem (CPLT). Let us start with the following definition:

Definition 2.1. The Poisson law of parameter 1 is the following measure,

p1 =
1

e

∑
k

δk
k!

and the Poisson law of parameter t > 0 is the following measure,

pt = e−t
∑
k

tk

k!
δk

with the letter “p” standing for Poisson.

We are using here, as before, some simplified notations for these laws, which are in
tune with the notation gt for the centered Gaussian laws. Observe that these laws have
indeed mass 1, as they should, and this due to the following key formula:

et =
∑
k

tk

k!

We will see in the moment why these measures appear a bit everywhere, in discrete
contexts, the reasons behind this coming from the Poisson Limit Theorem (PLT). Let us
first develop some general theory. We first have the following result:

Theorem 2.2. We have the following formula, for any s, t > 0,

ps ∗ pt = ps+t

so the Poisson laws form a convolution semigroup.

33
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Proof. By using δk ∗ δl = δk+l and the binomial formula, we obtain:

ps ∗ pt = e−s
∑
k

sk

k!
δk ∗ e−t

∑
l

tl

l!
δl

= e−s−t
∑
kl

sktl

k!l!
δk+l

= e−s−t
∑
n

δn
∑
k+l=n

sktl

k!l!

= e−s−t
∑
n

δn
n!

∑
k+l=n

n!

k!l!
sktl

= e−s−t
∑
n

(s+ t)n

n!
δn

= ps+t

Thus, we are led to the conclusion in the statement. �

We will see later on another proof of the above fact, by using the Fourier transform.
Next in line, we have the following result, which is fundamental as well:

Theorem 2.3. The Poisson laws appear as formal exponentials

pt =
∑
k

tk(δ1 − δ0)∗k

k!

with respect to the convolution of measures ∗.

Proof. By using the binomial formula, the measure on the right is:

µ =
∑
k

tk

k!

∑
p+q=k

(−1)q
k!

p!q!
δp

=
∑
k

tk
∑
p+q=k

(−1)q
δp
p!q!

=
∑
p

tpδp
p!

∑
q

(−1)q

q!

=
1

e

∑
p

tpδp
p!

= pt

Thus, we are led to the conclusion in the statement. �

Regarding now the Fourier transform computation, this is as follows:
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Theorem 2.4. The Fourier transform of pt is given by

Fpt(x) = exp
(
(eix − 1)t

)
for any t > 0.

Proof. We have indeed the following computation:

Fpt(x) = e−t
∑
k

tk

k!
Fδk(x)

= e−t
∑
k

tk

k!
eikx

= e−t
∑
k

(eixt)k

k!

= exp(−t) exp(eixt)

= exp
(
(eix − 1)t

)
Thus, we obtain the formula in the statement. �

Observe that the above formula gives an alternative proof for Theorem 2.2, by the
using the fact that the logarithm of the Fourier transform linearizes the convolution. As
another application, we can now establish the Poisson Limit Theorem, as follows:

Theorem 2.5 (PLT). We have the following convergence, in moments,((
1− t

n

)
δ0 +

t

n
δ1

)∗n
→ pt

for any t > 0.

Proof. Let us denote by µn the measure under the convolution sign, namely:

µn =

(
1− t

n

)
δ0 +

t

n
δ1

We have the following computation, for the Fourier transform of the limit:

Fδr(x) = eirx =⇒ Fµn(x) =

(
1− t

n

)
+
t

n
eix

=⇒ Fµ∗nn (x) =

((
1− t

n

)
+
t

n
eix
)n

=⇒ Fµ∗nn (x) =

(
1 +

(eix − 1)t

n

)n
=⇒ F (x) = exp

(
(eix − 1)t

)
Thus, we obtain indeed the Fourier transform of pt, as desired. �
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2b. Bell numbers

At the level of the moments now, things are quite subtle for the Poisson laws, com-
binatorially speaking, and more complicated than for the normal laws. We first have the
following result, dealing with the simplest case, where the parameter is t = 1:

Theorem 2.6. The moments of p1 are the Bell numbers,

Mk(p1) = |P (k)|

where P (k) is the set of partitions of {1, . . . , k}.

Proof. The moments of p1 are given by the following formula:

Mk =
1

e

∑
s

sk

s!

We therefore have the following recurrence formula for these moments:

Mk+1 =
1

e

∑
s

(s+ 1)k+1

(s+ 1)!

=
1

e

∑
s

(s+ 1)k

s!

=
1

e

∑
s

sk

s!

(
1 +

1

s

)k
=

1

e

∑
s

sk

s!

∑
r

(
k

r

)
s−r

=
∑
r

(
k

r

)
· 1

e

∑
s

sk−r

s!

=
∑
r

(
k

r

)
Mk−r

With this done, let us try now to find a recurrence for the Bell numbers:

Bk = |P (k)|

A partition of {1, . . . , k + 1} appears by choosing r neighbors for 1, among the k
numbers available, and then partitioning the k − r elements left. Thus, we have:

Bk+1 =
∑
r

(
k

r

)
Bk−r
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Thus, our moments Mk satisfy the same recurrence as the numbers Bk. Regarding
now the initial values, in what concerns the first moment of p1, we have:

M1 =
1

e

∑
s

s

s!
= 1

Also, by using the above recurrence for the numbers Mk, we obtain from this:

M2 =
∑
r

(
1

r

)
Mk−r

= 1 + 1

= 2

On the other hand, the initial values for the Bell numbers are as follows:

B1 = 1 , B2 = 2

Thus we obtain by recurrence Mk = Bk, as claimed. �

Quite remarkably, the Bell numbers cannot be computed explicitely. There are of
course many interesting formulae regarding them, but no explicit formula for them. This
is quite interesting, philosophically speaking, telling us that, at least at the level of mo-
ments, the discrete probability theory that we are developing now is somewhat “more
complicated” than the continuous theory developed in the previous chapter.

More generally now, we have the following result, dealing with the case t > 0:

Theorem 2.7. The moments of pt with t > 0 are given by

Mk(pt) =
∑

π∈P (k)

t|π|

where |.| is the number of blocks.

Proof. As a first observation, the formula in the statement generalizes indeed the
one from Theorem 2.6, because with t = 1 our new formula reads:

Mk(p1) =
∑

π∈P (k)

1

= |P (k)|
= Bk

In general now, the moments of the Poisson law pt with t > 0 are given by:

Mk = e−t
∑
s

tssk

s!
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We have the following recurrence formula for these moments:

Mk+1 = e−t
∑
s

ts+1(s+ 1)k+1

(s+ 1)!

= e−t
∑
s

ts+1(s+ 1)k

s!

= e−t
∑
s

ts+1sk

s!

(
1 +

1

s

)k
= e−t

∑
s

ts+1sk

s!

∑
r

(
k

r

)
s−r

=
∑
r

(
k

r

)
· e−t

∑
s

ts+1sk−r

s!

= t
∑
r

(
k

r

)
Mk−r

Regarding now the initial values, the first moment of pt is given by:

M1 = e−t
∑
s

tss

s!

= e−t
∑
s

ts

(s− 1)!

=
1

e
× tet

= t

Now by using the above recurrence we obtain from this:

M2 = t
∑
r

(
1

r

)
Mk−r

= t(1 + t)

= t+ t2

On the other hand, consider the numbers in the statement, namely:

Sk =
∑

π∈P (k)

t|π|
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Since a partition of {1, . . . , k + 1} appears by choosing r neighbors for 1, among the
k numbers available, and then partitioning the k − r elements left, we have:

Sk+1 = t
∑
r

(
k

r

)
Sk−r

As for the initial values of these numbers, these are S1 = t, S2 = t + t2. Thus the
initial values coincide, and so these numbers are the moments of pt, as stated. �

2c. Derangements

In relation now with groups, and with applications to pure mathematics in general,
let us start with the following well-known, beautiful and fundamental result:

Theorem 2.8. The probability for a random permutation σ ∈ SN to have no fixed
points is

P ' 1

e
in the N →∞ limit, where e = 2.718 . . . is the usual constant from analysis.

Proof. This is best viewed by using the inclusion-exclusion principle. Let us set:

SiN =
{
σ ∈ SN

∣∣∣σ(i) = i
}

The set of permutations having no fixed points, called derangements, is then:

XN =

(⋃
i

SiN

)c

In order to compute now the cardinality |XN |, consider as well the following sets,
depending on indices i1 < . . . < ik, obtained by taking intersections:

Si1...ikN = Si1N
⋂

. . .
⋂

SikN

Observe that we have the following formula:

Si1...ikN =
{
σ ∈ SN

∣∣∣σ(i1) = i1, . . . , σ(ik) = ik

}
Now the inclusion-exclusion principle tells us that we have:∣∣∣∣∣

(⋃
i

SiN

)c∣∣∣∣∣
= |SN | −

∑
i

|SiN |+
∑
i<j

|SiN ∩ S
j
N | − . . .+ (−1)N

∑
i1<...<iN

|Si1N ∪ . . . ∪ S
iN
N |

= |SN | −
∑
i

|SiN |+
∑
i<j

|SijN | − . . .+ (−1)N
∑

i1<...<iN

|Si1...iNN |
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Thus, the probability that we are interested in, for a random permutation σ ∈ SN to
have no fixed points, is given by an alternating sum, as follows:

P =
1

N !

(
|SN | −

∑
i

|SiN |+
∑
i<j

|SijN | − . . .+ (−1)N
∑

i1<...<iN

|Si1...iNN |

)
Now observe that for any i1 < . . . < ik we have the following formula:

|Si1...ikN | = (N − k)!

We obtain the following formula, for the probability that we want to compute:

P =
1

N !

N∑
k=0

(−1)k
∑

i1<...<ik

|Si1...ikN |

=
1

N !

N∑
k=0

(−1)k
∑

i1<...<ik

(N − k)!

=
1

N !

N∑
k=0

(−1)k
(
N

k

)
(N − k)!

=
N∑
k=0

(−1)k

k!

= 1− 1

1!
+

1

2!
− . . .+ (−1)N−1 1

(N − 1)!
+ (−1)N

1

N !

Since on the right we have the expansion of 1
e
, this gives the result. �

In order to refine now the above result, as to reach to Poisson laws, we will need some
basic notions from group theory. Let us start with the following standard definition:

Definition 2.9. Given a closed subgroup G ⊂ UN , the function

χ : G→ C , χ(g) =
∑
i

gii

is called main character of G.

We will see later on, in chapter 3 below, a number for motivations for the study of
such characters, the main idea being that an abstract compact group G can have several
representations π : G ⊂ UN , which can be studied via their characters χπ : G→ C.

In what concerns us, we will not need for the moment any kind of advanced math-
ematics and motivations for the study of the group characters, and this because for the
simplest group that we know, namely SN , we have the following beautiful result:



2C. DERANGEMENTS 41

Theorem 2.10. Consider the symmetric group SN , regarded as the permutation group,
SN ⊂ ON , of the N coordinate axes of RN .

(1) The main character χ ∈ C(SN) counts the number of fixed points.
(2) The law of χ ∈ C(SN) becomes Poisson (1), in the N →∞ limit.

Proof. We have two things to be proved here, the idea being as follows:

(1) The permutation matrices σ ∈ ON , which give the embedding SN ⊂ ON in the
statement, being given by σij = δiσ(j), we have the following computation:

χ(σ) =
∑
i

σii

=
∑
i

δσ(i)i

= #
{
i ∈ {1, . . . , N}

∣∣∣σ(i) = i
}

(2) In order to establish now the asymptotic result in the statement, we must prove
the following formula, for any k ∈ N, in the N →∞ limit:

P (χ = k) ' 1

k!e

We already know, from Theorem 2.8 above, that this formula holds at k = 0. In the
general case now, we have to count the permutations σ ∈ SN having exactly k points.
Now since having such a permutation amounts in choosing k points among 1, . . . , N , and
then permuting the N − k points left, without fixed points allowed, we have:

#
{
σ ∈ SN

∣∣∣χ(σ) = k
}

=

(
N

k

)
#
{
σ ∈ SN−k

∣∣∣χ(σ) = 0
}

=
N !

k!(N − k)!
#
{
σ ∈ SN−k

∣∣∣χ(σ) = 0
}

= N !× 1

k!
×

#
{
σ ∈ SN−k

∣∣∣χ(σ) = 0
}

(N − k)!

By dividing everything by N !, we obtain from this the following formula:

#
{
σ ∈ SN

∣∣∣χ(σ) = k
}

N !
=

1

k!
×

#
{
σ ∈ SN−k

∣∣∣χ(σ) = 0
}

(N − k)!
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Now by using the computation at k = 0, that we already have, from Theorem 2.8
above, it follows that with N →∞ we have the following estimate:

P (χ = k) ' 1

k!
· P (χ = 0)

' 1

k!
· 1

e

Thus, we obtain as limiting measure the Poisson law of parameter 1, as stated. �

As a next step, let us try now to generalize what we have, namely Theorem 2.10, as
to reach to the Poisson laws of arbitrary parameter t > 0. We will need:

Definition 2.11. Given a closed subgroup G ⊂ UN , the function

χ : G→ C , χt(g) =

[tN ]∑
i=1

gii

is called main truncated character of G, of parameter t ∈ (0, 1].

As before with the plain characters, there is some theory behind this definition, and we
will discuss this later on, in chapters 3-4 below. In relation with the present considerations,
we actually already met such truncated characters, but in a disguised form, in chapter 1
above, when talking about ON , UN . Indeed, the results there show that we have:

Proposition 2.12. For the orthogonal and unitary groups ON , UN , the rescalings

χ =
χ1/N√
N

become respectively real and complex Gaussian, in the N →∞ limit.

Proof. According to our conventions, given a closed subgroup G ⊂ UN , the main
character truncated at t = 1/N is simply the first coordinate:

χ1/N(g) = g11

With this remark made, the conclusions from the statement follow from the compu-
tations from chapter 1, for the laws of coordinates on ON , UN . �

Getting back now to the symmetric groups, we have the following result, generalizing
Theorem 2.10 above, and which will be our final result on the subject:

Theorem 2.13. Consider the symmetric group SN , regarded as the permutation group,
SN ⊂ ON , of the N coordinate axes of RN .

(1) The variable χt counts the number of fixed points among 1, . . . , [tN ].
(2) The law of this variable χt becomes Poisson (t), in the N →∞ limit.
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Proof. We already know from Theorem 2.10 above that the results hold at t = 1. In
general, the proof is similar, the idea being as follows:

(1) We have indeed the following computation, coming from definitions:

χt(σ) =

[tN ]∑
i=1

σii

=

[tN ]∑
i=1

δσ(i)i

= #
{
i ∈ {1, . . . , [tN ]}

∣∣∣σ(i) = i
}

(2) Consider indeed the following sets, as in the proof of Theorem 2.8 above:

SiN =
{
σ ∈ SN

∣∣∣σ(i) = i
}

The set of permutations having no fixed points among 1, . . . , [tN ] is then:

XN =

 ⋃
i≤[tN ]

SiN

c

In order to compute now the cardinality |XN |, consider as well the following sets,
depending on indices i1 < . . . < ik, obtained by taking intersections:

Si1...ikN = Si1N
⋂

. . .
⋂

SikN

As before in the proof of Theorem 2.8, we obtain by inclusion-exclusion that:

P (χt = 0) =
1

N !

[tN ]∑
k=0

(−1)k
∑

i1<...<ik<[tN ]

|Si1...ikN |

=
1

N !

[tN ]∑
k=0

(−1)k
∑

i1<...<ik<[tN ]

(N − k)!

=
1

N !

[tN ]∑
k=0

(−1)k
(

[tN ]

k

)
(N − k)!

=

[tN ]∑
k=0

(−1)k

k!
· [tN ]!(N − k)!

N !([tN ]− k)!
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Now with N →∞, we obtain from this the following estimate:

P (χt = 0) '
[tN ]∑
k=0

(−1)k

k!
· tk

=

[tN ]∑
k=0

(−t)k

k!

' e−t

More generally, by counting the permutations σ ∈ SN having exactly k fixed points
among 1, . . . , [tN ], as in the proof of Theorem 2.10, we obtain:

P (χt = k) ' tk

k!et

Thus, we obtain in the limit a Poisson law of parameter t, as stated. �

The above result is quite fundamental, and worth proving a second time, by using an
alternative method. We can indeed use the following formula:

Theorem 2.14. Consider the symmetric group SN , with its standard coordinates:

uij = χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

We have then the following integration formula∫
SN

ui1j1 . . . uikjk =

{
(N−| ker i|)!

N !
if ker i = ker j

0 otherwise

where ker i denotes the partition of {1, . . . , k} whose blocks collect the equal indices of i,
and where |.| denotes the number of blocks.

Proof. Observe first that the above formula computes all the integrals over SN , and
this because the coordinates uij separate the points of SN . In what regards the proof,
according to the definition of uij, the integrals in the statement are given by:∫

SN

ui1j1 . . . uikjk =
1

N !
#
{
σ ∈ SN

∣∣∣σ(j1) = i1, . . . , σ(jk) = ik

}
Now observe that the existence of σ ∈ SN as above requires:

im = in ⇐⇒ jm = jn

Thus, the integral in the statement vanishes if ker i 6= ker j. As for the case left,
namely ker i = ker j, if we denote by b ∈ {1, . . . , k} the number of blocks of this partition
ker i = ker j, then we have N − b points to be sent bijectively to N − b points, and so

(N − b)! solutions, and the integral follows to be (N−b)!
N !

, as claimed. �



2C. DERANGEMENTS 45

As an illustration for the above formula, we can now recover the computation of the
asymptotic laws of the truncated characters χt. We have indeed:

Theorem 2.15. For the symmetric group SN ⊂ ON , regarded as a compact group of
matrices, SN ⊂ ON , via the standard permutation matrices, the truncated character

χt =

[tN ]∑
i=1

uii

counts the number of fixed points among {1, . . . , [tN ]}, and its law with respect to the
counting measure becomes, with N →∞, a Poisson law of parameter t.

Proof. The first assertion is someting trivial, that we already know. Regarding now
the second assertion, we can use here Theorem 2.14 above. With Skb being the Stirling
numbers, counting the partitions of {1, . . . , k} having b blocks, we have:∫

SN

χkt =

[tN ]∑
i1,...,ik=1

∫
SN

ui1i1 . . . uikik

=
∑

π∈P (k)

[tN ]!

([tN ]− |π|!)
· (N − |π|!)

N !

=

[tN ]∑
b=1

[tN ]!

([tN ]− b)!
· (N − b)!

N !
· Skb

In particular with N →∞ we obtain the following formula:

lim
N→∞

∫
SN

χkt =
k∑
b=1

Skbt
b

But this is a Poisson (t) moment, according to our formula for the moments of pt,
which in terms of Stirling numbers is the above one, and so we are done. �

As a conclusion to all this, the Poisson laws pt appear to be quite similar to the real
and complex Gaussian laws gt and Gt, in the sense that:

(1) All these laws appear via basic limiting theorems.

(2) They form semigroups with respect to the convolution.

(3) Their moments can be computed by counting certain partitions.

(4) There is a relation with pure mathematics as well, involving SN , ON , UN .

All this remains of course to be further discussed. We will be back to this in chapters
3-4 below, following [15], [37], [95] and related papers, when systematically discussing
the subgroups G ⊂ UN , and also later, with extensions, when doing free probability.
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2d. Bessel laws

Let us keep looking at the finite transformation groups of RN , and do some probability
theory for the corresponding characters, and truncated characters. An obvious choice here
is the hyperoctahedral group HN , whose definition and basic properties are as follows:

Theorem 2.16. Consider the hyperoctahedral group HN ⊂ ON , consisting of the var-
ious symmetries of the hypercube in RN .

(1) HN appears as well as symmetry group of the N coordinate axes of RN .
(2) HN consists of the permutation-like matrices with entries in {−1, 0, 1}.
(3) We have the cardinality formula |HN | = 2NN !.
(4) We have a crossed product decomposition HN = SN o ZN2 .
(5) We have a wreath product decomposition HN = Z2 o SN .

Proof. Consider indeed the standard cube in RN , which is by definition centered at
0, and having as vertices the points having coordinates ±1.

(1) With the above standard picture of the cube in hand, it is clear that the symmetries
of the cube coincide with the symmetries of the N coordinate axes of RN .

(2) Each of the permutations σ ∈ SN of the N coordinate axes of RN can be further
“decorated” by a sign vector ε ∈ {±1}N , consisting of the possible ±1 flips which can be
applied to each coordinate axis, at the arrival. In matrix terms, this gives the result.

(3) By using the above interpretation of HN , we have the following formula:

|HN | = |SN | · |ZN2 | = N ! · 2N

(4) We know from (3) that at the level of cardinalities we have |HN | = |SN ×ZN2 |, and
with a bit more work, we obtain that we have HN = SN o ZN2 , as claimed.

(5) This is simply an abstract reformulation of (4), in terms of wreath products. �

Getting back now to our character computations, following [12], we have:

Theorem 2.17. For the hyperoctahedral group HN ⊂ ON , the law of the variable

χ = g11 + . . .+ gss

with s = [tN ] is, in the N →∞ limit, the measure

bt = e−t
∞∑

k=−∞

δk

∞∑
p=0

(t/2)|k|+2p

(|k|+ p)!p!

where δk is the Dirac mass at k ∈ Z.
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Proof. We regard HN as being the symmetry group of the graph IN = {I1, . . . , IN}
formed by n segments. The diagonal coefficients are then given by:

uii(g) =


0 if g moves I i

+1 if g fixes I i

−1 if g returns I i

Let us denote by ↑ g, ↓ g the number of segments among {I1, . . . , Is} which are fixed,
respectively returned by an element g ∈ HN . With this notation, we have:

u11 + . . .+ uss =↑ g− ↓ g

We denote by PN probabilities computed over the group HN . The density of the law
of u11 + . . .+ uss at a point k ≥ 0 is then given by the following formula:

D(k) = PN(↑ g− ↓ g = k)

=
∞∑
p=0

PN(↑ g = k + p, ↓ g = p)

Assume first that we are in the case t = 1. We have here the following computation:

lim
N→∞

D(k) = lim
N→∞

∞∑
p=0

(1/2)k+2p

(
k + 2p
k + p

)
PN(↑ g+ ↓ g = k + 2p)

=
∞∑
p=0

(1/2)k+2p

(
k + 2p
k + p

)
1

e(k + 2p)!

=
1

e

∞∑
p=0

(1/2)k+2p

(k + p)!p!

The general case 0 < t ≤ 1 follows now by performing some modifications in the above
computation. Indeed, the asymptotic density can be computed as follows:

lim
N→∞

D(k) = lim
N→∞

∞∑
p=0

(1/2)k+2p

(
k + 2p
k + p

)
Pn(↑ g+ ↓ g = k + 2p)

=
∞∑
p=0

(1/2)k+2p

(
k + 2p
k + p

)
tk+2p

et(k + 2p)!

= e−t
∞∑
p=0

(t/2)k+2p

(k + p)!p!

Together with D(−k) = D(k), this gives the formula in the statement. �
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The above result is quite interesting, because the densities there are the Bessel func-
tions of the first kind. Due to this fact, the limiting measures are called Bessel laws:

Definition 2.18. The Bessel law of parameter t > 0 is the measure

bt = e−t
∞∑

k=−∞

δk fk(t/2)

with the density being the Bessel function of the first kind:

fk(t) =
∞∑
p=0

t|k|+2p

(|k|+ p)!p!

Let us study now these Bessel laws. We first have the following result, from [12]:

Theorem 2.19. The Bessel laws bt have the property

bs ∗ bt = bs+t

so they form a truncated one-parameter semigroup with respect to convolution.

Proof. The Fourier transform of the measure bt is given by:

Fbt(y) = e−t
∞∑

k=−∞

eky fk(t/2)

We compute now the derivative with respect to the variable t:

Fbt(y)′ = −Fbt(y) +
e−t

2

∞∑
k=−∞

eky f ′k(t/2)

On the other hand, the derivative of fk with k ≥ 1 is given by:

f ′k(t) =
∞∑
p=0

(k + 2p)tk+2p−1

(k + p)!p!

=
∞∑
p=0

(k + p)tk+2p−1

(k + p)!p!
+
∞∑
p=0

p tk+2p−1

(k + p)!p!

=
∞∑
p=0

tk+2p−1

(k + p− 1)!p!
+
∞∑
p=1

tk+2p−1

(k + p)!(p− 1)!

=
∞∑
p=0

t(k−1)+2p

((k − 1) + p)!p!
+
∞∑
p=1

t(k+1)+2(p−1)

((k + 1) + (p− 1))!(p− 1)!

= fk−1(t) + fk+1(t)
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This computation works in fact for any k, and we get in this way:

Fbt(y)′ = −Fbt(y) +
e−t

2

∞∑
k=−∞

eky(fk−1(t/2) + fk+1(t/2))

= −Fbt(y) +
e−t

2

∞∑
k=−∞

e(k+1)yfk(t/2) + e(k−1)yfk(t/2)

= −Fbt(y) +
ey + e−y

2
Fbt(y)

=

(
ey + e−y

2
− 1

)
Fbt(y)

Thus the log of the Fourier transform is linear in t, and we get the assertion. �

In order to further discuss all this, and extend the above results, we will need a
number of standard probabilistic preliminaries. We have the following notion, extending
the Poisson limit theory developed in the beginning of the present chapter:

Definition 2.20. Associated to any compactly supported positive measure ν on R is
the probability measure

pν = lim
n→∞

((
1− t

n

)
δ0 +

1

n
ν

)∗n
where t = mass(ν), called compound Poisson law.

In what follows we will be mainly interested in the case where the measure ν is
discrete, as is for instance the case for ν = tδ1 with t > 0, which produces the Poisson
laws. However, we will use as well a number of continuous measures, such as the uniform
measure on the unit circle, once again multiplied by an arbitrary number t > 0.

The following standard result allows one to detect compound Poisson laws:

Proposition 2.21. For a discrete measure, written as

ν =
s∑
i=1

tiδzi

with ti > 0 and zi ∈ R, we have

Fpν (y) = exp

(
s∑
i=1

ti(e
iyzi − 1)

)
where F denotes the Fourier transform.
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Proof. Let µn be the measure in Definition 2.20, under the convolution sign:

µn =

(
1− t

n

)
δ0 +

1

n
ν

We have then the following computation:

Fµn(y) =

(
1− t

n

)
+

1

n

s∑
i=1

tie
iyzi

=⇒ Fµ∗nn (y) =

((
1− t

n

)
+

1

n

s∑
i=1

tie
iyzi

)n

=⇒ Fpν (y) = exp

(
s∑
i=1

ti(e
iyzi − 1)

)
Thus, we have obtained the formula in the statement. �

We have as well the following result, providing an alternative to Definition 2.20, and
which will be our formulation here of the Compound Poisson Limit Theorem:

Theorem 2.22 (CPLT). For a discrete measure, written as

ν =
s∑
i=1

yiδzi

with yi > 0 and zi ∈ R, the corresponding compound Poisson law appears as

pν = law

(
s∑
i=1

ziαi

)
where the variables αi are Poisson (ti), independent.

Proof. Let α be the sum of Poisson variables in the statement, namely:

α =
s∑
i=1

ziαi

By using standard Fourier transform formulae, we have:

Fαi(y) = exp(ti(e
iy − 1))

=⇒ Fziαi(y) = exp(ti(e
iyzi − 1))

=⇒ Fα(y) = exp

(
s∑
i=1

ti(e
iyzi − 1)

)
Thus we have indeed the same formula as in Proposition 2.21 above. �
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Summarizing, we have now a full generalization of the PLT. Getting back now to the
Poisson and Bessel laws, with the above formalism in hand, we have:

Proposition 2.23. The Poisson and Bessel laws are compound Poisson laws,

pt = ptδ1 , bt = ptε

where δ1 is the Dirac mass at 1, and ε is the centered Bernoulli law, ε = 1
2
(δ−1 + δ1).

Proof. Here the first assertion, regarding pt, is clear from definitions, and the second
assertion follows by comparing the formula of the Fourier transform of bt, from the proof
of Theorem 2.19 above, with the general formula in Proposition 2.21. �

The above result suggests formulating the following definition:

Definition 2.24. The Bessel law of level s ∈ N ∪ {∞} and parameter t > 0 is

bt = ptεs

with εs being the uniform measure on the s-th roots of unity.

Observe that at s = 1, 2 we obtain the Poisson and the usual Bessel laws pt, bt.
Another important particular case is s =∞, where we obtain a messure which is actually
not discrete, called purely complex Bessel law, and denoted as follows:

Bt = b∞t

Here we use the same convention as in the continuous case, namely that capital letters
stand for complexifications. As a basic result now on these laws, from [10], we have:

Theorem 2.25. The generalized Bessel laws bst have the property

bst ∗ bst′ = bst+t′

so they form a truncated one-parameter semigroup with respect to convolution.

Proof. This follows indeed from the Fourier transform formulae from Proposition
2.21, because the log of these Fourier transforms are linear in t. �

It is actually convenient to introduce as well modified Bessel laws, as follows:

Definition 2.26. The Bessel and modified Bessel laws are given by

bst = law

(
s∑

k=1

wkak

)

b̃st = law

(
s∑

k=1

wkak

)s

where a1, . . . , as are independent random variables, each of them following the Poisson
law of parameter t/s, and w = e2πi/s.
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As a first remark, at s = 1 we get the Poisson law of parameter t:

b1
t = b̃1

t = e−t
∞∑
r=0

tr

r!
δr

In order to further advance, consider now the level s exponential function, given by:

exps z =
∞∑
k=0

zsk

(sk)!

We have then the following formula, in terms of w = e2πi/s:

exps z =
1

s

s∑
k=1

exp(wkz)

Observe that we have exp1 = exp and exp2 = cosh. We have the following result, from
[10], which is a more explicit version of Proposition 2.21, for the Bessel laws:

Theorem 2.27. The Fourier transform of bst is given by

logF s
t (z) = t (exps z − 1)

so in particular the measures bst are additive with respect to t.

Proof. Consider, as in Definition 2.26, the following variable:

a =
s∑

k=1

wkak

We have then the following Fourier transform computation:

logFa(z) =
s∑

k=1

logFak(w
kz)

=
s∑

k=1

t

s

(
exp(wkz)− 1

)
But this gives the following formula:

logFa(z) = t

((
1

s

s∑
k=1

exp(wkz)

)
− 1

)
= t (exps(z)− 1)

Now since bst is the law of a, this gives the formula in the statement. �

Let us study now the densities of bst , b̃
s
t . We have here the following result:
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Theorem 2.28. We have the formulae

bst = e−t
∞∑
p1=0

. . .
∞∑
ps=0

1

p1! . . . ps!

(
t

s

)p1+...+ps

δ

(
s∑

k=1

wkpk

)

b̃st = e−t
∞∑
p1=0

. . .
∞∑
ps=0

1

p1! . . . ps!

(
t

s

)p1+...+ps

δ

(
s∑

k=1

wkpk

)s

where w = e2πi/s, and the δ symbol is a Dirac mass.

Proof. Following [10], it is enough to prove the formula for bst . For this purpose, we
compute the Fourier transform of the measure on the right. This is given by:

F (z) = e−t
∞∑
p1=0

. . .
∞∑
ps=0

1

p1! . . . ps!

(
t

s

)p1+...+ps

Fδ

(
s∑

k=1

wkpk

)
(z)

= e−t
∞∑
p1=0

. . .
∞∑
ps=0

1

p1! . . . ps!

(
t

s

)p1+...+ps

exp

(
s∑

k=1

wkpkz

)

= e−t
∞∑
r=0

(
t

s

)r ∑
Σpi=r

exp
(∑s

k=1w
kpkz

)
p1! . . . ps!

We multiply now by et, and we compute the derivative with respect to t:

(etF (z))′ =
∞∑
r=1

r

s

(
t

s

)r−1 ∑
Σpi=r

exp
(∑s

k=1w
kpkz

)
p1! . . . ps!

=
1

s

∞∑
r=1

(
t

s

)r−1 ∑
Σpi=r

(
s∑
l=1

pl

)
exp

(∑s
k=1w

kpkz
)

p1! . . . ps!

=
1

s

∞∑
r=1

(
t

s

)r−1 ∑
Σpi=r

s∑
l=1

exp
(∑s

k=1 w
kpkz

)
p1! . . . pl−1!(pl − 1)!pl+1! . . . ps!

By using the variable u = r − 1, we obtain in this way:

(etF (z))′ =
1

s

∞∑
u=0

(
t

s

)u ∑
Σqi=u

s∑
l=1

exp
(
wlz +

∑s
k=1w

kqkz
)

q1! . . . qs!

=

(
1

s

s∑
l=1

exp(wlz)

)(
∞∑
u=0

(
t

s

)u ∑
Σqi=u

exp
(∑s

k=1w
kqkz

)
q1! . . . qs!

)
= (exps z)(etF (z))
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On the other hand, consider now the following function:

Φ(t) = exp(t exps z)

This function satisfies as well the equation found above, namely:

Φ′(t) = (exps z)Φ(t)

Thus, we have the etF (z) = Φ(t), which gives the following formula:

logF = log(e−t exp(t exps z))

= log(exp(t(exps z − 1)))

= t(exps z − 1)

Thus, we obtain the formulae in the statement. �

Regarding now the moments, the result here, also from [10], is as follows:

Theorem 2.29. The moments of the Bessel law bst are the numbers

Mk = |P s(k)|
where P s(k) is the set of partitions of {1, . . . , k} satisfying

#◦ = # • (s)

as a weighted sum, in each block.

Proof. This is something quite long, the idea being as follows:

(1) Observe first that the formula holds indeed at s = 1, where b1
t = pt is the Poisson

law of parameter t > 0, and where P 1 = P is the set of all partitions.

(2) At s = 2 now, we have P 2 = Peven, consisting of the partitions having all blocks
of even size, and the result is elementary as well, by converting into combinatorics the
various analytic formulae that we have for the real Bessel laws bt.

(3) In the general case, where s ∈ N∪{∞}, this follows by doing some combinatorics,
in the spirit of the combinatorics that we did for SN , HN . We will be back to this later,
in chapters 3-4 below, by using some alternative methods, which are more advanced. �

Our next task will be that of generalizing the character results that we have for SN , HN .
For this purpose, let us consider the following remarkable family of groups:

Definition 2.30. The complex reflection group Hs
N ⊂ UN , depending on parameters

N ∈ N , s ∈ N ∪ {∞}
are the groups of permutation-type matrices with s-th roots of unity as entries,

Hs
N = MN(Zs ∪ {0}) ∩ UN

with the convention Z∞ = T, at s =∞.



2E. EXERCISES 55

The point now is that the basic facts about HN , from Theorem 2.16 above, extend to
this setting. In particular, the groups constructed above decompose as follows:

Hs
N = Zs o SN

Regarding now the characters and truncated characters, the result here, from [10],
generalizing what we have been doing so far, for SN and then for HN , is as follows:

Theorem 2.31. For the complex reflection group Hs
N we have, with N →∞,

χt ∼ bst

where bst = ptεs, with εs being the uniform measure on the s-th roots of unity.

Proof. This follows indeed by doing some combinatorial computations, by using the
inclusion-exclusion principle, generalizing those that we already did at s = 1, for the
group SN , and at s = 2 as well, for the group HN . We will be back to this later on, in
chapters 3-4 below, by using some alternative methods, which are more advanced. �

As a conclusion to all this, what we did so far in this book, the Gaussian and Poisson
laws, and their various versions, have interesting combinatorics. All the above was an
introduction to this combinatorics, following the classical theory, and [10], [12], [37] and
related papers. We will be back to these laws and results on numerous occasions.

2e. Exercises

There has been a lot of non-trivial material in this chapter, especially in relation
with the probabilistic aspects of the finite groups, which were sometimes only briefly
explained, and this because we will come back to this later, with more powerful tools.
However, before that, let us start with a standard and beautiful exercise:

Exercise 2.32. Prove that the Bell numbers Bk = |P (k)|, which are the moments of
the standard Poisson law p1, have the following properties:

Bk+1 =
k∑
s=0

(
k

s

)
Bs

Bk =
1

e

∞∑
s=0

sk

s!

∞∑
k=0

Bk

k!
xk = ee

x−1

Bk =
k!

2πie

∫
|z|=1

ee
z

zk+1
dz

Also, prove as well that we have the estimate lnBk
k
' ln k − ln ln k − 1.
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Here some of the formulae are things that we already know, from the above, some
other formulae are fairly easy, and some other are more difficult.

Getting now to groups, we have several exercises on the subject. First, we have:

Proposition 2.33. Prove that for the cyclic group ZN ⊂ ON we have:

law(χ) =

(
1− 1

N

)
δ0 +

1

N
δN

This looks quite elementary, and indeed it is, matter of have things started.

At a more advanced level now, with more algebra involved, we have:

Proposition 2.34. Prove that for the dihedral group DN ⊂ SN we have:

law(χ) =


(

3
4
− 1

2N

)
δ0 + 1

4
δ2 + 1

2N
δN (N even)

(
1
2
− 1

2N

)
δ0 + 1

2
δ1 + 1

2N
δN (N odd)

As a conclusion of all this, the laws for both ZN , DN have no interesting asymptotics.

Getting now to the real thing, to be done is a third proof for the SN result:

Exercise 2.35. Prove that, if gij are the standard coordinates of SN ⊂ ON ,

law(g11 + . . .+ gss) =
s!

N !

s∑
p=0

(N − p)!
(s− p)!

· (δ1 − δ0)∗p

p!

and deduce from this that such variables become Poisson, with N →∞.

As a bonus exercise, you can try to work out all the missing details for the various
computations involving the complex reflection groups Hs

N , and the Bessel laws bst . And if
all this looks too complicated, don’t worry, because we will be back to this, later.



CHAPTER 3

Compact groups

3a. Representation theory

We discuss in this chapter and in the next one a unification and extension of the
various results obtained in the above, dealing with finite or compact groups of matrices
G ⊂ UN . There is a lot of theory to be developed, and we will do this gradually.

Following the tradition, starting with the influential work of Weyl [96], we will be
mainly interested in group representations, and their characters:

Definition 3.1. A representation of a compact group G is a continuous group mor-
phism, which can be faithful or not, into a unitary group:

u : G→ UN

The character of such a representation is the function χ : G→ C given by

g → Tr(ug)

where Tr is the usual, unnormalized trace of the N ×N matrices.

At the level of examples, most of the compact groups that we met so far, finite or
continuous, naturally appear as closed subgroups G ⊂ UN . In this case, the embedding
G ⊂ UN is of course a representation, called fundamental representation.

Let us discuss the various operations on the representations. We have here:

Proposition 3.2. The representations of a compact group G are subject to:

(1) Making sums. Given representations u, v, of dimensions N,M , their sum is the
N +M-dimensional representation u+ v = diag(u, v).

(2) Making products. Given representations u, v, of dimensions N,M , their product
is the NM-dimensional representation (u⊗ v)ia,jb = uijvab.

(3) Taking conjugates. Given a N-dimensional representation u, its conjugate is the
N-dimensional representation (ū)ij = ūij.

(4) Spinning by unitaries. Given a N-dimensional representation u, and a unitary
V ∈ UN , we can spin u by this unitary, u→ V uV ∗.

Proof. The fact that the operations in the statement are indeed well-defined, among
morphisms from G to unitary groups, is indeed clear from definitions. �

57
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In relation now with characters, we have the following result:

Proposition 3.3. We have the following formulae, regarding characters

χu+v = χu + χv

χu⊗v = χuχv

χū = χ̄u

χV uV ∗ = χu

in relation with the basic operations for the representations.

Proof. All these assertions are elementary, by using the following well-known trace
formulae, valid for any square matrices U, V :

Tr(diag(U, V )) = Tr(U) + Tr(V )

Tr(U ⊗ V ) = Tr(U)Tr(V )

Tr(Ū) = Tr(U)

Tr(V UV ∗) = Tr(U)

Thus, we are led to the formulae in the statement. �

Assume now that we are given a closed subgroup G ⊂ UN . By using the above
operations, we can construct a whole family of representations of G, as follows:

Definition 3.4. Given a closed subgroup G ⊂ UN , its Peter-Weyl representations are
the various tensor products between the fundamental representation and its conjugate:

u : G ⊂ UN , ū : G ⊂ UN

We denote these tensor products u⊗k, with k = ◦ • • ◦ . . . being a colored integer, with the
colored tensor powers being defined according to the rules

u⊗◦ = u , u⊗• = ū , u⊗kl = u⊗k ⊗ u⊗l

and with the convention that u⊗∅ is the trivial representation 1 : G→ U1.

Here are a few examples of such representations, namely those coming from the colored
integers of length 2, which will often appear in what follows:

u⊗◦◦ = u⊗ u , u⊗◦• = u⊗ ū
u⊗•◦ = ū⊗ u , u⊗•• = ū⊗ ū

In relation now with characters, we have the following result:

Proposition 3.5. The characters of the Peter-Weyl representations are given by

χu⊗k = (χu)
k

with the colored powers being given by χ◦ = χ, χ• = χ̄ and multiplicativity.
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Proof. This follows indeed from the additivity, multiplicativity and conjugation for-
mulae from Proposition 3.3 above, via the conventions in Definition 3.4. �

Getting back now to our motivations, we can see the interest in the above construc-
tions. Indeed, the joint moments of the main character χ = χu and its adjoint χ̄ = χū
are the expectations of the characters of various Peter-Weyl representations:∫

G

χk =

∫
G

χu⊗k

Summarizing, given G ⊂ UN , we would like to understand its Peter-Weyl representa-
tions, and compute the expectations of the characters of these representations.

In order to advance, we must develop some general theory. Let us start with:

Definition 3.6. Given a compact group G, and two of its representations,

u : G→ UN , v : G→ UM

we define the linear space of intertwiners between these representations as being

Hom(u, v) =
{
T ∈MM×N(C)

∣∣∣Tu(g) = v(g)T,∀g ∈ G
}

and we use the following conventions:

(1) We use the notations Fix(u) = Hom(1, u), and End(u) = Hom(u, u).
(2) We write u ∼ v when Hom(u, v) contains an invertible element.
(3) We say that u is irreducible, and write u ∈ Irr(G), when End(u) = C1.

The terminology here is standard, with Hom and End standing for “homomorphisms”
and “endomorphisms”. Here are a few basic results, regarding the above spaces:

Proposition 3.7. We have the following results:

(1) The intertwiners are stable under composition:

T ∈ Hom(u, v) , S ∈ Hom(v, w) =⇒ ST ∈ Hom(u,w)

(2) The intertwiners are stable under taking tensor products:

S ∈ Hom(u, v) , T ∈ Hom(w, z) =⇒ S ⊗ T ∈ Hom(u⊗ w, v ⊗ z)

(3) The intertwiners are stable under taking adjoints:

T ∈ Hom(u, v) =⇒ T ∗ ∈ Hom(v, u)

In abstract terms, we say that the Hom spaces form a tensor ∗-category.

Proof. All the formulae in the statement are clear from definitions, or rather follow
from some elementary computations, based on the main definition, namely:

Hom(u, v) =
{
T ∈MM×N(C)

∣∣∣Tu(g) = v(g)T,∀g ∈ G
}
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As for the last assertion, this is something coming from (1,2,3). We will be back to
tensor categories later on, with more details on all this. �

As a main consequence of the above result, we have:

Proposition 3.8. Given a representation of a compact group, u : G → UN , the
corresponding linear space of self-intertwiners

End(u) ⊂MN(C)

is a ∗-algebra, with respect to the usual involution of the matrices.

Proof. By definition, End(u) is a linear subspace of MN(C). We know from Propo-
sition 3.7 (1) that this subspace End(u) is a subalgebra of MN(C), and then we know as
well from Proposition 3.7 (3) that this subalgebra is stable under the involution ∗. Thus,
what we have here is a ∗-subalgebra of MN(C), as claimed. �

In order to exploit the above fact, we will need a basic result from algebra:

Proposition 3.9. Let A ⊂MN(C) be a ∗-algebra.

(1) The unit decomposes as follows, with pi ∈ A being central minimal projections:

1 = p1 + . . .+ pk

(2) Each of the following linear spaces is a non-unital ∗-subalgebra of A:

Ai = piApi

(3) We have a non-unital ∗-algebra sum decomposition, as follows:

A = A1 ⊕ . . .⊕ Ak
(4) We have unital ∗-algebra isomorphisms as follows, with Ni = rank(pi):

Ai 'MNi(C)

(5) Thus, we have a ∗-algebra isomorphism as follows:

A 'MN1(C)⊕ . . .⊕MNk(C)

Proof. This is well-known and standard, with (1) being rather a definition, (2) being
clear from definitions, (3) being a standard check, (4) coming from the minimality of the
central projections pi, and finally (5) coming by putting (3,4) together. �

We can now formulate our first Peter-Weyl type theorem, as follows:

Theorem 3.10 (PW1). Let u : G → UN be a group representation, consider the
algebra A = End(u), and write its unit 1 = p1 + . . .+ pk, as above. We have then

u = u1 + . . .+ uk

with each ui being an irreducible representation, obtained by restricting u to Im(pi).
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Proof. This follows from Proposition 3.8 and Proposition 3.9, as follows:

(1) We first associate to our representation u : G→ UN the corresponding action map
on CN . If a linear subspace V ⊂ CN is invariant, the restriction of the action map to V
is an action map too, which must come from a subrepresentation v ⊂ u.

(2) Consider now a projection p ∈ End(u). From pu = up we obtain that the linear
space V = Im(p) is invariant under u, and so this space must come from a subrepresen-
tation v ⊂ u. It is routine to check that the operation p → v maps subprojections to
subrepresentations, and minimal projections to irreducible representations.

(3) With these preliminaries in hand, let us decompose the algebra End(u) as in
Proposition 3.9, by using the decomposition 1 = p1 + . . . + pk into minimal projections.
If we denote by ui ⊂ u the subrepresentation coming from the vector space Vi = Im(pi),
then we obtain in this way a decomposition u = u1 + . . .+ uk, as in the statement. �

In order to formulate our second Peter-Weyl theorem, we need to talk about coeffi-
cients, and smoothness. Things here are quite tricky, and best is to proceed as follows:

Definition 3.11. Given a closed subgroup G ⊂ UN , and a representation v : G→ UM ,
the space of coefficients of this representation is:

Cv =
{
f ◦ v

∣∣∣f ∈MM(C)∗
}

In other words, by delinearizing, Cv ⊂ C(G) is the following linear space:

Cv = span
[
g → v(g)ij

]
We say that v is smooth if its matrix coefficients g → v(g)ij appear as polynomials in the
standard matrix coordinates g → gij, and their conjugates g → gij.

The story here is in fact a bit more complicated, the idea being that the closed sub-
groups G ⊂ UN can be shown to be smooth manifolds, and so Lie groups, and with the
above notion of smoothness corresponding in this way to the usual smoothness notion.
However, this is something advanced, that we will not need in what follows.

Here is now our second Peter-Weyl theorem, complementing Theorem 3.10:

Theorem 3.12 (PW2). Given a closed subgroup G ⊂u UN , any of its irreducible
smooth representations

v : G→ UM

appears inside a tensor product of the fundamental representation v and its adjoint v̄.

Proof. In order to prove the result, we will use the following elementary facts:

(1) The construction v → Cv is functorial, in the sense that it maps subrepresentations
into linear subspaces. This is indeed something which is routine to check.
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(2) Our smoothness assumption on v : G → UM , as formulated in Definition 3.11,
means that we have an inclusion of linear spaces Cv ⊂< gij >.

(3) By definition of the Peter-Weyl representations, as arbitrary tensor products be-
tween the fundamental representation u and its conjugate ū, we have:

< gij >=
∑
k

Cu⊗k

Now by putting together the observations (2,3) we conclude that we must have an
inclusion as follows, for certain exponents k1, . . . , kp:

Cv ⊂ Cu⊗k1⊕...⊕u⊗kp

By using now (1), we deduce that we have an inclusion v ⊂ u⊗k1 ⊕ . . .⊕ u⊗kp , and by
applying Theorem 3.10, this leads to the conclusion in the statement. �

3b. Haar integration

In order to further advance, we need to talk about integration over G. This is some-
thing quite technical, the idea being that the uniform measure µ over G can be constructed
by starting with an arbitrary probability measure ν, and setting:

µ = lim
n→∞

1

n

n∑
k=1

ν∗k

Thus, our next task will be that of proving this result. It is convenient, for this
purpose, to work with the integration functionals with respect to the various measures on
G, instead of the measures themselves. Let us begin with the following key result:

Proposition 3.13. Given a unital positive linear form ϕ : C(G)→ C, the limit∫
ϕ

f = lim
n→∞

1

n

n∑
k=1

ϕ∗k(f)

exists, and for a coefficient of a representation f = (τ ⊗ id)v we have∫
ϕ

f = τ(P )

where P is the orthogonal projection onto the 1-eigenspace of (id⊗ ϕ)v.

Proof. By linearity it is enough to prove the second assertion. More precisely, we
can have the whole result proved if we can establish the following formula:

lim
n→∞

1

n

n∑
k=1

ϕ∗k(f) = τ(P )
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In order to prove this latter formula, observe that we have:

ϕ∗k(f) = (τ ⊗ ϕ∗k)v
= τ((id⊗ ϕ∗k)v)

Consider the matrix M = (id⊗ ϕ)v. In terms of this matrix, we have:

((id⊗ ϕ∗k)v)i0ik+1
=

∑
i1...ik

Mi0i1 . . .Mikik+1

= (Mk)i0ik+1

Thus we have the following formula, valid for any integer k ∈ N:

(id⊗ ϕ∗k)v = Mk

It follows that our Cesàro limit is given by the following formula:

lim
n→∞

1

n

n∑
k=1

ϕ∗k(f) = lim
n→∞

1

n

n∑
k=1

τ(Mk)

= τ

(
lim
n→∞

1

n

n∑
k=1

Mk

)
Now since v is unitary we have ||v|| = 1, and we obtain from this that we have:

||M || ≤ 1

Thus, in the above expression, the Cesàro limit on the right converges, and equals the
orthogonal projection onto the 1-eigenspace of M :

lim
n→∞

1

n

n∑
k=1

Mk = P

Thus our initial Cesàro limit converges as well, to τ(P ), as desired. �

When the linear ϕ is chosen faithful, we have the following finer result:

Proposition 3.14. Given a faithful unital linear form ϕ ∈ C(G)∗, the limit∫
ϕ

f = lim
n→∞

1

n

n∑
k=1

ϕ∗k(f)

exists, and is independent of ϕ, given on coefficients of representations by(
id⊗

∫
ϕ

)
v = P

where P is the orthogonal projection onto Fix(v) =
{
ξ ∈ Cn

∣∣vξ = ξ
}

.
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Proof. In view of Proposition 3.13, it remains to prove that when ϕ is faithful, the
1-eigenspace of M = (id⊗ ϕ)v equals the space Fix(v).

“⊃” This inclusion is clear, and for any ϕ, because vξ = ξ =⇒ Mξ = ξ.

“⊂” Here we must prove that, if ϕ is faithful, we have Mξ = ξ =⇒ vξ = ξ. For this
purpose, assume that we have Mξ = ξ, and consider the following function:

f =
∑
i

(∑
j

vijξj − ξi

)(∑
k

vikξk − ξi

)∗
We must prove that we have f = 0. Since v is unitary, we have:

f =
∑
i

(∑
j

(
vijξj −

1

N
ξi

))(∑
k

(
v∗ikξ̄k −

1

N
ξ̄i

))

=
∑
ijk

vijv
∗
ikξj ξ̄k −

1

N
vijξj ξ̄i −

1

N
v∗ikξiξ̄k +

1

N2
ξiξ̄i

=
∑
j

|ξj|2 −
∑
ij

vijξj ξ̄i −
∑
ik

v∗ikξiξ̄k +
∑
i

|ξi|2

= ||ξ||2− < vξ, ξ > −< vξ, ξ >+ ||ξ||2

= 2(||ξ||2 −Re(< vξ, ξ >))

By using now our assumption Mξ = ξ, we obtain from this that we have:

ϕ(f) = 2ϕ(||ξ||2 −Re(< vξ, ξ >))

= 2(||ξ||2 −Re(< Mξ, ξ >))

= 2(||ξ||2 − ||ξ||2)

= 0

Now since ϕ is faithful, this gives f = 0, and so vξ = ξ, as claimed. �

We can now formulate a main result, as follows:

Theorem 3.15. Any compact group G has a unique Haar integration, which can be
constructed by starting with any faithful positive unital form ϕ ∈ C(G)∗, and setting:∫

G

= lim
n→∞

1

n

n∑
k=1

ϕ∗k

Moreover, for any representation v we have the formula(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) =
{
ξ ∈ Cn

∣∣vξ = ξ
}

.
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Proof. Let us first go back to the general context of Proposition 3.13 above. Since
convolving one more time with ϕ will not change the Cesàro limit appearing there, the
functional

∫
ϕ
∈ C(G)∗ constructed there has the following invariance property:∫

ϕ

∗ϕ = ϕ ∗
∫
ϕ

=

∫
ϕ

In the case where ϕ is assumed to be faithful, as in Proposition 3.14, our claim is that
we have the following formula, valid this time for any ψ ∈ C(G)∗:∫

ϕ

∗ψ = ψ ∗
∫
ϕ

= ψ(1)

∫
ϕ

Indeed, it is enough to prove this formula on a coefficient of a corepresentation:

f = (τ ⊗ id)v

In order to do so, consider the following two matrices:

P =

(
id⊗

∫
ϕ

)
v , Q = (id⊗ ψ)v

We have then the following formulae, which all follow from definitions:(∫
ϕ

∗ψ
)
f = τ(PQ)

(
ψ ∗

∫
ϕ

)
f = τ(QP )

ψ(1)

∫
ϕ

f = ψ(1)τ(P )

Thus, in order to prove our claim, it is enough to establish the following formula:

PQ = QP = ψ(1)P

But this latter formula follows from the fact, coming from Proposition 3.14, that
P = (id⊗

∫
ϕ
)v equals the orthogonal projection onto Fix(v). Thus, we have proved our

claim, namely that we have the following formula, valid for any ψ ∈ C(G)∗:∫
ϕ

∗ψ = ψ ∗
∫
ϕ

= ψ(1)

∫
ϕ

Now observe that, with ∆f(g ⊗ h) = f(gh), this formula can be written as follows:

ψ

(∫
ϕ

⊗id
)

∆ = ψ

(
id⊗

∫
ϕ

)
∆ = ψ

∫
ϕ

(.)1
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This formula being true for any ψ ∈ C(G)∗, we can simply delete ψ, and we conclude
that

∫
G

=
∫
ϕ

has the required left and right invariance property, namely:(∫
G

⊗id
)

∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

Finally, the uniqueness is clear as well, because if we have two invariant integrals∫
G
,
∫ ′
G

, then their convolution equals on one hand
∫
G

, and on the other hand,
∫ ′
G

. �

Summarizing, we can now integrate over G. As a first application, we have:

Theorem 3.16. Given a compact group G, we have the following formula, valid for
any unitary representation v : G→ UM :∫

G

χv = dim(Fix(v))

In particular, in the unitary matrix group case, G ⊂u UN , the moments of the main
character χ = χu are given by the following formula:∫

G

χk = dim(Fix(u⊗k))

Thus, knowing the law of the main character χ = χu is the same as knowing the number
of fixed points of the Peter-Weyl representations u⊗k.

Proof. We have several assertions here, the idea being as follows:

(1) Given a unitary representation v : G → UM as in the statement, its character χv
is a coefficient, so we can use the integration formula for coefficients in Theorem 3.15. If
we denote by P the projection onto Fix(v), this formula gives, as desired:∫

G

χv = Tr(P )

= dim(Im(P ))

= dim(Fix(v))

(2) This follows from (1), applied to the Peter-Weyl representations, as follows:∫
G

χk =

∫
G

χku

=

∫
G

χu⊗k

= dim(Fix(u⊗k))

(3) The last assertion simply follows from (2), and from the standard fact that a
probability measure is uniquely determined by its moments. �
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In order to further develop now the Peter-Weyl theory, which is something very useful,
we will need the following result, which is of independent interest:

Proposition 3.17. We have a Frobenius type isomorphism

Hom(v, w) ' Fix(v ⊗ w̄)

valid for any two representations v, w.

Proof. According to the definitions, we have the following equivalences:

T ∈ Hom(v, w) ⇐⇒ Tv = wT

⇐⇒
∑
j

Tajvji =
∑
b

wabTbi, ∀a, i

On the other hand, we have as well the following equivalences:

T ∈ Fix(v ⊗ w̄) ⇐⇒ (v ⊗ w̄)T = ξ

⇐⇒
∑
jb

vijw̄abTbj = Tai∀a, i

With these formulae in hand, both inclusions follow from the unitarity of v, w. �

We can now formulate our third Peter-Weyl theorem, as follows:

Theorem 3.18 (PW3). The dense subalgebra C(G) ⊂ C(G) generated by the coeffi-
cients of the fundamental representation decomposes as a direct sum

C(G) =
⊕

v∈Irr(G)

Mdim(v)(C)

with this being an isomorphism of ∗-coalgebras, and with the summands being pairwise
orthogonal with respect to the scalar product given by

< f, g >=

∫
G

fḡ

where
∫
G

is the Haar integration over G.

Proof. By combining the previous two Peter-Weyl results, we deduce that we have
a linear space decomposition as follows:

C(G) =
∑

v∈Irr(G)

Cv =
∑

v∈Irr(G)

Mdim(v)(C)

Thus, in order to conclude, it is enough to prove that for any two irreducible repre-
sentations v, w ∈ Irr(G), the corresponding spaces of coefficients are orthogonal:

v 6∼ w =⇒ Cv ⊥ Cw
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But this follows from Theorem 3.15, via Proposition 3.17. Let us set indeed:

Pia,jb =

∫
G

vijw̄ab

Then P is the orthogonal projection onto the following vector space:

Fix(v ⊗ w̄) ' Hom(v, w) = {0}
Thus we have P = 0, and this gives the result. �

Finally, we have the following result, completing the Peter-Weyl theory:

Theorem 3.19 (PW4). The characters of the irreducible representations of G belong
to the algebra

C(G)central =
{
f ∈ C(G)

∣∣∣Σ∆(f) = ∆(f)
}

of smooth central functions on G, and form an orthonormal basis of it.

Proof. Observe first that C(G)central is indeed an algebra, which contains all the
characters. Conversely, consider a function f ∈ C(G), written as follows:

f =
∑

v∈Irr(G)

fv

The condition f ∈ C(G)central states then that for any v ∈ Irr(G), we must have:

fv ∈ C(G)central

But this means that fv must be a scalar multiple of χv, so the characters form a basis
of C(G)central, as stated. Also, the fact that we have an orthogonal basis follows from
Theorem 3.18. As for the fact that the characters have norm 1, this follows from:∫

G

χvχ̄v =
∑
ij

∫
G

viiv̄jj

=
∑
i

1

N

= 1

Here we have used the fact, coming from Theorem 3.15 and Proposition 3.17, that the
integrals

∫
G
vij v̄kl form the orthogonal projection onto the following vector space:

Fix(v ⊗ v̄) ' End(v) = C1

Thus, the proof of our theorem is now complete. �

All the above was quite brief, but further details on all this, Haar measure and Peter-
Weyl theory, can be found in any group theory book. If you like old books, from good
ancient times when mathematics was the same thing as physics, go with Weyl [96].
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3c. Diagrams, easiness

We discuss here more advanced aspects of representation theory, going towards proba-
bility theory, based on Brauer’s paper [31], and on the seemingly endless flurry of papers
based on it, ancient or more modern, including [22], [37], [95], to name a few.

In view of the above results, no matter on what we want to do with our group, we
must compute the spaces Fix(u⊗k). It is technically convenient to slightly enlarge the
class of spaces to be computed, by talking about Tannakian categories, as follows:

Definition 3.20. The Tannakian category associated to a closed subgroup G ⊂u UN
is the collection CG = (CG(k, l)) of vector spaces

CG(k, l) = Hom(u⊗k, u⊗l)

where the representations u⊗k with k = ◦ • • ◦ . . . colored integer, defined by

u⊗∅ = 1 , u⊗◦ = u , u⊗• = ū

and multiplicativity, u⊗kl = u⊗k ⊗ u⊗l, are the Peter-Weyl representations.

Let us make a summary of what we have so far, regarding these spaces CG(k, l). In
order to formulate our result, let us start with the following definition:

Definition 3.21. Let H be a finite dimensional Hilbert space. A tensor category over
H is a collection C = (C(k, l)) of linear spaces

C(k, l) ⊂ L(H⊗k, H⊗l)

satisfying the following conditions:

(1) S, T ∈ C implies S ⊗ T ∈ C.
(2) If S, T ∈ C are composable, then ST ∈ C.
(3) T ∈ C implies T ∗ ∈ C.
(4) Each C(k, k) contains the identity operator.
(5) C(∅, k) with k = ◦•, •◦ contain the operator R : 1→

∑
i ei ⊗ ei.

(6) C(kl, lk) with k, l = ◦, • contain the flip operator Σ : a⊗ b→ b⊗ a.

Here the tensor power Hilbert spaces H⊗k, with k = ◦ • • ◦ . . . being a colored integer,
are defined by the following formulae, and multiplicativity:

H⊗∅ = C , H⊗◦ = H , H⊗• = H̄ ' H

With these conventions, we have the following result, summarizing our knowledge on
the subject, coming from the results established in the above:

Theorem 3.22. For a closed subgroup G ⊂u UN , the associated Tannakian category

CG(k, l) = Hom(u⊗k, u⊗l)

is a tensor category over the Hilbert space H = CN .
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Proof. We know that the fundamental representation u acts on the Hilbert space
H = CN , and that its conjugate ū acts on the Hilbert space H̄ = CN . Now by multi-
plicativity we conclude that any Peter-Weyl representation u⊗k acts on the Hilbert space
H⊗k, and so that we have embeddings as in Definition 3.21, as follows:

CG(k, l) ⊂ L(H⊗k, H⊗l)

Regarding now the fact that the axioms (1-6) in Definition 3.21 are indeed satisfied,
this is something that we basically already know. To be more precise, (1-4) are clear, and
(5) follows from the fact that each element g ∈ G is a unitary, which gives:

R ∈ Hom(1, g ⊗ ḡ)

R ∈ Hom(1, ḡ ⊗ g)

As for (6), this is something trivial, coming from the fact that the matrix coefficients
g → gij and their complex conjugates g → ḡij commute with each other. �

Our purpose now will be that of showing that any closed subgroup G ⊂ UN is uniquely
determined by its Tannakian category CG = (CG(k, l)). This result, known as Tannakian
duality, is something quite deep, and extremely useful. Indeed, the idea is that what
we would have here is a “delinearization” of G, allowing us to do combinatorics, and to
ultimately reach to very concrete and powerful results, regarding G itself.

The construction in the other sense is something simple as well, as follows:

Theorem 3.23. Given a tensor category C = (C(k, l)) over a finite dimensional
Hilbert space H ' CN , the following construction,

GC =
{
g ∈ UN

∣∣∣Tg⊗k = g⊗lT , ∀k, l, ∀T ∈ C(k, l)
}

produces a closed subgroup GC ⊂ UN .

Proof. This is something elementary, with the fact that the closed subset GC ⊂ UN
constructed in the statement is indeed stable under the multiplication, unit and inversion
operation for the unitary matrices g ∈ UN being clear from definitions. �

We can now formulate Tannakian duality, as follows:

Theorem 3.24. The above Tannakian constructions

G→ CG

C → GC

are bijective, and inverse to each other.

Proof. This is something quite technical, obtained by doing some abstract algebra,
and for full details here, we refer to the Tannakian duality literature. The whole subject
is actually, in modern times, for the most part of quantum algebra, and if this is not too
much, we refer to [64], [99], both quantum group papers, for details on the above. �
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In order to reach now to more concrete things, following Brauer’s philosophy in [31],
and more specifically the more modern paper [22], based on it, we have:

Definition 3.25. Let P (k, l) be the set of partitions between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
(6) The sets P (k, k̄) with |k| = 2 contain the crossing partition /\.

Let us formulate as well the following definition, also from [22]:

Definition 3.26. Given a partition π ∈ P (k, l) and an integer N ∈ N, we can
construct a linear map between tensor powers of CN ,

Tπ : (CN)⊗k → (CN)⊗l

by the following formula, with e1, . . . , eN being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the coefficients on the right being Kronecker type symbols,

δπ

(
i1 . . . ik
j1 . . . jl

)
∈ {0, 1}

whose values depend on whether the indices fit or not.

To be more precise here, we put the indices of i, j on the legs of π, in the obvious way.
In case all the blocks of π contain equal indices of i, j, we set δπ(ij) = 1. Otherwise, we

set δπ(ij) = 0. The relation with the Tannakian categories comes from:

Theorem 3.27. The assignement π → Tπ is categorical, in the sense that we have

Tπ ⊗ Tσ = T[πσ]

TπTσ = N c(π,σ)T[σπ ]

T ∗π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.
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Proof. This is something elementary, the computations being as follows:

(1) The concatenation axiom can be checked as follows:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

(2) The composition axiom can be checked as follows:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)

(3) Finally, the involution axiom can be checked as follows:

T ∗π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)

Summarizing, our correspondence is indeed categorical. �

In relation now with the groups, we have the following result, from [22]:

Theorem 3.28. Each category of partitions D = (D(k, l)) produces a family of com-
pact groups G = (GN), with GN ⊂ UN , via the formula

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

and the Tannakian duality correspondence.
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Proof. Given an integer N ∈ N, consider the correspondence π → Tπ constructed in
Definition 3.26, and then the collection of linear spaces in the statement, namely:

C(k, l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

According to Theorem 3.27, and to our axioms for the categories of partitions, from
Definition 3.25, this collection of spaces C = (C(k, l)) satisfies the axioms for the Tan-
nakian categories, from Definition 3.21. Thus the Tannakian duality result, Theorem 3.24
above, applies, and provides us with a closed subgroup GN ⊂ UN such that:

C(k, l) = Hom(u⊗k, u⊗l)

Thus, we are led to the conclusion in the statement. �

We can now formulate a key definition, as follows:

Definition 3.29. A closed subgroup G ⊂u UN is called easy when we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

The notion of easiness goes back to the results of Brauer in [31] regarding the orthog-
onal group ON , and the unitary group UN , which reformulate as follows:

Theorem 3.30. We have the following results:

(1) The unitary group UN is easy, coming from the category P2.
(2) The orthogonal group ON is easy as well, coming from the category P2.

Proof. This is something quite standard, the idea being as follows:

(1) The group UN being defined via the relations u∗ = u−1, ut = ū−1, the associated
Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= P2

(2) The group ON ⊂ UN being defined by imposing the relations uij = ūij, the
associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦•, |•◦ >= P2

Thus, we are led to the conclusion in the statement. �

A first natural question is that of computing the easy group associated to the category
P itself, and we have here the following Brauer type theorem:

Theorem 3.31. The symmetric group SN , regarded as group of unitary matrices,

SN ⊂ ON ⊂ UN

via the permutation matrices, is easy, coming from the category of all partitions P .
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Proof. Consider indeed the group SN , regarded as a group of unitary matrices, with
each permutation σ ∈ SN corresponding to the associated permutation matrix:

σ(ei) = eσ(i)

Consider as well the easy group G ⊂ ON coming from the category of all partitions
P . Since P is generated by the one-block partition µ ∈ P (2, 1), we have:

C(G) = C(ON)
/〈

Tµ ∈ Hom(u⊗2, u)
〉

The linear map associated to µ is given by the following formula:

Tµ(ei ⊗ ej) = δijei

Thus, the relation defining the above group G ⊂ ON reformulates as follows:

Tµ ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k

In other words, the elements uij must be projections, and these projections must be
pairwise orthogonal on the rows of u = (uij). We conclude that G ⊂ ON is the subgroup of
matrices g ∈ ON having the property gij ∈ {0, 1}. Thus we have G = SN , as claimed. �

In fact, we have the following general easiness result, regarding the series of complex
reflection groups Hs

N ⊂ UN , that we introduced in chapter 2 above:

Theorem 3.32. The complex reflection group

Hs
N = Zs o SN

is easy, the corresponding category P s consisting of the partitions satisfying

#◦ = # • (s)

in each block. In particular, we have the following results:

(1) SN is easy, coming from the category P .
(2) HN is easy, coming from the category Peven.
(3) KN is easy, coming from the category Peven.

Proof. This is something from [10], that we already know at s = 1, from Theorem
3.31 above. In general, the proof is similar, based on Tannakian duality.

To be more precise, in what regards the main assertion, the idea here is that the one-
block partition π ∈ P (s), which generates the category of partitions P s in the statement,
implements the relations producing the subgroup Hs

N ⊂ SN .

As for the last assertions, these follow from the following observations:

(1) At s = 1 we know that we have H1
N = SN . Regarding now the corresponding

category, here the condition #◦ = # • (1) is automatic, and so P 1 = P .
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(2) At s = 2 we know that we have H2
N = HN . Regarding now the corresponding

category, here the condition #◦ = # • (2) reformulates as follows:

# ◦+ #• = 0(2)

Thus each block must have even size, and we obtain, as claimed, P 2 = Peven.

(3) At s = ∞ we know that we have H∞N = KN . Regarding now the corresponding
category, here the condition #◦ = # • (∞) reads:

#◦ = #•
But this is the condition defining Peven, and so P∞ = Peven, as claimed. �

Summarizing, we have many examples. In fact, our list of easy groups is already quite
big, and here is a selection of the main results that we have so far:

Theorem 3.33. We have a diagram as follows,

KN
// UN

HN

OO

// ON

OO

and all these groups are easy.

Proof. This follows from the above results. To be more precise, we know that the
above groups are all easy, the corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Thus, we are led to the conclusion in the statement. �

We refer to [15], [22], [75], [81] for more on the easy groups, in the above formulation.
In fact, any Lie group or Lie algebra text will do too, because up to the formalism,
notations, and so on, all the modern theory comes from Brauer’s paper [31] anyway.

3d. Asymptotic characters

We go back here to probability questions, with the aim of applying the above. To be
more precise, given a closed subgroup G ⊂u UN , we know from Theorem 3.16 that the
moments of the main character count the fixed points of the representations u⊗k.



76 3. COMPACT GROUPS

On the other hand, assuming that our group G ⊂u UN is easy, coming from a category
of partitions D = (D(k, l)), the space formed by these fixed points is spanned by the
following vectors, indexed by partitions π belonging to the set D(k) = D(0, k):

ξπ =
∑
i1...ik

δπ
(
i1 . . . ik

)
ei1 ⊗ . . .⊗ eik

In order to investigate linear independence questions for the vectors ξπ, we will use
the Gram matrix of these vectors. Let us begin with some standard definitions:

Definition 3.34. Let P (k) be the set of partitions of {1, . . . , k}, and let π, σ ∈ P (k).

(1) We write π ≤ σ if each block of π is contained in a block of σ.
(2) We let π ∨ σ ∈ P (k) be the partition obtained by superposing π, σ.

As an illustration here, at k = 2 we have P (2) = {||,u}, and the order is:

|| ≤ u
At k = 3 we have P (3) = {|||,u|,u| , |u,uu}, and the order relation is as follows:

||| ≤ u|,u| , |u ≤ uu
Observe also that we have π, σ ≤ π ∨ σ. In fact, π ∨ σ is the smallest partition with

this property, called supremum of π, σ. Now back to the easy groups, we have:

Proposition 3.35. The Gram matrix GkN(π, σ) =< ξπ, ξσ > is given by

GkN(π, σ) = N |π∨σ|

where |.| is the number of blocks.

Proof. According to our formula of the vectors ξπ, we have:

< ξπ, ξσ > =
∑
i1...ik

δπ(i1, . . . , ik)δσ(i1, . . . , ik)

=
∑
i1...ik

δπ∨σ(i1, . . . , ik)

= N |π∨σ|

Thus, we have obtained the formula in the statement. �

In order to study the Gram matrix, and more specifically to compute its determinant,
we will need several standard facts about the partitions. We first have:

Definition 3.36. The Möbius function of any lattice, and so of P , is given by

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π 6≤ σ

with the construction being performed by recurrence.
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As an illustration here, let us go back to the set of 2-point partitions, P (2) = {||,u}.
Here we have by definition:

µ(||, ||) = µ(u,u) = 1

Also, we know that we have || < u, with no intermediate partition in between, and so
the above recurrence procedure gives the following formular:

µ(||,u) = −µ(||, ||) = −1

Finally, we have u 6≤ ||, which gives µ(u, ||) = 0. Thus, as a conclusion, the Möbius
matrix Mπσ = µ(π, σ) of the lattice P (2) = {||,u} is as follows:

M =

(
1 −1
0 1

)
The interest in the Möbius function comes from the Möbius inversion formula:

f(σ) =
∑
π≤σ

g(π) =⇒ g(σ) =
∑
π≤σ

µ(π, σ)f(π)

In linear algebra terms, the statement and proof of this formula are as follows:

Theorem 3.37. The inverse of the adjacency matrix of P , given by

Aπσ =

{
1 if π ≤ σ

0 if π 6≤ σ

is the Möbius matrix of P , given by Mπσ = µ(π, σ).

Proof. This is well-known, coming for instance from the fact that A is upper trian-
gular. Thus, when inverting, we are led into the recurrence from Definition 3.36. �

As an illustration here, for P (2) the formula M = A−1 appears as follows:(
1 −1
0 1

)
=

(
1 1
0 1

)−1

Now back to our Gram matrix considerations, we have the following result:

Proposition 3.38. The Gram matrix is given by GkN = AL, where

L(π, σ) =

{
N(N − 1) . . . (N − |π|+ 1) if σ ≤ π

0 otherwise

and where A = M−1 is the adjacency matrix of P (k).
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Proof. We have the following computation:

N |π∨σ| = #
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i ≥ π ∨ σ
}

=
∑
τ≥π∨σ

#
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i = τ
}

=
∑
τ≥π∨σ

N(N − 1) . . . (N − |τ |+ 1)

According to Proposition 3.35 and to the definition of A,L, this formula reads:

(GkN)πσ =
∑
τ≥π

Lτσ

=
∑
τ

AπτLτσ

= (AL)πσ

Thus, we obtain in this way the formula in the statement. �

As a concrete illustration for the above result, at k = 2 we have P (2) = {||,u}, and
the above formula GkN = AL appears as follows:(

N2 N
N N

)
=

(
1 1
0 1

)(
N2 −N 0
N N

)
In general, the formula Gk = AkLk appears a bit in the same way, with Ak being

binary and upper triangular, and with Lk depending on N , and being lower triangular.

With the above result in hand, we can now investigate the linear independence prop-
erties of the vectors ξπ. To be more precise, we have the following result:

Theorem 3.39. The determinant of the Gram matrix GkN is given by

det(GkN) =
∏

π∈P (k)

N !

(N − |π|)!

and in particular, for N ≥ k, the vectors {ξπ|π ∈ P (k)} are linearly independent.

Proof. According to the formula in Proposition 3.38 above, we have:

det(GkN) = det(A) det(L)

Now if we order P (k) as above, with respect to the number of blocks, and then
lexicographically, we see that A is upper triangular, and that L is lower triangular.

Thus det(A) can be computed simply by making the product on the diagonal, and
we obtain 1. As for det(L), this can computed as well by making the product on the
diagonal, and we obtain the number in the statement, with the technical remark that in
the case N < k the convention is that we obtain a vanishing determinant. �



3D. ASYMPTOTIC CHARACTERS 79

We should mention that there is a whole story with the above formula, originally due
to Lindstöm, and its various generalizations. We refer here to [17], [42], [49], and we will
be back to these interesting topics, related to physics, later on in this book.

Now back to the laws of characters, we can formulate:

Theorem 3.40. For an easy group G = (GN), coming from a category of partitions
D = (D(k, l)), the asymptotic moments of the main character are given by

lim
N→∞

∫
GN

χk = #D(k)

where D(k) = D(∅, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proof. This follows indeed from the Peter-Weyl theory, by using the linear indepen-
dence result for the vectors ξπ coming from Theorem 3.39 above. �

With these preliminaries in hand, we can now state and prove:

Theorem 3.41. In the N → ∞ limit, the laws of the main character for the main
easy groups, real and complex, and discrete and continuous, are as follows,

KN
// UN

HN

OO

// ON

OO

:

B1
// G1

b1

OO

// g1

OO

with these laws, namely the real and complex Gaussian and Bessel laws, being the main
limiting laws in real and complex, and discrete and continuous probability.

Proof. This follows from the above results. To be more precise, we know that the
above groups are all easy, the corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Thus, we can use Theorem 3.40 above, are we are led into counting partitions, and
then recovering the measures via their moments, which can be done as follows:

(1) For ON the associated category of partitions is P2, so the asymptotic moments of
the main character are as follows, with the convention k!! = 0 when k is odd:

Mk = #P2(k) = k!!
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Thus, we obtain the real Gaussian law, as desired.

(2) For UN , this follows from some combinatorics. To be more precise, the asymptotic
moments of the main character, with respect to the colored integers, are as follows:

Mk = #P2(k)

Thus, we obtain this time the complex Gaussian law, as desired.

(3) For the discrete counterparts HN , KN of the rotation groups ON , UN the situation
is similar, and we obtain the real and complex Bessel laws. �

For more on the above, we refer to [15], [22] and related papers.

3e. Exercises

We had a lot of general theory in this chapter, regarding the compact groups and their
representations, and most of our exercises will be about this. First, we have:

Exercise 3.42. Compute all the representations of the symmetric group S3.

Here you can use of course Peter-Weyl theory, in order to stop the computations, once
you found enough irreducible representations. As a bonus exercise, which is however quite
difficult, you can try afterwards SN itself, with N ∈ N arbitrary.

On the same topic, but at a theoretical level, we have:

Exercise 3.43. Clarify all the details for the decomposition result

A = MN1(C)⊕ . . .⊕MNk(C)

for the ∗-subalgebras of MN(C), used in the proof of the Peter-Weyl theorems.

This is something that we have discussed in the above, and normally the details are
all quite routine. Alternatively, you can try proving Peter-Weyl without using this.

In relation now with Brauer theorems and easiness, we first have:

Exercise 3.44. Prove that the bistochastic groups BN ⊂ ON and CN ⊂ UN , consist-
ing of matrices having sum 1 on each row and column, are both easy, the corresponding
categories being P12 and P12, with 12 standing for “singletons and pairings”.

This looks quite routine, by suitably adapting the proofs for ON and UN .

At a more advanced level now, also in relation with easiness, we have:

Exercise 3.45. Prove that the group Hs
N = Zs o SN is indeed easy, the corresponding

category being P s, consisting of the partitions satisfying #◦ = #•, in each block.

As explained in the above, this is something that we know at s = 1, where the group
in question is SN , and the proof at s = 2,∞ is not that complicated either. The problem
is that of working out the general case, s ∈ N ∪ {∞}, and with full details.



CHAPTER 4

Weingarten calculus

4a. Weingarten formula

We have seen in the previous chapter that some conceptual probability theory, based
on the notion of easiness, and generalizing various ad-hoc computations from chapters
1-2, can be developed for the main examples of rotation and reflection groups:

KN
// UN

HN

OO

// ON

OO

To be more precise, these groups come from certain categories of partitions, and by
using standard combinatorics and moment theory, we can recover from this the fact,
that we already knew from chapters 1-2, that the corresponding asymptotic laws of main
characters are the Gaussian, complex Gaussian, real Bessel and complex Bessel laws:

B1
// G1

b1

OO

// g1

OO

Our purpose here will be that of pushing such considerations, which can be technically
very useful, up to their limits. To be more precise, based on the notion of easiness, we
will develop an advanced integration theory for the easy groups. This integration theory,
known as “Weingarten calculus”, following [95], will allow us in particular to extend the
above t = 1 character results to the general case, involving a parameter t ∈ (0, 1].

So, let us get back to probabilistic questions on groups, regarding characters, and
other variables. Generally speaking, all these questions require a good knowledge of the
integration over G, and more precisely, of the various polynomial integrals over G:

81
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Definition 4.1. Given a closed subgroup G ⊂ UN , the quantities

Ik =

∫
G

ge1i1j1 . . . g
ek
ikjk

dg

depending on a colored integer k = e1 . . . ek, are called polynomial integrals over G.

As a first observation, the knowledge of these integrals is the same as the knowledge
of the integration functional of G. Indeed, since the coordinate functions g → gij separate
the points of G, we can apply the Stone-Weierstrass theorem, and we obtain:

C(G) =< gij >

Thus, by linearity, the computation of any functional f : C(G)→ C, and in particular
of the Haar integration functional, reduces to the computation of this functional on the
polynomials of the coordinate functions g → gij and their conjugates g → ḡij. By using
now Peter-Weyl theory, everything reduces to algebra, as follows:

Theorem 4.2. The Haar integration over a closed subgroup G ⊂ UN is given on the
dense subalgebra of smooth functions by the Weingarten type formula∫

G

ge1i1j1 . . . g
ek
ikjk

dg =
∑

π,σ∈D(k)

δπ(i)δσ(j)Wk(π, σ)

valid for any colored integer k = e1 . . . ek and any multi-indices i, j, where D(k) is a linear
basis of Fix(u⊗k), the associated generalized Kronecker symbols are given by

δπ(i) =< π, ei1 ⊗ . . .⊗ eik >
and Wk = G−1

k is the inverse of the Gram matrix, Gk(π, σ) =< π, σ >.

Proof. This is something old and classical, known to generations of mathematicians
in various forms, probably since Weyl himself. In modern times the interest in such
formulae came from Weingarten’s paper [95], later on systematically used by Collins in
[32], and some time after, further axiomatized and used in [37], then in [15]. In the above
precise formulation, the proof of the Weingarten formula is as follows:

(1) We know from Peter-Weyl theory that the integrals in the statement form alto-
gether the orthogonal projection P k onto the following space:

Fix(u⊗k) = span(D(k))

(2) Consider now the following linear map, with D(k) = {ξk} being as above:

E(x) =
∑

π∈D(k)

< x, ξπ > ξπ

(3) By a standard linear algebra computation, it follows that we have P = WE, where
W is the inverse of the restriction of E to the following space:

K = span
(
Tπ

∣∣∣π ∈ D(k)
)
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(4) But this restriction is the linear map given by the Gram matrix Gk, and so W is
the linear map given by the Weingarten matrix Wk = G−1

k , and this gives the result. �

In the easy case, we have the following more concrete result:

Theorem 4.3. For an easy group G ⊂ UN , coming from a category of partitions

D = (D(k, l))

we have the Weingarten integration formula∫
G

ge1i1j1 . . . g
ek
ikjk

dg =
∑

π,σ∈D(k)

δπ(i)δσ(j)WkN(π, σ)

for any k = e1 . . . ek and any i, j, where D(k) = D(∅, k), δ are usual Kronecker type
symbols, checking whether the indices match, and WkN = G−1

kN , with

GkN(π, σ) = N |π∨σ|

where |.| is the number of blocks.

Proof. We use the abstract Weingarten formula, from Theorem 4.2 above. The
Kronecker type symbols there are then the usual ones, as shown by:

δξπ(i) = < ξπ, ei1 ⊗ . . .⊗ eik >
= δπ(i1, . . . , ik)

The Gram matrix being as well the correct one, we obtain the result. �

We should mention that there are extensions to the above formula to various subgroups
G ⊂ UN which are not necessarily easy, such as the symplectic groups, SpN ⊂ UN with
N ∈ 2N, which are “super-easy” in some technical sense. We will be back to this.

4b. Orthogonal groups

As a toy example for the Weingarten formula, let us first work out the case of the sym-
metric group SN . Here there is no really need for the Weingarten formula for integrating,
because we have the following elementary result, which completely solves the problem:

Theorem 4.4. Consider the symmetric group SN , with its standard coordinates:

uij = χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

We have then the following integration formula∫
SN

ui1j1 . . . uikjk =

{
(N−| ker i|)!

N !
if ker i = ker j

0 otherwise

where ker i denotes the partition of {1, . . . , k} whose blocks collect the equal indices of i,
and where |.| denotes the number of blocks.
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Proof. Observe first that the above formula computes all the integrals over SN , and
this because the coordinates uij separate the points of SN . In what regards now the proof,
according to the definition of uij, the integrals in the statement are given by:∫

SN

ui1j1 . . . uikjk =
1

N !
#
{
σ ∈ SN

∣∣∣σ(j1) = i1, . . . , σ(jk) = ik

}
Now observe that the existence of a permutation σ ∈ SN as above requires:

im = in ⇐⇒ jm = jn

Thus, the integral in the statement vanishes in the following case:

ker i 6= ker j

As for the case left, namely ker i = ker j, here if we denote by b ∈ {1, . . . , k} the
number of blocks of this partition ker i = ker j, we have N−b points to be sent bijectively

to N − b points, and so (N − b)! solutions, and the integral is (N−b)!
N !

, as claimed. �

As an illustration for the above formula, we can recover the computation of the as-
ymptotic laws of the truncated characters χt. We have indeed:

Theorem 4.5. For the symmetric group SN ⊂ ON , regarded as a compact group of
matrices, SN ⊂ ON , via the standard permutation matrices, the truncated character

χt =

[tN ]∑
i=1

uii

counts the number of fixed points among {1, . . . , [tN ]}, and its law with respect to the
counting measure becomes, with N →∞, a Poisson law of parameter t.

Proof. The first assertion is someting trivial, coming from definitions. Regarding
now the second assertion, we can use here Theorem 4.4. With Skb being the Stirling
numbers, counting the partitions of {1, . . . , k} having b blocks, we have:∫

SN

χkt =

[tN ]∑
i1,...,ik=1

∫
SN

ui1i1 . . . uikik

=
∑

π∈P (k)

[tN ]!

([tN ]− |π|!)
· (N − |π|!)

N !

=

[tN ]∑
b=1

[tN ]!

([tN ]− b)!
· (N − b)!

N !
· Skb
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In particular with N →∞ we obtain the following formula:

lim
N→∞

∫
SN

χkt =
k∑
b=1

Skbt
b

But this is a Poisson (t) moment, according to our formula for the moments of pt,
which in terms of Stirling numbers is the above one, so we are done. �

Getting back now to Weingarten matrices, the point is that Theorem 4.4 above allows
their precise computation, and evaluation, the result being as follows:

Theorem 4.6. For SN the Weingarten function is given by

WkN(π, σ) =
∑
τ≤π∧σ

µ(τ, π)µ(τ, σ)
(N − |τ |)!

N !

and satisfies the folowing estimate,

WkN(π, σ) = N−|π∧σ|(µ(π ∧ σ, π)µ(π ∧ σ, σ) +O(N−1))

with µ being the Möbius function of P (k).

Proof. The first assertion follows from the Weingarten formula, namely:∫
SN

ui1j1 . . . uikjk =
∑

π,σ∈P (k)

δπ(i)δσ(j)WkN(π, σ)

Indeed, in this formula the integrals on the left are known, from the explicit integration
formula over SN that we established in Theorem 4.4 above, namely:∫

SN

gi1j1 . . . gikjk =

{
(N−| ker i|)!

N !
if ker i = ker j

0 otherwise

But this allows the computation of the right term, via the Möbius inversion formula,
from chapter 3. As for the second assertion, this follows from the first one. See [17]. �

The above result is of course something very special, coming from the fact that the
integration over SN is something very simple. For other groups, such as the orthogonal
group ON or the unitary group UN , we will see that things are far more complicated.

Finally, also in connection with the Weingarten function of SN , or rather with its
inverse, which is the Gram matrix of SN , we have the following result:

Theorem 4.7. The determinant of the Gram matrix of SN is given by

det(GkN) =
∏

π∈P (k)

N !

(N − |π|)!

with the convention that in the case N < k we obtain 0.
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Proof. This is something that we know from chapter 3, the idea being that GkN

naturally decomposes as a product of an upper triangular and lower triangular matrix.
For further results of this type, for some other selected groups, we refer to [17]. �

As before with the Weingarten matrix itself, the above result regarding SN is some-
thing very simple. For other groups like ON , UN , things are more complicated.

Let us discuss now the Weingarten matrix combinatorics for ON , UN . Things here
are substantially more complicated than for SN , as we will soon discover, and the central
problem is that of finding good estimates for the entries of WkN .

In what regards the orthogonal group ON , here the combinatorics is that of the Young
diagrams. We denote by |.| the number of boxes, and we use quantity fλ, which gives the
number of standard Young tableaux of shape λ. We have then the following result:

Theorem 4.8. The determinant of the Gram matrix of ON is given by

det(GkN) =
∏
|λ|=k/2

fN(λ)f
2λ

where the quantities on the right are fN(λ) =
∏

(i,j)∈λ(N + 2j − i− 1).

Proof. This follows from results of Collins-Matumoto [33] and Zinn-Justin [100].
Indeed, it is known from there that the Gram matrix is diagonalizable, as follows:

GkN =
∑
|λ|=k/2

fN(λ)P2λ

Here 1 =
∑
P2λ is the standard partition of unity associated to the Young diagrams

having k/2 boxes, and the coefficients fN(λ) are those in the statement. Now since we
have Tr(P2λ) = f 2λ, this gives the result. We refer here to [33], [100]. �

Let us discuss now the computation of the polynomial integrals over the orthogonal
group ON . These are best introduced in a rectangular way, as follows:

Definition 4.9. Associated to any matrix a ∈Mp×q(N) is the integral

I(a) =

∫
ON

p∏
i=1

q∏
j=1

u
aij
ij du

with respect to the Haar measure of ON , where N ≥ p, q.

We can of course complete our matrix with 0 values, as to always deal with square
matrices, a ∈MN(N). However, the parameters p, q are very useful, because they measure
the complexity of the problem, as shown by our various results below.

Let us set as usual m!! = (m− 1)(m− 3)(m− 5) . . ., with the product ending at 1 or
2, depending on the parity of m. With this convention, we have the following result:
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Theorem 4.10. At p = 1 we have the formula

I
(
a1 . . . aq

)
= ε · (N − 1)!!a1!! . . . aq!!

(N + Σai − 1)!!

where ε = 1 if all ai are even, and ε = 0 if not.

Proof. This follows from the fact, already used in chapter 1, that the first slice of
ON is isomorphic to the real sphere SN−1

R . Indeed, this gives the following formula:

I
(
a1 . . . aq

)
=

∫
SN−1
R

xa11 . . . xaqq dx

But this latter integral can be computed by using polar coordinates, as explained in
chapter 1 above, and we obtain the formula in the statement. �

Another simple computation, as well of trigonometric nature, is the one at N = 2.
We have here the following result, which completely solves the problem in this case:

Theorem 4.11. At N = 2 we have the formula

I

(
a b
c d

)
= ε · (a+ d)!!(b+ c)!!

(a+ b+ c+ d+ 1)!!

where ε = 1 if a, b, c, d are even, ε = −1 is a, b, c, d are odd, and ε = 0 if not.

Proof. When computing the integral over O2, we can restrict the integration to
SO2 = T, then further restrict the attention to the first quadrant. We obtain:

I

(
a b
c d

)
= ε · 2

π

∫ π/2

0

(cos t)a+d(sin t)b+c dt

But this gives the formula in the statement, via the formulae in chapter 1. �

The above computations tend to suggest that I(a) always decomposes as a product
of factorials. However, this is far from being true, but in the 2× 2 case it is known that
I(a) decomposes as a quite reasonable sum of products of factorials.

Let us discuss now the representation theory approach to the computation of I(a). As
a first result, the Weingarten formula reformulates as follows:

Theorem 4.12. We have the Weingarten formula

I(a) =
∑
π,σ

δπ(al)δσ(ar)WkN(π, σ)

where k = Σaij/2, and where the multi-indices al/ar are defined as follows:

(1) Start with a ∈Mp×q(N), and replace each ij-entry by aij copies of i/j.
(2) Read this matrix in the usual way, as to get the multi-indices al/ar.
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Proof. This is simply a reformulation of the usual Weingarten formula. Indeed,
according to our definitions, the integral in the statement is given by:

I(a) =

∫
ON

u11 . . . u11︸ ︷︷ ︸
a11

u12 . . . u12︸ ︷︷ ︸
a12

. . . upq . . . upq︸ ︷︷ ︸
apq

du

Thus what we have here is an integral as in Theorem 4.3, the multi-indices being:

al = (1 . . . 1︸ ︷︷ ︸
a11

1 . . . 1︸ ︷︷ ︸
a12

. . . p . . . p︸ ︷︷ ︸
apq

)

ar = (1 . . . 1︸ ︷︷ ︸
a11

2 . . . 2︸ ︷︷ ︸
a12

. . . q . . . q︸ ︷︷ ︸
apq

)

With this observation, the result follows now from the Weingarten formula. �

We are now in position of deriving a first concrete result from our study. This is a
statement which extends the vanishing results appearing before, as follows:

Proposition 4.13. We have I(a) = 0, unless the matrix a is “admissible”, in the
sense that all p+ q sums on its rows and columns are even numbers.

Proof. Observe first that the left multi-index associated to a consists of k1 = Σa1j

copies of 1, k2 = Σa2j copies of 2, and so on, up to kp = Σapj copies of p. In the case
where one of these numbers is odd we have δπ(a) = 0 for any π, and so I(a) = 0.

A similar argument with the right multi-index associated to a shows that the sums on
the columns of a must be even as well, and we are done. �

A natural question now is whether the converse of Proposition 4.13 holds, and if so, the
question of computing the sign of I(a) appears as well. These are both subtle questions,
and we begin our investigations with a N →∞ study. We have here:

Theorem 4.14. The Weingarten matrix is asymptotically diagonal, in the sense that:

WkN(π, σ) = N−k(δπσ +O(N−1))

Moreover, the O(N−1) remainder is asymptotically smaller that (2k/e)kN−1.

Proof. It is convenient, for the purposes of this proof, to drop the indices k,N . We
know that the Gram matrix is given by G(π, σ) = N |π∨σ|, so we have:

G(π, σ) =

{
Nk for π = σ

N,N2, . . . , Nk−1 for π 6= σ

Thus the Gram matrix is of the following form, with ||H||∞ ≤ N−1:

G = Nk(I +H)
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Now recall that for any complex K × K matrix X, we have the following lineup of
standard inequalities, which all follow from definitions:

||X||∞ ≤ ||X|| ≤ ||X||2 ≤ K||X||∞
In the case of our matrix H, the size is this matrix is K = (2k)!!, so we have:

||H|| ≤ KN−1

We can perform the inversion operation, by using the following formula:

(I +H)−1 = I −H +H2 −H3 + . . .

We obtain in this way the following estimate:

||I − (I +H)−1|| ≤ ||H||
1− ||H||

Thus, we have the following estimate:

||I −NkW ||∞ = ||I − (1 +H)−1||∞
≤ ||I − (1 +H)−1||

≤ ||H||
1− ||H||

≤ KN−1

1−KN−1

=
K

N −K
Together with the standard estimate K ≈ (2k/e)k, this gives the result. �

Regarding now the integrals themselves, we have here the following result:

Theorem 4.15. We have the estimate

I(a) = N−k

(
p∏
i=1

q∏
j=1

aij!! +O(N−1)

)
when all aij are even, and I(a) = O(N−k−1) otherwise.

Proof. By using the above results, we have the following estimate:

I(a) =
∑
π,σ

δπ(al)δσ(ar)WkN(π, σ)

= N−k
∑
π,σ

δπ(al)δσ(ar)(δπσ +O(N−1))

= N−k
(
#{π|δπ(al) = δπ(ar) = 1}+O(N−1)

)



90 4. WEINGARTEN CALCULUS

In order to count now the partitions appearing in the last set, let us go back to the
multi-indices al, ar described above. It is convenient to view both these multi-indices in
a rectangular way, in the following way:

al =


1 . . . 1︸ ︷︷ ︸
a11

. . . 1 . . . 1︸ ︷︷ ︸
a1q

. . . . . . . . .
p . . . p︸ ︷︷ ︸
ap1

. . . p . . . p︸ ︷︷ ︸
apq



ar =


1 . . . 1︸ ︷︷ ︸
a11

. . . q . . . q︸ ︷︷ ︸
a1q

. . . . . . . . .
1 . . . 1︸ ︷︷ ︸
ap1

. . . p . . . p︸ ︷︷ ︸
apq


In other words, the multi-indices al/ar are now simply obtained from the matrix a by

“dropping” from each entry aij a sequence of aij numbers, all equal to i/j.
These two multi-indices, in matrix form, have total length 2k = Σaij. We agree to

view as well any pairing of {1, . . . , 2k} in matrix form, with the same convention.
With this picture, the pairings π which contribute are simply those connecting se-

quences of indices “dropped” from the same aij, and this gives the following results:

(1) If one of the entries aij is odd, there is no pairing that can contribute to the leading
term under consideration, so we have I(a) = O(N−k−1), and we are done.

(2) If all the entries aij are even, the pairings that contribute to the leading term are
those connecting points inside the pq “dropped” sets, i.e. are made out of a pairing of
a11 points, a pairing of a12 points, and so on, up to a pairing of apq points. Now since an
x-point set has x!! pairings, this gives the formula in the statement. �

In order to further advance, let us formulate a key definition, as follows:

Definition 4.16. The Brauer space Dk is defined as follows:

(1) The points are the Brauer diagrams, i.e. the pairings of {1, 2, . . . , 2k}.
(2) The distance function is given by d(π, σ) = k − loops(π, σ).

It is indeed well-known, and elementary to check, that the above function d satisfies the
usual axioms for a distance function. This actually comes from some general categorical
properties of the Brauer diagrams, which are valid in much more general situations.

The Brauer space, which will play an important role in what follows, is by definition
a metric space having (2k)!! = 1.3.5 . . . (2k − 1) points. An interesting question is to find
a “geometric” realization of this space. This will be discussed later on.
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The series expansion of the Weingarten function in terms of paths on the Brauer space
was originally found by Collins in [32] in the unitary case, then by Collins and Śniady
[37] in the orthogonal case. We present here a slightly modified statement, along with a
complete proof, by using a somewhat lighter formalism:

Theorem 4.17. The Weingarten function WkN has a series expansion of the form

WkN(π, σ) = N−k−d(π,σ)

∞∑
g=0

Kg(π, σ)N−g

where the objects on the right are defined as follows:

(1) A path from π to σ is a sequence p = [π = τ0 6= τ1 6= . . . 6= τr = σ].
(2) The signature of such a path is + when r is even, and − when r is odd.
(3) The geodesicity defect of such a path is g(p) = Σr

i=1d(τi−1, τi)− d(π, σ).
(4) Kg counts the signed paths from π to σ, with geodesicity defect g.

Proof. Let us go back to the proof of our main estimate so far. We can write:

Gkn = N−k(I +H)

In terms of the Brauer space distance, the formula of the matrix H is simply:

H(π, σ) =

{
0 for π = σ

N−d(π,σ) for π 6= σ

Consider now the set Pr(π, σ) of r-paths between π and σ. According to the usual
rule of matrix multiplication, the powers of H are given by:

Hr(π, σ) =
∑

p∈Pr(π,σ)

H(τ0, τ1) . . . H(τr−1, τr)

=
∑

p∈Pr(π,σ)

N−d(π,σ)−g(p)

We can use now the following standard inversion formula:

(1 +H)−1 = 1−H +H2 −H3 + . . .

By using this formula, we obtain:

WkN(π, σ) = N−k
∞∑
r=0

(−1)rHr(π, σ)

= N−k−d(π,σ)

∞∑
r=0

∑
p∈Pr(π,σ)

(−1)rN−g(p)

Now by rearranging the various terms of the double sum according to the value of
their geodesicity defect g = g(p), this gives the formula in the statement. �
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In order to discuss now the I(a) consequences of the above result, it is convenient to
use the total length of a path, defined as follows:

d(p) =
r∑
i=1

d(τi−1, τi)

Observe that we have d(p) = d(π, σ) + g(p). With these conventions, we have:

Theorem 4.18. The integral I(a) has a series expansion in N−1 of the form

I(a) = N−k
∞∑
d=0

Hd(a)N−d

where the coefficient on the right can be interpreted as follows:

(1) Starting from a ∈Mp×q(N), construct the multi-indices al, ar as usual.
(2) Call a path “a-admissible” if its endpoints satisfy δπ(al) = 1 and δσ(ar) = 1.
(3) Then Hd(a) counts all a-admissible signed paths in Dk, of total length d.

Proof. By combining the above results, we obtain, with our various notations:

I(a) =
∑
π,σ

δπ(al)δσ(ar)WkN(π, σ)

= N−k
∑
π,σ

δπ(al)δσ(ar)
∞∑
g=0

Kg(π, σ)N−d(π,σ)−g

Now let Hd(π, σ) be the number of signed paths between π and σ, of total length d.
In terms of the new variable d = d(π, σ) + g, the above expression becomes:

I(a) = N−k
∑
π,σ

δπ(al)δσ(ar)
∞∑
d=0

Hd(π, σ)N−d

= N−k
∞∑
d=0

(∑
π,σ

δπ(al)δσ(ar)Hd(π, σ)

)
N−d

We recognize in the middle the quantity Hd(a), and this gives the result. �

Let us derive now some concrete consequences from the abstract results established
above. First, we have the following result, due to Collins and Śniady [37]:

Theorem 4.19. We have the estimate

WkN(π, σ) = N−k−d(π,σ)(µ(π, σ) +O(N−1))

where µ is the Möbius function.
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Proof. We know from the above that we have the following estimate:

WkN(π, σ) = N−k−d(π,σ)(K0(π, σ) +O(N−1))

Now since one of the possible definitions of the Möbius function µ is that this counts
the signed geodesic paths, we have K0 = µ, and we are done. �

Let us go back now to our integrals I(a). We have here the following result:

Theorem 4.20. We have the estimate

I(a) = N−k−e(a)(µ(a) +O(N−1))

where the objects on the right are as follows:

(1) e(a) = min{d(π, σ)|π, σ ∈ Dk, δπ(al) = δσ(ar) = 1}.
(2) µ(a) counts all a-admissible signed paths in Dk, of total length e(a).

Proof. We know that we have an estimate of the following type:

I(a) = N−k−e(He(a) +O(N−1))

Here, according to the various notations above, e ∈ N is the smallest total length of
an a-admissible path, and He(a) counts all signed a-admissible paths of total length e.
Now since the smallest total length of such a path is attained when the path is just a
segment, we have e = e(a) and He(a) = µ(a), and we are done. �

Summarizing, we have now a full description of the asymptotic behavior of I(a).

At a more advanced level, we have the following formula, due to Collins-Matsumoto
[33] and Zinn-Justin [100], which uses the theory of zonal spherical functions:

Theorem 4.21. We have the formula

WkN(π, σ) =

∑
λ`k, l(λ)≤k χ

2λ(1k)w
λ(π−1σ)

(2k)!!
∏

(i,j)∈λ(N + 2j − i− 1)

where the various objects on the right are as follows:

(1) The sum is over all partitions of {1, . . . , 2k} of length l(λ) ≤ k.
(2) wλ is the corresponding zonal spherical function of (S2k, Hk).
(3) χ2λ is the character of S2k associated to 2λ = (2λ1, 2λ2, . . .).
(4) The product is over all squares of the Young diagram of λ.

Proof. This is something more advanced, well beyond what we are doing here, in
this book, and we refer to the above-mentioned papers [33] and [100]. �

It is possible to deduce from this a new a formula for I(a), just by putting together
the formulae in Theorem 4.12 and Theorem 4.21. However, there are probably several
non-trivial simplifications that might appear when doing the sum over π, σ, and it is not
known how the final statement about I(a) should exactly look like.
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Instead, let us just record the following consequence:

Proposition 4.22. The possible poles of I(a) can be at the numbers

−(k − 1),−(k − 2), . . . , 2k − 1, 2k

where k ∈ N associated to the admissible matrix a ∈Mp×q(N) is given by k = Σaij/2.

Proof. We know from Theorem 4.12 that the possible poles of I(a) can only come
from those of the Weingarten function. On the other hand, Theorem 4.21 tells us that
these latter poles are located at the numbers of the form −2j + i+ 1, with (i, j) ranging
over all possible squares of all possible Young diagrams, and this gives the result. �

4c. Truncated characters

Let us go back now to the general easy groups G ⊂ UN , with the idea in mind of
computing the laws of truncated characters. First, we have the following formula:

Proposition 4.23. The moments of truncated characters are given by the formula∫
G

(g11 + . . .+ gss)
k = Tr(WkNGks)

where GkN and WkN = G−1
kN are the associated Gram and Weingarten matrices.

Proof. We have indeed the following computation:∫
G

(g11 + . . .+ gss)
k =

s∑
i1=1

. . .
s∑

ik=1

∫
G

gi1i1 . . . gikik

=
∑

π,σ∈D(k)

WkN(π, σ)
s∑

i1=1

. . .
s∑

ik=1

δπ(i)δσ(i)

=
∑

π,σ∈D(k)

WkN(π, σ)Gks(σ, π)

= Tr(WkNGks)

Thus, we have reached to the formula in the statement. �

In order to process now the above formula, and reach to concrete results, we must
impose on our group a uniformity condition. Let us start with:

Proposition 4.24. For an easy group G = (GN), coming from a category of partitions
D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ UN−1, via the embedding UN−1 ⊂ UN given by u→ diag(u, 1).
(2) GN−1 = GN ∩ UN−1, via the N possible diagonal embeddings UN−1 ⊂ UN .
(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (GN) is uniform.
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Proof. We use the general easiness theory from chapter 3 above, as follows:

(1) ⇐⇒ (2) This is standard, coming from the inclusion SN ⊂ GN , which makes
everything SN -invariant. The result follows as well from the proof of (1) ⇐⇒ (3) below,
which can be converted into a proof of (2) ⇐⇒ (3), in the obvious way.

(1) ⇐⇒ (3) Given a subgroup K ⊂ UN−1, with fundamental representation u,
consider the matrix v = diag(u, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(v⊗k) ⇐⇒ ξπ′ ∈ Fix(v⊗k
′
), ∀π′ ∈ P (k′), π′ ⊂ π

In order to prove this claim, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k)

⇐⇒ (v⊗kξπ)i1...ik = (ξπ)i1...ik , ∀i
⇐⇒

∑
j

(v⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)vi1j1 . . . vikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our representation has the special form v = diag(u, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we have:

ia = N =⇒ ja = N

With this observation in hand, if we denote by i′, j′ the multi-indices obtained from
i, j obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common
length of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(v
⊗k′)i′j′ = δπ(i1, . . . , ik),∀i

Here the index j is by definition obtained from the index j′ by filling with N values.
In order to finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j′1, . . . , j
′
k′)(v

⊗k′)i′j′ = δπ(i′1, . . . , i
′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads:

0 = 0

We conclude that we have ξπ′ ∈ Fix(v⊗k
′
), for any subpartition π′ ⊂ π, as claimed,

and with this in hand, the result itself follows from Tannakian duality. �

Now back to the laws of truncated characters, we have the following result:
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Theorem 4.25. For a uniform easy group G = (GN), we have the formula

lim
N→∞

∫
GN

χkt =
∑

π∈D(k)

t|π|

with D ⊂ P being the associated category of partitions.

Proof. We use the general moment formula from Proposition 4.23, namely:∫
G

(g11 + . . .+ gss)
k = Tr(WkNGks)

With the value s = [tN ] for the truncation parameter, this formula becomes:∫
GN

χkt = Tr(WkNGk[tN ])

The point now is that in the uniform case the Gram matrix, and so the Weingarten
matrix too, is asymptotically diagonal. Thus, we obtain the following estimate:∫

GN

χkt '
∑

π∈D(k)

WkN(π, π)Gk[tN ](π, π)

=
∑

π∈D(k)

N−|π|[tN ]|π|

'
∑

π∈D(k)

N−|π|(tN)|π|

=
∑

π∈D(k)

t|π|

Thus, we are led to the formula in the statement. �

We can now enlarge our collection of truncated character results, and we have:

Theorem 4.26. With N →∞, the laws of truncated characters are as follows:

(1) For ON we obtain the Gaussian law gt.
(2) For UN we obtain the complex Gaussian law Gt.
(3) For SN we obtain the Poisson law pt.
(4) For HN we obtain the Bessel law bt.
(5) For Hs

N we obtain the generalized Bessel law bst .
(6) For KN we obtain the complex Bessel law Bt.

Proof. We use the general formula for the asymptotic moments of the truncated
characters found in Theorem 4.25 above, namely:

lim
N→∞

∫
GN

χkt =
∑

π∈D(k)

t|π|
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By doing now some standard moment combinatorics, which was actually already done
in the above, in all cases under consideration, at t = 1, and was done too in the general
situation t > 0, in most of the cases under consideration, this gives the results. �

As a main consequence of the above result, we have:

Theorem 4.27. The asymptotic laws of characters for the main easy groups

KN
// UN

HN

OO

// ON

OO

are the real and complex Gaussian and Bessel laws

Bt Gt

bt gt

which appear as main limiting laws in real and complex probability.

Proof. This is something that we know from the above. For further reference, let
us recall as well the proof, which is instructive, and contains some useful supplementary
information regarding the correspondence. First of all, we know that the groups in the
statement are indeed easy, coming from the following categories of partitions:

Peven

��

P2
oo

��
Peven P2

oo

Thus the asymptotic moments at t = 1 count these partitions, and more generally,
the asymptotic moments at an arbitrary truncation parameter t ∈ (0, 1] are:

Mk =
∑

π∈D(k)

t|π|

But this gives the laws in the statement, via the standard Fourier transform theory
and combinatorics for the main limiting theorems in real and complex probability. �
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There are many other things that can be said about the Weingarten matrices, as well
as many other applications of the Weingarten formula. We will be back to this.

4d. Symplectic groups

In this final section of the present first part of this book, we discuss some extensions
of the above results and techniques, to some other interesting compact groups.

We first have the bistochastic groups BN and CN , consisting respectively of the orthog-
onal and unitary bistochastic matrices. Here “bistochastic” means by definition having
sum 1, on each row and each column, according to the following definition:

Definition 4.28. A square matrix M ∈MN(C) is called bistochastic if each row and
each column sum up to the same number:

M11 . . . M1N → λ
...

...
MN1 . . . MNN → λ
↓ ↓
λ λ

If this summing condition happens only for the rows, or only for the columns, the matrix
is called row-stochastic, respectively column-stochastic.

As the name indicates, these matrices are useful in statistics, with the case of the
matrices having entries in [0, 1], summing up to λ = 1, being the important one.

As a basic example of a bistochastic matrix, we have the flat matrix:

IN =

1 . . . 1
...

...
1 . . . 1


In fact, the above notions of stochasticity are closely related to IN , or rather to the

all-one vector ξ that the matrix IN/N projects on, in the following way:

Proposition 4.29. Let M ∈MN(C) be a square matrix.

(1) M is row stochastic, with sums λ, when Mξ = λξ.
(2) M is column stochastic, with sums λ, when M tξ = λξ.
(3) M is bistochastic, with sums λ, when Mξ = M tξ = λξ.

Proof. All these assertions are clear from definitions, because when multiplying a
matrix by the all-one vector ξ, we obtain the vector formed by the row sums. �

As an observation here, we can reformulate if we want the above statement in a purely
matrix-theoretic form, by using the flat matrix IN , in the following way:
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Proposition 4.30. Let M ∈MN(C) be a square matrix.

(1) M is row stochastic, with sums λ, when MIN = λIN .
(2) M is column stochastic, with sums λ, when INM = λIN .
(3) M is bistochastic, with sums λ, when MIN = INM = λIN .

Proof. This follows from Proposition 4.29, and from the fact that both the rows and
the columns of the flat matrix IN are copies of the all-one vector ξ. �

In what follows we will be mainly interested in the unitary bistochastic matrices, which
are quite interesting objects. These do not exactly cover the flat matrix, but cover instead
the following related matrix, which appears in many linear algebra questions:

KN =
1

N

2−N 2
. . .

2 2−N


As a first result, regarding such matrices, we have the following statement:

Theorem 4.31. For a unitary matrix U ∈ UN , the following are equivalent:

(1) H is bistochastic, with sums λ.
(2) H is row stochastic, with sums λ, and |λ| = 1.
(3) H is column stochastic, with sums λ, and |λ| = 1.

Proof. By using a symmetry argument we just need to prove (1) ⇐⇒ (2), and
both the implications here are elementary, as follows:

(1) =⇒ (2) If we denote by U1, . . . , UN ∈ CN the rows of U , we have, as desired:

1 = < U1, U1 >

=
∑
i

< U1, Ui >

=
∑
i

∑
j

U1jŪij

=
∑
j

U1j

∑
i

Ūij

=
∑
j

U1j · λ̄

= λ · λ̄
= |λ|2
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(2) =⇒ (1) Consider the all-one vector ξ = (1)i ∈ CN . The fact that the mnatrix U
is row-stochastic with sums λ reads:∑

j

Uij = λ,∀i ⇐⇒
∑
j

Uijξj = λξi,∀i

⇐⇒ Uξ = λξ

Also, the fact that U is column-stochastic with sums λ reads:∑
i

Uij = λ,∀j ⇐⇒
∑
j

Uijξi = λξj,∀j

⇐⇒ U tξ = λξ

We must prove that the first condition implies the second one, provided that the row
sum λ satisfies the condition |λ| = 1. But this follows from the following computation:

Uξ = λξ =⇒ U∗Uξ = λU∗ξ

=⇒ ξ = λU∗ξ

=⇒ ξ = λ̄U tξ

=⇒ U tξ = λξ

Thus, we have proved both the implications, and we are done. �

The unitary bistochastic matrices are stable under a number of operations, and in
particular under taking products, and we have the following result:

Theorem 4.32. The real and complex bistochastic groups, which are the sets

BN ⊂ ON

CN ⊂ UN

consisting of matrices which are bistochastic, are isomorphic to ON−1, UN−1.

Proof. Let us pick a unitary matrix F ∈ UN satisfying the following condition, where
e0, . . . , eN−1 is the standard basis of CN , and where ξ is the all-one vector:

Fe0 =
1√
N
ξ

Observe that such unitary matrices F ∈ UN exist indeed, the basic example being the
normalized Fourier matrix, which with w = e2πi/N is as follows:

F =
1√
N

(wij)
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We have then, by using the above special property of F :

uξ = ξ ⇐⇒ uFe0 = Fe0

⇐⇒ F ∗uFe0 = e0

⇐⇒ F ∗uF = diag(1, w)

Thus we have isomorphisms as in the statement, given by:

wij → (F ∗uF )ij

But this gives both the assertions. �

In relation now with easiness, the result, from [22] then [81], is as follows:

Theorem 4.33. We have the following results:

(1) The unitary bistochastic group CN is easy, coming from the category P12 of match-
ing singletons and pairings.

(2) The orthogonal bistochastic group BN is easy, coming from the category P12 of
singletons and pairings.

Proof. This is similar to the proof of the Brauer theorem for ON , UN from chapter
3. To be more precise, we can use the results there, and the proof goes as follows:

(1) The group CN ⊂ UN is defined by imposing the following relations, with ξ being
the all-one vector, which correspond to the bistochasticity condition:

uξ = ξ

ūξ = ξ

But, according to our conventions, these relations tell us precisely that the following
two operators must be in the associated Tannakian category C:

Tπ , π = |◦
Tπ , π = |•

Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦, |• >= P12

Thus, we are led to the conclusion in the statement.

(2) In order to deal now with the real bistochastic group BN , we can either use a
similar argument, or simply use the following intersection formula:

BN = CN ∩ON

Indeed, at the categorical level, this intersection formula tells us directly that the
associated Tannakian category is given by C = span(Tπ|π ∈ D), with:

D =< P12, P2 >= P12

Thus, we are led to the conclusion in the statement. �
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Finally, as another basic example of group of matrices G ⊂ UN , we have the symplectic
group SpN , consisting of the symplectic matrices. This is something more technical, and
we will discuss this now, following [37] and related papers. Let us begin with:

Definition 4.34. The “super-space” C̄N is the usual space CN , together with its
standard basis {e1, . . . , eN}, with a chosen sign

ε = ±1

and with a chosen involution on the set of indices:

i→ ī

The “super-identity” matrix is Jij = δij̄ for i ≤ j and Jij = εδij̄ for i ≥ j.

As a first observation, up to a permutation of the indices, we have a decomposition
N = 2p+ q, such that the involution is, in standard permutation notation:

(12) . . . (2p− 1, 2p)(2p+ 1) . . . (q)

Thus, up to a base change, the super-identity is as follows, where N = 2p + q and
ε = ±1, and with the 1q block at right disappearing if ε = −1:

J =



0 1
ε1 0(0)

. . .
0 1
ε1 0(p)

1(1)

. . .
1(q)


In particular, in the case ε = 1, the super-identity is the following matrix:

J+(p, q) =



0 1
1 0(1)

. . .
0 1
1 0(p)

1(1)

. . .
1(q)
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In the case ε = −1 now, the diagonal terms vanish, and the super-identity is:

J−(p, 0) =


0 1
−1 0(1)

. . .
0 1
−1 0(p)


With the above notions in hand, we have the following result:

Theorem 4.35. The super-orthogonal group, which is by definition

ŌN =
{
U ∈ UN

∣∣∣U = JŪJ−1
}

with J being the super-identity matrix, is as follows:

(1) At ε = 1 we have ŌN = ON .
(2) At ε = −1 we have ŌN = SpN .

Proof. These results are both elementary, as follows:

(1) At ε = −1 this isn something which follows from definitions.

(2) At ε = 1 now, consider the root of unity ρ = eπi/4, and let us set:

Γ =
1√
2

(
ρ ρ7

ρ3 ρ5

)
This matrix Γ is then unitary, and we have:

Γ

(
0 1
1 0

)
Γt = 1

Thus the following matrix is unitary as well, and satisfies CJCt = 1:

C =


Γ(1)

. . .

Γ(p)

1q


Now in terms of V = CUC∗, the relations U = JŪJ−1 = unitary simply read:

V = V̄ = unitary

Thus we obtain an isomorphism ŌN = ON , as in the statement. �

Regarding now the symplectic group SpN , we have the following result:
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Theorem 4.36. The symplectic group SpN ⊂ UN , which is by definition

SpN =
{
U ∈ UN

∣∣∣U = JŪJ−1
}

consists of the SU2 patterned matrices,

U =

 a b . . .
−b̄ ā
...

. . .


which are unitary, U ∈ UN . In particular, we have Sp2 = SU2.

Proof. This follows from definitions, because the condition U = JŪJ−1 corresponds
precisely to the fact that U must be a SU2-patterned matrix. �

The symplectic group is not exactly easy, but rather “super-easy”, in an appropriate
sense, and so we have a Weingarten integration formula for it as well. See [37].

4e. Exercises

There has been a lot of non-trivial theory in this chapter, sometimes erring on the
research side, and our exercises here will be not simple either. First, however, we have:

Exercise 4.37. Compute the Gram matrices, given by the formula

GkN = N |π∨σ|

with π, σ ∈ D, then the Weingarten matrices, given by the formula

WkN = G−1
kN

for the various easy quantum groups that you know, at small values of k ∈ N.

This is something very instructive, and there are countless computations that you can
do here, either by hand or by using a computer, and the more you do, the better it is.
Ideally, spend a few days and nights on all this, until you reach the black belt.

As another exercise now, instructive and time-consuming as well, we have:

Exercise 4.38. Look up the full theory for the symplectic group SpN ⊂ UN , namely
Brauer theorem, super-easiness, Weingarten formula, and perhaps some numerics for the
Weingarten matrices too, and write down a brief account of what you found.

Here the main reference for theory is the paper by Collins-Śniady [37], but you will
still have to adapt the material there, which is quite advanced, as to fit with what you
learned from here, as for everything to be complete. As for the numerics, do some by
yourself, as before, and for more on all this, you can look up the random matrix literature
as well, where the Weingarten formula, in particular for SpN , is heavily used.
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Random matrices



Life is a mystery
Everyone must stand alone

I hear you call my name
And it feels like home



CHAPTER 5

Random matrices

5a. Random matrices

We have seen so far some interesting probability theory, dealing with usual random
variables, which are by definition functions as follows, real or complex:

f ∈ L∞(X)

The main problem regarding such variables was the computation of the moments, and
of the distribution, which is the probability measure µf ∈ P(C) given by:

E(fk) =

∫
C
xk dµf (x)

We have seen in particular that interesting phenomena (CLT, PLT..) appear in the
N →∞ limit, when averaging i.i.d. variables, and looking at the distribution.

We discuss in what follows more advanced aspects of probability theory, which are
of rather “noncommutative” nature, in relation with the random matrices. This will be
an introduction to the subject, with more advanced books including the classical book
of Mehta [66], the modern reference book of Anderson, Guionnet and Zeitouni [1], the
equally modern book by Mingo and Speicher [69], and many more.

The random matrices are simple and fundamental mathematical objects, virtually
appearing in all areas of mathematics and physics. They are defined as follows:

Definition 5.1. A random matrix is a square matrix of type

Z ∈MN(L∞(X))

with X being a probability space, and N ∈ N being an integer.

As basic examples, we have the usual matrices Z ∈ MN(C), obtained by taking
X = {.}. Also, we have the usual random variables Z ∈ L∞(X), obtained by taking
N = 1. In general, what we have is a kind of combination of these 2 situations.

As will we see, the subject is extremely interesting, and several beautiful results, such
as the Wigner [97] and Marchenko-Pastur [65] convergence theorems, regarding the self-
adjoint Gaussian and complex Wishart random matrices, can be established with the
technology that we have, namely the moment method, and regular combinatorics.

107
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Some questions will remain open, and we will solve them later, with free probability
techniques. Some other questions will remain open even after applying the free probability
basics, and we will discuss them later, towards the end of the present book.

Let us begin by specifying the precise classes of matrices that we are interested in.
First we have the complex Gaussian matrices, which are constructed as follows:

Definition 5.2. A complex Gaussian matrix is a random matrix of type

Z ∈MN(L∞(X))

which has i.i.d. complex normal entries.

We will be interested as well in the Wigner random matrices, which are the self-adjoint
versions of these matrices. These are constructed as follows:

Definition 5.3. A Wigner matrix is a random matrix of type

Z ∈MN(L∞(X))

which has i.i.d. complex normal entries, up to the constraint Z = Z∗.

In other words, a Wigner matrix must be as follows, with ai being real normal variables,
bij being complex normal variables, and all these variables being independent:

Z =


a1 b12 . . . . . . b1N

b̄12 a2
. . .

...
...

. . . . . . . . .
...

...
. . . aN−1 bN−1,N

b̄1N . . . . . . b̄N−1,N aN


Finally, we will be interested as well in the complex Wishart matrices, which are the

positive versions of these matrices, which are constructed as follows:

Definition 5.4. A complex Wishart matrix is a random matrix of type

Z = Y Y ∗ ∈MN(L∞(X))

with Y being a complex Gaussian matrix.

As a first task, we must understand what the distribution of a random matrix is. This
is something non-trivial, which will take some time. Once done all this, in this chapter,
and in the next chapter as well, we will come back to the Gaussian, Wigner and Wishart
matrices, and other explicit random matrices, with results about them.
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5b. Scalar matrices

Let us begin with a discussion concerning the usual matrices A ∈ MN(C). These are
not exactly random variables in the usual sense, but we can still talk about their moments
and their distributions, by being a bit abstract. Let us begin with:

Definition 5.5. The moments of a usual complex matrix A ∈MN(C) are the follow-
ing numbers, indexed by the integers k ∈ N,

Mk = tr(Ak)

with tr = N−1 · Tr being the normalized matrix trace, satisying tr(1) = 1.

As a basic example here, consider the case of a diagonal matrix:

A =

λ1

. . .
λN


The powers of A, with respect to integer exponents k ∈ N, are as follows:

Ak =

λk1 . . .

λkN


Thus the moments in the sense of Definition 5.5 are given by the following formula:

Mk =
∑
i

λki

We will be back to this formula in a moment, with a discussion for the arbitrary
matrices as well, by using various diagonalization methods from linear algebra.

Regarding now the distribution, things are a bit more tricky here. In view of some
further generalizations, let us formulate things here as follows:

Definition 5.6. The distribution, or law, of a usual complex matrix A ∈ MN(C) is
the following abstract functional µA : C[X]→ C, with tr = N−1 · Tr:

P → tr(P (A))

In the case where we have a probability measure µA ∈ P(C) such that

tr(P (A)) =

∫
C
P (x) dµA(x)

we identify this complex measure with the distribution of A.
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Observe that, by linearity, the distribution is determined by the moments. Indeed, if
we write our polynomial as P =

∑
k ckX

k, then we have the following formula:

tr(P (A)) = tr

(∑
k

ckA
k

)
=

∑
k

ckMk

In fact, knowing the distribution is the same as knowing the moments.

Once again, for illustrating this notion, consider the case of a diagonal matrix:

A =

λ1

. . .
λN


We have then the following formula, valid for any polynomial P ∈ C[X]:

P (A) =

P (λ1)
. . .

P (λN)


Now by applying the normalized trace, we obtain from this:

tr(P (A)) =
1

N
(P (λ1) + . . .+ P (λN))

=
1

N

∫
C
P (x)d(δλ1 + . . .+ δλN )(x)

=

∫
C
P (x)d

(
1

N
(δλ1 + . . .+ δλN )

)
(x)

Thus, according to Definition 5.6, the law of A is the following measure:

µA =
1

N
(δλ1 + . . .+ δλN )

Quite remarkably, the distribution always exists as a probability measure on C, and
is given by the following result, relying on more advanced linear algebra:

Theorem 5.7. For any matrix A ∈MN(C) we have the formula

tr(P (A)) =
1

N
(P (λ1) + . . .+ P (λN))

where λ1, . . . , λN ∈ C are the eigenvalues of A. Thus the complex measure

µA =
1

N
(δλ1 + . . .+ δλN )

is the distribution of A, in the abstract sense of Definition 5.6.
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Proof. There are several proofs for this fact, and a particularly instructive proof,
relying on some density arguments which are good to know, is as follows:

(1) Consider first the simplest case, that of a diagonal matrix:

A =

λ1

. . .
λN


Here we know from the above discussion that the result holds indeed:

µA =
1

N
(δλ1 + . . .+ δλN )

(2) More generally now, let us discuss the case where our matrix A is diagonalizable.
Here we must have a formula as follows, with D being diagonal:

A = PDP−1

Now observe that the moments of A are given by the following formula:

tr(Ak) = tr(PDP−1 · PDP−1 . . . PDP−1)

= tr(PDkP−1)

= tr(Dk)

We conclude, by linearity, that the matrices A,D have the same distribution:

µA = µD

On the other hand, A = PDP−1 shows that A,D have the same eigenvalues. Thus, if
we denote by λ1, . . . , λN ∈ C these eigenvalues, we obtain, by using (1):

µA =
1

N
(δλ1 + . . .+ δλN )

(3) Let us discuss now the general case, where A ∈ MN(C) is arbitrary. We will use
here a well-known trick, stating that the diagonalizable matrices are dense inside MN(C).
Indeed, consider the set of matrices A ∈MN(C) having distinct eigenvalues. These latter
matrices are given by the following formula, where PA is the characteristic polynomial,
and where ∆(P ) = R(P, P ′) is the discriminant of a polynomial:

∆(PA) 6= 0

Thus, what we have is the complement of an algebraic hypersurface, which is dense.
Now since the matrices having distinct eigenvalues are automatically diagonalizable, it
follows that the matrices which are diagonalizable are dense as well.

Thus, our density trick is proved, and with this trick in hand, the result simply follows
from the result for the diagonalizable matrices, (2) above, by continuity. �
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Summarizing, we have a nice theory for the matrices A ∈ MN(C), paralleling that of
the random variables f ∈ L∞(X). It is tempting at this point to try to go further, and
to unify the matrices and the random variables, by talking about random matrices:

Z ∈MN(L∞(X))

However, we will not do this right away, because our matrix theory has a flaw. Indeed,
all what has being said above, namely Definitions 5.5 and 5.6 and Theorem 5.7, although
being nice and conceptual, does not take into account the adjoint matrix:

A∗ = (Āji)

Thus, before getting any further, and talking about random matrices, we must fix this
flaw, and talk about the moments and distribution of the pair (A,A∗).

Before doing this, however, let us first discuss the need for adjoint matrices, in order
to make sure that we are not on the wrong track. We recall that we have:

Theorem 5.8. The linear maps T : CN → CN are in correspondence with the square
matrices A ∈MN(C), with the linear map associated to such a matrix being

Tx = Ax

and with the matrix associated to a linear map being

Aij =< Tej, ei >

where < x, y >=
∑

i xiȳi is the usual scalar product on CN .

Proof. The first assertion is clear, because the map T : CN → CN must send a vector
x ∈ CN to a certain vector Tx ∈ CN , all whose components are linear combinations of
the components of x. Thus, we can write, for certain complex numbers Aij ∈ C:

T


x1
...
...
xN

 =


A11x1 + . . .+ A1NxN

...

...
AN1x1 + . . .+ ANNxN


But with A = (Aij), this reads Tx = Ax, as claimed. As for the second assertion, if

we denote by e1, . . . , eN the standard basis of CN , then we have the following formula:

Tej =


A1j

...

...
ANj


By taking the scalar product with ei we obtain < Tej, ei >= Aij, as claimed. �
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Our claim now is that, no matter what we want to do with T or A, of advanced type,
we will run at some point into their adjoints T ∗ and A∗, constructed as follows:

Proposition 5.9. The adjoint linear map T ∗ : CN → CN , given by

< Tx, y >=< x, T ∗y >

corresponds to the adjoint matrix A∗ ∈MN(C), given by

(A∗)ij = Āji

via the correspondence between linear maps and matrices constructed above.

Proof. Given T : CN → CN , fix a vector y ∈ CN , and consider the linear form
ϕ(x) =< Tx, y >. This form must be as follows, for a certain vector T ∗y ∈ CN :

ϕ(x) =< x, T ∗y >

Thus, we have constructed a map y → T ∗y as in the statement, which is obviously
linear, and that we can call T ∗. Now by taking the vectors x, y ∈ CN to be elements of
the standard basis of CN , our defining formula for T ∗ reads:

< Tei, ej >=< ei, T
∗ej >

By reversing the scalar product on the right, this can be written as:

< T ∗ej, ei >= < Tei, ej >

But this means that the matrix associated to T ∗ is given by:

(A∗)ij = Āji

Thus, we obtain indeed the adjoint matrix, as claimed. �

Getting back now to our claim, when getting into advanced linear algebra, the adjoint
linear maps and matrices are indeed ubiquitous. As an illustration, we have:

Theorem 5.10. Consider the usual scalar product on CN , namely:

< x, y >=
∑
i

xiȳi

(1) A linear map T : CN → CN , written as T (x) = Ux with U ∈ MN(C), is an
isometry precisely when U satisfies the unitarity equation, namely:

U∗ = U−1

(2) A linear map T : CN → CN , written as T (x) = Px with P ∈ MN(C), is a
projection precisely when P satisfies the projection equations, namely:

P = P 2 = P ∗
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Proof. We use Proposition 5.9, and more specifically the following formula coming
from there, valid for any matrix A ∈MN(C) and any two vectors x, y ∈ CN :

< Ax, y >=< x,A∗y >

We will need as well the polarization identity, whose proof is elementary, which allows
us to recover scalar products out of distances, as follows:

4 < x, y > = ||x+ y||2 − ||x− y||2

+ i||x+ iy||2 − i||x− iy||2

(1) Given a matrix U ∈ MN(C), we have indeed the following equivalences, with the
first one coming from the polarization identity, and with the other ones being clear:

||Ux|| = ||x|| ⇐⇒ < Ux,Uy >=< x, y >

⇐⇒ < x,U∗Uy >=< x, y >

⇐⇒ U∗Uy = y

⇐⇒ U∗U = 1

⇐⇒ U∗ = U−1

(2) Given a matrix P ∈MN(C), in order for x→ Px to be a projection, we must have
P 2 = P . Now observe that this projection is orthogonal precisely when we have:

< Px− x, Py >= 0 ⇐⇒ < P ∗Px− P ∗x, y >= 0

⇐⇒ P ∗Px− P ∗x = 0

⇐⇒ P ∗P − P ∗ = 0

⇐⇒ P ∗P = P ∗

Now observe that by conjugating the last formula, we obtain P ∗P = P . Thus we must
have P = P ∗, and this gives the result. �

Summarizing, the linear maps come in pairs T, T ∗, and the associated matrices come
as well in pairs A,A∗, and if we want to do some serious mathematics with the linear
maps or the associated matrices, there is no way we can escape this.

Getting back now to our probabilistic questions, we are led to the following notion:

Definition 5.11. The generalized moments of a complex matrix A ∈MN(C) are the
following numbers, indexed by the colored integers k = ◦ • • ◦ . . .

Mk = tr(Ak)

with Ak being defined by the following formulae and multiplicativity, Akl = AkAl,

A∅ = 1 , A◦ = A , A• = A∗

and with tr = N−1 · Tr being as usual the normalized matrix trace.
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All this might seem a bit complicated, but there is no other way of dealing with such
things. Indeed, since the variables A,A∗ do not commute, unless the matrix is normal,
AA∗ = A∗A, which is something special, which does not happen in general, we are led to
colored exponents k = ◦ • • ◦ . . . and to the above definition for the moments.

Regarding the distribution, we can use here a similar idea, as follows:

Definition 5.12. The generalized distribution, or law, of a matrix A ∈MN(C) is the
abstract functional µA : C < X,X∗ >→ C given by:

P → tr(P (A))

In the case where we have a probability measure µA ∈ P(C) such that

tr(P (A)) =

∫
C
P (x) dµA(x)

we identify this complex measure with the distribution of A.

As before, knowing the distribution is the same as knowing the moments, because if
we write our noncommutative polynomial as P =

∑
k ckX

k, then we have:

tr(P (A)) = tr

(∑
k

ckA
k

)
=

∑
k

ckMk

Also, the same comments as those after Definition 5.11 apply. To be more precise,
since the variables A,A∗ do not commute, unless the matrix is normal, AA∗ = A∗A, which
is something special, that does not happen in general, we are led to noncommutative
polynomials P ∈ C < X,X∗ >, and to the above definition for the distribution.

As a first result now, coming from Theorem 5.7 above, we have:

Theorem 5.13. Given a matrix A ∈ MN(C) which is self-adjoint, A = A∗, we have
the following formula, valid for any polynomial P ∈ C < X,X∗ >,

tr(P (A)) =
1

N
(P (λ1) + . . .+ P (λN))

where λ1, . . . , λN ∈ C are the eigenvalues of A. Thus the complex measure

µA =
1

N
(δλ1 + . . .+ δλN )

is the distribution of A, in the abstract sense of Definition 5.12.

Proof. This follows indeed from Theorem 5.7, because due to our self-adjointness
assumption A = A∗, the adjoint matrix plays no role in all this. �
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Quite remarkably, the above result extends to the normal case. This is something
non-trivial, that we will explain now, after some linear algebra preliminaries.

5c. Normal matrices

If there is something to be known about the normal matrices, this is the result re-
garding their diagonalization property, known as Spectral Theorem. We will explain this
now, with full details. As a first diagonalization result that we will need, we have:

Theorem 5.14. Any matrix A ∈MN(C) which is self-adjoint, A = A∗, is diagonaliz-
able, with the diagonalization being of the following type,

A = UDU∗

with U ∈ UN , and with D ∈MN(R) diagonal. The converse holds too.

Proof. As a first remark, the converse holds indeed, because if we take a matrix of
the form A = UDU∗, with U unitary and D diagonal and real, then we have:

A∗ = (UDU∗)∗

= UD∗U∗

= UDU∗

= A

In the other sense now, assume that A is self-adjoint, A = A∗. Our first claim is that
the eigenvalues of A are real. Indeed, assuming Av = λv, we have:

λ < v, v > = < λv, v >

= < Av, v >

= < v,Av >

= < v, λv >

= λ̄ < v, v >

Thus we obtain λ ∈ R, as claimed. Our next claim now is that the eigenspaces
corresponding to different eigenvalues are pairwise orthogonal. Assume indeed that:

Av = λv

Aw = µw

We have then the following computation, by using the fact that we have λ, µ ∈ R:

λ < v,w > = < λv,w >

= < Av,w >

= < v,Aw >

= < v, µw >

= µ < v,w >
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Thus λ 6= µ implies v ⊥ w, as claimed. In order now to finish, it remains to prove that
the eigenspaces span the whole CN . For this purpose, we will use a recurrence method.
Let us pick an eigenvector of our matrix, Av = λv. Assuming v ⊥ w, we have:

< Aw, v > = < w,Av >

= < w, λv >

= λ < w, v >

= 0

Thus, if v is an eigenvector of A, then the vector space v⊥ is invariant under A. In
order to do now the recurrence, it still remains to prove that the restriction of A to the
vector space v⊥ is self-adjoint. But this comes from a general property of the self-adjoint
matrices, that we will explain now. Our claim is that an arbitary square matrix A is
self-adjoint precisely when the following happens, for any vector v ∈ CN :

< Av, v >∈ R
Indeed, the fact that the above scalar product is real is equivalent to:

< (A− A∗)v, v >= 0

But this is equivalent to A = A∗, by using the polarization identity. Now back to our
questions, it is clear from our self-adjointness criterion above that the restriction of A to
any invariant subspace, and in particular to the subspace v⊥, is self-adjoint. Thus, we
can proceed by recurrence, and we obtain in this way the result. �

As basic examples of self-adjoint matrices, we have the orthogonal projections. The
precise diagonalization result regarding them is as follows:

Proposition 5.15. The matrices P ∈MN(C) which are projections,

P 2 = P = P ∗

are precisely those which diagonalize as follows,

P = UDU∗

with U ∈ UN , and with D ∈MN(0, 1) being diagonal.

Proof. The equation for projections being P 2 = P = P ∗, the eigenvalues λ are real,
and we have as well the following equality, coming from P 2 = P :

λ < v, v > = < λv, v >

= < Pv, v >

= < P 2v, v >

= < Pv, Pv >

= < λv, λv >

= λ2 < v, v >
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Thus we obtain λ ∈ {0, 1}, as claimed, and as a final conclusion here, the diagonal-
ization of the projection matrices is as follows, with ei ∈ {0, 1}:

P ∼

e1

. . .
eN


To be more precise, the number of 1 values is the dimension of the image of P , and

the number of 0 values is the dimension of space of vectors sent to 0 by P . �

Another important class of self-adjoint matrices, which includes for instance all the
projections, are the positive matrices. The basic theory here is as follows:

Theorem 5.16. For a matrix A ∈MN(C) the following conditions are equivalent, and
if they are satisfied, we say that A is positive:

(1) A = B2, with B = B∗.
(2) A = CC∗, for some C ∈MN(C).
(3) < Ax, x >≥ 0, for any vector x ∈ CN .
(4) A = A∗, and the eigenvalues are positive, λi ≥ 0.
(5) A = UDU∗, with U ∈ UN and with D ∈MN(R+) diagonal.

Proof. The idea is that the equivalences in the statement basically follow from some
elementary computations, with only Theorem 5.14 needed, at some point. Indeed:

(1) =⇒ (2) This is clear, because we can simply take C = B.

(2) =⇒ (3) This follows indeed from the following computation:

< Ax, x > = < CC∗x, x >

= < C∗x,C∗x >

≥ 0

(3) =⇒ (4) By using the fact that < Ax, x > is real, we have:

< Ax, x > = < x,A∗x >

= < A∗x, x >

Thus we have A = A∗, and the remaining assertion, regarding the eigenvalues, follows
from the following computation, by assuming Ax = λx:

< Ax, x > = < λx, x >

= λ < x, x >

≥ 0

(4) =⇒ (5) This follows by using Theorem 5.14 above.
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(5) =⇒ (1) By assuming A = UDU∗ is as in the statement, with U ∈ UN , and with
D ∈MN(R+) being diagonal, we can set:

B = U
√
DU∗

This matrix B is then self-adjoint, and its square is given by:

B2 = U
√
DU∗ · U

√
DU∗

= UDU∗

= A

Thus, we are led to the conclusion in the statement. �

Let us record as well the following technical version of the above result:

Theorem 5.17. For a matrix A ∈MN(C) the following conditions are equivalent, and
if they are satisfied, we say that A is strictly positive:

(1) A = B2, with B = B∗, invertible.
(2) A = CC∗, for some C ∈MN(C) invertible.
(3) < Ax, x >> 0, for any nonzero vector x ∈ CN .
(4) A = A∗, and the eigenvalues are strictly positive, λi > 0.
(5) A = UDU∗, with U ∈ UN and with D ∈MN(R∗+) diagonal.

Proof. This follows either from Theorem 5.16, by adding the various extra assump-
tions in the statement, or from the proof of Theorem 5.16, by modifying where needed. �

Let us discuss now the case of the unitary matrices. We have here:

Theorem 5.18. Any matrix U ∈ MN(C) which is unitary, U∗ = U−1, is diagonaliz-
able, with the eigenvalues on T. More precisely we have

U = V DV ∗

with V ∈ UN , and with D ∈MN(T) diagonal. The converse holds too.

Proof. As a first remark, the converse holds indeed, because given a matrix of type
U = V DV ∗, with V ∈ UN , and with D ∈MN(T) being diagonal, we have:

U∗ = (V DV ∗)∗

= V D∗V ∗

= V D−1V −1

= (V ∗)−1D−1V −1

= (V DV ∗)−1

= U−1
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Let us prove now the first assertion, stating that the eigenvalues of a unitary matrix
U ∈ UN belong to the unit circle T. Indeed, by assuming Uv = λv, we have:

< v, v > = < U∗Uv, v >

= < Uv, Uv >

= < λv, λv >

= |λ|2 < v, v >

Thus we obtain λ ∈ T, as desired. Our next claim now is that the eigenspaces
corresponding to different eigenvalues are pairwise orthogonal. Assume indeed that:

Uv = λv , Uw = µw

We have then the following computation, by using U∗ = U−1 and λ, µ ∈ T:

λ < v,w > = < λv,w >

= < Uv,w >

= < v,U∗w >

= < v,U−1w >

= < v, µ−1w >

= µ < v,w >

Thus λ 6= µ implies v ⊥ w, as claimed. In order now to finish, it remains to prove that
the eigenspaces span the whole CN . For this purpose, we will use a recurrence method.
Let us pick an eigenvector, Uv = λv. Assuming v ⊥ w, we have:

< Uw, v > = < w,U∗v >

= < w,U−1v >

= < w, λ−1v >

= λ < w, v >

= 0

Thus, if v is an eigenvector of U , then the vector space v⊥ is invariant under U . Now
since U is an isometry, so is its restriction to this space v⊥. Thus this restriction is a
unitary, and so we can proceed by recurrence, and we obtain the result. �

The self-adjoint matrices and the unitary matrices are particular cases of the general
notion of a “normal matrix”, and we have here the following key result:

Theorem 5.19. Any matrix A ∈ MN(C) which is normal, AA∗ = A∗A, is diagonal-
izable, with the diagonalization being of the following type,

A = UDU∗

with U ∈ UN , and with D ∈MN(C) diagonal. The converse holds too.
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Proof. As a first remark, the converse holds indeed, because if we take a matrix of
the form A = UDU∗, with U unitary and with D diagonal, then we have:

AA∗ = UDU∗ · UD∗U∗

= UDD∗U∗

= UD∗DU∗

= UD∗U∗ · UDU∗

= A∗A

In the other sense now, this is something more technical. Our first claim is that a
matrix A is normal precisely when the following is satisfied, for any vector v:

||Av|| = ||A∗v||
Indeed, the above equality can be written in the following way:

< AA∗v, v >=< A∗Av, v >

But this is equivalent to AA∗ = A∗A, by using the polarization identity. Our claim
now is that the matrices A,A∗ have the same eigenvectors, with conjugate eigenvalues:

Av = λv =⇒ A∗v = λ̄v

Indeed, this follows from the following computation, and from the trivial fact that if
A is normal, then so is any matrix of type A− λ1N , with λ ∈ C:

||(A∗ − λ̄1N)v|| = ||(A− λ1N)∗v||
= ||(A− λ1N)v||
= 0

Let us prove now, by using this fact, that the eigenspaces of A are pairwise orthogonal.
Assuming Av = λv and Aw = µw with λ 6= µ, we have:

λ < v,w > = < λv,w >

= < Av,w >

= < v,A∗w >

= < v, µ̄w >

= µ < v,w >

Thus λ 6= µ implies v ⊥ w, as desired. In order to finish now the proof, it remains
to prove that the eigenspaces of our matrix A span the whole CN . This is something
that we have already seen for the self-adjoint matrices, and for the unitaries as well, and
we will use here these results, in order to deal with the general normal case. As a first
observation, given an arbitrary matrix A, the matrix AA∗ is self-adjoint:

(AA∗)∗ = AA∗
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Thus, we can diagonalize this matrix AA∗, as follows, with the passage matrix being
a unitary, V ∈ UN , and with the diagonal form being real, E ∈MN(R):

AA∗ = V EV ∗

Now observe that, for the matrices of type A = UDU∗, which are those that we
supposed to deal with, we have the following formulae:

V = U

E = DD̄

In particular, the matrices A and AA∗ have the same eigenspaces. So, this will be our
plan, proving that the eigenspaces of AA∗ are eigenspaces of A. In order to do so, let
us pick two eigenvectors v, w of the matrix AA∗, corresponding to different eigenvalues,
λ 6= µ. The eigenvalue equations are then as follows:

AA∗v = λv

AA∗w = µw

We have the following computation, by using the normality condition AA∗ = A∗A,
and the fact that the eigenvalues of AA∗, and in particular µ, are real:

λ < Av,w > = < λAv,w >

= < Aλv,w >

= < AAA∗v, w >

= < AA∗Av,w >

= < Av,AA∗w >

= < Av, µw >

= µ < Av,w >

We conclude that we have < Av,w >= 0. But this reformulates as follows:

λ 6= µ =⇒ A(Eλ) ⊥ Eµ

Now since the eigenspaces of AA∗ are pairwise orthogonal, and span the whole CN ,
we deduce that these eigenspaces are invariant under A:

A(Eλ) ⊂ Eλ

But with this result in hand, we can now finish. Indeed, we can decompose the
problem, and the matrix A itself, following these eigenspaces of AA∗, which in practice
amounts in saying that we can assume that we only have 1 eigenspace. By rescaling, this
is the same as assuming that we have AA∗ = 1, and so we are now into the unitary case,
that we know how to solve, as explained in Theorem 5.18 above. �
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This was for the Spectral Theorem for the normal matrices, that we will need in what
follows, and be said in passing, congratulations, you are now a linear algebra expert.

We will be back to spectral theorems later on, in chapter 6 below, with some results
for the infinite matrices too, and for other matrices in the infinite dimensional setting.

5d. Matrix laws

Getting back now to the laws of matrices, Theorem 5.13 above extends to the normal
case, AA∗ = A∗A. This is something non-trivial, the result being as follows:

Theorem 5.20. Given a matrix A ∈ MN(C) which is normal, AA∗ = A∗A, we have
the following formula, valid for any polynomial P ∈ C < X,X∗ >,

tr(P (A)) =
1

N
(P (λ1) + . . .+ P (λN))

where λ1, . . . , λN ∈ C are the eigenvalues of A. Thus the complex measure

µA =
1

N
(δλ1 + . . .+ δλN )

is the distribution of A, in the abstract sense of Definition 5.12.

Proof. There are several proofs for this fact, one of them being as follows:

(1) Let us first consider the case where the matrix is diagonal:

A =

λ1

. . .
λN


The powers of A, with respect to colored integer exponents k = ◦ • • ◦ . . . as in

Definition 5.11 above, are then given by the following formula, with the convention that
the numbers λk are given by λ◦ = λ, λ• = λ̄ and multiplicativity:

Ak =

λk1 . . .

λkN


Thus, the moments of A are given by the following formula:

Mk =
1

N
(λk1 + . . .+ λkN)

Regarding now the distribution, this by definition given by:

µA : C < X,X∗ >→ C

P → tr(P (A))
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Since the matrix is normal, AA∗ = A∗A, knowing this distribution is the same as
knowing its restriction to the usual polynomials in two variables:

µA : C[X,X∗]→ C

P → tr(P (A))

By using now the fact that A is diagonal, we conclude that the distribution is:

µA : C[X,X∗]→ C

P → 1

N
(P (λ1) + . . .+ P (λN))

But this functional corresponds to integrating P with respect to the following complex
measure, that we agree to still denote by µA, and call distribution of A:

µA =
1

N
(δλ1 + . . .+ δλN )

Summarizing, modulo a number of standard identifications, the distribution of a di-
agonal matrix A ∈MN(C) is a complex probability measure, given by the above formula.

(2) In the general case now, where A ∈ MN(C) is normal and arbitrary, we can use
Theorem 5.19, which tells us that A is diagonalizable, and in fact that A,A∗ are jointly
diagonalizable. To be more precise, let us write, as in Theorem 5.19 above:

A = UDU∗

Here U ∈ UN , and D ∈MN(C) is diagonal. The adjoint matrix is then given by:

A∗ = UD∗U

As before in the diagonal matrix case, since our matrix is normal, AA∗ = A∗A, knowing
its distribution in the abstract sense of Definition 5.12 above is the same as knowing the
restriction of this abstract distribution to the usual polynomials in two variables:

µA : C[X,X∗]→ C

P → tr(P (A))

In order now to compute this functional, we can change the basis via the above unitary
matrix U ∈ UN , which in practice means that we can assume U = 1. Thus, by using now
(1), if we denote by λ1, . . . , λN the diagonal entries of D, which are the eigenvalues of A,
the distribution that we are looking for is the following functional:

µA : C[X,X∗]→ C

P → 1

N
(P (λ1) + . . .+ P (λN))
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As before, this functional corresponds to integrating P with respect to the following
complex measure, that we agree to still denote by µA, and call distribution of A:

µA =
1

N
(δλ1 + . . .+ δλN )

Thus, we are led to the conclusion in the statement. �

Summarizing, and getting back now to our original motivations, outlined in the be-
ginning of the present chapter, we have now a fix for Definitions 5.5 and 5.6 and Theorem
5.7, and our improved theory works fine for the normal matrices, AA∗ = A∗A.

Importantly now, let us mention that the normality assumption in the above results
is really needed. Indeed, we have the following basic counterexample:

Proposition 5.21. The following matrix, which is not normal,

A =

(
0 1
0 0

)
has no distribution µA ∈ P(C) in the sense of Definition 5.12.

Proof. The adjoint of the matrix in the statement is given by:

A∗ =

(
0 0
1 0

)
We have the following product formulae, which show indeed that A is not normal:

AA∗ =

(
0 1
0 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
A∗A =

(
0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
Now observe that the eigenvalues of A are 0 and 0. Thus the ∗-law formula in Theorem

5.20 above has no chance to extend to this setting, simply because we have:

tr(AA∗) = tr(A∗A) =
1

2

Even worse, let us prove now that, as claimed, our matrix A has no distribution
µA ∈ P(C), in the sense of Definition 5.12. For this purpose, observe that we have:

tr(AA∗AA∗) = tr((AA∗)2)

= tr

(
1 0
0 0

)
=

1

2
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On the other hand, we have as well the following formula:

tr(AAA∗A∗) = tr

((
0 1
0 0

)(
1 0
0 0

)(
0 0
1 0

))
= tr

(
0 0
0 0

)
= 0

Since the above numbers as different, we cannot obtain them by integrating with
respect to a measure µA ∈ P(C), and this leads to the above conclusion. �

We have in fact the following general result, which fully clarifies the situation:

Theorem 5.22. A matrix A ∈MN(C) has a complex measure as distribution,

µA ∈ P(C)

in the sense of Definition 5.12, precisely when it is normal, AA∗ = A∗A.

Proof. In one sense, this is something that we know from Theorem 5.20. In the
other sense now, assume that AA∗ 6= A∗A. In order to show that the law µA does not
exist as a complex measure, we can use a positivity trick, as follows:

AA∗ − A∗A 6= 0

=⇒ (AA∗ − A∗A)2 > 0

=⇒ AA∗AA∗ − AA∗A∗A− A∗AAA∗ + A∗AA∗A > 0

=⇒ tr(AA∗AA∗ − AA∗A∗A− A∗AAA∗ + A∗AA∗A) > 0

=⇒ tr(AA∗AA∗ + A∗AA∗A) > tr(AA∗A∗A+ A∗AAA∗)

=⇒ tr(AA∗AA∗) > tr(AAA∗A∗)

Now assuming that the law of A, taken in the sense of Definition 5.12, comes from a
complex measure µA ∈ P(C), the above two different numbers would have to both appear
by integrating |z|2 with respect to this measure µA, which is contradictory, as desired. �

With all the above linear algebra preliminaries and results in hand, we can now go
ahead and discuss, eventually, the case of the random matrices, where things become truly
interesting. We can extend Definition 5.12 above, as follows:

Definition 5.23. The colored moments of a random matrix

Z ∈MN(L∞(X))

are the following numbers, indexed by the colored integers k = ◦ • • ◦ . . .

Mk =

∫
X

tr(Zk)

with the powers Zk being defined by Z◦ = Z, Z• = Z∗ and multiplicativity.
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Observe that this notion extends indeed the notion from Definition 5.12 for the usual
matrices Z ∈ MN(C), which can be recovered with X = {.}. Also, in the case N = 1,
where our matrix is just a random variable Z ∈ L∞(X), we recover in this way the usual
moments, or rather the joint moments of the random variables Z, Z̄.

As before with the usual matrices, the same philosophical comments apply. Since the
variables Z,Z∗ do not commute, unless the matrix is normal, ZZ∗ = Z∗Z, we are led to
colored exponents k = ◦ • • ◦ . . . and to the above definition for the moments.

Regarding now the distribution, we can use here a similar extension, as follows:

Definition 5.24. The distribution of a random matrix Z ∈ MN(L∞(X)) is the ab-
stract functional µZ : C < X,X∗ >→ C given by:

P →
∫
X

tr(P (Z))

In the case where we have a probability measure µZ ∈ P(C) such that

tr(P (Z)) =

∫
C
P (x) dµZ(x)

we identify this measure with the distribution, or law of Z.

Observe that by linearity, the distribution is uniquely determined by the moments. In
fact, knowing the distribution is the same thing as knowing the moments.

As basic examples, for the usual matrices Z ∈ MN(C), obtained by taking X = {.},
we obtain the previous notion of distribution, from Definition 5.12.

Also, for the usual random variables Z ∈ L∞(X), obtained by taking N = 1, we obtain
in this way the previous notion of distribution, from chapters 1-2 above. Indeed, these
variables are normal, ZZ∗ = Z∗Z, and so the corresponding distributions, in the above
abstract sense, can be restricted to usual polynomials P ∈ C[X,X∗], and then identified
with the usual distributions, in the sense of probability theory.

Summarizing, what we have so far are some good definitions. At the theoretical level,
what is mostly needed now is an extension of Theorem 5.20 above, dealing with the
normal matrices, to the case of the normal random matrices. This is something quite
tricky, and the whole next chapter, 6 below, will be dedicated to solving this question.
Then afterwards, in chapters 7-8 below, we will go back to the Gaussian, Wigner and
Wishart matrices, with computations and concrete results about them.
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5e. Exercises

Things have been a bit abstract in the present chapter, and more abstractions to come
in the next one, the problem with all this being the fact that, before getting into concrete
and beautiful computations regarding the various classes of random matrices, we must
be quite familiar with the notion of law of a random matrix, which is something rather
advanced, with the intuition not helping that much. As a first exercise, we have:

Exercise 5.25. Compute the first few moments of the matrices that we are mainly
interested in, namely complex Gaussian, Wigner and complex Wishart, with these mo-
ments being taken in a colored sense, and with “first few” meaning that the length of the
colored integer k = ◦ • ◦ • . . . used as exponent is small, |k| = 1, 2, 3 . . .

This exercise is very instructive, and if you are patient enough, and observe a pattern
from the many computations that you made, you can switch directly to the general case,
which should not be that complicated, once you have a good guess.

In relation with linear algebra and adjoint matrices, we first have:

Exercise 5.26. Prove that we have the following formula, as an equality of subsets of
C, valid for any square matrix A ∈MN(C),

σ(A∗) = σ(A)

where σ is the set of eigenvalues, and deduce a geometric interpretation of the adjoint
matrix A∗ ∈MN(C), starting from this.

This looks quite standard, but in order to solve the last question, regarding the geo-
metric interpretation of A∗, you will probably have to upgrade first your result about σ
into a result about σ+, the set of eingenvalues taken with multiplicities.

Finally, getting back now to the random matrices, we have:

Exercise 5.27. Figure out what a symplectic random matrix should mean, and then
develop a bit of theory for such matrices, such as the computation of small moments.

This is a bit vague, but looking at how our central examples of random matrices,
namely the Wigner ones, were constructed out of the complex Gaussian ones leads to the
conclusion that the groups ON , UN are probably involved in all this. And the point now
is that, when talking about ON , UN , the symplectic group SpN should be not far.



CHAPTER 6

Spectral measures

6a. Linear operators

We have seen in chapter 5 above that probability theory and matrix theory have a
common generalization, namely random matrix theory, where the variables are matrices
Z ∈MN(L∞(X)). However, things were quite tricky in order to define the distribution of
a random matrix, or even of a usual matrix, due to the fact such matrices come in pairs
(Z,Z∗), and so we must talk about the distribution of such a pair (Z,Z∗). And here, the
commutation condition ZZ∗ 6= Z∗Z, that would help us a lot, is not valid in general.

All this is quite complete, and with this in hand, we can go ahead and do explicit
computations, for instance for the Wigner and Wishart matrices, that we are mainly
interested in. But we will do this only in the next chapters, 7-8 below, which can be
actually read by ignoring the material in the present chapter, and this because for being
fully complete, all this mysterious distribution material still needs some discussion.

To be more precise, in order to further clarify all the above, and to discuss as well what
happens in the non-normal case, we will need an extension of the theory that we have,
going beyond the random matrix setting, by using some basic functional analysis and
spectral theory. All this will be useful for better understanding the material in chapters
7-8, concerned with explicit random matrix computations, and also, importantly, will be
of key importance in chapters 9-12 and afterwards, when doing free probability.

In order to get started, remember that anything ultimately comes from linear algebra,
which is the algebra of the linear maps T : H → H, where H = CN . The idea, which will
prove to be fruitful for our questions, will be that of extending first everything what we
know to the case where H is possibly infinite dimensional. Let us start with:

Definition 6.1. A Hilbert space is a complex vector space H given with a scalar
product < x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x 6= 0.
(4) H is complete with respect to the norm ||x|| = √< x, x >.

129
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Here the fact that ||.|| is indeed a norm comes from the Cauchy-Schwarz inequality,
which states that if the conditions (1,2,3) above are satisfied, then we have:

| < x, y > | ≤ ||x|| · ||y||
Indeed, this inequality comes from the fact that the following degree 2 polynomial,

with t ∈ R and w ∈ T, being positive, its discriminant must be negative:

f(t) = ||x+ twy||2

In finite dimensions, any algebraic basis {f1, . . . , fN} can be turned into an orthonor-
mal basis {e1, . . . , eN}, by using the Gram-Schmidt procedure. Thus, we have H ' CN ,
with this latter space being endowed with its usual scalar product:

< x, y >=
∑
i

xiȳi

The same happens in infinite dimensions, once again by Gram-Schmidt, coupled if
needed with the Zorn lemma, in case our space is really very big. In other words, any
Hilbert space has an orthonormal basis {ei}i∈I , and we have H ' l2(I).

Of particular interest is the “separable” case, where the set I is countable. According
to the above, there is up to isomorphism only one Hilbert space here, namely:

H = l2(N)

All this is, however, quite tricky, and can be a bit misleading. Consider for instance
the space H = L2[0, 1] of square-summable functions f : [0, 1]→ C, with:

< f, g >=

∫ 1

0

f(x)g(x)dx

This space is of course separable, because we can use the basis fn = xn with n ∈ N,
orthogonalized by Gram-Schmidt. However, the orthogonalization procedure is something
non-trivial, so the isomorphism H ' l2(N) that we obtain is non-trivial as well.

Let us get now into the study of linear operators, which generalize the usual matrices,
in the infinite dimensional setting. We first have the following result:

Proposition 6.2. Let H be a Hilbert space, with orthonormal basis {ei}i∈I . The
algebra L(H) of linear operators T : H → H embeds then into the matrix algebra MI(C),
with T corresponding to the matrix Aij =< Tej, ei >. In particular:

(1) In the finite dimensional case, where dim(H) = N <∞, we obtain in this way a
usual matrix algebra, L(H) 'MN(C).

(2) In the separable infinite dimensional case, where I ' N, we obtain in this way a
subalgebra of the infinite matrices, L(H) ⊂M∞(C).

Proof. The correspondence T → A in the statement is indeed linear, and its kernel
is {0}. As for the last two assertions, these are clear as well. �
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In what follows we will be interested in the operators T : H → H which are bounded.
Regarding such operators, we first have the following result:

Theorem 6.3. Given a Hilbert space H, the linear operators T : H → H which are
bounded, in the sense that ||T || = sup||x||≤1 ||Tx|| is finite, form a complex algebra with
unit, denoted B(H). This algebra has the following properties:

(1) B(H) is complete with respect to ||.||, and so we have a Banach algebra.
(2) B(H) has an involution T → T ∗, given by < Tx, y >=< x, T ∗y >.

In addition, the norm and the involution are related by the formula ||TT ∗|| = ||T ||2.

Proof. The fact that we have indeed an algebra follows from:

||S + T || ≤ ||S||+ ||T ||
||λT || = |λ| · ||T ||
||ST || ≤ ||S|| · ||T ||

(1) Assuming that {Tn} ⊂ B(H) is a Cauchy sequence, the sequence {Tnx} is Cauchy
for any x ∈ H, so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

It is routine then to check that this formula defines indeed an operator T ∈ B(H),
and that we have Tn → T in norm, and this gives the result.

(2) Here the existence of T ∗ comes from the fact that ϕ(x) =< Tx, y > being a linear
map H → C, we must have a formula as follows, for a certain vector T ∗y ∈ H:

ϕ(x) =< x, T ∗y >

Moreover, since this vector T ∗y is unique, T ∗ is unique too, and we have as well:

(S + T )∗ = S∗ + T ∗

(λT )∗ = λ̄T ∗

(ST )∗ = T ∗S∗

(T ∗)∗ = T

Observe also that we have indeed T ∗ ∈ B(H), due to the following equality:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >

= sup
||y||=1

sup
||x||=1

< x, T ∗y >

= ||T ∗||
Regarding now the last assertion, observe first that we have:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2
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On the other hand, we have as well the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > |

= sup
||x||=1

| < x, T ∗Tx > |

≤ ||T ∗T ||
Now by replacing in this formula T → T ∗ we obtain ||T ||2 ≤ ||TT ∗||. Thus, we have

proved both the needed inequalities, and we are done. �

Observe that, in view of Proposition 6.2, we embeddings of ∗-algebras, as follows:

B(H) ⊂ L(H) ⊂MI(C)

In this picture the adjoint operation T → T ∗ constructed above takes a very simple
form, namely (A∗)ij = Āji, at the level of the associated infinite matrices.

We will be interested here in the algebras of operators, rather than in the operators
themselves. The axioms here, coming from Theorem 6.3, are as follows:

Definition 6.4. A C∗-algebra is a complex algebra with unit A, having:

(1) A norm a→ ||a||, making it a Banach algebra (the Cauchy sequences converge).
(2) An involution a→ a∗, which satisfies ||aa∗|| = ||a||2, for any a ∈ A.

As basic examples here, we have the usual matrix algebras MN(C), with the norm
and the involution being the usual matrix norm and involution, given by:

||A|| = sup
||x||=1

||Ax||

(A∗)ij = Aji

Some other basic examples are the algebras L∞(X) of essentially bounded functions
f : X → C on a measured space X, with the usual norm and involution, namely:

||f || = sup
x∈X
|f(x)|

f ∗(x) = f(x)

We can put these two basic classes of examples together, as follows:

Proposition 6.5. The random matrix algebras A = MN(L∞(X)) are C∗-algebras,
with their usual norm and involution, given by:

||Z|| = sup
x∈X
||Zx||

(Z∗)ij = Zij

These algebras generalize both the algebras MN(C), and the algebras L∞(X).
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Proof. The fact that the C∗-algebra axioms are satisfied is clear from definitions.
As for the last assertion, this follows by taking X = {.} and N = 1, respectively. �

Summarizing, the C∗-algebras are natural generalizations of the random matrix alge-
bras. In what follows we will develop some general “noncommutative probability” theory
for the C∗-algebras, then come back to the random matrix algebras later on.

In order to study the C∗-algebras, the key observation is that, due to Theorem 6.3
above, the algebra B(H) of bounded linear operators T : H → H on a Hilbert space H
is a C∗-algebra. More generally, any closed ∗-subalgebra A ⊂ B(H) is a C∗-algebra.

It is possible to prove that any C∗-algebra appears in this way, A ⊂ B(H), and we
will be back to this later. For the moment, let us just record the following elementary
result, dealing with the random matrix case, that we are mainly interested in here:

Theorem 6.6. Any algebra of type L∞(X) is an operator algebra, as follows:

L∞(X) ⊂ B(L2(X))

f → (g → fg)

More generally, any random matrix algebra is an operator algebra, as follows,

MN(L∞(X)) ⊂ B
(
CN ⊗ L2(X)

)
with the embedding being the above one, tensored with the identity.

Proof. We have two assertions to be proved, the idea being as follows:

(1) Given f ∈ L∞(X), consider the following operator, acting on H = L2(X):

Tf (g) = fg

Observe that Tf is indeed well-defined, and bounded as well, because:

||fg||2 =

√∫
X

|f(x)|2|g(x)|2dµ(x)

≤ ||f ||∞||g||2
The application f → Tf being linear, involutive, continuous, and injective as well, we

obtain in this way a C∗-algebra embedding L∞(X) ⊂ B(H), as desired.

(2) Regarding the second assertion, this is best viewed in the following way:

MN(L∞(X)) = MN(C)⊗ L∞(X)

⊂ MN(C)⊗B(L2(X))

= B
(
CN ⊗ L2(X)

)
Here we have used (1), and some standard tensor product identifications. �
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In view of the above, the elements a ∈ A of the arbitrary C∗-algebras A can be thought
of as being bounded operators on a Hilbert space T ∈ B(H). Thus, in order to study
them, we can emulate spectral theory, in the abstract C∗-algebra setting.

6b. Spectral theory

Our purpose in what follows is to develop the spectral theory of the C∗-algebras, and
in particular that of the random matrix algebras A = MN(L∞(X)) that we are interested
in, one of our objectives being that of talking about spectral measures, in the normal
case, in analogy with what we know about the usual matrices, from chapter 5 above.

There are many things to be done. Let us begin with a key definition, as follows:

Definition 6.7. The spectrum of an element a ∈ A is the set

σ(a) =
{
λ ∈ C

∣∣a− λ 6∈ A−1
}

where A−1 ⊂ A is the set of invertible elements.

As a basic example, the spectrum of a usual matrix M ∈ MN(C) is the collection of
its eigenvalues. Also, the spectrum of a continuous function f ∈ C(X) is its image. In
the case of the trivial algebra A = C, the spectrum of an element is the element itself.

As a first, basic result regarding spectra, we have:

Proposition 6.8. We have the following formula, valid for any a, b ∈ A:

σ(ab) ∪ {0} = σ(ba) ∪ {0}
Moreover, there are examples where σ(ab) 6= σ(ba).

Proof. We first prove that 1 /∈ σ(ab) =⇒ 1 /∈ σ(ba). Assume indeed that the
element 1− ab is invertible, with inverse c = (1− ab)−1. We have then:

abc = cab = c− 1

By using these formulae, we obtain, by some kind of miracle:

(1 + bca)(1− ba) = 1 + bca− ba− bcaba
= 1 + bca− ba− bca+ ba

= 1

A similar computation shows that we have (1 − ba)(1 + bca) = 1. We conclude that
the element 1− ba is invertible, with inverse 1 + bca, which proves our claim.

By multiplying by scalars, we deduce from this that we have, for any λ ∈ C− {0}:
λ /∈ σ(ab) =⇒ λ /∈ σ(ba)

But this leads to the conclusion in the statement, namely that we have:

σ(ab) ∪ {0} = σ(ba) ∪ {0}



6B. SPECTRAL THEORY 135

Regarding now the last claim, let us first recall that for usual matrices a, b ∈ MN(C)
we have 0 ∈ σ(ab) ⇐⇒ 0 ∈ σ(ba), because ab is invertible if any only if ba is.

However, this latter fact fails for general operators on Hilbert spaces. As a basic
example, we can take a, b to be the shift S(ei) = ei+1 on the space l2(N), and its adjoint.
Indeed, we have S∗S = 1, and SS∗ being the projection onto e⊥0 , it is not invertible. �

Given an element a ∈ A, and a rational function f = P/Q having poles outside σ(a),
we can construct the element f(a) = P (a)Q(a)−1. For simplicity, we write:

f(a) =
P (a)

Q(a)

With this convention, we have the following result:

Theorem 6.9. We have the “rational functional calculus” formula

σ(f(a)) = f(σ(a))

valid for any rational function f ∈ C(X) having poles outside σ(a).

Proof. We can prove this result in two steps, as follows:

(1) Assume first that we are in the usual polynomial case, f ∈ C[X]. We pick a
number λ ∈ C, and we decompose the polynomial f − λ:

f(X)− λ = c(X − r1) . . . (X − rn)

We have then, as desired, the following computation:

λ /∈ σ(f(a)) ⇐⇒ f(a)− λ ∈ A−1

⇐⇒ c(a− r1) . . . (a− rn) ∈ A−1

⇐⇒ a− r1, . . . , a− rn ∈ A−1

⇐⇒ r1, . . . , rn /∈ σ(a)

⇐⇒ λ /∈ f(σ(a))

(2) In the general case now, f ∈ C(X), we pick λ ∈ C, we write f = P/Q, and we set
F = P − λQ. By using (1) above, we obtain:

λ ∈ σ(f(a)) ⇐⇒ F (a) /∈ A−1

⇐⇒ 0 ∈ σ(F (a))

⇐⇒ 0 ∈ F (σ(a))

⇐⇒ ∃µ ∈ σ(a), F (µ) = 0

⇐⇒ λ ∈ f(σ(a))

Thus, we have obtained the formula in the statement. �

Given an element a ∈ A, its spectral radius ρ(a) is the radius of the smallest disk
centered at 0 containing σ(a). With this convention, we have the following key result:
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Theorem 6.10. Let A be a C∗-algebra.

(1) The spectrum of a norm one element is in the unit disk.
(2) The spectrum of a unitary element (a∗ = a−1) is on the unit circle.
(3) The spectrum of a self-adjoint element (a = a∗) consists of real numbers.
(4) The spectral radius of a normal element (aa∗ = a∗a) is equal to its norm.

Proof. We use the various results established above, as follows:

(1) This comes from the following basic formula, valid when ||a|| < 1:

1

1− a
= 1 + a+ a2 + . . .

(2) Assuming a∗ = a−1, we have the following computations:

||a|| =
√
||aa∗|| =

√
1 = 1

||a−1|| = ||a∗|| = ||a|| = 1

If we denote by D the unit disk, we obtain from this, by using (1):

||a|| = 1 =⇒ σ(a) ⊂ D

||a−1|| = 1 =⇒ σ(a−1) ⊂ D

On the other hand, by using the function f(z) = z−1, we have:

σ(a−1) ⊂ D =⇒ σ(a) ⊂ D−1

Now by putting everything together we obtain, as desired:

σ(a) ⊂ D ∩D−1 = T
(3) This follows by using the result (2), just established above, and Theorem 6.9, with

the following rational function, depending on a parameter t ∈ R:

f(z) =
z + it

z − it
Indeed, for t >> 0 the element f(a) is well-defined, and we have:(

a+ it

a− it

)∗
=
a− it
a+ it

=

(
a+ it

a− it

)−1

Thus the element f(a) is a unitary, and by using (2) above its spectrum is contained
in T. We conclude that we have an inclusion as follows:

f(σ(a)) = σ(f(a)) ⊂ T
Thus, we obtain an inclusion as follows:

σ(a) ⊂ f−1(T) = R
In other words, we have proved the result.
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(4) We already know from (1) above that we have the following inequality:

ρ(a) ≤ ||a||
For the converse, we fix an arbitrary number ρ > ρ(a). We have then:∫

|z|=ρ

zn

z − a
dz =

∞∑
k=0

(∫
|z|=ρ

zn−k−1dz

)
ak

=
∞∑
k=0

δn,k+1a
k

= an−1

By applying the norm and taking n-th roots we obtain from this:

ρ ≥ lim
n→∞

||an||1/n

In the case a = a∗ we have ||an|| = ||a||n for any exponent of the form n = 2k, and by
taking n-th roots we get ρ ≥ ||a||. But this gives the missing inequality, namely:

ρ(a) ≥ ||a||
In the general case aa∗ = a∗a we have an(an)∗ = (aa∗)n. We obtain from this:

ρ(a)2 = ρ(aa∗)

Now since the element aa∗ is self-adjoint, we get ρ(aa∗) = ||a||2, and we are done. �

We are now in position of proving a key result, due to Gelfand, as follows:

Theorem 6.11. Any commutative C∗-algebra is the form

A = C(X)

with its “spectrum” X = Spec(A) appearing as the space of characters χ : A→ C.

Proof. Given a commutative C∗-algebra A, we can define X to be the set of charac-
ters χ : A→ C, with the topology making continuous all evaluation maps eva : χ→ χ(a).
Then X is a compact space, and a→ eva is a morphism of algebras, as follows:

ev : A→ C(X)

(1) We first prove that ev is involutive. For this purpose we use the following formula,
which is similar to the z = Re(z) + iIm(z) formula for usual complex numbers:

a =
a+ a∗

2
− i · i(a− a

∗)

2

Thus it is enough to prove the equality eva∗ = ev∗a for self-adjoint elements a. But this
is the same as proving that a = a∗ implies that eva is a real function, which is in turn
true, because eva(χ) = χ(a) is an element of the spectrum σ(a), contained in R.
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(2) Since A is commutative, each element is normal, so ev is isometric, due to:

||eva|| = ρ(a) = ||a||
(3) It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass

theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. �

As a first consequence of the Gelfand theorem, we can extend Theorem 6.9 above, in
the case of the normal elements (aa∗ = a∗a), in the following way:

Theorem 6.12. For any normal element a ∈ A we have an identification as follows:

< a >= C(σ(a))

In addition, given a function f ∈ C(σ(a)), we can apply it to a, and we have

σ(f(a)) = f(σ(a))

which generalizes the previous rational calculus formula, in the normal case.

Proof. Since a is normal, the C∗-algebra < a > that is generates is commutative, so
if we denote by X the space of the characters χ :< a >→ C, we have:

< a >= C(X)

Now since the map X → σ(a) given by evaluation at a is bijective, we obtain:

< a >= C(σ(a))

Thus, we are dealing here dwith usual functions, and this gives all the assertions. �

Summarizing, the Gelfand theorem is something quite powerful, that can be used in a
variety of situations. As a word of warning, however, coming somewhat ironically in the
context of the present book, mainly dealing with probability, this theorem is better not

to be used in the case A = L∞(X), because here we obtain A = C(X̂), with the space X̂
being a quite complicated compactification of X, called Stone-Čech compactification.

Let us also mention that it is possible to avoid this compactification issue by talking
about von Neumann algebras instead of C∗-algebras, with these algebras being those
of the form A = L∞(X), in the commutative case. But this is not really a solution,
because this needs the spectral theorem for normal operators, which is something more
complicated than what we have been discussing so far. We will be back to this, later.

In order to get now towards noncommutative probability, we first have to develop the
theory of positive elements, and linear forms. First, we have the following result:

Proposition 6.13. For an element a ∈ A, the following are equivalent:

(1) a is positive, in the sense that σ(a) ⊂ [0,∞).
(2) a = b2, for some b ∈ A satisfying b = b∗.
(3) a = cc∗, for some c ∈ A.
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Proof. This is something very standard, as follows:

(1) =⇒ (2) Observe first that σ(a) ⊂ R implies a = a∗. Thus the algebra < a > is
commutative, and by using Theorem 6.12 above, we can set:

b =
√
a

(2) =⇒ (3) This is trivial, because we can simply set c = b.

(2) =⇒ (1) This is clear too, because we have:

σ(a) = σ(b2) = σ(b)2 ⊂ R2 = [0,∞)

(3) =⇒ (1) We proceed by contradiction. By multiplying c by a suitable element of
< cc∗ >, we are led to the existence of an element d 6= 0 satisfying:

−dd∗ ≥ 0

By writing now d = x+ iy with x = x∗, y = y∗ we have:

dd∗ + d∗d = 2(x2 + y2) ≥ 0

We conclude that we have d∗d ≥ 0. But this contradicts the elementary fact that
σ(dd∗), σ(d∗d) must coincide outside {0}, coming from Proposition 6.8 above. �

We can talk as well about positive linear forms, as follows:

Definition 6.14. Consider a linear map ϕ : A→ C.

(1) ϕ is called positive when a ≥ 0 =⇒ ϕ(a) ≥ 0.
(2) ϕ is called faithful and positive when a ≥ 0, a 6= 0 =⇒ ϕ(a) > 0.

In the commutative case, A = C(X), the positive linear forms appear as follows, with
µ being positive, and strictly positive if we want ϕ to be faithful and positive:

ϕ(f) =

∫
X

f(x)dµ(x)

In general, the positive linear forms can be thought of as being integration functionals
with respect to some underlying “positive measures”. We will be back to this.

As a final abstract topic, let us review now another fundamental result, which states
that any C∗-algebra appears as an algebra of operators, A ⊂ B(H), over some Hilbert
space H. In the commutative case, the precise statement is as follows:

Proposition 6.15. Let A be a commutative C∗-algebra, write A = C(X), with X
being a compact space, and let µ be a positive measure on X. We have then an embedding

A ⊂ B(H)

where H = L2(X), with f ∈ A corresponding to the operator g → fg.
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Proof. Given f ∈ C(X), consider the following operator, on H = L2(X):

Tf (g) = fg

Observe that Tf is indeed well-defined, and bounded as well, because we have:

||fg||2 =

√∫
X

|f(x)|2|g(x)|2dµ(x)

≤ ||f ||∞||g||2
The application f → Tf being linear, involutive, continuous, and injective as well, we

obtain in this way a C∗-algebra embedding A ⊂ B(H), as claimed. �

In general, the idea will be that of extending the above construction. In order to do so,
we will use a functional analysis trick, coming from the Riesz theorem, which amounts in
replacing the positive measures µ with the corresponding integration functionals. Thus,
we are led to the forms in Definition 6.14 above, that we can use as follows:

Proposition 6.16. Let ϕ : A→ C be a positive linear form.

(1) < a, b >= ϕ(ab∗) defines a generalized scalar product on A.
(2) By separating and completing we obtain a Hilbert space H.
(3) π(a) : b→ ab defines a representation π : A→ B(H).
(4) If ϕ is faithful in the above sense, then π is faithful.

Proof. Almost everything here is straightforward, as follows:

(1) This is clear from definitions, and from Proposition 6.13 above.

(2) This is a standard procedure, which works for any scalar product.

(3) All the verifications here are standard algebraic computations.

(4) This follows indeed from a 6= 0 =⇒ π(aa∗) 6= 0 =⇒ π(a) 6= 0. �

In order to establish the embedding theorem, it remains to prove that any C∗-algebra
has a faithful and positive linear form ϕ : A→ C. This can be done as follows:

Theorem 6.17. Let A be a C∗-algebra.

(1) Any positive linear form ϕ : A→ C is continuous.
(2) A linear form ϕ is positive iff there is a norm one h ∈ A+ such that ||ϕ|| = ϕ(h).
(3) For any a ∈ A there exists a positive norm one form ϕ such that ϕ(aa∗) = ||a||2.
(4) If A is separable there is a faithful positive form ϕ : A→ C.

Proof. The proof here, which is quite technical, inspired from the existence proof
for the probability measures on abstract compact spaces, goes as follows:
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(1) This follows from Proposition 6.16 above, via the following inequality:

|ϕ(a)| ≤ ||π(a)||ϕ(1)

≤ ||a||ϕ(1)

(2) In one sense we can take h = 1. Conversely, let a ∈ A+, ||a|| ≤ 1. We have:

|ϕ(h)− ϕ(a)| ≤ ||ϕ|| · ||h− a||
≤ ϕ(h)1

= ϕ(h)

Thus we have Re(ϕ(a)) ≥ 0, and it remains to prove that we have:

a = a∗ =⇒ ϕ(a) ∈ R

By using 1− h ≥ 0 we can apply the above to a = 1− h, and we obtain:

Re(ϕ(1− h)) ≥ 0

We conclude that Re(ϕ(1)) ≥ Re(ϕ(h)) = ||ϕ||, so ϕ(1) = ||ϕ||. Thus, we can assume
h = 1. Now observe that for any self-adjoint element a, and t ∈ R, we have:

|ϕ(1 + ita)|2 ≤ ||ϕ||2 · ||1 + ita||2

= ϕ(1)2||1 + t2a2||
≤ ϕ(1)2(1 + t2||a||2)

On the other hand, with ϕ(a) = x+ iy, we have the following estimate:

|ϕ(1 + ita)| = |ϕ(1)− ty + itx|
≥ (ϕ(1)− ty)2

We therefore obtain that for any t ∈ R we have the following estimate:

ϕ(1)2(1 + t2||a||2) ≥ (ϕ(1)− ty)2

Thus we have y = 0, and this finishes the proof of our remaining claim.

(3) Consider the linear subspace of A spanned by the element aa∗. We can define on
tnhis subspace a linear form by the following formula:

ϕ(λaa∗) = λ||a||2

This linear form has norm one, and by using Hahn-Banach we get a norm one extension
to the whole algebra A. The positivity of ϕ follows from (2).

(4) Let (an) be a dense sequence inside our algebra A. For any n ∈ N we can construct
as in (3) above a positive form satisfying the following condition:

ϕn(ana
∗
n) = ||an||2
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We can then define a linear form ϕ in the following way:

ϕ =
∞∑
n=1

ϕn
2n

Let a ∈ A be a nonzero element. Pick an close to a and consider the pair (H, π)
associated to the pair (A,ϕn), as in Proposition 6.16. We have then:

ϕn(aa∗) = ||π(a)1||
≥ ||π(an)1|| − ||a− an||
= ||an|| − ||a− an||
> 0

Thus ϕn(aa∗) > 0, and it follows that we have ϕ(aa∗) > 0, and we are done. �

With these ingredients in hand, we can now state and prove:

Theorem 6.18. Let A be a C∗-algebra.

(1) A appears as a closed ∗-subalgebra A ⊂ B(H), for some Hilbert space H.
(2) When A is separable (usually the case), H can be chosen to be separable.
(3) When A is finite dimensional, H can be chosen to be finite dimensional.

Proof. This result, due to Gelfand, Naimark and Segal, and called GNS embedding
theorem, follows indeed by combining the general left regular representation construction
from Proposition 6.16 above with the existence result from Theorem 6.17. �

This was for the basic theory of the C∗-algebras, which is useful material, and which
applies of course to the basic algebras that we are interested in, namely the random matrix
algebras A = MN(L∞(X)). We will heavily use all this, in what follows.

We should mention that it is possible to go even further, with the axiomatization
and study of a sharper class of algebras, called von Neumann algebras, which cover even
better the random matrix algebras A = MN(L∞(X)) that we are interested in. But this
is something more complicated, and we will not need this, at least for the moment.

6c. Spectral measures

With the above operator algebra ingredients in hand, let us discuss now noncommu-
tative probability theory. We first have:

Definition 6.19. Let A be a C∗-algebra, given with a positive trace tr : A→ C.

(1) The elements a ∈ A are called random variables.
(2) The moments of such a variable are the numbers Mk(a) = tr(ak).
(3) The law of such a variable is the functional µa : P → tr(P (a)).
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Here the exponent k = ◦ • • ◦ . . . is by definition a colored integer, and the powers ak

are defined by the following formulae, and multiplicativity:

a∅ = 1 , a◦ = a , a• = a∗

As for the polynomial P , this is a noncommuting ∗-polynomial in one variable:

P ∈ C < X,X∗ >

Observe that the law is uniquely determined by the moments, because we have:

P (X) =
∑
k

λkX
k =⇒ µa(P ) =

∑
k

λkMk(a)

At the level of the general theory, we have the following key result, extending the
various results about the self-adjoint and normal matrices, from chapter 5 above:

Theorem 6.20. Let A be a C∗-algebra, with a trace tr, and consider an element a ∈ A
which is normal, in the sense that it commutes with its adjoint:

aa∗ = a∗a

(1) µa is a complex probability measure, satisfying supp(µa) ⊂ σ(a).
(2) In the self-adjoint case, a = a∗, this measure µa is real.
(3) Assuming that tr is faithful, we have supp(µa) = σ(a).

Moreover, the converse of (1) holds, in the sense that if the law of an element a ∈ A is a
complex probability measure, then this element must be normal, aa∗ = a∗a.

Proof. This is something very standard, that we already know for the usual complex
matrices, from chapter 5 above, and whose proof in general is quite similar, by using the
spectral theory for the abstract C∗-algebras developed in the above:

(1) In the normal case, aa∗ = a∗a, the Gelfand theorem, or rather the subsequent
continuous functional calculus theorem, tells us that we have:

< a >= C(σ(a))

Thus the functional f(a)→ tr(f(a)) can be regarded as an integration functional on
the algebra C(σ(a)), and by the Riesz theorem, this latter functional must come from a
probability measure µ on the spectrum σ(a), in the sense that we must have:

tr(f(a)) =

∫
σ(a)

f(z)dµ(z)

We are therefore led to the conclusions in the statement, with the uniqueness assertion
coming from the fact that the elements ak, taken as usual with respect to colored integer
exponents, k = ◦ • • ◦ . . . , generate the whole C∗-algebra C(σ(a)).

(2) This is something which is clear from definitions.

(3) Once again, this is something which is clear from definitions.
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Finally, regarding the last assertion, assume that we are in the non-normal case,
aa∗ 6= a∗a. We can use the same positivity trick as for the usual matrices, namely:

aa∗ − a∗a 6= 0

=⇒ (aa∗ − a∗a)2 > 0

=⇒ aa∗aa∗ − aa∗a∗a− a∗aaa∗ + a∗aa∗a > 0

=⇒ tr(aa∗aa∗ − aa∗a∗a− a∗aaa∗ + a∗aa∗a) > 0

=⇒ tr(aa∗aa∗ + a∗aa∗a) > tr(aa∗a∗a+ a∗aaa∗)

=⇒ tr(aa∗aa∗) > tr(aaa∗a∗)

Now assuming that a has a law µ ∈ P(C), the above numbers would have to both
appear by integrating |z|2 with respect to this law µ, which is contradictory, as desired. �

We will heavily use Theorem 6.20 in chapters 9-12 below and afterwards, when doing
free probability, the framework there being precisely the one that we will need.

As a first concrete application now, by getting back to the random matrices, and to
the various questions raised in the beginning of chapter 5 above, we have:

Theorem 6.21. Given a random matrix Z ∈MN(L∞(X)) which is normal,

ZZ∗ = Z∗Z

its law, which is by definition the following abstract functional,

µ : C < X,X∗ >→ C

P → 1

N

∫
X

tr(P (Z))

when restricted to the usual polynomials in two variables,

µ : C[X,X∗]→ C

P → 1

N

∫
X

tr(P (Z))

must come from a probability measure on the spectrum σ(Z) ⊂ C, as follows:

µ(P ) =

∫
σ(T )

P (x)dµ(x)

We agree to use the symbol µ for all these notions.

Proof. This follows indeed from what we know from Theorem 6.20 above, applied
to the normal element a = Z, belonging to the C∗-algebra A = MN(L∞(X)). �

Let us record as well, for future reference, the statement in the self-adjoint case:
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Theorem 6.22. Given a random matrix Z ∈MN(L∞(X)) which is self-adjoint,

Z = Z∗

its law, which is by definition the following abstract functional,

µ : C < X,X∗ >→ C

P → 1

N

∫
X

tr(P (Z))

when restricted to the usual polynomials in one variable,

µ : C[X]→ C

P → 1

N

∫
X

tr(P (Z))

must come from a probability measure on the spectrum σ(Z) ⊂ R, as:

µ(P ) =

∫
σ(T )

P (x)dµ(x)

We agree to use the symbol µ for all these notions.

Proof. As before, this follows from what we know from Theorem 6.20 above, applied
to the self-adjoint element a = Z, belonging to the C∗-algebra A = MN(L∞(X)). �

In what follows, the above results are more or less what we will need. We will be back
to them in chapters 7-8 below, when doing computations with random matrices.

6d. Diagonalization

As a final topic for this chapter, and with the idea in mind of leaving no linear algebra
known result not generalized to the arbitrary operator theory setting, let us go back to
operator theory, and explain how the normal operators can be diagonalized.

As a first result here, we can improve the rational functional calculus formula, in the
case of the normal operators, in the following way:

Theorem 6.23. Given T ∈ B(H) normal, we have a unique morphism of algebras as
follows, with the exponent standing for “having poles outside σ(T )”,

C(X)T → B(H)

f → f(T )

given by X → T , which has the following properties:

(1) σ(f(T )) = f(σ(T )).
(2) ||f(T )|| = ||f|σ(T )||.
(3) Tx = λx =⇒ f(T )x = f(λ)x.
(4) [S, T ] = 0 =⇒ [S, f(T )] = 0.
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Proof. This is an improvement of what comes out from the rational calculus theorem,
that we discussed in the above, in the normal case, as follows:

(1) This is something that we already know, valid for any operator T ∈ B(H).

(2) The element f(T ) being normal, we can apply to it the spectral radius formula for
normal elements, and by using (1) we obtain, as desired:

||f(T )|| = ρ(f(T ))

= sup
λ∈σ(f(T ))

|λ|

= sup
λ∈f(σ(T ))

|λ|

= ||f|σ(T )||

(3) This is something clear, which comes by linearity and multiplicativity.

(4) Once again this is something clear, by linearity and multiplicativity. �

Importantly now, in the case of normal elements we have some new functional calculus
results, using more general functions than those used before. First, we have:

Theorem 6.24. Given a normal operator T ∈ B(H), we have a unique continuous
morphism of algebras

C(σ(T ))→ B(H)

f → f(T )

given by z → T , which has the following properties:

(1) ||f(T )|| = ||f ||.
(2) σ(f(T )) = f(σ(T )).
(3) Tx = λx =⇒ f(T )x = f(λ)x.
(4) [S, T ] = 0 =⇒ [S, f(T )] = 0.

Proof. The idea here is to suitably “complete” the morphism in Theorem 6.23 above.
To be more precise, the morphism there is continuous, and in fact isometric, and so by
Stone-Weierstrass, we have a unique continuous extension of this morphism, as in the
statement. Regarding now the assertions (1-4), the proof here goes as follows:

(1) This follows from our construction of f → f(T ), via Stone-Weierstrass.

(2) This is something that we already know for rational functions, and that we have
to extend now to the continuous functions. We proceed by double inclusion:

“⊂” Given a continuous function f ∈ C(σ(T )), we must prove that we have:

λ /∈ f(σ(T )) =⇒ λ /∈ σ(f(T ))
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For this purpose, consider the following continuous function, which is well-defined:

1

f − λ
∈ C(σ(T ))

We can therefore apply this function to our operator T , and we obtain:(
1

f − λ

)
T =

1

f(T )− λ
In particular f(T )− λ is invertible, so we get λ /∈ σ(f(T )), as desired.

“⊃” Given a continuous function f ∈ C(σ(T )), we must prove that we have:

λ ∈ f(σ(T )) =⇒ λ ∈ σ(f(T ))

But this is the same as proving that we have:

µ ∈ σ(T ) =⇒ f(µ) ∈ σ(f(T ))

For this purpose, we approximate our function by polynomials, Pn → f , and we
examine the following convergence, which follows from the convergence Pn → f :

Pn(T )− Pn(µ)→ f(T )− f(µ)

We know from standard polynomial functional calculus that we have:

Pn(µ) ∈ Pn(σ(T )) = σ(Pn(T ))

Thus, the operators Pn(T ) − Pn(µ) are not invertible. On the other hand, we know
that the set formed by the invertible operators is open, so its complement is closed. Thus
the limit f(T )− f(µ) is not invertible either, so f(µ) ∈ σ(f(T )), as desired.

(3) This is something clear, coming by linearity and multiplicativity.

(4) Once again this is something clear, by linearity and multiplicativity. �

As a second result now, along the same lines, we can further extend Theorem 6.24
into a measurable functional calculus theorem, as follows:

Theorem 6.25. Given T ∈ B(H) normal, we have a unique continuous morphism of
algebras as follows, with L∞ standing for abstract measurable functions

L∞(σ(T ))→ B(H)

f → f(T )

given by z → T , which has the following properties:

(1) ||f(T )|| = ||f ||.
(2) σ(f(T )) = f(σ(T )).
(3) Tx = λx =⇒ f(T )x = f(λ)x.
(4) [S, T ] = 0 =⇒ [S, f(T )] = 0.
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Proof. As before with our previous results here, the idea will be that of “completing”
that results that we already have. For this purpose, we will use a standard polarization
trick. Given a vector x ∈ H, consider the following functional:

C(σ(T ))→ C

f →< f(T )x, x >

By using the Riesz theorem, this functional must be the integration with respect to a
certain measure µ on the space σ(T ). Thus, we have a formula as follows:

< f(T )x, x >=

∫
σ(T )

f(z)dµ(z)

Now with this formula in hand, we can extend the continuous functional calculus into
an abstract measurable calculus, by exactly the same formula, as follows:

< f(T )x, x >=

∫
σ(T )

f(z)dµ(z)

We have then a morphism of algebras, as desired, and the properties (1-4) in the
statement hold too, with the extensions being as before, by using this time in the proofs
approximations by continuous functions, and the polarization identity. �

Let us diagonalize now the normal operators. We will do this in 3 steps, first for
the self-adjoint operators, then for the families of commuting self-adjoint operators, and
finally for the general normal operators, by using a T = Re(T ) + iIm(T ) trick.

For the self-adjoint operators, the statement and proof are as follows:

Theorem 6.26. Any self-adjoint operator T ∈ B(H) can be diagonalized,

T = U∗MfU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
T , with f : X → R being a certain function, once again associated to T , and with

Mf (g) = fg

being the usual multiplication operator by f , on the Hilbert space L2(X).

Proof. The construction of U and f can be done in several steps, as follows:

(1) We first prove the result in the special case where our operator T has a cyclic
vector x ∈ H, with this meaning that the following condition holds:

span
(
T kx

∣∣∣n ∈ N
)

= H
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For this purpose, let us go back to the proof of Theorem 6.25 above. We will use the
following formula from there, with µ being the measure on X = σ(T ) associated to x:

< g(T )x, x >=

∫
σ(T )

g(z)dµ(z)

Our claim is that we can define a unitary U : H → L2(X), first on the dense part
spanned by the vectors T kx, by the following formula, and by continuity:

U [g(T )x] = g

Indeed, the following computation shows that U is well-defined, and isometric:

||g(T )x||2 = < g(T )x, g(T )x >

= < g(T )∗g(T )x, x >

= < |g|2(T )x, x >

=

∫
σ(T )

|g(z)|2dµ(z)

= ||g||22
With this in hand, we can then extend U by continuity into a unitary U : H → L2(X),

as claimed. Now observe that we have the following formula:

UTU∗g = U [Tg(T )x]

= U [(zg)(T )x]

= zg

Thus our result is proved in the present case, with U as above, and f(z) = z.

(2) We discuss now the general case. Our first claim is that H has a decomposition
as follows, with each space Hi being invariant under T , and having a cyclic vector xi:

H =
⊕
i

Hi

Indeed, this is something elementary, the construction being by recurrence in finite
dimensions, in the obvious way, and by using the Zorn lemma in general.

Now with this decomposition result in hand, we can make a direct sum of the diago-
nalization results obtained in (1) above, for each of the restrictions T|Hi , and we obtain
the formula in the statement. �

Summarizing, we have proved the Spectral Theorem for the self-adjoint operators,
which generalizes the well-known fact that any usual self-adjoint complex matrix can be
diagonalized, which itself was generalizing the very standard fact that any usual symetric
real matrix can be diagonalized. This is of course very good news.
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We have the following technical generalization of the above result:

Theorem 6.27. Any family of commuting self-adjoint operators Ti ∈ B(H) can be
jointly diagonalized,

Ti = U∗MfiU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
{Ti}, with fi : X → R being certain functions, once again associated to Ti, and with

Mfi(g) = fig

being the usual multiplication operator by fi, on the Hilbert space L2(X).

Proof. This is similar to the proof of Theorem 6.26 above, by suitably modifying the
measurable calculus formula, and the measure µ itself, as to have this formula working
for all the operators Ti. With this modification done, everything extends. �

We can now discuss the case of arbitrary normal operators, as follows:

Theorem 6.28. Any normal operator T ∈ B(H) can be diagonalized,

T = U∗MfU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
T , with f : X → C being a certain function, once again associated to T , and with

Mf (g) = fg

being the usual multiplication operator by f , on the Hilbert space L2(X).

Proof. This follows by applying Theorem 6.27 to the real and imaginary parts of T ,
which are constructed as follows, and which are self-adjoint, and commuting:

T =
T + T ∗

2
− i · i(T − T

∗)

2
Alternatively, we can use methods similar to those that we used in chapter 5 above,

in order to deal with the usual normal matrices, involving the special relation between T
and the operator TT ∗, which is self-adjoint. We will be back to this. �

With the above diagonalization results in hand, we can now “fix” the continuous and
measurable functional calculus theorems, with a key complement, as follows:

Theorem 6.29. Given a normal operator T ∈ B(H), the following hold, for both the
functional calculus and the measurable calculus morphisms:

(1) These morphisms are ∗-morphisms.
(2) The function z̄ gets mapped to T ∗.
(3) The functions Re(z), Im(z) get mapped to Re(T ), Im(T ).
(4) The function |z|2 gets mapped to TT ∗ = T ∗T .
(5) If f is real, then f(T ) is self-adjoint.
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Proof. These assertions are more or less equivalent, with (1) being the main one,
which obviously implies everything else. But this assertion (1) follows from the diagonal-
ization result for normal operators, from Theorem 6.28 above. �

There are of course many other things that can be said about the spectral theory of
the bounded operators T ∈ B(H), all the above being just an introduction to the subject.
As a complement, we recommend any good operator theory book.

To summarize now, this was for the basic theory of operators and operator algebras,
that we will regularly need, in what follows. We should mention here that, although this
will be more than enough for investigating the basic properties of the random matrices, as
we will do in chapters 7-8 below, all this is the bare minimum, in order to talk about free
probability, and advanced random matrix theory. The point indeed is that a systematic
discussion of these topics, in the spirit of Voiculescu’s book [90] and of many research
papers, both on random matrices and free probability, ideally involves the notion of von
Neumann algebra, which is something quite complicated, and that we have chosen to talk
about here only much later, in chapters 15-16 below, after developing all the basics by
using C∗-algebra theory, which is quite elementary, as explained in the above.

Thus, we are at a point in this book where some more learning, be that a bit informal,
would be ideal. A good book on operator algebras, dealing with both C∗-algebras and von
Neumann algebras, in a concise and pragmatic way, and that we would like to recommend
here, is the one by Blackadar [29]. And for more, you can still try Connes [39].

6e. Exercises

In analogy with linear algebra, operator theory is a wide area of mathematics, and
there are many interesting operators, and exercises about them. We first have:

Exercise 6.30. Find an explicit orthonormal basis for the Hilbert space

H = L2[0, 1]

by starting with the algebraic basic fn = xn with n ∈ N, and applying Gram-Schmidt.

This is actually quite non-trivial, and in case you’re stuck with complicated compu-
tations, better look it up, and then write an account of what you found. And also, don’t
be surprised it you get in this way into probability theory, the topic of this book.

As a second exercise now, instructive and annoying as well, we have:

Exercise 6.31. Clarify whether the linear operators

T : H → H

are automatically bounded, or not.
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To be more precise, this was an annoying topic, avoided in the above, but we can now
reveal the truth, with the comment that the answer is in general is “no”, due to somewhat
opaque reasons, coming from logic. Time to have this understood.

The main theoretical notion introduced in this chapter was that of the spectrum of
an operator, and as a first exercise here, we have:

Exercise 6.32. Prove that for the usual matrices A,B ∈MN(C) we have

σ+(AB) = σ+(BA)

where σ+ denotes the set of eigenvalues, taken with multiplicities.

As a remark, we have seen in the above that σ(AB) = σ(BA) holds outside {0}, and
the equality on {0} holds as well, because AB is invertible if and only if BA is invertible.
However, in what regards the eigenvalues taken with multiplicities, things are more tricky
here, and the answer should be somewhere inside your linear algebra knowledge.

At a more theoretical level now, also in connection with the spectrum, we have:

Exercise 6.33. Clarify, with examples and counterexamples, the relation between the
eigenvalues of an operator T ∈ B(H), and its spectrum σ(T ) ⊂ C.

Here, as usual, the counterexamples could only come from the shift operator S, on the
space H = l2(N). As a bonus exercise here, try computing the spectrum of S.

In relation now with the spectral theorem for the normal operators, which is quite
complicated business, we have a unique exercise, as follows:

Exercise 6.34. Find and write down a proof for the spectral theorem for normal
operators in the spirit of the proof for normal matrices from chapter 5, and vice versa.

To be more precise, the problem is that the proof of the spectral theorem for the usual
matrices, from chapter 5, was using a certain kind of trick, while the proof of the spectral
theorem for the arbitrary operators, given in this chapter, was using some other kind of
trick. Thus, for full understanding all this, working out more proofs, both for the usual
matrices and for the arbitary operators, is a useful thing.



CHAPTER 7

Wigner matrices

7a. Gaussian matrices

We have now all the needed ingredients for launching some explicit random matrix
computations. Our goal will be that of computing the asymptotic moments, and then the
asymptotic laws, with N →∞, for the main classes of large random matrices.

Let us begin by recalling the precise classes of matrices that we are interested in. First
we have the complex Gaussian matrices, which are constructed as follows:

Definition 7.1. A complex Gaussian matrix is a random matrix of type

Z ∈MN(L∞(X))

which has i.i.d. centered complex normal entries.

Here we use the notion of complex normal variable, introduced and studied in chapter
1 above. To be more precise, the complex Gaussian law of parameter t > 0 is by definition
the following law, with a, b being independent, each following the law gt:

Gt = law

(
1√
2

(a+ ib)

)
With this notion in hand, the assumption in the above definition is that all matrix

entries Zij are independent, and follow this law Gt, for a fixed value of t > 0.

We will see that the above matrices have an interesting, and “central” combinatorics,
among all kinds of random matrices, with the study of the other random matrices being
usually obtained as a modification of the study of the Gaussian matrices.

As a somewhat surprising remark, using real normal variables in Definition 7.1, instead
of the complex ones appearing there, leads nowhere. The correct real versions of the
Gaussian matrices are the Wigner random matrices, constructed as follows:

Definition 7.2. A Wigner matrix is a random matrix of type

Z ∈MN(L∞(X))

which has i.i.d. centered complex normal entries, up to the constraint Z = Z∗.

153
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This definition is something a bit compacted, and to be more precise here, a Wigner
matrix is by definition a random matrix as follows, with the diagonal entries being real
normal variables, ai ∼ gt, for some t > 0, the upper diagonal entries being complex normal
variables, bij ∼ Gt, the lower diagonal entries being the conjugates of the upper diagonal
entries, as indicated, and with all the variables ai, bij being independent:

Z =


a1 b12 . . . . . . b1N

b̄12 a2
. . .

...
...

. . . . . . . . .
...

...
. . . aN−1 bN−1,N

b̄1N . . . . . . b̄N−1,N aN


As a comment here, for many concrete applications the Wigner matrices are in fact the

central objects in random matrix theory, and in particular, they are often more important
than the Gaussian matrices. In fact, these are the random matrices which were first
considered and investigated, a long time ago, by Wigner himself [97].

However, as we will soon discover, the Gaussian matrices are somehow more funda-
mental than the Wigner matrices, at least from an abstract point of view, and this will
be the point of view that we will follow here, with the Gaussian matrices coming first.

Finally, we will be interested as well in the complex Wishart matrices, which are the
positive versions of the above random matrices, constructed as follows:

Definition 7.3. A complex Wishart matrix is a random matrix of type

Z = Y Y ∗ ∈MN(L∞(X))

with Y being a complex Gaussian matrix.

As before with the Gaussian and Wigner matrices, there are many possible comments
that can be made here, of technical or historical nature. First, using real Gaussian
variables instead of complex ones leads to a less interesting combinatorics. Also, these
matrices were introduced and studied by Marchenko and Pastur not long after Wigner,
in [65], and so historically came second. Finally, in what regards their combinatorics
and applications, these matrices quite often come first, before both the Gaussian and the
Wigner ones, with all this being of course a matter of knowledge and taste.

Summarizing, we have three main types of random matrices, which can be somehow
designated as “complex”, “real” and “positive”, and that we will study in what follows,
in this precise order, with this order being the one that fits us best here.

Finally, let us mention that there are many other interesting classes of random matri-
ces, usually appearing as modifications of the above. More on these later.



7A. GAUSSIAN MATRICES 155

In order to compute the asymptotic laws of the Gaussian, Wigner and Wishart ma-
trices, we use the moment method. Given a colored integer k = ◦ • • ◦ . . . , we say that
a pairing π ∈ P2(k) is matching when it pairs ◦ − • symbols. With this convention, we
have the following result, which will be our main tool for computing moments:

Theorem 7.4 (Wick formula). Given independent variables Xi, each following the
complex normal law Gt, with t > 0 being a fixed parameter, we have the formula

E
(
Xk1
i1
. . . Xks

is

)
= ts/2#

{
π ∈ P2(k)

∣∣∣π ≤ ker(i)
}

where k = k1 . . . ks and i = i1 . . . is, for the joint moments of these variables.

Proof. This is something well-known, and the basis for all possible computations
with complex normal variables, which can be proved in two steps, as follows:

(1) Let us first discuss the case where we have a single complex normal variable X,
which amounts in taking Xi = X for any i in the formula in the statement. What we
have to compute here are the moments of X, with respect to colored integer exponents
k = ◦ • • ◦ . . . , and the formula in the statement tells us that these moments must be:

E(Xk) = t|k|/2|P2(k)|

But this is something that we know well from chapter 1 above, the idea being that
at t = 1 this follows by doing some combinatorics and calculus, in analogy with the
combinatorics and calculus from the real case, where the moment formula is identical,
save for the matching pairings P2 being replaced by the usual pairings P2, and then that
the general case t > 0 follows from this, by rescaling. Thus, we are done with this case.

(2) In general now, the point is that we obtain the formula in the statement. Indeed,
when expanding the product Xk1

i1
. . . Xks

is
and rearranging the terms, we are left with doing

a number of computations as in (1), and then making the product of the expectations
that we found. But this amounts precisely in counting the partitions in the statement,
with the condition π ≤ ker(i) there standing precisely for the fact that we are doing the
various type (1) computations independently, and then making the product. �

The above statement is one of the possible formulations of the Wick formula, and
there are in fact many more formulations, which are all useful. Here is an alternative such
formulation, which is quite popular, and that we will often use in what follows:

Theorem 7.5 (Wick formula 2). Given independent variables Xi, each following the
complex normal law Gt, with t > 0 being a fixed parameter, we have the formula

E
(
Xi1 . . . XikX

∗
j1
. . . X∗jk

)
= tk#

{
π ∈ Sk

∣∣∣iπ(r) = jr,∀r
}

for the non-vanishing joint moments of these variables.
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Proof. This follows from the usual Wick formula, from Theorem 7.4 above. With
some changes in the indices and notations, the formula there reads:

E
(
XK1
I1
. . . XKs

Is

)
= ts/2#

{
σ ∈ P2(K)

∣∣∣σ ≤ ker(I)
}

Now observe that we have P2(K) = ∅, unless the colored integer K = K1 . . . Ks

is uniform, in the sense that it contains the same number of ◦ and • symbols. Up to
permutations, the non-trivial case, where the moment is non-vanishing, is the case where
the colored integer K = K1 . . . Ks is of the following special form:

K = ◦ ◦ . . . ◦︸ ︷︷ ︸
k

• • . . . •︸ ︷︷ ︸
k

So, let us focus on this case, which is the non-trivial one. Here we have s = 2k, and
we can write the multi-index I = I1 . . . Is in the following way:

I = i1 . . . ik j1 . . . jk

With these changes made, the above usual Wick formula reads:

E
(
Xi1 . . . XikX

∗
j1
. . . X∗jk

)
= tk#

{
σ ∈ P2(K)

∣∣∣σ ≤ ker(ij)
}

The point now is that the matching pairings σ ∈ P2(K), with K = ◦ . . . ◦ • . . . • , of
length 2k, as above, correspond to the permutations π ∈ Sk, in the obvious way. With
this identification made, the above modified usual Wick formula becomes:

E
(
Xi1 . . . XikX

∗
j1
. . . X∗jk

)
= tk#

{
π ∈ Sk

∣∣∣iπ(r) = jr,∀r
}

Thus, we have reached to the formula in the statement, and we are done. �

Finally, here is one more formulation of the Wick formula, which is useful as well:

Theorem 7.6 (Wick formula 3). Given independent variables Xi, each following the
complex normal law Gt, with t > 0 being a fixed parameter, we have the formula

E
(
Xi1X

∗
j1
. . . XikX

∗
jk

)
= tk#

{
π ∈ Sk

∣∣∣iπ(r) = jr,∀r
}

for the non-vanishing joint moments of these variables.

Proof. This follows from our second Wick formula, from Theorem 7.5, simply by
permuting the terms, as to have an alternating sequence of plain and conjugate variables.
Alternatively, we can start with Theorem 7.4, and then perform the same manipulations
as in the proof of Theorem 7.5, but with the exponent being this time as follows:

K = ◦ • ◦ • . . . . . . ◦ •︸ ︷︷ ︸
2k

Thus, we are led to the conclusion in the statement. �

Now by getting back to the Gaussian matrices, we have the following result:
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Theorem 7.7. Given a sequence of Gaussian random matrices

ZN ∈MN(L∞(X))

having independent Gt variables as entries, for some fixed t > 0, we have

Mk

(
ZN√
N

)
' t|k|/2|NC2(k)|

for any colored integer k = ◦ • • ◦ . . . , in the N →∞ limit.

Proof. This is something standard, which can be done as follows:

(1) We fix N ∈ N, and we let Z = ZN . Let us first compute the trace of Zk. With
k = k1 . . . ks, and with the convention (ij)◦ = ij, (ij)• = ji, we have:

Tr(Zk) = Tr(Zk1 . . . Zks)

=
N∑
i1=1

. . .
N∑
is=1

(Zk1)i1i2(Z
k2)i2i3 . . . (Z

ks)isi1

=
N∑
i1=1

. . .
N∑
is=1

(Z(i1i2)k1 )k1(Z(i2i3)k2 )k2 . . . (Z(isi1)ks )
ks

(2) Next, we rescale our variable Z by a
√
N factor, as in the statement, and we also

replace the usual trace by its normalized version, tr = Tr/N . Our formula becomes:

tr

((
Z√
N

)k)
=

1

N s/2+1

N∑
i1=1

. . .
N∑
is=1

(Z(i1i2)k1 )k1(Z(i2i3)k2 )k2 . . . (Z(isi1)ks )
ks

Thus, the moment that we are interested in is given by:

Mk

(
Z√
N

)
=

1

N s/2+1

N∑
i1=1

. . .
N∑
is=1

∫
X

(Z(i1i2)k1 )k1(Z(i2i3)k2 )k2 . . . (Z(isi1)ks )
ks

(3) Let us apply now the Wick formula, in its plain form, from Theorem 7.4 above.
We conclude that the moment that we are interested in is given by:

Mk

(
Z√
N

)
=

ts/2

N s/2+1

N∑
i1=1

. . .
N∑
is=1

#
{
π ∈ P2(k)

∣∣∣π ≤ ker
(
(i1i2)k1 , (i2i3)k2 , . . . , (isi1)ks

)}
= ts/2

∑
π∈P2(k)

1

N s/2+1
#
{
i ∈ {1, . . . , N}s

∣∣∣π ≤ ker
(
(i1i2)k1 , (i2i3)k2 , . . . , (isi1)ks

)}
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(4) Our claim now is that in the N → ∞ limit the combinatorics of the above sum
simplifies, with only the noncrossing partitions contributing to the sum, and with each of
them contributing precisely with a 1 factor, so that we will have, as desired:

Mk

(
Z√
N

)
= ts/2

∑
π∈P2(k)

(
δπ∈NC2(k) +O(N−1)

)
' ts/2

∑
π∈P2(k)

δπ∈NC2(k)

= ts/2|NC2(k)|

(5) In order to prove this, the first observation is that when k is not uniform, in the
sense that it contains a different number of ◦, • symbols, we have P2(k) = ∅, and so:

Mk

(
Z√
N

)
= ts/2|NC2(k)| = 0

(6) Thus, we are left with the case where k is uniform. Let us examine first the case
where k consists of an alternating sequence of ◦ and • symbols, as follows:

k = ◦ • ◦ • . . . . . . ◦ •︸ ︷︷ ︸
2p

In this case it is convenient to relabel our multi-index i = (i1, . . . , is), with s = 2p, in
the form (j1, l1, j2, l2, . . . , jp, lp). With this done, our moment formula becomes:

Mk

(
Z√
N

)
= tp

∑
π∈P2(k)

1

Np+1
#
{
j, l ∈ {1, . . . , N}p

∣∣∣π ≤ ker (j1l1, j2l1, j2l2, . . . , j1lp)
}

Now observe that, with k being as above, we have an identification P2(k) ' Sp,
obtained in the obvious way. With this done too, our moment formula becomes:

Mk

(
Z√
N

)
= tp

∑
π∈Sp

1

Np+1
#
{
j, l ∈ {1, . . . , N}p

∣∣∣jr = jπ(r)+1, lr = lπ(r),∀r
}

(7) We are now ready to do our asymptotic study, and prove the claim in (4). Let
indeed γ ∈ Sp be the full cycle, which is by definition the following permutation:

γ = (1 2 . . . p)

In terms of γ, the conditions jr = jπ(r)+1 and lr = lπ(r) found above read:

γπ ≤ ker j

π ≤ ker l
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Counting the number of free parameters in our moment formula, we obtain:

Mk

(
Z√
N

)
=

tp

Np+1

∑
π∈Sp

N |π|+|γπ|

= tp
∑
π∈Sp

N |π|+|γπ|−p−1

(8) The point now is that the last exponent is well-known to be ≤ 0, with equality
precisely when the permutation π ∈ Sp is geodesic, which in practice means that π must
come from a noncrossing partition. Thus we obtain, in the N →∞ limit, as desired:

Mk

(
Z√
N

)
' tp|NC2(k)|

This finishes the proof in the case of the exponents k which are alternating, and the
case where k is an arbitrary uniform exponent is similar, by permuting everything. �

As a conclusion to all this, we have obtained as asymptotic law for the Gaussian
matrices a certain mysterious distribution, having as moments some numbers which are
similar to the moments of the usual normal laws, but with the “underlying matching
pairings being now replaced by underlying matching noncrossing pairings”.

Obviously, some interesting things are going on here. We will see in a moment, after
doing some more combinatorics, this time in connection with the Wigner matrices, that
there are some good reasons for calling the above mysterious law “circular”.

Thus, for ending with our present study with a nice-looking conclusion, we can say that
the Gaussian matrices become “asymptotically circular”, with this meaning by definition
that the N →∞ moments are those computed above. This is of course something quite
bold, and we will be back to it in chapters 9-12 below, when doing free probability.

7b. Wigner matrices

Moving ahead now, let us investigate the second class of random matrices that we are
interested in, namely the Wigner matrices, which are by definition self-adjoint. Here our
results will be far more complete than those for the Gaussian matrices. As a starting
point, we have the following simple fact, making the connection with the above:

Proposition 7.8. Given a Gaussian matrix Z, with independent entries following
the centered complex normal law Gt, with t > 0, if we write

Z =
1√
2

(X + iY )

with X, Y being self-adjoint, then both X, Y are Wigner matrices, of parameter t.
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Proof. This is something elementary, which can be done in two steps, as follows:

(1) As a first observation, the result holds at N = 1. Indeed, here our Gaussian matrix
Z is just a random variable, subject to the condition Z ∼ Gt. But recall that the law Gt

is by definition as follows, with X, Y being independent, each following the law gt:

Gt = law

(
1√
2

(X + iY )

)
Thus in this case, N = 1, the variables X, Y that we obtain in the statement, as

rescaled real and imaginary parts of Z, are subject to the condition X, Y ∼ gt, and so are
Wigner matrices of size N = 1 and parameter t > 0, as in Definition 7.2 above.

(2) In the general case now, N ∈ N, the proof is similar, by using the basic behavior
of the real and complex normal variables with respect to sums. �

The above result is quite interesting for us, because it shows that, in order to in-
vestigate the Wigner matrices, we are basically not in need of some new computations,
starting from the Wick formula, and doing combinatorics afterwards, but just of some
manipulations on the results that we already have, regarding the Gaussian matrices.

To be more precise, by using this method, we obtain the following result, coming by
combining the observation in Proposition 7.8 with the formula in Theorem 7.7:

Theorem 7.9. Given a sequence of Wigner random matrices

ZN ∈MN(L∞(X))

having independent Gt variables as entries, with t > 0, up to ZN = Z∗N , we have

Mk

(
ZN√
N

)
' tk/2|NC2(k)|

for any integer k ∈ N, in the N →∞ limit.

Proof. This can be deduced from a direct computation based on the Wick formula,
similar to that from the proof of Theorem 7.7, but the best is to deduce this result
from Theorem 7.7 itself. Indeed, we know from there that for Gaussian matrices YN ∈
MN(L∞(X)) we have the following formula, valid for any colored integer K = ◦ • • ◦ . . . ,
in the N →∞ limit, with NC2 standing for noncrossing matching pairings:

MK

(
YN√
N

)
' t|K|/2|NC2(K)|
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By doing some combinatorics, we deduce from this that we have the following formula
for the moments of the matrices Re(YN), with respect to usual exponents, k ∈ N:

Mk

(
Re(YN)√

N

)
= 2−k ·Mk

(
YN√
N

+
Y ∗N√
N

)
= 2−k

∑
|K|=k

MK

(
YN√
N

)
' 2−k

∑
|K|=k

tk/2|NC2(K)|

= 2−k · tk/2 · 2k/2|NC2(k)|
= 2−k/2 · tk/2|NC2(k)|

Now since the matrices ZN =
√

2Re(YN) are of Wigner type, this gives the result. �

Summarizing, all this brings us into counting noncrossing pairings. So, let us start
with some preliminaries here. We first have the following well-known result:

Theorem 7.10. The Catalan numbers, which are by definition given by

Ck = |NC2(2k)|
satisfy the following recurrence formula,

Ck+1 =
∑
a+b=k

CaCb

their generating series f(z) =
∑

k≥0Ckz
k satisfies the equation

zf 2 − f + 1 = 0

and is given by the following explicit formula,

f(z) =
1−
√

1− 4z

2z

and we have the following explicit formula for these numbers:

Ck =
1

k + 1

(
2k

k

)
Proof. We must count the noncrossing pairings of {1, . . . , 2k}. Now observe that

such a pairing appears by pairing 1 to an odd number, 2a + 1, and then inserting a
noncrossing pairing of {2, . . . , 2a}, and a noncrossing pairing of {2a + 2, . . . , 2l}. We
conclude that we have the following recurrence formula for the Catalan numbers:

Ck =
∑

a+b=k−1

CaCb
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Consider now generating series of the Catalan numbers, f(z) =
∑

k≥0Ckz
k. In terms

of this generating series, the above recurrence gives:

zf 2 =
∑
a,b≥0

CaCbz
a+b+1

=
∑
k≥1

∑
a+b=k−1

CaCbz
k

=
∑
k≥1

Ckz
k

= f − 1

Thus f satisfies zf 2 − f + 1 = 0, and by solving this equation, and choosing the
solution which is bounded at z = 0, we obtain the following formula:

f(z) =
1−
√

1− 4z

2z

By using now the Taylor formula for
√
x, we obtain the following formula:

f(z) =
∑
k≥0

1

k + 1

(
2k

k

)
zk

It follows that the Catalan numbers are given by the formula the statement. �

Getting back now to the Wigner matrices, we have the following result:

Theorem 7.11. Given a sequence of Wigner random matrices

ZN ∈MN(L∞(X))

having independent Gt variables as entries, with t > 0, up to ZN = Z∗N , we have

M2k

(
ZN√
N

)
' tkCk

in the N →∞ limit. As for the asymptotic odd moments, these all vanish.

Proof. This follows from Theorem 7.9 and Theorem 7.10 above. Indeed, according
to the results there, the asymptotic even moments are given by:

M2k

(
ZN√
N

)
' tk|NC2(2k)| = tkCk

As for the asymptotic odd moments, once again from Theorem 7.9, we know that
these all vanish. Thus, we are led to the conclusion in the statement. �
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Summarizing, we are done with the moment computations, and with the asymptotic
study, for both the Gaussian and the Wigner matrices. It remains now to interpret the
results that we have. As already explained before, for the Gaussian matrices this is
something quite complicated, with the technology that we presently have, and this will
have to wait a bit, until we do some free probability. Regarding the Wigner matrices,
however, the problems left here are quite elementary, and we will solve them next.

7c. Semicircle laws

In order to recapture the asymptotic measure of the Wigner matrices out of the mo-
ments, which are the Catalan numbers, there are several methods available, namely:

(1) Cheating.

(2) Stieltjes inversion.

(3) Knowledge of SU2.

We will explain in what follows all these methods, which are all instructive. The
simplest method is by cheating, and to be more precise, by using the following result:

Proposition 7.12. The Catalan numbers are the even moments of

γ1 =
1

2π

√
4− x2dx

called Wigner semicircle law. As for the odd moments of γ1, these all vanish.

Proof. The even moments of the Wigner law can be computed with the change of
variable x = 2 cos t, and we are led to the following formula:

M2k =
1

π

∫ 2

0

√
4− x2x2kdx

=
1

π

∫ π/2

0

√
4− 4 cos2 t (2 cos t)2k2 sin t dt

=
4k+1

π

∫ π/2

0

cos2k t sin2 t dt

=
4k+1

π
· π

2
· (2k)!!2!!

(2k + 3)!!

= 2 · 4k · (2k)!/2kk!

2k+1(k + 1)!

= Ck

As for the odd moments, these all vanish, because the density of γ1 is an even function.
Thus, we are led to the conclusion in the statement. �

More generally, we have the following result, involving a parameter t > 0:
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Proposition 7.13. The Catalan numbers are the even moments of

γt =
1

2πt

√
4t2 − x2dx

called standard semicircle law. As for the odd moments of γt, these all vanish.

Proof. This follows indeed from Proposition 7.12, via a change of variables. �

Now by putting everything together, we obtain the Wigner theorem, as follows:

Theorem 7.14. Given a sequence of Wigner random matrices

ZN ∈MN(L∞(X))

having independent Gt variables as entries, with t > 0, up to ZN = Z∗N , we have

ZN√
N
∼ γt

in the N →∞ limit, where γt is the Wigner semicircle law of parameter t.

Proof. This follows by combining Theorem 7.11 and Proposition 7.13 above. �

All this is good, but not entirely satisfying, because we have cheated when recon-
structing the limiting measure out of its moments. So, let us do this now once again, this
time honestly, by using the moment method, in a pederstian way.

This method, which is something straightforward, not requiring any kind of trick, is
based on the Stieltjes inversion formula, which is as follows:

Theorem 7.15. The density of a real probability measure µ can be recaptured from
the sequence of moments (Mk) via the Stieltjes inversion formula

dµ(x) = lim
t↘0
− 1

π
Im (G(x+ it)) · dx

where the function on the right, given in terms of moments by

G(ξ) = ξ−1 +M1ξ
−2 +M2ξ

−3 + . . .

is the Cauchy transform of the measure µ.

Proof. This is something very standard, coming from basic complex analysis and
measure theory, and we refer here to the literature. Indeed, observe that:

G(ξ) = ξ−1

∞∑
k=0

Mkξ
−k

=

∫
R

ξ−1

1− ξ−1y
dµ(y)

=

∫
R

1

ξ − y
dµ(y)
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Now with ξ = x+ it, we obtain the following formula for the Cauchy transform:

G(x+ it) =

∫
R

1

x+ it− y
dµ(y)

Thus, the imaginary part of the Cauchy transform is given by:

Im(G(x+ it)) =

∫
R
Im

(
1

x+ it− y

)
dµ(y)

But this gives the result, by taking the t→ 0 limit of the above quantity, with t > 0,
and then doing a number of standard complex analysis manipulations. �

Before getting further, let us mention that the above result does not fully solve the
moment problem, because we still have the question of understanding when a sequence
of numbers M1,M2,M3, . . . can be the moments of a measure µ. We have here:

Theorem 7.16. A sequence of numbers as follows, with M0 = 1,

M0,M1,M2,M3, . . . ∈ R
is the series of moments of a real probability measure µ precisely when:∣∣M0

∣∣ ≥ 0∣∣∣∣M0 M1

M1 M2

∣∣∣∣ ≥ 0∣∣∣∣∣∣
M0 M1 M2

M1 M2 M3

M2 M3 M4

∣∣∣∣∣∣ ≥ 0

...

That is, the associated Hankel determinants must be all positive.

Proof. As a first observation, the positivity conditions in the statement tell us that
the following associated linear forms must be positive:

n∑
i,j=1

cic̄jMi+j ≥ 0

But this is something very classical, in one sense the result being elementary, coming
from the following computation, which shows that we have positivity indeed:∫

R

∣∣∣∣∣
n∑
i=1

cix
i

∣∣∣∣∣
2

dµ(x) =

∫
R

n∑
i,j=1

cic̄jx
i+jdµ(x)

=
n∑

i,j=1

cic̄jMi+j
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As for the other sense, here the result comes once again from the above formula, this
time via some standard functional analysis. �

Now back to our questions, as a basic application of the Stieltjes formula, we can
recover the semicircle laws from the Catalan numbers, as follows:

Proposition 7.17. The real centered probability measure having as even moments the
Catalan numbers, given by

Ck =
1

k + 1

(
2k

k

)
is the Wigner semicircle law on [−2, 2], having density as follows:

γ1 =
1

2π

√
4− x2dx

Moreover, up to a normalization, involving a parameter t > 0, we obtain the measure

γt =
1

2πt

√
4t2 − x2dx

which is the generalized Wigner semicircle law, supported by [−2t, 2t].

Proof. In order to apply the Stieltjes inversion formula, we need a simple formula
for the Cauchy transform. For this purpose, our starting point will be the formula from
Theorem 7.10 for the generating series of the Catalan numbers, namely:

∞∑
k=0

Ckz
k =

1−
√

1− 4z

2z

By using this formula with z = ξ−2, we obtain the following formula:

G(ξ) = ξ−1

∞∑
k=0

Ckξ
−2k

= ξ−1 · 1−
√

1− 4ξ−2

2ξ−2

=
ξ

2

(
1−

√
1− 4ξ−2

)
=

ξ

2
− 1

2

√
ξ2 − 4

With this formula in hand, let us apply now the Stieltjes inversion formula, from The-
orem 7.15 above. According to the general philosophy of this Stieltjes formula, obtained
by contemplating it, or rather by playing with it a bit, as to get familiar with it, the first
term, namely ξ/2, which is “trivial”, will not contribute to the density.
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As for the second term, which is something non-trivial, this will contribute to the
density, the rule here being that the square root

√
ξ2 − 4 will be replaced by the “dual”

square root
√

4− x2 dx, and that we have to multiply everything by − 1
π
.

Thus, by Stieltjes inversion we obtain the density in the statement, namely:

dµ(x) = − 1

π
· −1

2

√
4− x2 dx

=
1

2π

√
4− x2dx

As for the parametric version of this, involving an arbitrary parameter t > 0, here the
result follows either from the t = 1 case, or by redoing the computation. �

Getting back now to the Wigner matrices, we can prove, this time honestly:

Theorem 7.18. Given a sequence of Wigner random matrices

ZN ∈MN(L∞(X))

having independent Gt variables as entries, with t > 0, up to ZN = Z∗N , we have

ZN√
N
∼ 1

2πt

√
4t2 − x2dx

in the N →∞ limit, with the limiting measure being Wigner’s semicircle law γt.

Proof. This follows indeed from Theorem 7.11 and Proposition 7.17. �

There are many other things that can be said about the Wigner matrices, which appear
as variations of the above, and we refer here to the standard random matrix books [1],
[66], [69], [90]. We will be back to this later on in this book, in chapter 10 below.

7d. Unitary groups

We discuss now an alternative interpretation of the limiting laws γt that we found
above, by using Lie groups, the idea being that the standard semicircle law γ1, and more
generally all the laws γt, naturally appear in connection with the group SU2.

This is something quite natural, and good to know, and useful for us later on, and in
relation with the above, the knowledge of this fact can be used as an alternative to both
Stieltjes inversion, and cheating, in order to establish the Wigner theorem.

Let us start our study with the following well-known fact:

Theorem 7.19. We have the following formula,

SU2 =

{(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1

}
which makes SU2 isomorphic to the unit sphere S1

C ⊂ C2.
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Proof. Consider an arbitrary 2× 2 matrix, written as follows:

U =

(
a b
c d

)
Assuming detU = 1, the inverse is then given by:

U−1 =

(
d −b
−c a

)
On the other hand, assuming U ∈ U2, the inverse must be the adjoint:

U−1 =

(
ā c̄
b̄ d̄

)
Thus our matrix must be of the following special form:

U =

(
a b
−b̄ ā

)
Since the determinant is 1, we must have |a|2 + |b|2 = 1, so we are done with one

direction. As for the converse, this is clear, the matrices in the statement being unitaries,
and of determinant 1, and so being elements of SU2. Finally, we have:

S1
C =

{
(a, b) ∈ C2

∣∣∣ |a|2 + |b|2 = 1
}

Thus, the final assertion in the statement holds as well. �

As a comment here, we will see later that the isomorphism SU2 ' S1
C constructed

above goes beyond the compact space level, for instance with a result stating that the
uniform measure on S1

C corresponds in this way to the uniform measure on SU2, which is
by definition the unique probability measure which is invariant under translations by the
various group elements g ∈ SU2. This is something well-known, coming from a standard
computation, and we will be back to this later, with further details and comments.

We have the following useful reformulation of Theorem 7.19:

Theorem 7.20. We have the formula

SU2 =

{(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1

}
which makes SU2 isomorphic to the unit real sphere S3

R ⊂ R3.

Proof. We recall from Theorem 7.19 above that we have:

SU2 =

{(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1

}
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Now let us write our parameters a, b ∈ C, which belong to the complex unit sphere
S1
C ⊂ C2, in terms of their real and imaginary parts, as follows:

a = x+ iy , b = z + it

In terms of these new parameters x, y, z, t ∈ R, our formula for a generic matrix
U ∈ SU2, that we established before, reads:

U =

(
x+ iy z + it
−z + it x− iy

)
As for the condition to be satisfied by the parameters x, y, z, t ∈ R, this comes the

condition |a|2 + |b|2 = 1 to be satisfied by a, b ∈ C, which reads:

x2 + y2 + z2 + t2 = 1

Thus, we are led to the conclusion in the statement. Regarding now the last assertion,
recall that the unit sphere S3

R ⊂ R4 is given by:

S3
R =

{
(x, y, z, t)

∣∣∣ x2 + y2 + z2 + t2 = 1
}

Thus, we have an isomorphism of compact spaces SU2 ' S3
R, as claimed. �

As a philosophical comment here, the above parametrization of SU2 is something very
nice, because the parameters (x, y, z, t) range now over the unit sphere of usual space-time.
Thus, we are probably doing some physics here. We will be back to this.

Here is now another reformulation of our main result so far, regarding SU2, obtained
by further building on the parametrization from Theorem 7.20:

Theorem 7.21. We have the following formula,

SU2 =
{
xc1 + yc2 + zc3 + tc4

∣∣∣ x2 + y2 + z2 + t2 = 1
}

where c1, c2, c3, c4 are the Pauli matrices, given by:

c1 =

(
1 0
0 1

)
, c2 =

(
i 0
0 −i

)
c3 =

(
0 1
−1 0

)
, c4 =

(
0 i
i 0

)
Proof. We recall from Theorem 7.20 above that the group SU2 can be parametrized

by the real sphere S3
R ⊂ R4, in the following way:

SU2 =

{(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1

}
But this gives the formula in the statement, with the Pauli matrices c1, c2, c3, c4 being

the coefficients of x, y, z, t, in this parametrization. �
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The above result is often the most convenient one, when dealing with SU2. This is
because the Pauli matrices have a number of remarkable properties, which are very useful
when doing computations. These properties can be summarized as follows:

Proposition 7.22. The Pauli matrices multiply according to the following formulae,

c2
2 = c2

3 = c2
4 = −1

c2c3 = −c3c2 = c4

c3c4 = −c4c3 = c2

c4c2 = −c2c4 = c3

they conjugate according to the following rules,

c∗1 = c1, c
∗
2 = −c2, c

∗
3 = −c3, c

∗
4 = −c4

and they form an orthonormal basis of M2(C), with respect to the scalar product

< a, b >= tr(ab∗)

with tr : M2(C)→ C being the normalized trace of 2× 2 matrices, tr = Tr/2.

Proof. The first two assertions, regarding the multiplication and conjugation rules
for the Pauli matrices, follow from some elementary computations. As for the last as-
sertion, this follows by using these rules. Indeed, the fact that the Pauli matrices are
pairwise orthogonal follows from computations of the following type, for i 6= j:

< ci, cj >= tr(cic
∗
j) = tr(±cicj) = tr(±ck) = 0

As for the fact that the Pauli matrices have norm 1, this follows from:

< ci, ci >= tr(cic
∗
i ) = tr(±c2

i ) = tr(c1) = 1

Thus, we are led to the conclusion in the statement. �

Now back to probability, we can recover our measures, as follows:

Theorem 7.23. The main character of SU2 follows the following law,

γ1 =
1

2π

√
4− x2dx

which is the Wigner law of parameter 1.

Proof. This follows from Theorem 7.20, by identifying SU2 with the sphere S3
R, the

variable χ = 2Re(a) being semicircular. Indeed, let us write, as in Theorem 7.20:

SU2 =

{(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1

}
In this picture, the main character is given by:

χ

(
x+ iy z + it
−z + it x− iy

)
= 2x
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We are therefore left with computing the law of the following variable:

x ∈ C(S3
R)

For this purpose, we use the moment method. We recall from chapter 1 that the
polynomial integrals over the real spheres are given by the following formula:∫

SN−1
R

xl11 . . . x
lN
N dx =

(N − 1)!!l1!! . . . lN !!

(N + Σli − 1)!!

In our case, where N = 4, we obtain the following moment formula:∫
S3
R

x2k =
3!!(2k)!!

(2k + 3)!!

= 2 · 3 · 5 · 7 . . . (2k − 1)

2 · 4 · 6 . . . (2k + 2)

= 2 · (2k)!

2kk!2k+1(k + 1)!

=
1

4k
· 1

k + 1

(
2k

k

)
=

Ck
4k

Thus the variable 2x ∈ C(S3
R) follows the Wigner semicircle law γ1, as claimed. �

Finally, as physicists say, there is no SU2 without SO3, so let us discuss now as well
the group SO3, that will certainly appear later, when doing more complicated things. Let
us start with the following construction, whose goal will become clear in a moment:

Proposition 7.24. The adjoint action SU2 yM2(C), given by

TU(M) = UMU∗

leaves invariant the following real vector subspace of M2(C),

R4 = span(c1, c2, c3, c4)

and so we obtain in this way a group morphism as follows:

SU2 → GL4(R)

Moreover, we obtain in fact in this way a group morphism SU2 → O4.

Proof. Everything here is clear from the multiplication formulae for the Pauli ma-
trices, from Proposition 7.22 above. In fact, all this will come as well as a consequence of
the following result, where the morphism SU2 → O4 is computed explicitely. �

The point now is that when computing the morphism constructed in Proposition 7.24,
we are led to something quite interesting, namely the group SO3, as follows:
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Proposition 7.25. With respect to the standard basis c1, c2, c3, c4 of the vector space
R4 = span(c1, c2, c3, c4), the morphism T : SU2 → GL4(R) is given by:

TU =


1 0 0 0
0 x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
0 2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
0 2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


Thus, when looking at T as a group morphism SU2 → O4, what we have in fact is a group
morphism SU2 → O3, and even SU2 → SO3.

Proof. With notations from Proposition 7.24 and its proof, let us first look at the
action L : SU2 y R4 by left multiplication, LU(M) = UM . Let us write:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4

By using the multiplication formulae in Proposition 7.22 above, we obtain:

UM = (xc1 + yc2 + zc3 + tc4)(ac1 + bc2 + cc3 + dc4)

= (xa− yb− zc− td)c1

+ (xb+ ya+ zd− tc)c2

+ (xc− yd+ za+ tb)c3

+ (xd+ yc− zb+ ta)c4

We conclude that the matrix of the left action considered above is:

LU =


x −y −z −t
y x −t z
z t x −y
t −z y x


Similarly, let us look now at the action R : SU2 y R4 by right multiplication,

RU(M) = MU∗. In order to compute the matrix of this action, let us write:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4

By using the multiplication formulae in Proposition 7.22 above, we obtain:

MU∗ = (ac1 + bc2 + cc3 + dc4)(xc1 − yc2 − zc3 − tc4)

= (ax+ by + cz + dt)c1

+ (−ay + bx− ct+ dz)c2

+ (−az + bt+ cx− dy)c3

+ (−at− bz + cy + dx)c4
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We conclude that the matrix of the right action considered above is:

RU =


x y z t
−y x −t z
−z t x −y
−t −z y x


Now by composing, the matrix of the adjoint matrix in the statement is:

TU = RULU

=


x y z t
−y x −t z
−z t x −y
−t −z y x



x −y −z −t
y x −t z
z t x −y
t −z y x



=


1 0 0 0
0 x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
0 2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
0 2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


Thus, we have the formula in the statement, and this gives the result. �

We can now formulate a famous result, due to Euler-Rodrigues, as follows:

Theorem 7.26. We have a double cover map, obtained via the adjoint representation,

SU2 → SO3

and this map produces the Euler-Rodrigues formula

U =

x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


for the generic elements of SO3.

Proof. This follows indeed from the formula in Proposition 7.25, with the fact that
the morphism SU2 → SO3 constructed there is indeed surjective coming for instance from
the fact that any rotation U ∈ SO3 has an axis, and with the fact that we have indeed a
double cover map being something elementary, obtained by computing the kernel. �

Now back to probability, let us formulate the following definition:

Definition 7.27. The standard Marchenko-Pastur law π1 is given by:

f ∼ γ1 =⇒ f 2 ∼ π1

That is, π1 is the law of the square of a variable following the semicircle law γ1.

Here the fact that π1 is indeed well-defined comes from the fact that a measure is
uniquely determined by its moments. More explicitely now, we have:
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Proposition 7.28. The density of the Marchenko-Pastur law is

π1 =
1

2π

√
4x−1 − 1 dx

and the moments of this measure are the Catalan numbers.

Proof. There are several proofs here, either by using Definition 7.27 and abstract
considerations, or by Stieltjes inversion, of just by cheating. Whis this latter method, the
point is that the moments of the law in the statement can be computed with the change
of variable x = 4 cos2 t, and we are led to the following formula:

Mk =
1

2π

∫ 4

0

√
4x−1 − 1xkdx

=
1

2π

∫ π/2

0

sin t

cos t
· (4 cos2 t)k · 2 cos t sin t dt

=
4k+1

π

∫ π/2

0

cos2k t sin2 t dt

=
4k+1

π
· π

2
· (2k)!!2!!

(2k + 3)!!

= 2 · 4k · (2k)!/2kk!

2k+1(k + 1)!

= Ck

Thus, we are led to the conclusion in the statement. �

We can do now the character computation for SO3, as follows:

Theorem 7.29. The main character of SO3, modified by adding 1 to it, given in
standard Euler-Rodrigues coordinates by

χ = 3x2 − y2 − z2 − t2

follows a squared semicircle law, or Marchenko-Pastur law π1.

Proof. This follows by using the quotient map SU2 → SO3, and the result for SU2.
Let us recall indeed that the elements of SU2 can be parametrized as follows:

U =

(
x+ iy z + it
−z + it x− iy

)
As for the elements of SO3, these can be parametrized as follows:

V =

x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2
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The point now is that, by using these formulae, in the context of Theorem 7.23 and
its proof, the main character of SO3 is then given by:

χ = 4Re(a)2

Now recall from the proof of Theorem 7.23 above that we have:

2Re(a) ∼ γ1

On the other hand, a quick comparison between the moment formulae for the Wigner
and Marchenko-Pastur laws, which are very similar, shows that we have:

f ∼ γ1 =⇒ f 2 ∼ π1

Thus, with f = 2Re(a), we obtain the result in the statement. �

All the above is quite interesting, and we will meet the Marchenko-Pastur law π1, as
well as its parametric versions πt with t > 0, which are still to be defined, several times,
in what follows, in connection with all sorts of probability considerations.

To be more precise, we will see in the next chapter that these are the asymptotic
laws of the Wishart matrices. And later on, in chapters 9-12 below, when doing free
probability, we will see that these are the free analogues of the Poisson laws.

7e. Exercises

There has been a lot of theory in this chapter, and lots of computations as well, both
calculus and combinatorics. As a first instructive exercise on all this, we have:

Exercise 7.30. Find a direct proof of the Wigner theorem, without passing via the
Gaussian matrices.

This is actually how this theorem was first found, via direct computations.

As a second exercise now, in relation with the Catalan numbers, we have:

Exercise 7.31. Look up the various properties of the Catalan numbers,

Ck =
1

k + 1

(
2k

k

)
and write down an account of what you learned, ideally 2 pages or so.

Here by 2 pages we mean 2 pages of statements only, without proofs, the Catalan
numbers being as famous as that.

There have been as well some places in this chapter where things were getting a bit
unclear, due to our lack of knowledge of free probability. We will discuss this later, in
great detail, but as a warm-up exercise, coming a bit in advance, we have:



176 7. WIGNER MATRICES

Exercise 7.32. Try to axiomatize the “circular law”, having as moments the numbers

Mk = |NC2(k)|
which should appear as asymptotic law for the Gaussian matrices.

Obviously, this looks like something quite complicated and abstract, and some good
imagination is needed. In case you don’t find, don’t worry, we will be back to this.

Finally, as a second exercise of the same type, we have:

Exercise 7.33. Try to find what the t > 0 analogue of the Marchenko-Pastur law

π1 =
1

2π

√
4x−1 − 1 dx

should be.

Again, this looks like something quite complicated and abstract, and some good imag-
ination, and love for exploration, science in general, and mathematics in particular, is
needed. And again, in case you don’t find, don’t worry, we will be back to this.



CHAPTER 8

Wishart matrices

8a. Marchenko-Pastur

We discuss in this chapter the complex Wishart matrices, which are the positive
analogues of the Gaussian and Wigner matrices. These matrices were introduced and
studied by Marchenko-Pastur in [65], not long after Wigner’s paper [97], and are of
interest in connection with many questions. They are constructed as follows:

Definition 8.1. A complex Wishart matrix is a random matrix of type

W = Y Y ∗ ∈MN(L∞(X))

with Y being a complex Gaussian matrix, with entries following the law Gt.

There are in fact several possible definitions for the complex Wishart matrices, with
some being more clever and useful that some other. To start with, we will use the above
definition, which comes naturally out of what we know about the Gaussian and Wigner
matrices. Once such matrices studied, we will talk about versions of them, too.

Observe that, due to the formula W = Y Y ∗, the complex Wishart matrices are obvi-
ously positive, in the sense of the positivity notion from chapter 6 above:

W ≥ 0

Due to this key positivity property, and to the otherwise “randomness” of W , such
matrices are useful in many down-to-earth contexts. More on this later.

As usual with the random matrices, we will be interested in computing the asymptotic
laws of our Wishart matrices W , suitably rescaled, in the N → ∞ limit. Quite surpris-
ingly, the computation here leads to the Catalan numbers, but not exactly in the same
way as for the Wigner matrices, the precise result being as follows:

Theorem 8.2. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L∞(X))

with YN being N ×N complex Gaussian of parameter t > 0, we have

Mk

(
WN

N

)
' tkCk

for any exponent k ∈ N, in the N →∞ limit.

177



178 8. WISHART MATRICES

Proof. There are several possible proofs for this result, as follows:

(1) A first method is by using the result that we have from chapter 7 above, for the
Gaussian matrices YN . Indeed, we know from there that we have the following formula,
valid for any colored integer K = ◦ • • ◦ . . . , in the N →∞ limit:

MK

(
YN√
N

)
' t|K|/2|NC2(K)|

With K = ◦ • ◦ • . . . , alternating word of lenght 2k, with k ∈ N, this gives:

Mk

(
YNY

∗
N

N

)
' tk|NC2(K)|

Thus, in terms of the Wishart matrix WN = YNY
∗
N we have, for any k ∈ N:

Mk

(
WN

N

)
' tk|NC2(K)|

The point now is that, by doing some combinatorics, we have:

|NC2(K)| = |NC2(2k)| = Ck

Thus, we are led to the formula in the statement.

(2) A second method, that we will explain now as well, is by proving the result directly,
starting from definitions. The matrix entries of our matrix W = WN are given by:

Wij =
N∑
r=1

YirȲjr

Thus, the normalized traces of powers of W are given by the following formula:

tr(W k) =
1

N

N∑
i1=1

. . .

N∑
ik=1

Wi1i2Wi2i3 . . .Wiki1

=
1

N

N∑
i1=1

. . .
N∑
ik=1

N∑
r1=1

. . .
N∑

rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk

By rescaling now W by a 1/N factor, as in the statement, we obtain:

tr

((
W

N

)k)
=

1

Nk+1

N∑
i1=1

. . .

N∑
ik=1

N∑
r1=1

. . .

N∑
rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk
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By using now the Wick rule, we obtain the following formula for the moments, with
K = ◦ • ◦ • . . . , alternating word of lenght 2k, and with I = (i1r1, i2r1, . . . , ikrk, i1rk):

Mk

(
W

N

)
=

tk

Nk+1

N∑
i1=1

. . .

N∑
ik=1

N∑
r1=1

. . .
N∑

rk=1

#
{
π ∈ P2(K)

∣∣∣π ≤ ker(I)
}

=
tk

Nk+1

∑
π∈P2(K)

#
{
i, r ∈ {1, . . . , N}k

∣∣∣π ≤ ker(I)
}

In order to compute this quantity, we use the standard bijection P2(K) ' Sk. By
identifying the pairings π ∈ P2(K) with their counterparts π ∈ Sk, we obtain:

Mk

(
W

N

)
=

tk

Nk+1

∑
π∈Sk

#
{
i, r ∈ {1, . . . , N}k

∣∣∣is = iπ(s)+1, rs = rπ(s), ∀s
}

Now let γ ∈ Sk be the full cycle, which is by definition the following permutation:

γ = (1 2 . . . k)

The general factor in the product computed above is then 1 precisely when following
two conditions are simultaneously satisfied:

γπ ≤ ker i

π ≤ ker r

Counting the number of free parameters in our moment formula, we obtain:

Mk

(
W

N

)
= tk

∑
π∈Sk

N |π|+|γπ|−k−1

The point now is that the last exponent is well-known to be≤ 0, with equality precisely
when the permutation π ∈ Sk is geodesic, which in practice means that π must come from
a noncrossing partition. Thus we obtain, in the N →∞ limit:

Mk

(
W

N

)
' tkCk

Thus, we are led to the conclusion in the statement. �

As a consequence of the above result, we have a new look on the Catalan numbers,
which is more adapted to our present Wishart matrix considerations, as follows:

Proposition 8.3. The Catalan numbers Ck = |NC2(2k)| appear as well as

Ck = |NC(k)|
where NC(k) is the set of all noncrossing partitions of {1, . . . , k}.

Proof. This follows indeed from the proof of Theorem 8.2 above. �
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The direct explanation for the above formula, relating noncrossing partitions and
pairings, comes form the following result, which is very useful, and good to know:

Proposition 8.4. We have a bijection between noncrossing partitions and pairings

NC(k) ' NC2(2k)

which is constructed as follows:

(1) The application NC(k)→ NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k) → NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

Proof. The fact that the two operations in the statement are indeed inverse to each
other is clear, by computing the corresponding two compositions, with the remark that
the construction of the fattening operation requires the partitions to be noncrossing. �

As a comment here, the above result is something quite remarkable, in view of the
total lack of relation between P (k) and P2(2k). Thus, taking for granted that “classical
probability is about partitions, and free probability is about noncrossing partitions”, a
general principle that emerges from our study so far, and that we will fully justify later
on, we have in Proposition 8.4 above an endless source of things to be done, in the free
case, having no classical counterpart. We will keep this discovery in our pocket, and have
it pulled out of there, for some magic, on several occasions, in what follows.

Getting back now to Wishart matrices, at t = 1 we are led to the question of finding
the law having the Catalan numbers as moments. We already know the answer to this
question from chapter 7, and more specifically from our considerations there at the end,
regarding SO3, but here is as well an independent, pedestian solution to this question:

Proposition 8.5. The real measure having the Catalan numbers as moments is

π1 =
1

2π

√
4x−1 − 1 dx

called Marchenko-Pastur law of parameter 1.

Proof. As already mentioned, this is something that we already know, because we
came upon this when talking about SO3. Here are two alternative proofs:

(1) By using the Stieltjes inversion formula. In order to apply this formula, we need
a simple formula for the Cauchy transform. For this purpose, our starting point will be
the formula from chapter 7 for the generating series of the Catalan numbers, namely:

∞∑
k=0

Ckz
k =

1−
√

1− 4z

2z
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By using this formula with z = ξ−1, we obtain the following formula:

G(ξ) = ξ−1

∞∑
k=0

Ckξ
−k

= ξ−1 · 1−
√

1− 4ξ−1

2ξ−1

=
1

2

(
1−

√
1− 4ξ−1

)
=

1

2
− 1

2

√
1− 4ξ−1

With this formula in hand, let us apply now the Stieltjes inversion formula, from
chapter 7 above. The first term, namely 1/2, which is trivial, will not contribute to the
density. As for the second term, which is something non-trivial, this will contribute to
the density, the rule here being that the square root

√
1− 4ξ−1 will be replaced by the

“dual” square root
√

4x−1 − 1 dx, and that we have to multiply everything by − 1
π
.

Thus, by Stieltjes inversion we obtain the density in the statement, namely:

dµ(x) = − 1

π
· −1

2

√
4x−1 − 1 dx

=
1

2π

√
4x−1 − 1 dx

(2) Alternatively, if the above was too complicated, we can simply cheat, as we actually
did in chapter 7 above, when talking about SO3. Indeed, the moments of the law π1 in
the statement can be computed with the change of variable x = 4 cos2 t, as follows:

Mk =
1

2π

∫ 4

0

√
4x−1 − 1xkdx

=
1

2π

∫ π/2

0

sin t

cos t
· (4 cos2 t)k · 2 cos t sin t dt

=
4k+1

π

∫ π/2

0

cos2k t sin2 t dt

=
4k+1

π
· π

2
· (2k)!!2!!

(2k + 3)!!

= 2 · 4k · (2k)!/2kk!

2k+1(k + 1)!

= Ck

Thus, we are led to the conclusion in the statement. �

Now back to the Wishart matrices, we are led to the following result:
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Theorem 8.6. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L∞(X))

with YN being N ×N complex Gaussian of parameter 1, we have

WN

N
∼ 1

2π

√
4x−1 − 1 dx

with N →∞, with the limiting measure being the Marchenko-Pastur law π1.

Proof. This follows indeed from Theorem 8.2 and Proposition 8.5. �

We have as well a parametric version of the above result, as follows:

Theorem 8.7. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L∞(X))

with YN being N ×N complex Gaussian of parameter t > 0, we have

WN

tN
∼ 1

2π

√
4x−1 − 1 dx

with N →∞, with the limiting measure being the Marchenko-Pastur law π1.

Proof. This follows again from Theorem 8.2 and Proposition 8.5. To be more precise,
recall the main formula from Theorem 8.2, for the matrices as above, namely:

Mk

(
WN

N

)
' tkCk

By dividing by tk, this formula can be written as follows:

Mk

(
WN

tN

)
' Ck

Now by using Proposition 8.5, we are led to the conclusion in the statement. �

Summarizing, we have deduced the Marchenko-Pastur theorem from the theorem re-
garding the Gaussian matrices, via some moment combinatorics. It is possible as well to
be a bit more direct here, by passing through the Wigner theorem, and then recovering
the Marchenko-Pastur law directly from the Wigner semicircle law, by performing a kind
of square operation, but this is more or less the same thing as we did above.
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8b. Parametric version

We discuss here a generalization of the above results, motivated by a whole array
of concrete questions, and bringing into the picture a “true” parameter t > 0, which is
different from the parameter t > 0 used above, which is something quite trivial.

For this purpose, let us go back to the definition of the Wishart matrices. There were
as follows, with Y being a N ×N matrix with i.i.d. entries, each following the law Gt:

W = Y Y ∗

The point now is that, more generally, we can use in this W = Y Y ∗ construction
a N × M matrix Y with i.i.d. entries, each following the law Gt, with M ∈ N being
arbitrary. Thus, we have a new parameter, and by ditching the old parameter t > 0,
which was something not very interesting, we are led to the following definition, which is
the “true” definition of the Wishart matrices, from [65] and the subsequent literature:

Definition 8.8. A complex Wishart matrix is a N ×N matrix of the form

W = Y Y ∗

where Y is a N ×M matrix with i.i.d. entries, each following the law G1.

As before with our previous Wishart matrices, that the new ones generalize, up to
setting t = 1, we have W ≥ 0, by definition. Due to this property, and to the otherwise
“randomness” of W , these matrices are useful in many contexts. More on this later.

In order to see what is going on, combinatorially, let us compute moments. The result
here is substantially more interesting than that for the previous Wishart matrices, with
the new revelant numeric parameter being now the number t = M/N , as follows:

Theorem 8.9. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L∞(X))

with YN being N ×M complex Gaussian of parameter 1, we have

Mk

(
WN

N

)
'

∑
π∈NC(k)

t|π|

for any exponent k ∈ N, in the M = tN →∞ limit.

Proof. This is something which is very standard, as follows:

(1) Before starting, let us clarify the relation with our previous Wishart matrix results.
In the case M = N we have t = 1, and the formula in the statement reads:

Mk

(
WN

N

)
' |NC(k)|
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Thus, what we have here is the previous Wishart matrix formula, in full generality, at
the value t = 1 of our old parameter t > 0.

(2) Observe also that by rescaling, we can obtain if we want from this the previous
Wishart matrix formula, in full generality, at any value t > 0 of our old parameter. Thus,
things fine, we are indeed generalizing what we did before.

(3) In order to prove now the formula in the statement, we proceed as usual, by using
the Wick formula. The matrix entries of our Wishart matrix W = WN are given by:

Wij =
M∑
r=1

YirȲjr

Thus, the normalized traces of powers of W are given by the following formula:

tr(W k) =
1

N

N∑
i1=1

. . .
N∑
ik=1

Wi1i2Wi2i3 . . .Wiki1

=
1

N

N∑
i1=1

. . .
N∑
ik=1

M∑
r1=1

. . .
M∑
rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk

By rescaling now W by a 1/N factor, as in the statement, we obtain:

tr

((
W

N

)k)
=

1

Nk+1

N∑
i1=1

. . .
N∑
ik=1

M∑
r1=1

. . .
M∑
rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk

(4) By using now the Wick rule, we obtain the following formula for the moments,
with K = ◦ • ◦ • . . . , alternating word of lenght 2k, and I = (i1r1, i2r1, . . . , ikrk, i1rk):

Mk

(
W

N

)
=

1

Nk+1

N∑
i1=1

. . .
N∑
ik=1

M∑
r1=1

. . .
M∑
rk=1

#
{
π ∈ P2(K)

∣∣∣π ≤ ker(I)
}

=
1

Nk+1

∑
π∈P2(K)

#
{
i ∈ {1, . . . , N}k, r ∈ {1, . . . ,M}k

∣∣∣π ≤ ker(I)
}

(5) In order to compute this quantity, we use the standard bijection P2(K) ' Sk. By
identifying the pairings π ∈ P2(K) with their counterparts π ∈ Sk, we obtain:

Mk

(
W

N

)
=

1

Nk+1

∑
π∈Sk

#
{
i ∈ {1, . . . , N}k, r ∈ {1, . . . ,M}k

∣∣∣is = iπ(s)+1, rs = rπ(s)

}
Now let γ ∈ Sk be the full cycle, which is by definition the following permutation:

γ = (1 2 . . . k)
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The general factor in the product computed above is then 1 precisely when following
two conditions are simultaneously satisfied:

γπ ≤ ker i

π ≤ ker r

Counting the number of free parameters in our expectation formula, we obtain:

Mk

(
W

N

)
=

1

Nk+1

∑
π∈Sk

N |γπ|M |π|

=
∑
π∈Sk

N |γπ|−k−1M |π|

(6) Now by using the same arguments as in the case M = N , from the proof of
Theorem 8.2 above, we conclude that in the M = tN →∞ limit the permutations π ∈ Sk
which matter are those coming from noncrossing partitions, and so that we have:

Mk

(
W

N

)
'

∑
π∈NC(k)

N−|π|M |π| =
∑

π∈NC(k)

t|π|

We are therefore led to the conclusion in the statement. �

In order to recapture now the density out of the moments, we can of course use the
Stieltjes inversion formula, but the computations here are a bit opaque. So, inspired from
what happens at t = 1, let us cheat a bit, and formulate a nice definition, as follows:

Definition 8.10. The Marchenko-Pastur law πt of parameter t > 0 is given by:

a ∼ γt =⇒ a2 ∼ πt

That is, πt the law of the square of a variable following the law γt.

This is certainly very nice, and we know from chapter 7 above that at t = 1 we obtain
indeed the Marchenko-Pastur law π1, as constructed above. In general, we have:

Proposition 8.11. The Marchenko-Pastur law of parameter t > 0 is

πt = max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

the support being [0, 4t2], and the moments of this measure are

Mk =
∑

π∈NC(k)

t|π|

exactly as for the asymptotic moments of the complex Wishart matrices.
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Proof. This follows as usual, by doing some computations, either combinatorics, or
calculus. To be more precise, we have three formulae for πt to be connected, namely the
one in Definition 8.10, and the two ones from the present statement, and the connections
between them can be established exactly as we did before, at t = 1. �

Summarizing, we have now a definition for the Marchenko-Pastur law πt, which is quite
elegant, via Definition 8.10 above, but which still requires some computations, performed
in the proof of Proposition 8.11. We will see later on, in chapters 9-12, an even more
elegant definition for πt, out of its particular case π1 which was well understood, simply
obtained by considering the corresponding 1-parameter free convolution semigroup.

We will also see that πt appears as the “free version” of the Poisson law pt, and that
this can be even taken as a definition for πt, if one really wants to. More on this later.

Now back to the complex Wishart matrices that we are interested in, in this chapter,
we can now formulate a final result regarding them, as follows:

Theorem 8.12. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L∞(X))

with YN being N ×M complex Gaussian of parameter 1, we have

WN

N
∼ max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

with M = tN →∞, with the limiting measure being the Marchenko-Pastur law πt.

Proof. This follows indeed from Theorem 8.9 and Proposition 8.11. �

As it was the case with the Gaussian and Wigner matrices, there are many other things
that can be said about the complex Wishart matrices, as variations of the above. We refer
here to the standard random matrix literature [1], [66], [69], [90]. We will be back to this
right below, in the remainder of this chapter, with some wizarding computations from [4],
and then more systematically in chapter 11 below, when doing free probability.

8c. Block modifications

We discuss in what follows a number of further results, regarding some more special-
ized random matrices, and more specifically the matrices obtained by performing certain
suitable “block modifications” to the complex Wishart matrices.

Our main goal here will be that of explaining a surprising result, due to Aubrun [4],
stating that when suitably block-transposing the entries of a complex Wishart matrix, we
obtain as asymptotic distribution a shifted version of Wigner’s semicircle law.
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As before with the usual complex Wishart matrices, there will be some non-trivial
combinatorics here, that we will fully understand only later, in chapters 9-12 below, when
doing free probability. Thus, the material below will be an introduction to that.

Let us begin with some general block modification considerations, following the more
recent papers [20], [21]. We have the following construction:

Definition 8.13. Given a Wishart dn× dn matrix, appearing as

W = Y Y ∗ ∈Mdn(L∞(X))

with Y being a complex Gaussian dn× dm matrix, and a linear map

ϕ : Mn(C)→Mn(C)

we consider the following matrix, obtained by applying ϕ to the n× n blocks of W ,

W̃ = (id⊗ ϕ)W ∈Mdn(L∞(X))

and call it block-modified Wishart matrix.

Here we are using of course some standard tensor product identifications, the details
being as follows. Let Y be a complex Gaussian dn× dm matrix, as above:

Y ∈Mdn×dm(L∞(X))

We can then form the corresponding complex Wishart matrix, as follows:

W = Y Y ∗ ∈Mdn(L∞(X))

The size of this matrix being a composite number, N = dn, we can regard this matrix
as being a n × n matrix, with random d × d matrices as entries. Equivalently, by using
standard tensor product notations, this amounts in regarding W as follows:

W ∈Md(L
∞(X))⊗Mn(C)

With this done, we can come up with our linear map ϕ : Mn(C)→Mn(C), and apply
it to the tensors on the right. We obtain in this way a matrix as follows:

W̃ = (id⊗ ϕ)W ∈Md(L
∞(X))⊗Mn(C)

Finally, we can forget now about tensors, and as a conclusion to all this, we have
constructed a matrix as follows, that we can call block-modified Wishart matrix:

W̃ ∈Mdn(L∞(X))

This was for the detail of Definition 8.13 above, which is something quite tricky,
requiring a good knowledge of the tensor product calculus.

In practice now, what we mostly need for fully understanding Definition 8.13 above
are examples. Following the paper by Aubrun [4], and then the series of papers by Collins
and Nechita [34], [35], [36], we have the following basic, and interesting examples:
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Definition 8.14. We have the following examples of block-modified Wishart matrices
W̃ = (id⊗ ϕ)W , coming from various linear maps ϕ : Mn(C)→Mn(C):

(1) Wishart matrices: W̃ = W , obtained via ϕ = id.
(2) Aubrun matrices: W̃ = (id⊗ t)W , with t being the transposition.
(3) Collins-Nechita one: W̃ = (id⊗ ϕ)W , with ϕ = tr(.)1.
(4) Collins-Nechita two: W̃ = (id⊗ ϕ)W , with ϕ erasing the off-diagonal part.

These examples, whose mathematical construction is something very elementary, but
which appear in a wide context of interesting situations, for the most in connection with
various questions in quantum physics [4], [34], [35], [36], [65], will actually serve as a
main motivation for what we will be doing, in what follows. More on this later.

Getting back now to the general case, that of Definition 8.13 above, the linear map
ϕ : Mn(C) → Mn(C) there is certainly useful for understanding the construction of the
block-modified Wishart matrix W̃ = (id⊗ ϕ)W , as illustrated by the above examples.

In practice, however, we would like to have as block-modification “data” something
more concrete, such as a usual matrix. To be more precise, we would like to use:

Proposition 8.15. We have a correspondence between linear maps

ϕ : Mn(C)→Mn(C)

and square matrices Λ ∈Mn(C)⊗Mn(C), given by the formula

Λab,cd = ϕ(eac)bd

where eab ∈Mn(C) are the standard generators of the matrix algebra Mn(C), given by the
formula eab : eb → ea, with {e1, . . . , en} being the standard basis of Cn.

Proof. This is standard linear algebra. Given a linear map ϕ : Mn(C)→Mn(C), we
can associated to it numbers Λab,cd ∈ C by the formula in the statement, namely:

Λab,cd = ϕ(eac)bd

Now by using these n4 numbers, we can construct a n2 × n2 matrix, as follows:

Λ =
∑
abcd

Λab,cdeac ⊗ ebd ∈Mn(C)⊗Mn(C)

Thus, we have constructed a correspondence ϕ→ Λ, and since this correspondence is
injective, and the dimensions match, this correspondence is bijective, as claimed. �

Now by getting back to the block-modified Wishart matrices, we have:
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Proposition 8.16. Given a Wishart dn× dn matrix W = Y Y ∗, and a linear map

ϕ : Mn(C)→Mn(C)

the entries of the corresponding block-modified matrix W̃ = (id⊗ ϕ)W are given by

W̃ia,jb =
∑
cd

Λca,dbWic,jd

where Λ ∈Mn(C)⊗Mn(C) is the square matrix associated to ϕ, as above.

Proof. Again, this is trivial linear algebra, coming from the following computation:

W̃ia,jb =
∑
cd

Wic,jdϕ(ecd)ab

=
∑
cd

Λca,dbWic,jd

Thus, we are led to the conclusion in the statement. �

At the level of the main examples, from Definition 8.14 above, the very basic linear
maps ϕ : Mn(C)→Mn(C) used there can only correspond to the most basic examples of
matrices Λ ∈Mn(C)⊗Mn(C), via the correspondence in Proposition 8.15. This is indeed
the case, and we will be back to this in the moment, when discussing these examples.

Going ahead now with probability, given a linear map ϕ : Mn(C)→Mn(C) as above,
or equivalently a square matrix Λ ∈Mn(C)⊗Mn(C) as above, we would like to study the
distribution of the corresponding block-modified Wishart matrix W̃ = (id⊗ ϕ)W .

We will use as usual the moment method, the plan being first to compute the moments,
by using the Wick formula, then to work out the formula of the asymptotic moments, and
finally to recover the asymptotic law, out of these asymptotic moments.

However, things will be more tricky than usual in the present setting, and in what
regards the moments, we will use here a more general formalism, as follows:

Definition 8.17. The generalized colored moments of a random matrix

W ∈MN(L∞(X))

with respect to a colored integer e = e1 . . . ep, and a permutation σ ∈ Sp, are the numbers

Mσ
e (W ) =

1

N |σ|
E

 ∑
i1,...,ip

W e1
i1iσ(1)

. . .W
ep
ipiσ(p)


where |σ| is the number of cycles of σ.
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This is obviously something quite technical, in the spirit of the free probability work
in [71], that we will need in what follows. In order to understand how these generalized
moments work, consider the standard cycle in Sp, namely:

γ = (1→ 2→ . . .→ p→ 1)

If we use this cycle γ ∈ Sp as our permutation σ ∈ Sp in the above definition, the
corresponding generalized moment of a random matrix W is then the usual moment:

Mγ
e (W ) =

1

N
E

 ∑
i1,...,ip

W e1
i1i2

. . .W
ep
ipi1


= (E ◦ tr)(W e1 . . .W ep)

In general, we can decompose the computation of Mσ
e (W ) over the cycles of σ, and

we obtain in this way a certain product of moments of W . See [71].

As a second illustration now, in relation with the usual square matrices, and more
specifically with the square matrices Λ ∈ Mn(C) ⊗Mn(C) as in Proposition 8.15 above,
we have the following formula, that we will use many times in what follows:

Proposition 8.18. Given a usual square matrix, of type

Λ ∈Mn(C)⊗Mn(C)

we have the following generalized moment formula

(Mσ
e ⊗M τ

e )(Λ) =
1

n|σ|+|τ |

∑
i1,...,ip

∑
j1,...,jp

Λe1
i1j1,iσ(1)jτ(1)

. . . . . .Λ
ep
ipjp,iσ(p)jτ(p)

valid for any two permutations σ, τ ∈ Sp, and any colored integer e = e1 . . . ep.

Proof. This is something obvious, applying the construction in Definition 8.17 above
with N = n2, X = {.}, W = Λ, and then making a tensor product of the corresponding
moments Mσ

e , M τ
e , regarded as linear functionals on Mn(C)⊗Mn(C). �

Consider now the embedding NCp ⊂ Sp obtained by “cycling inside each block”. That
is, each block b = {b1, . . . , bk} with b1 < . . . < bk of a given noncrossing partition σ ∈ NCp
produces by definition the cycle (b1 . . . bk) of the corresponding permutation σ ∈ Sp.

Observe that the one-block partition γ ∈ NCp corresponds in this way to the standard
cycle γ ∈ Sp. Also, the number of blocks |σ| of a partition σ ∈ NCp corresponds in this
way to the number of cycles |σ| of the corresponding permutation σ ∈ Sp.

With these conventions, we have the following result, from [20], [21], generalizing our
various Wishart matrix moment computations that we did so far, in this book:



8C. BLOCK MODIFICATIONS 191

Theorem 8.19. The asymptotic moments of a block-modified Wishart matrix

W̃ = (id⊗ ϕ)W

with parameters d,m, n ∈ N, as above, are given by the formula

lim
d→∞

Me

(
W̃

d

)
=
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ)

where Λ ∈Mn(C)⊗Mn(C) is the square matrix associated to ϕ : Mn(C)→Mn(C).

Proof. We use the formula for the matrix entries of W̃ , directly in terms of the
matrix Λ associated to the map ϕ, from Proposition 8.16 above, namely:

W̃ia,jb =
∑
cd

Λca,dbWic,jd

By conjugating this formula, we obtain the following formula for the entries of the
adjoint matrix W̃ ∗, that we will need as well:

W̃ ∗
ia,jb =

∑
cd

Λ̄db,caW̄jd,ic

=
∑
cd

Λ∗ca,dbWic,jd

Thus, we have the following global formula, valid for any exponent e ∈ {1, ∗}:

W̃ e
ia,jb =

∑
cd

Λe
ca,dbWic,jd

In order to compute the moments of W̃ , observe first that we have:

tr(W̃ e1 . . . W̃ ep) =
1

dn

∑
irar

∏
s

W̃ es
isas,is+1as+1

=
1

dn

∑
irarcrdr

∏
s

Λes
csas,dsas+1

Wiscs,is+1ds

=
1

dn

∑
irarcrdrjrbr

∏
s

Λes
csas,dsas+1

Yiscs,jsbsȲis+1ds,jsbs

The average of the general term can be computed by the Wick rule, which gives:

E

(∏
s

Yiscs,jsbsȲis+1ds,jsbs

)
= #

{
σ ∈ Sp

∣∣∣iσ(s) = is+1, cσ(s) = ds, jσ(s) = js, bσ(s) = bs

}
Let us look now at the above sum. The i, j, b indices range over sets having respectively

d, d,m elements, and they have to be constant under the action of:

σγ−1, σ, σ
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Thus when summing over these i, j, b indices we simply obtain a factor as follows:

f = d|σγ
−1|d|σ|m|σ|

Thus, we obtain the following moment formula:

(E ◦ tr)(W̃ e1 . . . W̃ ep) =
1

dn

∑
σ∈Sp

d|σγ
−1|(dm)|σ|

∑
arcr

∏
s

Λes
csas,cσ(s)as+1

On the other hand, we know from Proposition 8.18 above that the generalized moments
of the matrix Λ ∈Mn(C)⊗Mn(C) are given by the following formula:

(Mσ
e ⊗M τ

e )(Λ) =
1

n|σ|+|τ |

∑
i1...ip

∑
j1...jp

Λe1
i1j1,iσ(1)jτ(1)

. . . . . .Λ
ep
ipjp,iσ(p)jτ(p)

By combining the above two formulae, we obtain the following moment formula:

(E ◦ tr)(W̃ e1 . . . W̃ ep) =
∑
σ∈Sp

d|σ|+|σγ
−1|−1(mn)|σ|(Mσ

e ⊗Mγ
e )(Λ)

We use now the standard fact that for σ ∈ Sp we have an inequality as follows, with
equality precisely when σ ∈ NCp:

|σ|+ |σγ−1| ≤ p+ 1

Thus in the d→∞ limit the sum restricts over the partitions σ ∈ NCp, and we get:

lim
d→∞

Me

(
W̃
)

= dp
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ)

Thus, we are led to the conclusion in the statement. �

With the above result in hand, we are left with the question of recovering the asymp-
totic law of W̃ = (id⊗ ϕ)W , out of the asymptotic moments found there.

The question here only involves the matrix Λ ∈ Mn(C) ⊗ Mn(C), and to be more
precise, given such a matrix, we would like to find the real or complex probability measure,
or abstract distribution, having as colored moments the following numbers:

Me =
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ)

Although this is basically a linear algebra problem, the underlying linear algebra is
of quite difficult type, and this question cannot really be solved, in general. We will see
however that this question can be solved for our basic examples, coming from Definition
8.14 above, and more generally, for a certain joint generalization of all these examples.

In short, we are now into troubled waters, and once again by following [20], [21], let
us introduce, as a solution to all this, the following technical notion:
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Definition 8.20. We call a square matrix Λ ∈Mn(C)⊗Mn(C) multiplicative when

(Mσ
e ⊗Mγ

e )(Λ) = (Mσ
e ⊗Mσ

e )(Λ)

holds for any p ∈ N, any exponents e1, . . . , ep ∈ {1, ∗}, and any σ ∈ NCp.

This notion is something quite technical, but we will see many examples in what fol-
lows. For instance, the square matrices Λ coming from the basic linear maps ϕ appearing
in Definition 8.14 above are all multiplicative. More on this later.

Regarding now the output measure, that we want to compute, this can only appear
as some kind of modification of the Marchenko-Pastur law πt. Again by being a bit
mysterious, and again following [20], [21], let us formulate as well:

Proposition 8.21. Given a real probability measure µ, define its R-transform by:

Gµ(ξ) =

∫
R

dµ(t)

ξ − t
=⇒ Gµ

(
Rµ(ξ) +

1

ξ

)
= ξ

The R-transform of the Marchenko-Pastur law πt is then given by:

Rπt(ξ) =
t

1− ξ

Based on this, a measure µ having as R-transform a function of type

Rµ(ξ) =
s∑
i=1

cizi
1− ξzi

with ci > 0 and zi ∈ R, is called modified Marchenko-Pastur law.

Proof. All this might seem a bit mysterious, but hey, we are into difficult mathe-
matics here, so let us just prove the result as stated, and we’ll understand later what’s
behind these computations. We can prove the result in two steps, as follows:

(1) At t = 1, we know that the moments of π1 are the Catalan numbers:

Mk = Ck

As explained in the proof of Proposition 8.5 above, we obtain from this that the
corresponding Cauchy transform is given by the following formula:

G(ξ) =
1

2
− 1

2

√
1− 4ξ−1
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Now with R(ξ) = 1
1−ξ being the function in the statement, at t = 1, we have:

G

(
R(ξ) +

1

ξ

)
= G

(
1

1− ξ
+

1

ξ

)
= G

(
1

ξ − ξ2

)
=

1

2
− 1

2

√
1− 4ξ + 4ξ2

=
1

2
− 1

2
(1− 2ξ)

= ξ

Thus, the function R(ξ) = 1
1−ξ is indeed the R-transform of π1, in the above sense.

(2) In the general case, t > 0, the proof is similar, by using the moment formula for πt,
that we know from the above. We will actually not really need this in what follows, with
the present result mostly serving as an illustration for the modified Marchenko-Pastur laws
that we want to introduce. Of course, we will be back to this with details when really
needed, and more specifically in chapters 9-12 below, when doing free probability. �

As a comment on the above result, there is a similarity here with the theory of the
compound Poisson laws from chapter 2 above. The truth regarding all this is that the
Marchenko-Pastur law πt is the free Poisson law of parameter t, the modified Marchenko-
Pastur laws, as introduced above, are the general compound free Poisson laws, and finally
the mysterious R-transform used above is the Voiculescu R-transform [86], which is the
analogue of the log of the Fourier transform in free probability. More on this later.

Based on this analogy, however, we can label our modified Marchenko-Pastur laws, in
the same way as we labelled in chapter 2 the compound Poisson laws, as follows:

Definition 8.22. We denote by πρ the modified Marchenko-Pastur law satisfying

Rµ(ξ) =
s∑
i=1

cizi
1− ξzi

with ci > 0 and zi ∈ R, with ρ being the following measure,

ρ =
s∑
i=1

ciδzi

which is a discrete positive measure in the complex plane, not necessarily of mass 1.

As basic examples here, for ρ = δ1 we obtain the Marchenko-Pastur law π1, and more
generally for ρ = tδ1 with t > 0 we obtain the Marchenko-Pastur law πt, as shown by
Proposition 8.21 above. More on this later, when doing free probability.
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Getting back now to the block-modified Wishart matrices, and to the formula in
Theorem 8.19, the above abstract notions, from Definition 8.20 and from Definition 8.22,
are exactly what we need for further improving all this. Again by following [20], [21], we
have the following result, substantially building on Theorem 8.19 above:

Theorem 8.23. Consider a block-modified Wishart matrix

W̃ = (id⊗ ϕ)W

and assume that the matrix Λ ∈Mn(C)⊗Mn(C) associated to ϕ is multiplicative. Then

W̃

d
∼ πmnρ

holds, in moments, in the d→∞ limit, where ρ = law(Λ).

Proof. This is something quite tricky, using all the above:

(1) Our starting point is the asymptotic moment formula found in Theorem 8.19 above,
for an arbitrary block-modified Wishart matrix, namely:

lim
d→∞

Me

(
W̃

d

)
=
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ)

(2) Since our modification matrix Λ ∈Mn(C)⊗Mn(C) was assumed to be multiplica-
tive, in the sense of Definition 8.20 above, this formula reads:

lim
d→∞

Me

(
W̃

d

)
=
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mσ

e )(Λ)

(3) On the other hand, a bit of calculus and combinatorics show that, in the context
of Definition 8.22 above, given a square matrix Λ ∈Mn(C)⊗Mn(C), having distribution
ρ = law(Λ), the moments of the modified Marchenko-Pastur law πmnρ are given by the
following formula, for any choice of the extra parameter m ∈ N:

Me(πmnρ) =
∑

σ∈NCp

(mn)|σ|(M e
σ ⊗M e

σ)(Λ)

(4) The point now is that with this latter formula in hand, our previous asymptotic
moment formula for the block-modified Wishart matrix W̃ simply reads:

lim
d→∞

Me

(
W̃

d

)
= Me(πmnρ)

Thus we have indeed W̃
d
∼ πmnρ, in the d→∞ limit, as stated. �
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All the above was of course a bit technical, but we will come back later to this, with
some further details, once we will have a better understanding of the R-transform, of the
free Poisson limit theorem, and of the other things which are hidden in all the above.

In any case, welcome to free probability. Or perhaps to theoretical physics. The above
theorem was our first free probability one, in this book, and many other to follow.

Let us we work out now some explicit consequences of Theorem 8.23, by using some
special classes of modification maps ϕ : Mn(C)→Mn(C). Let us begin with:

Definition 8.24. Let P (k, l) be the set of partitions between an upper row of k points,
and a lower row of l points. Associated to any π ∈ P (k, l) is the linear map

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

between tensor powers of CN , called “easy”, with the Kronecker type symbol on the right
being given by δπ = 1 when the indices fit, and δπ = 0 otherwise.

Observe the connection with notion of easy group, from chapters 3-4 above. We will
be back to this later in this book, when talking about easy quantum groups.

Now back to our questions, we have the following notion:

Definition 8.25. Associated to any partition π ∈ P (2s, 2s) is the linear map

ϕπ(ea1...as,c1...cs) =
∑
b1...bs

∑
d1...ds

δπ

(
a1 . . . as c1 . . . cs
b1 . . . bs d1 . . . ds

)
eb1...bs,d1...ds

obtained from Tπ by contracting all the tensors, via the following operation:

ei1 ⊗ . . .⊗ ei2s → ei1...is,is+1...i2s

Here, as in Definition 8.24 above, {e1, . . . , eN} is the standard basis of CN , with N ∈ N
being some fixed integer, and {eij} is the corresponding basis of MN(C).

In relation with our Wishart matrix considerations, the point is that the above linear
map ϕπ can be viewed as a “block-modification” map, as follows:

ϕπ : MNs(C)→MNs(C)

In order to verify that the corresponding matrices Λπ are multiplicative, we will need
to check that all the functions ϕ(σ, τ) = (M e

σ ⊗M e
τ )(Λπ) have the following property:

ϕ(σ, γ) = ϕ(σ, σ)

For this purpose, we can use the following result, coming from [21]:
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Proposition 8.26. The following functions ϕ : NCp×NCp → R are “multiplicative”,
in the sense that they satisfy the condition ϕ(σ, γ) = ϕ(σ, σ):

(1) ϕ(σ, τ) = |στ−1| − |τ |.
(2) ϕ(σ, τ) = |στ | − |τ |.
(3) ϕ(σ, τ) = |σ ∧ τ | − |τ |.

Proof. All this is elementary, and can be proved as follows:

(1) This follows indeed from the following computation:

ϕ1(σ, γ) = |σγ−1| − 1 = p− |σ| = ϕ1(σ, σ)

(2) This follows indeed from the following computation:

ϕ2(σ, γ) = |σγ| − 1 = |σ2| − |σ| = ϕ2(σ, σ)

(3) This follows indeed from the following computation:

ϕ3(σ, γ) = |γ| − |γ| = 0 = |σ| − |σ| = ϕ3(σ, σ)

Thus, we are led to the conclusions in the statement. �

As an illustration, let us discuss the case s = 1. There are 15 partitions π ∈ P (2, 2),
and among them, the most “basic” are the 4 partitions π ∈ Peven(2, 2). We have:

Proposition 8.27. The partitions π ∈ Peven(2, 2) are as follows,

π1 =

[
◦ •
◦ •

]
, π2 =

[
◦ •
• ◦

]
, π3 =

[
◦ ◦
• •

]
, π4 =

[
◦ ◦
◦ ◦

]
with the associated linear maps ϕπ : Mn(C)→MN(C) being as follows:

ϕ1(A) = A , ϕ2(A) = At , ϕ3(A) = Tr(A)1 , ϕ4(A) = Aδ

The corresponding matrices Λπ are all multiplicative, in the sense of Definition 8.20.

Proof. We use the general formula in Definition 8.25 above. In the case s = 1, that
we are interested in here, this formula becomes:

ϕπ(eac) =
∑
bd

δπ

(
a c
b d

)
ebd

In the case of the 4 partitions in the statement, such maps are given by:

ϕ1(eac) = eac

ϕ2(eac) = eca

ϕ3(eac) = δac
∑
b

ebb

ϕ4(eac) = δaceaa
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Thus, we obtain the formulae in the statement. Regarding now the associated square
matrices, appearing via Λab,cd = ϕ(eac)bd, these are given by:

Λ1
ab,cd = δabδcd

Λ2
ab,cd = δadδbc

Λ3
ab,cd = δacδbd

Λ4
ab,cd = δabcd

Since these matrices are all self-adjoint, we can assume that all the exponents are 1
in Definition 8.20, and the condition there becomes:

(Mσ ⊗Mγ)(Λ) = (Mσ ⊗Mσ)(Λ)

In order to check this condition, observe that for the above 4 matrices, we have:

(Mσ ⊗M τ )(Λ1) =
1

n|σ|+|τ |

∑
i1...ip

δiσ(1)iτ(1) . . . δiσ(p)iτ(p) = n|στ
−1|−|σ|−|τ |

(Mσ ⊗M τ )(Λ2) =
1

n|σ|+|τ |

∑
i1...ip

δi1iστ(1) . . . δipiστ(p) = n|στ |−|σ|−|τ |

(Mσ ⊗M τ )(Λ3) =
1

n|σ|+|τ |

∑
i1...ip

∑
j1...jp

δi1iσ(1)δj1jτ(1) . . . δipiσ(p)δjpjτ(p) = 1

(Mσ ⊗M τ )(Λ4) =
1

n|σ|+|τ |

∑
i1...ip

δi1iσ(1)iτ(1) . . . δipiσ(p)iτ(p) = n|σ∧τ |−|σ|−|τ |

By using now the results in Proposition 8.26 above, this gives the result. �

Summarizing, the partitions π ∈ Peven(2, 2) provide us with some concrete input for
Theorem 8.23. The point now is that, when using this input, we obtain the main known
computations for the block-modified Wishart matrices, from [4], [34], [35], [65]:

Theorem 8.28. The asymptotic distribution results for the block-modified Wishart
matrices coming from the partitions π1, π2, π3, π4 ∈ Peven(2, 2) are as follows:

(1) Marchenko-Pastur: 1
d
W ∼ πt, where t = m/n.

(2) Aubrun type: 1
d
(id⊗ t)W ∼ πν, with ν = m(n−1)

2
δ−1 + m(n+1)

2
δ1.

(3) Collins-Nechita one: n(id⊗ tr(.)1)W ∼ πt, where t = mn.
(4) Collins-Nechita two: 1

d
(id⊗ (.)δ)W ∼ πm.

Proof. All these results follow from Theorem 8.23, with the maps ϕ1, ϕ2, ϕ3, ϕ4 in
Proposition 8.27 producing the 4 matrices in the statement, modulo some rescalings, and
with the computation of the corresponding distributions being as follows:
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(1) Here Λ =
∑

ac eac ⊗ eac, and so Λ = nP , where P is the rank one projection on∑
a ea ⊗ ea ∈ Cn ⊗ Cn. Thus we have the following formula, which gives the result:

ρ =
n2 − 1

n2
δ0 +

1

n2
δn

(2) Here Λ =
∑

ac eac ⊗ eca is the flip operator, Λ(ec ⊗ ea) = ea ⊗ ec. Thus ρ =
n−1
2n
δ−1 + n+1

2n
δ1, and so we have the following formula, which gives the result:

mnρ =
m(n− 1)

2
δ−1 +

m(n+ 1)

2
δ1

(3) Here Λ =
∑

ab eaa ⊗ ebb is the identity matrix, Λ = 1. Thus in this case we have

the following formula, which gives πmnρ = πmn, and so nW̃ ∼ πmn, as claimed:

ρ = δ1

(4) Here Λ =
∑

a eaa ⊗ eaa is the orthogonal projection on span(ea ⊗ ea) ⊂ Cn ⊗ Cn.
Thus we have the following formula, which gives the result:

ρ =
n− 1

n
δ0 +

1

n
δ1

Summarizing, we have proved all the assertions in the statement. �

As a conclusion to all this, the block modification of the complex Wishart matrices,
which is a quite innocent-looking operation, leads, somehow out of nothing, to a whole
new world, populated by beasts such as the R-transform, the modified Marchenko-Pastur
laws, and many more. Looks like we have opened the Pandora box.

We will see later on, in chapters 9-12 below, and afterwards, that this whole new
world, called free probability, is in fact not very different from ours.

To be more precise, save for some tyrannosaurs coming from Proposition 8.4, which
has no classical counterpart, the classical and free things will be in gentle bijection.

8d. Shifted semicircles

Things have become fairly complicated in this book, and time to do some free prob-
ability, in order to clarify all this. However, as a last thing before that, we still have to
understand what comes out of Theorem 8.28 (2). Following [20], we first have:

Proposition 8.29. The asymptotic moment generating function of W̃
d

, with

W̃ = (id⊗ t)W
being a block-transposed Wishart matrix, satisfies the following equation:

(F − 1)(1− z2F 2) = mzF (1 + nzF )
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Proof. We know from Theorem 8.28 that we have W̃
d
∼ πν with d→∞, where:

ν =
m(n− 1)

2
δ−1 +

m(n+ 1)

2
δ1

With some calculus, as in the proof of Proposition 8.21, this gives the result. �

We can now recover the original result of Aubrun [4], as follows:

Theorem 8.30. For a block-transposed Wishart matrix

W̃ = (id⊗ t)W
we have, in the n = βm→∞ limit, with β > 0 fixed, the formula

W̃

d
∼ γ1√

β

with γ1
t being the shifted version of the semicircle law γt, with support centered at 1.

Proof. This follows from Proposition 8.29, and some calculus. To be more precise,
by applying the Stieltjes inversion formula, we are led to the following density:

f(x) =

√
4β − (1− x)2

2βπ

But this is the density of the shifted semicircle law having support as follows:

S = [1− 2
√
β, 1 + 2

√
β]

Thus, we are led to the conclusion in the statement. See [4], [20]. �

8e. Exercises

There has been a lot of combinatorics in this chapter, in relation with the Wishart
matrices and the Marchenko-Pastur laws, and as an exercise here, we have:

Exercise 8.31. Work out with full details the proof of the Aubrun result regarding the
block-transposed Wishart matrices, directly, out of the Wick formula.

To be more precise, we have seen a proof of this result, but based on heavy, general
methods from [21]. A lighter proof is the one in [20], dealing with the block-transposed
Wishart matrices only. And there is an even lighter proof, the one in [4], dealing with the
block-transposed Wishart matrices, in the n = βm → ∞ regime. So, find your favorite
proof, fully read and understand it, and write down a brief account of that.



Part III

Free probability



Winterlude, Winterlude, my little daisy
Winterlude by the telephone wire
Winterlude, it’s making me lazy

Come on, sit by the logs in the fire



CHAPTER 9

Free probability

9a. Freeness

The common framework for classical and free probability is “noncommutative prob-
ability”. This is something very general, that we already met in connection with the
random matrices, in chapters 5-8. We first recall this material. Let us start with:

Definition 9.1. A C∗-algebra is a complex algebra A, having a norm ||.|| making it
a Banach algebra, and an involution ∗, related to the norm by the formula

||aa∗|| = ||a||2

which must hold for any a ∈ A.

As a basic example, the algebra B(H) of the bounded linear operators T : H → H on
a Hilbert space H is a C∗-algebra, with the usual norm and involution:

||T || = sup
||x||=1

||Tx|| , < Tx, y >=< x, T ∗y >

More generally, any closed ∗-subalgebra of B(H) is a C∗-algebra. It is possible to
prove that any C∗-algebra appears in this way, as explained in chapter 6 above:

A ⊂ B(H)

In finite dimensions we have H = CN , and so the operator algebra B(H) is the usual
matrix algebra MN(C), with the usual norm and involution, namely:

||M || = sup
||x||=1

||Mx|| , (M∗)ij = M̄ji

As explained in chapter 6 above, elementary algebra shows that the finite dimensional
C∗-algebras are exactly the direct sums of matrix algebras:

A = Mn1(C)⊕ . . .⊕Mnk(C)

Summarizing, the C∗-algebra formalism is something in between the ∗-algebras, which
are purely algebraic objects and whose theory basically leads nowhere, and the advanced
operator algebras, such as the von Neumann algebras, which are more technical.

As yet another class of examples now, which are of particular importance for us, we
have various algebras of functions f : X → C. The theory here is as follows:

203
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Theorem 9.2. The commutative C∗-algebras are exactly the algebras of type C(X),
with X being a compact space, the correspondence being as follows:

(1) Given a compact space X, the algebra C(X) of continuous functions f : X → C
is a commutative C∗-algebra, with norm and involution as follows:

||f || = sup
x∈X
|f(x)| , f ∗(x) = f(x)

(2) Conversely, any commutative C∗-algebra can be written as A = C(X), with its
“spectrum” appearing as the space of Banach algebra characters of A:

X =
{
χ : A→ C

}
In view of this, given an arbitrary C∗-algebra A, not necessarily commutative, we agree
to write A = C(X), and call the abstract space X a compact quantum space.

Proof. This is something that we know from chapter 6, the idea being as follows:

(1) First of all, the fact that C(X) is a Banach algebra is clear, because a uniform
limit of continuous functions must be continuous. As for the formula ||ff ∗|| = ||f ||2, this
is something trivial for functions, because on both sides we obtain supx∈X |f(x)|2.

(2) Given a commutative C∗-algebra A, the character space X = {χ : A → C} is
indeed compact, and we have an evaluation morphism ev : A→ C(X). The tricky point,
which follows from basic spectral theory, is to prove that ev is indeed isometric. �

In order to do now probability theory, we need one more notion, as follows:

Definition 9.3. A trace, or expectation, or integration functional, on a C∗-algebra
A is a linear form tr : A→ C having the following properties:

(1) tr is unital, and continuous.
(2) tr is positive, a ≥ 0 =⇒ ϕ(a) ≥ 0.
(3) tr has the trace property tr(ab) = tr(ba).

We call tr faithful when a > 0 =⇒ ϕ(a) > 0.

With these notions in hand, we have everything that we need for developing noncom-
mutative probability theory. The basic notions here are as follows:

Definition 9.4. Let A be a C∗-algebra, given with a trace tr : A→ C.

(1) The elements a ∈ A are called random variables.
(2) The moments of such a variable are the numbers Mk(a) = tr(ak).
(3) The law of such a variable is the functional µ : P → tr(P (a)).

Here k = ◦ • • ◦ . . . is by definition a colored integer, and the corresponding powers ak

are defined by the following formulae, and multiplicativity:

a∅ = 1 , a◦ = a , a• = a∗
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As for the polynomial P , this is a noncommuting ∗-polynomial in one variable:

P ∈ C < X,X∗ >

Observe that the law is uniquely determined by the moments, because we have:

P (X) =
∑
k

λkX
k =⇒ µ(P ) =

∑
k

λkMk(a)

Generally speaking, the above definition is something quite abstract, but there is no
other way of doing things, at least at this level of generality. However, in certain special
cases, the formalism simplifies, and we recover more familiar objects, as follows:

Theorem 9.5. Assuming that a ∈ A is normal, aa∗ = a∗a, its law corresponds to a
probability measure on its spectrum σ(a) ⊂ C, according to the following formula:

tr(P (a)) =

∫
σ(a)

P (x)dµ(x)

When the trace is faithful we have supp(µ) = σ(a). Also, in the particular case where the
variable is self-adjoint, a = a∗, this law is a real probability measure.

Proof. This is something very standard, coming from the continuous functional cal-
culus in C∗-algebras, explained in chapter 6 above. In fact, we can deduce from there
that more is true, in the sense that the following formula holds, for any f ∈ C(σ(a)):

tr(f(a)) =

∫
σ(a)

f(x)dµ(x)

In addition, assuming that we are in the case A ⊂ B(H), the measurable functional
calculus tells us that the above formula holds for any f ∈ L∞(σ(a)). �

We have the following independence notion, generalizing the one from chapter 1:

Definition 9.6. Two subalgebras B,C ⊂ A are called independent when the following
condition is satisfied, for any b ∈ B and c ∈ C:

tr(bc) = tr(b)tr(c)

Equivalently, the following condition must be satisfied, for any b ∈ B and c ∈ C:

tr(b) = tr(c) = 0 =⇒ tr(bc) = 0

Also, two variables b, c ∈ A are called independent when the algebras that they generate,

B =< b > , C =< c >

are independent inside A, in the above sense.
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Observe that the above two independence conditions are indeed equivalent, with this
following from the following computation, with the convention a′ = a− tr(a):

tr(bc) = tr[(b′ + tr(b))(c′ + tr(c))]

= tr(b′c′) + t(b′)tr(c) + tr(b)tr(c′) + tr(b)tr(c)

= tr(b′c′) + tr(b)tr(c)

= tr(b)tr(c)

The other remark is that the above notion generalizes indeed the usual notion of
independence, from the classical case, the precise result here being as follows:

Theorem 9.7. Given two compact measured spaces Y, Z, the algebras

C(Y ) ⊂ C(Y × Z)

C(Z) ⊂ C(Y × Z)

are independent in the above sense, and a converse of this fact holds too.

Proof. We have two assertions here, the idea being as follows:

(1) First of all, given two abstract compact spaces Y, Z, we have embeddings of algebras
as in the statement, defined by the following formulae:

f → [(y, z)→ f(y)]

g → [(y, z)→ g(z)]

In the measured space case now, the Fubini theorems tells us that we have:∫
Y×Z

f(y)g(z) =

∫
Y

f(y)

∫
Z

g(z)

Thus, the algebras C(Y ), C(Z) are independent in the sense of Definition 9.6.

(2) Conversely, assume that B,C ⊂ A are independent, with A being commutative.
Let us write our algebras as follows, with X, Y, Z being certain compact spaces:

A = C(X) , B = C(Y ) , C = C(Z)

In this picture, the inclusions B,C ⊂ A must come from quotient maps, as follows:

p : Z → X , q : Z → Y

Regarding now the independence condition from Definition 9.6, in the above picture,
this tells us that the following equality must happen:∫

X

f(p(x))g(q(x)) =

∫
X

f(p(x))

∫
X

g(q(x))

Thus we are in a Fubini type situation, and we obtain from this:

Y × Z ⊂ X

Thus, the independence of the algebras B,C ⊂ A appears as in (1) above. �
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It is possible to develop some theory here, but this is ultimately not very interesting.
As a much more interesting notion now, we have Voiculescu’s freeness [85]:

Definition 9.8. Two subalgebras B,C ⊂ A are called free when the following condi-
tion is satisfied, for any bi ∈ B and ci ∈ C:

tr(bi) = tr(ci) = 0 =⇒ tr(b1c1b2c2 . . .) = 0

Also, two variables b, c ∈ A are called free when the algebras that they generate,

B =< b > , C =< c >

are free inside A, in the above sense.

In short, freeness appears by definition as a kind of “free analogue” of usual indepen-
dence, taking into account the fact that the variables do not necessarily commute.

As a first observation, of theoretical nature, there is actually a certain lack of symmetry
between Definition 9.6 and Definition 9.8 above, because in contrast to the former, the
latter does not include an explicit formula for the quantities of the following type:

tr(b1c1b2c2 . . .)

However, this is not an issue, and is simply due to the fact that the formula in the
free case is something more complicated, the precise result being as follows:

Proposition 9.9. Assuming that B,C ⊂ A are free, the restriction of tr to < B,C >
can be computed in terms of the restrictions of tr to B,C. To be more precise,

tr(b1c1b2c2 . . .) = P
(
{tr(bi1bi2 . . .)}i, {tr(cj1cj2 . . .)}j

)
where P is certain polynomial in several variables, depending on the length of the word
b1c1b2c2 . . ., and having as variables the traces of products of type

bi1bi2 . . . , cj1cj2 . . .

with the indices being chosen increasing, i1 < i2 < . . . and j1 < j2 < . . .

Proof. This is something a bit theoretical, so let us begin with an example. Our
claim is that if b, c are free then, exactly as in the case where we have independence:

tr(bc) = tr(b)tr(c)

Indeed, let us go back to the computation performed after Definition 9.6 above, which
was as follows, with the convention a′ = a− tr(a):

tr(bc) = tr[(b′ + tr(b))(c′ + tr(c))]

= tr(b′c′) + t(b′)tr(c) + tr(b)tr(c′) + tr(b)tr(c)

= tr(b′c′) + tr(b)tr(c)

= tr(b)tr(c)
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Our claim now is that this computation perfectly works under the sole freeness as-
sumption. Indeed, the only non-trivial equality is the last one, which follows from:

tr(b′) = tr(c′) = 0 =⇒ tr(b′c′) = 0

In general, the situation is of course more complicated, but the same trick applies. To
be more precise, we can start our computation as follows:

tr(b1c1b2c2 . . .) = tr
[
(b′1 + tr(b1))(c′1 + tr(c1))(b′2 + tr(b2))(c′2 + tr(c2)) . . . . . .

]
= tr(b′1c

′
1b
′
2c
′
2 . . .) + other terms

= other terms

Observe that we have used here the freeness condition, in the following form:

tr(b′i) = tr(c′i) = 0 =⇒ tr(b′1c
′
1b
′
2c
′
2 . . .) = 0

Now regarding the “other terms”, those which are left, each of them will consist of a
product of traces of type tr(bi) and tr(ci), and then a trace of a product still remaining
to be computed, which is of the following form, for some elements βi ∈ B and γi ∈ C:

tr(β1γ1β2γ2 . . .)

To be more precise, the variables βi ∈ B appear as ordered products of those bi ∈ B
not getting into individual traces tr(bi), and the variables γi ∈ C appear as ordered
products of those ci ∈ C not getting into individual traces tr(ci). Now since the length
of each such alternating product β1γ1β2γ2 . . . is smaller than the length of the original
product b1c1b2c2 . . ., we are led into of recurrence, and this gives the result. �

Let us discuss now some models for independence and freeness. We have the following
result, from [85], which clarifies the analogy between independence and freeness:

Theorem 9.10. Given two algebras (B, tr) and (C, tr), the following hold:

(1) B,C are independent inside their tensor product B⊗C, endowed with its canon-
ical tensor product trace, given on basic tensors by tr(b⊗ c) = tr(b)tr(c).

(2) B,C are free inside their free product B ∗ C, endowed with its canonical free
product trace, given by the formulae in Proposition 9.9.

Proof. Both the above assertions are clear from definitions, as follows:

(1) This is clear with either of the definitions of the independence, from Definition 9.6
above, because we have by construction of the product trace:

tr(bc) = tr[(b⊗ 1)(1⊗ c)]
= tr(b⊗ c)
= tr(b)tr(c)
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Observe that there is a relation here with Theorem 9.7 as well, due to the following
formula for compact spaces, with ⊗ being a topological tensor product:

C(Y × Z) = C(Y )⊗ C(Z)

To be more precise, the present statement generalizes the first assertion in Theorem
9.7, and the second assertion tells us that this generalization is more or less the same
thing as the original statement. All this comes of course from basic measure theory.

(2) This is clear too from definitions, the only point being that of showing that the
notion of freeness, or the recurrence formulae in Proposition 9.9, can be used in order to
construct a canonical free product trace, on the free product of the algebras involved:

tr : B ∗ C → C
But this can be checked for instance by using a GNS construction. Indeed, consider

the GNS constructions for the algebras (B, tr) and (C, tr):

B → B(l2(B)) , C → B(l2(C))

By taking the free product of these representations, we obtain a representation as
follows, with the ∗ on the right being a free product of pointed Hilbert spaces:

B ∗ C → B(l2(B) ∗ l2(C))

Now by composing with the linear form T →< Tξ, ξ >, where ξ = 1B = 1C is the
common distinguished vector of l2(B), l2(C), we obtain a linear form, as follows:

tr : B ∗ C → C
It is routine then to check that tr is indeed a trace, and this is the “canonical free

product trace” from the statement. Then, an elementary computation shows that B,C
are free inside B ∗C, with respect to this trace, and this finishes the proof. See [85]. �

This was for the basics of free probability, definition and main properties. For further
generalities here, we refer to Voiculescu’s papers [85], [86], and to the book [90].

9b. Free convolution

All the above was quite theoretical, and as a concrete application of the above results,
bringing us into probability, we have the following result, from [86]:

Theorem 9.11. We have a free convolution operation � for the distributions

µ : C < X,X∗ >→ C
which is well-defined by the following formula, with b, c taken to be free:

µb � µc = µb+c

This restricts to an operation, still denoted �, on the real probability measures.
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Proof. We have several verifications to be performed here, as follows:

(1) We first have to check that given two variables b, c which live respectively in
certain C∗-algebras B,C, we can recover inside some C∗-algebra A, with exactly the
same distributions µb, µc, as to be able to sum them and talk about µb+c. But this comes
from Theorem 9.10, because we can set A = B ∗ C, as explained there.

(2) The other verification which is needed is that of the fact that if two variables b, c
are free, then the distribution µb+c depends only on the distributions µb, µc. But for this
purpose, we can use the general formula from Proposition 9.9, namely:

tr(b1c1b2c2 . . .) = P
(
{tr(bi1bi2 . . .)}i, {tr(cj1cj2 . . .)}j

)
Here P is certain polynomial, depending on the length of b1c1b2c2 . . ., having as vari-

ables the traces of products bi1bi2 . . . and cj1cj2 . . ., with i1 < i2 < . . . and j1 < j2 < . . .
Now by plugging in arbitrary powers of b, c as variables bi, cj, we obtain a family of

formulae of the following type, with Q being certain polyomials:

tr(bk1cl1bk2cl2 . . .) = Q
(
{tr(bk)}k, {tr(cl)}l

)
Thus the moments of b+ c depend only on the moments of b, c, with of course colored

exponents in all this, according to our moment conventions, and this gives the result.

(3) Finally, in what regards the last assertion, regarding the real measures, this is clear
from the fact that if the variables b, c are self-adjoint, then so is their sum b+ c. �

Along the same lines, but with some technical subtleties this time, we can talk as well
about multiplicative free convolution, following [87], as follows:

Theorem 9.12. We have a free convolution operation � for the distributions

µ : C < X,X∗ >→ C

which is well-defined by the following formula, with b, c taken to be free:

µb � µc = µbc

In the case of the self-adjoint variables, we can equally set

µb � µc = µ√bc
√
b

and so we have an operation, still denoted �, on the real probability measures.

Proof. We have two statements here, the idea being as follows:

(1) The verifications for the fact that � as above is indeed well-defined at the general
distribution level are identical to those done before for �, with the result basically coming
from the formula in Proposition 9.9, and with Theorem 9.10 invoked as well, in order to
say that we have a model, and so we can indeed use this formula.
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(2) Regarding now the last assertion, regarding the real measures, this was something
trivial for �, but is something trickier now for �, because if we take b, c to be self-adjoint,
thier product bc will in general not be self-adjoint, and definitely it will be not if we want
b, c to be free, and so the formula µb � µc = µbc will apparently makes us exit the world
of real probability measures. However, this is not exactly the case. Indeed, let us set:

a =
√
bc
√
c

This new variable is then self-adjoint, and its moments are given by:

tr(ak) = tr[(
√
bc
√
b)k]

= tr[
√
bcb . . . bc

√
b]

= tr[
√
b ·
√
bcb . . . bc]

= tr[(bc)k]

Thus, we are led to the conclusion in the statement. �

As a remark here, observe that we have used in the proof of (2) above, and actually
for the first time since talking about freeness, the trace property of the trace, namely:

tr(ab) = tr(ba)

This is quite interesting, philosophically speaking, because in the operator algebra
world there are many interesting examples of subalgebras A ⊂ B(H) coming with natural
linear forms ϕ : A→ C which are continuous and positive, but which are not traces. See
[29]. It is possible to do a bit of free probability on such algebras, but not much.

We would like now to have linearization results for � and �, in the spirit of the known
results for ∗ and ×. We will do this slowly, in several steps. As a first objective, we would
like to convert our one and only modelling result so far, namely Theorem 9.10, which is
a rather abstract result, into something more concrete. Let us start with:

Theorem 9.13. Let Γ be a discrete group, and consider the complex group algebra
C[Γ], with involution given by the fact that all group elements are unitaries:

g∗ = g−1 , ∀g ∈ Γ

The maximal C∗-seminorm on C[Γ] is then a C∗-norm, and the closure of C[Γ] with
respect to this norm is a C∗-algebra, denoted C∗(Γ). Moreover,

tr(g) = δg1

defines a positive unital trace tr : C∗(Γ)→ C, which is faithful on C[Γ].

Proof. We have two assertions to be proved, the idea being as follows:
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(1) In order to prove the first assertion, regarding the maximal seminorm which is a
norm, we must find a ∗-algebra embedding as follows, with H being a Hilbert space:

C[Γ] ⊂ B(H)

For this purpose, consider the Hilbert space H = l2(Γ), having the family {h}h∈Γ as
orthonormal basis. Our claim is that we have an embedding, as follows:

π : C[Γ] ⊂ B(H) , π(g)(h) = gh

Indeed, since π(g) maps the basis {h}h∈Γ into itself, this operator is well-defined
and bounded, and is an isometry. It is also clear from the formula π(g)(h) = gh that
g → π(g) is a morphism of algebras, and since this morphism maps the unitaries g ∈ Γ
into isometries, this is a morphism of ∗-algebras. Finally, the faithfulness of π is clear.

(2) Regarding the second assertion, we can use here once again the above construction.
Indeed, we can define a linear form on the image of C∗(Γ), as follows:

tr(T ) =< Tδ1, δ1 >

This functional is then positive, and is easily seen to be a trace. Moreover, on the
group elements g ∈ Γ, this functional is given by the following formula:

tr(g) = δg1

Thus, it remains to show that tr is faithful on C[Γ]. But this follows from the fact
that tr is faithful on the image of C∗(Γ), which contains C[Γ]. �

As an illustration, we have the following more precise result, in the abelian case:

Proposition 9.14. Given a discrete abelian group Γ, we have an isomorphism

C∗(Γ) ' C(G)

where G = Γ̂ is its Pontrjagin dual, formed by the characters χ : Γ→ T. Moreover,

tr(g) = δg1

corresponds in this way to the Haar integration over G.

Proof. We have two assertions to be proved, the idea being as follows:

(1) Since Γ is abelian, A = C∗(Γ) is commutative, so by the Gelfand theorem we have
A = C(X). The spectrum X = Spec(A), consisting of the characters χ : C∗(Γ)→ C, can

be then identified with the Pontrjagin dual G = Γ̂, and this gives the result.

(2) Regarding now the last assertion, we must prove here that we have:

tr(f) =

∫
G

f(x)dx

But this is clear via the above identifications, for instance because the linear form
tr(g) = δg1, when viewed as a functional on C(G), is left and right invariant. �
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Getting back now to our questions, we can now formulate a general modelling result
for independence and freeness, providing us with large classes of examples, as follows:

Theorem 9.15. We have the following results, valid for group algebras:

(1) C∗(Γ), C∗(Λ) are independent inside C∗(Γ× Λ).
(2) C∗(Γ), C∗(Λ) are free inside C∗(Γ ∗ Λ).

Proof. In order to prove these results, we have two possible methods:

(1) We can either use the general results in Theorem 9.10 above, along with the
following two isomorphisms, which are both standard:

C∗(Γ× Λ) = C∗(Λ)⊗ C∗(Γ)

C∗(Γ ∗ Λ) = C∗(Λ) ∗ C∗(Γ)

(2) Or, we can prove this directly, by using the fact that each algebra is spanned
by the corresponding group elements. Indeed, this shows that it is enough to check the
independence and freeness formulae on group elements, which is in turn trivial. �

9c. R-transform

We have seen so far the foundations of free probability, in analogy with those of
classical probability, taken with a functional analysis touch. The idea now is that with
a bit of luck, the basic theory from the classical case, namely the Fourier transform, and
then the CLT, should have free extensions. Let us being our discussion with the following
definition, from [86], coming from the theory developed in the above:

Definition 9.16. The real probability measures are subject to operations ∗ and �,
called classical and free convolution, given by the formulae

µa ∗ µb = µa+b

µα � µβ = µα+β

with a, b being independent, and α, β being free, and all variables being self-adjoint.

The problem now is that of linearizing these operations ∗ and �. In what regards ∗,
we know from chapter 1 that this operation is linearized by the logarithm logF of the
Fourier transform, which in the present setting, where E = tr, is given by:

Fa(x) = tr(eixa)

In order to find a similar result for �, we need some efficient models for the pairs of
free random variables (b, c). This is a priori not a problem, because once we have b ∈ B
and c ∈ C, we can form the free product B ∗ C, which contains b, c as free variables.

However, the initial choice, that of the variables b ∈ B, c ∈ C modelling some given
laws µ, ν ∈ P(R), matters a lot. Indeed, any kind of abstract choice here would lead
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us into an abstract algebra B ∗ C, and so into the abstract combinatorics of the free
convolution, that cannot be solved with bare hands, and that we want to avoid.

In short, we must be tricky, at least in what concerns the beginning of our computation.
Following [86], the idea will be that of temporarily lifting the self-adjointness assumption
on our variables b, c, and looking instead for random variables β, γ, not necessarily self-
adjoint, modelling in integer moments our given laws µ, ν ∈ P(R), as follows:

tr(βk) = Mk(µ), ∀k ∈ N

tr(γk) = Mk(ν), ∀k ∈ N
To be more precise here, assuming that β, γ are indeed not self-adjoint, the above

formulae are not the general formulae for β, γ, simply because these latter formulae involve
colored integers k = ◦ • • ◦ . . . as exponents. Thus, in the context of the above formulae,
µ, ν are not the distributions of β, γ, but just some “parts” of these distributions.

Now with this idea in mind, due to Voiculescu and quite tricky, the solution to the law
modelling problem comes in a quite straightforward way, involving the good old Hilbert
space H = l2(N) and the good old shift operator S ∈ B(H), as follows:

Theorem 9.17. Consider the shift operator on the space H = l2(N), given by:

S(ei) = ei+1

The variables of the following type, with f ∈ C[X] being a polynomial,

S∗ + f(S)

model then in moments, up to finite order, all the distributions µ : C[X]→ C.

Proof. We have already met the shift S in chapter 6 above, as the simplest example
of an isometry which is not a unitary, S∗S = 1, SS∗ = 1, with this coming from:

S∗(ei) =

{
ei−1 (i > 0)

0 (i = 0)

Consider now a variable as in the statement, namely:

T = S∗ + a0 + a1S + a2S
2 + . . .+ anS

n

The computation of the moments of T is then as follows:

(1) We first have tr(T ) = a0.

(2) Then the computation of tr(T 2) will involve a1.

(3) Then the computation of tr(T 3) will involve a2.

(4) And so on.
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Thus, we are led to a certain recurrence, that we will not attempt to solve now, with
bare hands, but which definitely gives the conclusion in the statement. �

Before getting further, with free products of such models, let us work out a very basic
example, which is something fundamental, that we will need in what follows:

Proposition 9.18. In the context of the above correspondence, the variable

T = S + S∗

follows the Wigner semicircle law on [−2, 2], given by:

γ1 =
1

2π

√
4− x2dx

Proof. In order to compute the law of variable T in the statement, we use the
moment method. The moments of this variable are as follows:

Mk = tr(T k)

= tr((S + S∗)k)

= #(1 ∈ (S + S∗)k)

Now since the operator S shifts to the right on N, and S∗ shifts to the left, while
remaining positive, we are left with counting the length k paths on N starting and ending
at 0. Since there are no such paths when k = 2l + 1 is odd, the odd moments vanish:

M2l+1 = 0

In the case where k = 2l is even, such paths on N are best represented as paths in the
upper half-plane, starting at 0, and going at each step NE or SE, depending on whether
the original path on N goes at right or left, and finally ending at k ∈ N.

With this picture we are led to the following formula for the number of such paths:

M2l+2 =
∑
s

M2sM2l−s

But this is exactly the recurrence formula for the Catalan numbers, and so:

M2l =
1

l + 1

(
2l

l

)
Summarizing, the odd moments of T vanish, and the even moments are the Catalan

numbers. But these numbers being the moments of the Wigner semicircle law γ1, as
explained in chapter 4 above, we are led to the conclusion in the statement. �

Getting back now to our linearization program for �, the next step is that of taking
a free product of the model found in Theorem 9.17 with itself.

There are two approaches here, one being a bit abstract, and the other one being more
concrete. We will explain in what follows both of them.
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The abstract approach, which is quite nice, making a link with our main modelling
result so far, involving group algebras, is as follows:

Proposition 9.19. We can talk about semigroup algebras C∗(Γ) ⊂ B(l2(Γ)), exactly
as we did for the group algebras, and at the level of examples:

(1) With Γ = N we recover the shift algebra A =< S > on H = l2(N).
(2) With Γ = N ∗ N, we obtain the algebra A =< S1, S2 > on H = l2(N ∗ N).

Proof. We can talk indeed about semigroup algebras C∗(Γ) ⊂ B(l2(Γ)), exactly as
we did for the group algebras, the only difference coming from the fact that the semigroup
elements g ∈ Γ will now correspond to isometries, which are not necessarily unitaries. Now
this construction in hand, both the assertions are clear, as follows:

(1) With Γ = N we recover indeed the shift algebra A =< S > on the Hilbert space
H = l2(N), the shift S itself being the isometry associated to the element 1 ∈ N.

(2) With Γ = N ∗N we recover the double shift algebra A =< S1, S2 > on the Hilbert
space H = l2(N ∗ N), the two shifts S1, S2 themselves being the isometries associated to
two copies of the element 1 ∈ N, one for each of the two copies of N which are present. �

In what follows we will rather use an equivalent, second approach to our problem,
which is exactly the same thing, but formulated in a less abstract way, as follows:

Proposition 9.20. We can talk about the algebra of creation operators

Sx : v → x⊗ v
on the free Fock space associated to a real Hilbert space H, given by

F (H) = CΩ⊕H ⊕H⊗2 ⊕ . . .
and at the level of examples, we have:

(1) With H = C we recover the shift algebra A =< S > on H = l2(N).
(2) With H = C2, we obtain the algebra A =< S1, S2 > on H = l2(N ∗ N).

Proof. We can talk indeed about the algebra A(H) of creation operators on the free
Fock space F (H) associated to a real Hilbert space H, with the remark that, in terms of
the abstract semigroup notions from Proposition 9.19 above, we have:

A(Ck) = C∗(N∗k)

F (Ck) = l2(N∗k)
As for the assertions (1,2) in the statement, these are both clear, either directly, or by

passing via (1,2) from Proposition 9.19, which were both clear as well. �

The advantage with this latter model comes from the following result, from [86], which
has a very simple formulation, without linear combinations or anything:
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Proposition 9.21. Given a real Hilbert space H, and two orthogonal vectors x, y ∈ H,

x ⊥ y

the corresponding creation operators Sx and Sy are free with respect to

tr(T ) =< TΩ,Ω >

called trace associated to the vacuum vector.

Proof. In standard tensor product notation for the elements of the free Fock space
F (H), the formula of a creation operator associated to a vector x ∈ H is as follows:

Sx(y1 ⊗ . . .⊗ yn) = x⊗ y1 ⊗ . . .⊗ yn
As for the formula of the adjoint of this creation operator, called annihilation operator

associated to the vector x ∈ H, this is as follows:

S∗x(y1 ⊗ . . .⊗ yn) =< x, y1 > ⊗y2 ⊗ . . .⊗ yn
We obtain from this the following formula, which holds for any two vectors x, y ∈ H:

S∗xSy =< x, y > id

With these formulae in hand, the result follows by doing some elementary computa-
tions, in the spirit of those done for the group algebras, in the above. �

With this technology in hand, let us go back to our linearization program for �. We
know from Theorem 9.17 how to model the individual distributions µ ∈ P(R), and by
combining this with Proposition 9.10 and Proposition 9.21, we therefore know how to
freely model pairs of distributions µ, ν ∈ P(R), as required by the convolution problem.

We are therefore left with doing the sum in the model, and then computing its distri-
bution. And the point here is that, still following [86], we have:

Theorem 9.22. Given two polynomials f, g ∈ C[X], consider the variables

R∗ + f(R) , S∗ + g(S)

where R, S are two creation operators, or shifts, associated to a pair of orthogonal norm
1 vectors. These variables are then free, and their sum has the same law as

T ∗ + (f + g)(T )

with T being the usual shift on l2(N).

Proof. We have two assertions here, the idea being as follows:

(1) The freeness assertion comes from the general freeness result from Proposition
9.21, via the various identifications coming from the previous results.
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(2) Regarding the second assertion, the idea is that this comes from a 45◦ rotation
trick. Let us write indeed the two variables in the statement as follows:

X = R∗ + a0 + a1R + a2R
2 + . . .

Y = S∗ + b0 + b1S + a2S
2 + . . .

Now let us perform the following 45◦ base change, on the real span of the vectors
r, s ∈ H producing our two shifts R, S, as follows:

t =
r + s√

2
, u =

r − s√
2

The new shifts, associated to these vectors t, u ∈ H, are then given by:

T =
R + S√

2
, U =

R− S√
2

By using now these two new shifts, which are free as well according to Proposition
9.21 above, we obtain the following equality of distributions:

X + Y = R∗ + S∗ +
∑
k

akR
k + bkS

k

=
√

2T ∗ +
∑
k

ak

(
T + U√

2

)k
+ bk

(
T − U√

2

)k
∼
√

2T ∗ +
∑
k

ak

(
T√
2

)k
+ bk

(
T√
2

)k
∼ T ∗ +

∑
k

akT
k + bkT

k

To be more precise, here at the end we have used the freeness property of T, U in
order to cut U from the computation, as it cannot bring anything, and then we did a
basic rescaling at the very end. Thus, we are led to the conclusion in the statement. �

As a conclusion to all this, the operation µ → f from Theorem 9.17 above linearizes
the free convolution operation �. In order to reach now to something concrete, we are
therefore left with a computation inside C∗(N), which is elementary, and whose conclusion
is that Rµ = f can be recaptured from µ via the Cauchy transform Gµ.

The precise result here, due to Voiculescu [86], is as follows:

Theorem 9.23. Given a real probability measure µ, define its R-transform as follows:

Gµ(ξ) =

∫
R

dµ(t)

ξ − t
=⇒ Gµ

(
Rµ(ξ) +

1

ξ

)
= ξ

The free convolution operation is then linearized by this R-transform.
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Proof. This can be done by using the above results, in several steps, as follows:

(1) According to Theorem 9.22, the operation µ→ f in Theorem 9.17 above linearizes
the free convolution operation �. We are therefore left with a computation inside C∗(N).
To be more precise, consider a variable as in Theorem 9.17:

X = S∗ + f(X)

In order to establish the result, we must prove that the R-transform of X, constructed
according to the procedure in the statement, is the function f itself.

(2) In order to do so, we fix |z| < 1 in the complex plane, and we set:

wz = δ0 +
∞∑
k=1

zkδk

The shift and its adjoint act then on this vector as follows:

Swz = z−1(wz − δ0) , S∗wz = zwz

It follows that the adjoint of our operator X acts on this vector as follows:

X∗wz = (S + f(S∗))wz

= z−1(wz − δ0) + f(z)wz

= (z−1 + f(z))wz − z−1δ0

Now observe that the above formula can be written as follows:

z−1δ0 = (z−1 + f(z)−X∗)wz
The point now is that when |z| is small, the operator appearing on the right is invert-

ible. Thus, we can rewrite the above formula as follows:

(z−1 + f(z)−X∗)−1δ0 = zwz

Now by applying the trace, we are led to the following formula:

tr
[
(z−1 + f(z)−X∗)−1

]
=

〈
(z−1 + f(z)−X∗)−1δ0, δ0

〉
= < zwz, δ0 >

= z

(3) With the above formula in hand, we can now finish. Let us apply indeed the
procedure in the statement to the real probability measure µ modelled by X. The Cauchy
transform Gµ, which is a function having real coefficients, is given by:

Gµ(ξ) = tr((ξ −X)−1)

= tr
(

(ξ̄ −X∗)−1
)

= tr((ξ −X∗)−1)
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Now observe that, with the choice ξ = z−1 + f(z) for our complex variable, the trace
formula found in (2) above tells us precisely that we have:

Gµ

(
z−1 + f(z)

)
= z

Thus, by definition of the R-transform, we have the following formula:

Rµ(z) = f(z)

But this finishes the proof, as explained before in step (1) above. �

Summarizing, the situation in free probability is quite similar to the one in classical
probability, the product spaces needed for the basic properties of the Fourier transform
being replaced by something “noncommutative”, namely the free Fock space models. This
is of course something quite surprising, and the full credit for this remarkable discovery,
which has drastically changed operator algebras, goes to Voiculescu’s paper [86].

9d. CLT and PLT

With the above linearization technology in hand, we can do now lots of things. First,
we can establish the following free analogue of the CLT, due to Voiculescu [86]:

Theorem 9.24 (Free CLT). Given self-adjoint variables x1, x2, x3, . . . which are f.i.d.,
centered, with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

xi ∼ γt

where γt is the Wigner semicircle law of parameter t, having density:

γt =
1

2πt

√
4t2 − x2dx

Proof. We follow the same idea as in the proof of the CLT, from chapter 1:

(1) At t = 1, the R-transform of the variable in the statement on the left can be
computed by using the linearization property from Theorem 9.23, and is given by:

R(ξ) = nRx

(
ξ√
n

)
' ξ

(2) Regarding now the right term, also taken at t = 1, our first claim here is that the
Cauchy transform of the Wigner law γ1 satisfies the following equation:

Gγ1

(
ξ +

1

ξ

)
= ξ

Indeed, we know from chapter 7 that the moments of γ1 are the Catalan numbers:

1

2π

∫ 4

0

√
4− x2x2kdx = Ck
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Consider now the generating series of the Catalan numbers, namely:

f(z) =
∑
k≥0

Ckz
k

We know from chapter 7 above that f satisfies the following degree 2 equation:

zf 2 − f + 1 = 0

But this gives the above formula for Gγ1 , via a few manipulations.

(3) We conclude from the formula found in (2) above that the R-transform of the
Wigner semicircle law γ1 is given by the following formula:

Rγ1(ξ) = ξ

Observe that this follows in fact as well from the following formula, coming from
Proposition 9.18, and from the technical details of the R-transform:

S + S∗ ∼ γ1

Thus, the laws in the statement have the same R-transforms, so they are equal.

(4) Summarizing, we have proved the free CLT at t = 1. The passage to the general
case, where t > 0 is arbitrary, is routine, by some standard dilation computations. �

Regarding the limiting measures γt, one problem that we were having was that of
understanding how γt exactly appears, out of γ1. We can now solve this question:

Theorem 9.25. The Wigner semicircle laws have the property

γs � γt = γs+t

so they form a 1-parameter semigroup with respect to free convolution.

Proof. This follows either from Theorem 9.24, or from Theorem 9.23, by using the
fact that the R-transform of γt, which is given by Rγt(ξ) = tξ, is linear in t. �

As a conclusion to what we have so far, we have:

Theorem 9.26. The Gaussian laws gt and the Wigner laws γt, given by

gt =
1√
2πt

e−x
2/2tdx

γt =
1

2πt

√
4t2 − x2dx

have the following properties:

(1) They appear via the CLT, and the free CLT.
(2) They form semigroups with respect to ∗ and �.
(3) Their transforms are logFgt(x) = −tx2/2, Rγt(x) = tx.
(4) Their moments are Mk =

∑
π∈D(k) t

|π|, with D = P2, NC2.
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Proof. These are all results that we already know, the idea being that (3,4) follow
by doing some combinatorics and calculus, and that (1,2) follow from (3,4). �

To summarize, our initial purpose for this chapter was to vaguely explore the basics
of free probability, but all of a sudden, due to the power of Voiculescu’s R-transform [86],
we are now into stating and proving results which are on par with what we have been
doing in the first part of this book, namely reasonably advanced probability theory.

So, let us keep going in this direction, by exploring what else we can do with the
R-transform, in analogy with what we did before, by using the Fourier transform.

As a next natural objective, we have the question of formulating the free analogue
of the Poisson Limit Theorem (PLT). Although elementary from what we have, this was
something not done by Voiculescu himself, and not appearing in the foundational book
[90], and only explained later, in the book of Hiai and Petz [55]. The statement is as
follows, identical to that of the PLT, except for the fact that the convolution operation ∗
there is replaced by the free convolution operation �, and that we obtain different limiting
measures, namely our old friends from chapter 8, the Marchenko-Pastur laws πt:

Theorem 9.27 (Free PLT). The following limit converges, for any t > 0,

lim
n→∞

((
1− t

n

)
δ0 +

t

n
δ1

)�n

and we obtain the Marchenko-Pastur law of parameter t,

πt = max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

also called free Poisson law of parameter t.

Proof. Consider the measure in the statement, under the convolution sign:

µ =

(
1− t

n

)
δ0 +

t

n
δ1

The Cauchy transform of this measure is easy to compute, and is given by:

Gµ(ξ) =

(
1− t

n

)
1

ξ
+
t

n
· 1

ξ − 1

In order to prove the result, we want to compute the following R-transform:

R = Rµ�n(y) = nRµ(y)

According to the formula of Gµ, the equation for this function R is as follows:(
1− t

n

)
1

y−1 +R/n
+
t

n
· 1

y−1 +R/n− 1
= y
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By multiplying both sides by n/y, this equation can be written as:

t+ yR

1 + yR/n
=

t

1 + yR/n− y
With n→∞ things simplify, and we obtain the following formula:

t+ yR =
t

1− y
Thus we have the following formula, for the R-transform that we are interested in:

R =
t

1− y
But this gives the result, since Rπt is elementary to compute from what we have, by

“doubling” the results for the Wigner law γt, and is given by the same formula. �

As in the continuous case, most of the basic theory of πt was done before, namely
in chapter 8 above, with all this partly coming from the theory of SO3, at t = 1. One
thing which was missing there, however, was that of understanding how the law πt, with
parameter t > 0, exactly appears, out of π1. We can now solve this question:

Theorem 9.28. The Marchenko-Pastur laws have the property

πs � πt = πs+t

so they form a 1-parameter semigroup with respect to free convolution.

Proof. This follows either from Theorem 9.27, or from the fact that the R-transform
of πt, computed in the proof of Theorem 9.27, is linear in t. �

In analogy with Theorem 9.26 above, dealing with the continuous case, we can now
summarize the various discrete results that we have, classical and free, as follows:

Theorem 9.29. The Poisson laws pt and the Marchenko-Pastur laws πt, given by

pt = e−t
∑
k

tk

k!
δk

πt = max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

have the following properties:

(1) They appear via the PLT, and the free PLT.
(2) They form semigroups with respect to ∗ and �.
(3) Their transforms are logFpt(x) = t(eix − 1), Rπt(x) = t/(1− x).
(4) Their moments are Mk =

∑
π∈D(k) t

|π|, with D = P,NC.

Proof. These are all results that we already know, from the previous chapters. �

There is an obvious similarity here with Theorem 9.26 above, and we have:
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Theorem 9.30. The moments of the various central limiting measures, namely

πt γt

pt gt

are always given by the same formula, involving partitions, namely

Mk =
∑

π∈D(k)

t|π|

where the sets of partitions D(k) in question are respectively

NC

��

NC2

��

oo

P P2
oo

and where |.| is the number of blocks.

Proof. This follows by putting together the various results that we have. �

We will see later on a more conceptual explanation for the above result, in terms of
cumulants, and a number of extensions as well, eventually ending up with a cube.

9e. Exercises

There has been a lot of exciting theory in this chapter, for the most in relation with
various free product constructions, and as a first exercise on all this, we have:

Exercise 9.31. Prove that given two algebras (B, tr) and (C, tr), these algebras are
free inside their free product B ∗ C, endowed with its canonical free product trace.

This is something that we already discussed in the above, but with some details
missing. Time now to have this done, with all the details.

In relation with the CLT and the PLT, we have:

Exercise 9.32. State and prove a complex analogue of the free CLT, as well as a
compound analogue of the free PLT, and study the limiting measures.

This is something very instructive, and normally all the needed tools, namely the CLT
and PLT, and the theory of the R-transform, are there. Of course, this is more than a
regular exercise, and we will be back to this, in what follows, on several occasions.



CHAPTER 10

Circular variables

10a. Free CCLT

We have seen so far that free probability theory leads to two key limiting theorems,
namely the free analogues of the CLT and PLT. The statements of these theorems are
nearly identical to the statements of the usual CLT and PLT, expect for the fact that the
random variables in question are supposed to be free, instead of independent.

In these free limiting theorems, the limiting measures are the Wigner semicircle laws
γt and the Marchenko-Pastur laws πt, that we previously met in connection with the
random matrices. Together with the Gaussian laws gt and the Poisson laws pt, appearing
from the classical CLT and PLT, these laws form a square diagram, as follows:

πt γt

pt gt

Our first purpose here will be that of extending this diagram to the right, with a free
analogue of the complex central limiting theorem (CCLT), adding to the classical CCLT,
and providing us with free analogues Γt of the complex Gaussian laws Gt.

This will be something quite technical, and in order to get started, let us begin by
recalling the theory of the complex Gaussian laws Gt and of the CCLT, developed at
various places in the previous chapters. To start with, we have the following definition:

Definition 10.1. The complex Gaussian law of parameter t > 0 is

Gt = law

(
1√
2

(a+ ib)

)
where a, b are independent, each following the law gt.

There are many things that can be said about these laws, simply by adapting the
known results from the real case, regarding the usual normal laws gt. As a first such
result, the above measures form convolution semigroups:

225
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Proposition 10.2. The complex Gaussian laws have the property

Gs ∗Gt = Gs+t

for any s, t > 0, and so they form a convolution semigroup.

Proof. This is something that we already know, which follows from the analogous
real result, established in chapter 1, regarding the usual Gaussian laws, namely:

gs ∗ gt = gs+t

Indeed, the complex theorem formulated above follows from this, simply by taking the
real and imaginary parts of all the variables involved. �

We have as well the following complex analogue of the CLT:

Theorem 10.3 (CCLT). Given complex random variables

f1, f2, f3, . . . ∈ L∞(X)

which are i.i.d., centered, and with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

fi ∼ Gt

where Gt is the complex Gaussian law of parameter t.

Proof. This is something that we know too, which follows from the real CLT, estab-
lished in chapter 1, by taking real and imaginary parts. Indeed, let us write:

fi =
1√
2

(xi + iyi)

The variables xi satisfy then the assumptions of the CLT, so their rescaled averages
converge to a normal law gt, and the same happens for the variables yi. The limiting laws
that we obtain being independent, their rescaled sum is complex Gaussian, as desired. �

Regarding now the moments of the complex Gaussian variables, things here are a bit
more complicated than in the real case, because in order to have good results, we have to
deal with both the complex variables, and their conjugates. However, the result itself is
very similar to the result from the real case, the statement being as follows:

Theorem 10.4. The moments of the complex normal law are the numbers

Mk(Gt) = t|k|/2|P2(k)|

where P2(k) is the set of matching pairings of {1, . . . , k}.
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Proof. This is again something that we know well too, from the above, the idea
being as follows, with c = 1√

2
(a+ ib) being the variable in Definition 10.1:

(1) In the case where k contains a different number of ◦ and • symbols, a rotation
argument shows that the corresponding moment of c vanishes. But in this case we also
have P2(k) = ∅, so the formula in the statement holds indeed, as 0 = 0.

(2) In the case left, where k consists of p copies of ◦ and p copies of • , the corresponding
moment is the p-th moment of |c|2, which by some calculus is tpp!. But in this case we
have as well |P2(k)| = p!, so the formula in the statement holds indeed, as tpp! = tpp!. �

As a final result regarding the complex normal laws, we have the Wick formula:

Proposition 10.5. Given independent variables Xi, each following the complex nor-
mal law Gt, with t > 0 being a fixed parameter, we have the Wick formula

E
(
Xk1
i1
. . . Xks

is

)
= ts/2#

{
π ∈ P2(k)

∣∣∣π ≤ ker(i)
}

where k = k1 . . . ks and i = i1 . . . is, for the joint moments of these variables.

Proof. This is something that we know too, the idea being as follows:

(1) In the case where we have a single complex normal variable X, we have to compute
the moments of X, with respect to colored integer exponents k = ◦••◦. . . , and the formula
in the statement coincides with the one in Theorem 10.4 above, namely:

E(Xk) = t|k|/2|P2(k)|

(2) In general now, when expanding Xk1
i1
. . . Xks

is
and rearranging the terms, we are left

with doing a number of computations as in (1), then making the product of the numbers
that we found. But this amounts in counting the partitions in the statement. �

There are many other things that can be said about the complex normal laws, and we
will be back to this, on several occasions. Among others, we will meet them in chapters
13-16 below, in connection with various quantum algebra questions.

Let us discuss now the free analogues of the above results. As in the classical case,
there is actually not so much work to be done here, in order to get started, because we
can obtain the free convolution and central limiting results, simply by taking the real and
imaginary parts of our variables. Following Voiculescu [85], [86], we first have:

Definition 10.6. The Voiculescu circular law of parameter t > 0 is given by

Γt = law

(
1√
2

(a+ ib)

)
where a, b are free, each following the Wigner semicircle law γt.
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In other words, the passage γt → Γt is by definition entirely similar to the passage
gt → Gt from the classical case, by taking real and imaginary parts. As before in other
similar situations, the fact that Γt is indeed well-defined is clear from definitions.

Let us start with a number of straightforward results, obtained by complexifying the
free probability theory that we have. As a first result, we have, as announced above:

Proposition 10.7. The Voiculescu circular laws have the property

Γs � Γt = Γs+t

so they form a 1-parameter semigroup with respect to free convolution.

Proof. This follows from our previous result stating that the Wigner laws γt have
the free semigroup convolution property, by taking real and imaginary parts. �

Next in line, also as announced above, and also from [86], we have the following
natural free analogue of the complex central limiting theorem (CCLT):

Theorem 10.8 (Free CCLT). Given random variables x1, x2, x3, . . . which are f.i.d.,
centered, with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

xi ∼ Γt

where Γt is the Voiculescu circular law of parameter t.

Proof. This follows indeed from the free CLT, established in chapter 9 above, by
taking real and imaginary parts. Indeed, let us write:

xi =
1√
2

(yi + izi)

The variables yi satisfy then the assumptions of the free CLT, and so their rescaled
averages converge to a semicircle law γt, and the same happens for the variables zi:

1√
n

n∑
i=1

yi ∼ γt

1√
n

n∑
i=1

zi ∼ γt

Now since the two limiting semicircle laws that we obtain in this way are free, their
rescaled sum is circular, in the sense of Definition 10.6, and this gives the result. �

Summarizing, we have so far complex analogues of both the classical and free CLT,
and the basic theory of the limiting measures, including their semigroup property. As a
conclusion to all this, let us formulate the following statement:



10A. FREE CCLT 229

Theorem 10.9. We have classical and free limiting theorems, as follows,

FPLT FCLT FCCLT

PLT CLT CCLT

the limiting laws being the following measures,

πt γt Γt

pt gt Gt

which form classical and free convolution semigroups.

Proof. This follows indeed from the various results established above. To be more
precise, the result about the square on the left is from the previous chapter, and the
results about the vertical right edge are those discussed in the above. �

Going ahead with more study of the Voiculescu circular variables, less trivial now is
the computation of their moments. We will do this in what follows, among others in order
to expand Theorem 10.9 into something much sharper, involving as well moments.

For our computations, we will need explicit models for the circular variables. Following
[86], and the material in chapter 9, let us start with the following key result:

Proposition 10.10. Let H be the complex Hilbert space having as basis the colored
integers k = ◦ • • ◦ . . . , and consider the shift operators on this space:

S : k → ◦k
T : k → •k

We have then the following equalities of distributions,

S + S∗ ∼ γ1

S + T ∗ ∼ Γ1

with respect to the state ϕ(T ) =< Te, e >, where e is the empty word.

Proof. This is standard free probability, the idea being as follows:

(1) The first formula, namely S + S∗ ∼ γ1, is something that we already know, in a
slightly different formulation, from chapter 9 above, when proving the CLT.

(2) As for the second formula, S + T ∗ ∼ Γ1, this follows from the first formula, by
using the freeness results and the rotation tricks established in chapter 9. �
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At the combinatorial level now, we have the following result, which is in analogy with
the moment theory of the Wigner semicircle law, developed above:

Theorem 10.11. A variable a ∈ A follows the law Γ1 precisely when its moments are

tr(ak) = |NC2(k)|
for any colored integer k = ◦ • • ◦ . . .

Proof. By using Proposition 10.10, it is enough to do the computation in the model
there. To be more precise, we can use the following explicit formulae for S, T :

S : k → ◦k
T : k → •k

With these formulae in hand, our claim is that we have the following formula:

< (S + T ∗)ke, e >= |NC2(k)|
In order to prove this formula, we can proceed as for the semicircle laws, in chapter 9

above. Indeed, let us expand the quantity (S + T ∗)k, and then apply the state ϕ.

With respect to the previous computation, from chapter 9, what happens is that the
contributions will come this time via the following formulae, which must succesively apply,
as to collapse the whole product of S, S∗, T, T ∗ variables into a 1 quantity:

S∗S = 1

T ∗T = 1

As before, in the proof for the semicircle laws, from chapter 9, these applications of the
rules S∗S = 1, T ∗T = 1 must appear in a noncrossing manner, but what happens now, in
contrast with the computation from the proof in chapter 9 where S +S∗ was self-adjoint,
is that at each point where the exponent k has a ◦ entry we must use T ∗T = 1, and at
each point where the exponent k has a • entry we must use S∗S = 1.

Thus the contributions, which are each worth 1, are parametrized by the partitions
π ∈ NC2(k). Thus, we obtain the above moment formula, as desired. �

More generally now, by rescaling, we have the following result:

Theorem 10.12. A variable a ∈ A is circular of parameter t > 0,

a ∼ Γt

precisely when its moments are given by the formula

tr(ak) = t|k|/2|NC2(k)|
for any colored integer k = ◦ • • ◦ . . .

Proof. This follows indeed from Theorem 10.11, by rescaling. Alternatively, we can
get this as well directly, by suitably modifying Proposition 10.10 first. �
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Even more generally now, we have the following free version of the Wick rule:

Theorem 10.13. Given free variables ai, each following the Voiculescu circular law
Γt, with t > 0 being a fixed parameter, we have the Wick type formula

tr(ak1i1 . . . a
ks
is

) = ts/2#
{
π ∈ NC2(k)

∣∣∣π ≤ ker(i)
}

where k = k1 . . . ks and i = i1 . . . is, for the joint moments of these variables, with the
inequality π ≤ ker(i) on the right being taken in a technical, appropriate sense.

Proof. This follows a bit as in the classical case, the idea being as follows:

(1) In the case where we have a single complex normal variable a, we have to compute
the moments of a, with respect to colored integer exponents k = ◦ • • ◦ . . . , and the
formula in the statement coincides with the one in Theorem 10.12 above, namely:

tr(ak) = t|k|/2|NC2(k)|
(2) In general now, when expanding the product ak1i1 . . . a

ks
is

and rearranging the terms,
we are left with doing a number of computations as in (1), and then making the product
of the expectations that we found. But this amounts precisely in counting the partitions
in the statement, with the condition π ≤ ker(i) there standing precisely for the fact that
we are doing the various type (1) computations independently. �

All the above was a bit brief, based on Voiculescu’s original paper [86], and on his
foundational free probability book with Dykema and Nica [90]. The combinatorics of the
free families of circular variables, called “circular systems”, is something quite subtle, and
there has been a lot of work developed in this direction. For a complement to the above
material, with a systematic study using advanced tools from combinatorics, we refer to
the more recent book by Nica and Speicher [71]. We will be actually back to this, in this
book too, namely in chapter 12 below, when talking about cumulants.

On the same topic, let us mention as well that various technical extensions and gener-
alizations of the above results can be found, hidden as technical lemmas, throughout the
random matrix and operator algebra literature, in connection with free probability, with
the notable users of the circular systems including, besides Voiculescu himself, Dykema
[45], Mingo, Nica, Speicher [67], [69], [71], [78], [79], and Shlyakhtenko [77].

Getting back now to the case of the single variables, from Theorem 10.12 above, the
formula there has the following more conceptual interpretation:

Theorem 10.14. The moments of the Voiculescu laws are the numbers

Mk(Γt) =
∑

π∈NC2(k)

t|π|

with “NC2” standing for the noncrossing matching pairings.
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Proof. This follows from the formula in Theorem 10.12 above. Indeed, we know
from there that a variable a ∈ A is circular, of parameter t > 0, precisely when we have
the following formula, for any colored integer k = ◦ • • ◦ . . . :

tr(ak) = t|k|/2|NC2(k)|

Now since the number of blocks of a pairing π ∈ NC2(k) is given by |π| = |k|/2, this
formula can be written in the following alternative way:

tr(ak) =
∑

π∈NC2(k)

t|π|

Thus, we are led to the conclusion in the statement. �

All this is quite nice, when compared with the similar results from the classical case,
regarding the complex Gaussian laws, that we established above, and with other results
of the same type as well. As a conclusion to these considerations, we can now formulate
a global result regarding the classical and free complex Gaussian laws, as follows:

Theorem 10.15. The complex Gaussian laws Gt and the circular Voiculescu laws Γt,
given by the formulae

Gt = law

(
1√
2

(a+ ib)

)
Γt = law

(
1√
2

(α + iβ)

)
where a, b/α, β are independent/free, following gt/γt, have the following properties:

(1) They appear via the complex CLT, and the free complex CLT.
(2) They form semigroups with respect to the operations ∗ and �.
(3) Their moments are Mk =

∑
π∈D(k) t

|π|, with D = P2,NC2.

Proof. This is a summary of results that we know, the idea being as follows:

(1) This is something quite straightforward, by using the linearization results provided
by the logarithm of the Fourier transform, and by the R-transform.

(2) This is quite straightforward, too, once again by using the linearization results
provided by the logarithm of the Fourier transform, and by the R-transform.

(3) This comes by doing some combinatorics and calculus in the classical case, and
some combinatorics and operator theory in the free case, as explained above. �

More generally now, we can in fact put everything together, with some previous results
included as well, and we have the following result at the level of the moments of the
asymptotic laws that we found so far, in classical and free probability:
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Theorem 10.16. The moments of the various central limiting measures, namely

πt γt Γt

pt gt Gt

are always given by the same formula, involving partitions, namely

Mk =
∑

π∈D(k)

t|π|

where the sets of partitions D(k) in question are respectively

NC

��

NC2

��

oo NC2
oo

��
P P2
oo P2

oo

and where |.| is the number of blocks.

Proof. This follows by putting together the various moment results that we have,
from the previous chapter, and from Theorem 10.15 above. �

Summarizing, we are done with the combinatorial program outlined in the beginning
of the present chapter. We will be back to this in the next chapter, 11 below, by adding
some new laws to the picture, coming from the classical and free CPLT, and then in the
chapter afterwards, 12 below, with full conceptual explanations for all this.

10b. Multiplicative results

With the above basic combinatorial study done, let us discuss now a number of more
advanced results regarding the Voiculescu circular laws Γt, which are of multiplicative
nature, and quite often have no classical counterpart. Things here will be quite technical,
and all that follows will be rather an introduction to the subject.

In general now, in order to deal with multiplicative questions, we are in need of results
regarding the multiplicative free convolution operation �. Let us recall that we have:

Definition 10.17. We have a free convolution operation �, constructed as follows:

(1) For abstract distributions, via µb � µc = µbc, with b, c free.
(2) For real measures, via µb � µc = µ√bc

√
b, with b, c self-adjoint and free.
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All this is quite tricky, explained in chapter 9 above, the idea being that, while (1)

is straightforward, (2) is not, and comes by considering the variable a =
√
bc
√
c, which

unlike bc is always self-adjoint, and whose moments are given by:

tr(ak) = tr[(
√
bc
√
b)k]

= tr[
√
bcb . . . bc

√
b]

= tr[
√
b ·
√
bcb . . . bc]

= tr[(bc)k]

Quite remarkably, the free multiplicative convolution operation � can be linearized, in
analogy with what happens for the usual multiplicative convolution ×, and the additive
operations ∗,� as well. We have here the following result, due to Voiculescu [87]:

Theorem 10.18. The free multiplicative convolution operation � for the real proba-
bility measures µ ∈ P(R) can be linearized as follows:

(1) Start with the sequence of moments Mk, then compute the moment generating
function, or Stieltjes transform of the measure:

f(z) = 1 +M1z +M2z
2 +M3z

3 + . . .

(2) Perform the following operations to the Stieltjes transform:

ψ(z) = f(z)− 1

ψ(χ(z)) = z

S(z) =

(
1 +

1

z

)
χ(z)

(3) Then logS linearizes the free multiplicative convolution, in the sense that:

Sµ�ν = SµSν

Proof. There are several proofs here, with the original proof of Voiculescu [87] being
quite similar to the proof of the R-transform theorem, using free Fock space models, then
with a proof by Haagerup [53], obtained by further improving on this, and finally with
the proof from the book of Nica and Speicher [71], using pure combinatorics. The proof
of Haagerup [53], which is the most in tune with the present book, is as follows:

(1) According to our conventions from Definition 10.17, we want to prove that, given
noncommutative variables b, c which are free, we have the following formula:

Sµbc(z) = Sµb(z)Sµc(z)

(2) For this purpose, consider the orthogonal shifts S, T on the free Fock space, as in
chapter 9 above. By using the algebraic arguments from chapter 9, from the proof of the
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R-transform theorem, we can assume as there that our variables have a special form, that
fits our present objectives, and to be more specifically, the following form:

b = (1 + S)f(S∗)

c = (1 + T )g(T ∗)

(3) We first have to compute the S-transforms of the above operators. But, at bit
like in the proof of the R-transform result from chapter 9, this is basically an elementary
operator theory question taking place on l2(N), whose answer is as follows:

Sµb(z) =
1

f(z)

Sµc(z) =
1

g(z)

(4) In order to finish now, we have to prove that we have the following formula:

Sµbc(z) =
1

f(z)g(z)

But the proof here is again similar to the proof for the R-transform result from chapter
9, by computing, and then using a kind of formal rotation trick, which eventually reduces
our computation to a question involving a single shift, as in (3) above. See [53]. �

All the above was of course quite brief, but full details can be found in the original
papers of Voiculescu [87] and Haagerup [53], or in the books [71], [90].

Getting back now to the circular variables, we will look at the polar decomposition of
such variables. In order to discuss this, let us start with a well-known result:

Theorem 10.19. We have the following results:

(1) Any matrix T ∈MN(C) has a polar decomposition, T = U |T |.
(2) Assuming T ∈ A ⊂MN(C), we have U, |T | ∈ A.
(3) Any operator T ∈ B(H) has a polar decomposition, T = U |T |.
(4) Assuming T ∈ A ⊂ B(H), we have U, |T | ∈ Ā, weak closure.

Proof. All this is standard, the idea being as follows:

(1) In each case under consideration, the first observation is that the matrix or general
operator T ∗T being positive, it has a square root:

|T | =
√
T ∗T

(2) With this square root extracted, in the invertible case we can compare the action
of T and |T |, and we conclude that we have T = U |T |, with U being a unitary. In the
general, non-invertible case, a similar analysis leads to the conclusion that we have as well
T = U |T |, but with U being this time a partial isometry.
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(3) In what regards now algebraic and topological aspects, in finite dimensions the
extraction of the square root, and so the polar decomposition itself, takes place over the
matrix blocks of the ambient algebra A ⊂MN(C), and so takes place inside A itself.

(4) In infinite dimensions however, we must take the weak closure, an illustrating
example here being the functions f ∈ A belonging to the algebra A = C(X), represented
on H = L2(X), whose polar decomposition leads into the bigger algebra Ā = L∞(X). �

Summarizing, we have a basic linear algebra result, regarding the polar decomposition
of the usual matrices, and in infinite dimensions pretty much the same happens, with the
only subtlety coming from the fact that the ambient operator algebra A ⊂ B(H) must
be taken weakly closed. We will be back to this, with more details, in chapter 15 below,
when talking about such algebras A ⊂ B(H), which are called von Neumann algebras.

In connection with our probabilistic questions, we first have the following result:

Proposition 10.20. The polar decomposition of semicircular variables is s = eq, with
the variables e, q being as follows:

(1) e has moments 1, 0, 1, 0, 1, . . .
(2) q is quarter-circular.
(3) e, q are independent.

Proof. It is enough to prove the result in a model of our choice, and the best choice
here is the most straightforward model for the semicircular variables, namely:

s = x ∈ L∞
(

[−2, 2], γ1

)
To be more precise, we endow the interval [−2, 2] with the probability measure γ1,

and we consider here the variable s = x = (x → x), which is trivially semicircular. The
polar decomposition of this variable is then s = eq, with e, q being as follows:

e = sgn(x)

q = |x|
Now since e has moments 1, 0, 1, 0, 1, . . . , and also q is quarter-circular, and finally e, q

are independent, this gives the result in our model, and so in general. �

Less trivial now is the following result, due to Voiculescu [88]:

Theorem 10.21. The polar decomposition of circular variables is c = uq, with the
variables u, q being as follows:

(1) u is a Haar-unitary.
(2) q is quarter-circular.
(3) u, q are free.
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Proof. This is something which looks quite similar to Proposition 10.20, but which
is more difficult, and can be however proved, via various techniques:

(1) The original proof, by Voiculescu in [88], uses Gaussian random matrix models for
the circular variables. We will discuss this proof at the end of the present chapter, after
developing the needed Gaussian random matrix model technology.

(2) A second proof, obtained by pure combinatorics, in the spirit of Theorem 10.13,
regarding the free Wick formula, and of Theorem 10.18, regarding the S-transform, or
rather in the spirit of the underlying combinatorics of these results, is the one in [71].

(3) Finally, there is as well a third proof, from [5], more in the spirit of the free
Fock space proofs for the R and S transform results, from [86], [87], using a suitable
generalization of the free Fock spaces. We will discuss this proof right below. �

10c. Semigroup models

We discuss here, following [5], the direct approach to Theorem 10.21 above, with purely
algebraic techniques. The story here involves a brave young Masters student, namely a
21-year old myself, back in Jussieu in 1994, who after doing his Masters homework, namely
reading [90], and writing down a brief account of that, was told by his advisor, Georges
Skandalis, something of type “good, but don’t run to holidays yet, take a look at l2(Z∗N),
and prove the polar decomposition of circular variables using that”. I answered yes Sir,
then started doing research, that is, working like a mercenary, for 2-3 more weeks, did the
job, and took my holidays afterwards. Later, I published this as my first paper, [5].

Georges’ idea was something quite obvious, based on the fact that the Haar-unitaries
are easy to model on l2(Z), and the quarter-circulars are easy to model on l2(N). Thus,
we can in principle model the free products of Haar-unitaries and quarter-circulars on
l2(Z∗N), and then, via whatever algebraic trick, make the link with the circular variables,
naturally modelled on l2(N ∗ N). We will explain all this in what follows.

In order to do the job, we will use semigroup algebras, jointly generalizing the main
models that we have, namely group algebras, and free Fock spaces. Let us start with:

Definition 10.22. We call “semigroup” a unital semigroup, embeddable into a group:

M ⊂ G

For such a semigroup M , we use the notation

M−1 =
{
m−1

∣∣∣m ∈M}
regarded as a subset of some group G containing M , as above.
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As a first observation, the above embeddability assumption M ⊂ G tells us that the
usual group cancellation rules hold in M , namely:

ab = ac =⇒ b = c

ba = ca =⇒ b = c

Regarding the precise relation between M and the various groups G containing it, it
is possible to talk here about the Grothendieck group G associated to such a semigroup
M . However, we will not need this in what follows, and use Definition 10.22 as such.

With the above definition in hand, we have the following construction, which unifies
the main models that we have, namely the group algebras, and the free Fock spaces:

Proposition 10.23. Let M be a semigroup. By using the left simplifiability of M we
can define, as for the discrete groups, an embedding of semigroups, as follows:

(M, ·)→ (B(l2(M)), ◦)
m→ λM(m) = [δn → δmn]

Via this embedding, the C∗-algebra C∗(M) ⊂ B(l2(M)) generated by λM(M), together
with the following canonical state, is a noncommutative random variable algebra:

τM(T ) =< Tδe, δe >

Also, the operators in λM(M) are isometries, but not necessarily unitaries.

Proof. Everything here is standard, as for the usual group algebras, with the only
subtlety appearing at the level of the isometry property of the operators λM(m). To be
more precise, for every m ∈M , the adjoint operator λM(m)∗ is given by:

λM(m)∗(δn) =
∑
x∈M

< λM(m)∗δn, δx > δx

=
∑
x∈M

δn,mxδx

Thus we have indeed the isometry property for these operators, namely:

λM(m)∗λM(m) = 1

As for the unitarity propety of the such operators, this definitely holds in the usual
discrete group case, M = G, but not in general. As a basic example here, for the semigroup
M = N, which satisfies of course the assumptions in Definition 10.22 above, the operator
λM(m) associated to the element m = 1 ∈ N is the usual shift:

λN(1) = S ∈ B(l2(N))

But this shift S, that we know well from the above, is an isometry which is not a
unitary. Thus, we are led to the conclusions in the statement. �

At the level of examples now, as announced above, we have:
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Proposition 10.24. The construction M → C∗(M) is as follows:

(1) For the discrete groups, M = G, we obtain in this way the usual discrete group
algebras C∗(G), as previously constructed in the above.

(2) For a free semigroup, M = N∗I , we obtain the algebra of creation operators over
the full Fock space over RI , with the state associated to the vacuum vector.

Proof. All this is clear from definitions, with (1) being obvious, and (2) coming via
our usual identifications for the free Fock spaces and related algebras. �

As a key observation now, enabling us to do some probability, we have:

Proposition 10.25. If M ⊂ N are semigroups satisfying the condition

M(N −M) = N −M
then for every family {ai}i∈I of elements in M , we have the formula

{λN(ai)}i∈I ∼ {λM(ai)}i∈I
as an equality of joint distributions, with respect to the canonical states.

Proof. Assume indeed that we have semigroups M ⊂ N . We have then an inclusion
of Hilbert spaces l2(M) ⊂ l2(N), and for m,m′ ∈M we have the following formula:

λM(m)δm′ = λN(m)δm′

Thus if we suppose M(N −M) = N −M , as in the statement, then we have:

λM(m)∗δm′ =
∑
x∈M

δm′,mxδx

=
∑
x∈N

δm′,mxδx

= λN(m)∗δm′

In particular, if m1, . . . ,mk ∈M , and α1, . . . , αk are exponents in {1, ∗}, then:

λM(m1)α1 . . . λM(mk)
αkδe = λN(m1)α1 . . . λN(mk)

αkδe

Thus, we are led to the conclusion in the statement. �

Following [5], let us introduce the following technical notion:

Definition 10.26. Let N be a semigroup. Consider the following order on it:

a �N b ⇐⇒ b ∈ aN
We say that N is in the class E if it satisfies one of the following equivalent conditions:

(1) For �N every bounded subset is totally ordered.
(2) a � c, b � c =⇒ a � b or b � a.
(3) aN ∩ bN 6= ∅ =⇒ aN ⊂ bN or bN ⊂ aN .
(4) NN−1 ∩N−1N = N ∪N−1.
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The above notion is something quite technical, but we will see examples, and of course
applications too, in moment. Also by following [5], let us introduce as well the following
notion, which is something standard in the combinatorics of semigroups:

Definition 10.27. Let (ai)i∈I be a family of elements in a semigroup N .

(1) We say that (ai)i∈I is a code if the semigroup M ⊂ N generated by the ai is
isomorphic to N∗I , via ai → ei, and satisfies M(N −M) = N −M .

(2) We say that (ai)i∈I is a prefix if ai ∈ ajN =⇒ i = j, which means that the
elements ai are not comparable via the order relation �N .

As already mentioned, these notions are standard in the combinatorial theory of the
semigroups. In our probabilistic setting, the notion of code is of interest, due to:

Proposition 10.28. Assuming that (ai, bi)i∈I is a code, the family(
1

2
(λN(ai) + λN(bi)

∗)

)
i∈I

is a circular family, in the sense of free probability theory.

Proof. Let (ai, bi)i∈I be indeed a code, and consider the following family:(
λN(ai), λN(bi)

)
i∈I
∈ B(l2(N))

By using Proposition 10.25, this family has the same distribution as a family of creation
operators associated to a family of 2I orthonormal vectors, on the free Fock space:(

λN∗I (ei), λN∗I (fi)
)
i∈I
∈ B(l2(N∗I))

Thus, we obtain the result, via the standard facts about the circular systems on free
Fock spaces, that we know from chapter 9 above. �

In view of this, the following result provides us with a criterion for finding circular
systems in the algebras of the semigroups in the class E, from Definition 10.26:

Proposition 10.29. For a semigroup N ∈ E, a family

(ai)i∈I ⊂ N

having at least two elements is a prefix if and only if it is a code.

Proof. We have two implications to be proved, as follows:

(1) Let first (ai)i∈I be a code which is not a prefix, for instance because we have
ai = ajn with i 6= j, n ∈ N . Then n is in the semigroup M generated by the ak and
ai = ajn with i 6= j, so M cannot be free, and this is a contradiction, as desired.

(2) Conversely, suppose now that (ai)i∈I is a prefix and let, with m ∈ N :

A = aα1
i1
. . . aαnin m = aβ1j1 . . . a

βs
js
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We have then ai1 � A, aj1 � A, and so i1 = j1. We can therefore simplify A to the
left by ai1 . A reccurence on

∑
αi shows then that we have:

n ≤ s

aik = ajk , ∀k ≤ n

αk = βk , ∀k < n

αn ≤ βn

m = aβn−αnjn
a
βn+1

jn+1
. . . aβsjs

Finally, we know that m is in the semigroup generated by the ai, so we have a code.
Moreover, for m = e we obtain n = s, ajk = aik , αk = βk, for any k ≤ n, so the ai generate
freely M and (ai)i∈I is a code. Thus, we are led to the conclusion in the statement. �

Summarizing, we have some good freeness results, for our semigroups. Before getting
into applications, let us discuss now the examples. We have here the following result:

Proposition 10.30. The class E has the following properties:

(1) All the groups are in E.
(2) The positive parts of totally ordered abelian groups are in E.
(3) If G is a group and M ∈ E, then M ×G ∈ E.
(4) If A1, A2 are in E, then the free product A1 ∗ A2 is in E.

Proof. This is something elementary, whose proof goes as follows:

(1) This is obvious, coming from definitions.

(2) This is obvious as well, because M is here totally ordered by �M .

(3) Let G be a group and M ∈ E. We have then, as desired:

(M ×G)(M ×G)−1 ∩ (M ×G)−1(M ×G)

= (M ×G)(M−1 ×G) ∩ (M−1 ×G)(M ×G)

= (MM−1 ×G) ∩ (M−1M ×G)

= (MM−1 ∩M−1M)×G
= (M ∪M−1)×G
= (M ×G) ∪ (M−1 ×G)

= (M ×G) ∪ (M ×G)−1

(4) Let a, b, c ∈ A1 ∗ A2 such that ab = c. We write, as reduced words:

a = x1 . . . xn , b = y1 . . . ym , c = z1 . . . zp

Now let s be such that the following happen:

xny1 = 1 , . . . . . . , , xn−s+1ys = 1 , xn−sys+1 6= 1
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Consider now the following element:

u = xn−s+1 . . . xn = (y1 . . . ys)
−1

We have then the following computation:

c = ab = x1 . . . xn−sys+1 . . . ym

Now let i ∈ {1, 2} be such that zn−s ∈ Ai. There are two cases:

– If xn−s ∈ A1 and ys+1 ∈ A2 or if xn−s ∈ A2 and ys+1 ∈ A1, then x1 . . . xn−sys+1 . . . ym
is a reduced word. In particular, x1 = z1 and so on, up to xn−s = zn−s. Thus we have
a = z1 . . . zn−su, with u invertible.

– If xn−s, ys+1 ∈ Ai then x1 = z1 and so on, up to xn−s−1 = zn−s−1 and xn−sys+1 = zn−s.
In this case we have a = z1 . . . zn−s−1xn−su, with u invertible.

Now observe that in both cases we obtained that a is of the form z1 . . . zfxu for some
f , with u invertible and such that if zf+1 ∈ Ai, then there exists y ∈ Ai such that:

xy = zf+1

Indeed, we can take f = n − s − 1 and x = zn−s, y = 1 in the first case, and x =
xn−s, y = ys+1 in the second one. Suppose now that A1, A2 ∈ E and let a, b, a′, b′ ∈ A1∗A2

such that ab = a′b′. Let z1 . . . zp be the decomposition of ab = a′b′ as a reduced word.
Then we can decompose our words, as above, in the following way:

a = z1 . . . zfxu , a′ = z1 . . . zf ′x
′u′

We have to show that a = a′m or that a′ = am for some m ∈ A1 ∗ A2. But this is
clear in all three cases that can appear, namely f < f ′, f ′ < f , f = f ′. �

We can now formulate a main result about semigroup freeness, as follows:

Theorem 10.31. The following happen:

(1) Given M ⊂ N , both in the class E, satisfying M(N −M) = N −M , any x in
the ∗-algebra generated by λ(M) can be written as follows, with pi, qi ∈M :

x =
∑
i

aiλN(pi)λN(qi)
∗

(2) Asssume A,B ∈ E, and let x be an element of the ∗-algebra generated by λA∗B(A)
such that τ(x) = 0. If WA,WB are respectively the sets of reduced words beginning
by an element of A,B, then x acts as follows:

l2(WB ∪ {e})→ l2(WA)

(3) Let A,B ∈ E. Then λA∗B(A) and λA∗B(B) are free.
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Proof. This follows from our results so far, the idea being is as follows:

(1) It is enough to prove this for elements of the form x = λ(m)∗λ(n) with m,n ∈M ,
because the general case will follow easily from this. In order to do so, observe that
x = λ(m)∗λ(n) is different from 0 precisely when there exist a, b ∈ N such that:

< λ(m)∗λ(n)δa, δb >6= 0

That is, the following condition must be satisfied:

na = mb

We know that there exists c ∈ N with n = mc or with m = nc. Moreover, as
M(N −M) = N −M , it follows that c ∈ M . Thus x = λ(m)∗λ(n) 6= 0 implies that
x = λ(c) or x = λ(c)∗ with c ∈M , and this finishes the proof.

(2) We apply (1) with M = A and N = A ∗B for writing, with pi, qi ∈ A:

x =
∑
i

aiλ(pi)λ(qi)
∗

Consider now the following element:

τ(λ(pi)λ(qi)
∗) =

∑
x

δe,pixδe,qix

This element is nonzero precisely when pi = qi is invertible, and in this case:

λ(pi)λ(qi)
∗ = 1

Now since we assumed τ(x) = 0, it follows that we can write:

x =
∑

aiλ(pi)λ(qi)
∗

τ(λ(pi)λ(qi)
∗) = 0

By linearity, it is enough to prove the result for x = λ(pi)λ(qi)
∗. Let m ∈ WB∪{e} and

suppose that xδm 6= 0. Then λ(qi)
∗δm 6= 0 implies that m = qic for some word c ∈ A ∗B.

As qi ∈ A and m ∈ WB ∪ {e}, it follows that qi is invertible. Now observe that:

piq
−1
i = 1 =⇒ τ(x) = 1

It follows that we have, as desired:

xδm = δpiq−1
i m ∈ l

2(WA)

(3) This follows from (2) above. Indeed, let P = xn . . . x1 be a product of elements in
ker(τ), such that x2k is in the ∗-algebra generated by λ(B) and x2k+1 is in the ∗-algebra
generated by λ(A). Then x1δe ∈ l2(WA). Thus x2x1δe ∈ l2(WB), and so on. By a
reccurence, Pδe is in l2(WA) or in l2(WB). But this implies that τ(P ) = 0, as desired. �

As a main application of the above semigroup technology, we have:



244 10. CIRCULAR VARIABLES

Theorem 10.32. Consider a Haar-unitary u, free from a semicircular s. Then

c = us

is a circular variable.

Proof. Denote by z the image of 1 ∈ Z and by n the image of 1 ∈ N by the canonical
embeddings into the free product Z ∗ N. Let λ = λZ∗N. We know that Z ∗ N ∈ E. Also
(zn, nz−1) is obviously a prefix, so it is a code. Thus, the following variable is circular:

c =
1

2
(λ(zn) + λ(nz−1)∗)

The point now is that we have the following formula:

1

2
(λ(zn) + λ(nz−1)∗) = us

But this gives the result, in our model and so in general as well, because u = λ(z) is
a Haar-unitary, s = 1/2(λ(n) + λ(n)∗) is semicircular, and u and s are free. �

We can now recover the Voiculescu polar decomposition result for the circular vari-
ables, obtained in [88], by using random matrix techniques, as follows:

Theorem 10.33. Consider the polar decomposition of a circular variable, in some von
Neumann algebraic probability space with faithful normal state:

x = vb

Then v is Haar-unitary, b is quarter-circular, and (v, b) are free.

Proof. This follows by suitably manipulating Theorem 10.32, as to replace the semi-
circular element there by a quarter-circular. Consider indeed the following group:

G = Z ∗ (Z× Z/2Z)

Let z, t, a be the images of the following elements, into this group G:

1 ∈ Z , (1, 0̂) ∈ Z× (Z/2Z) , (0, 1̂) ∈ Z× (Z/2Z)

Let u = λG(z), d = λG(a) and choose a quarter-circular q ∈ C∗(λG(t)). Then (q, d)
are independent, so dq is semicircular, and so c = udq is circular, and:

– The module of c is q, which is a quarter-circular.

– The polar part of c is ud, which is obviously a Haar-unitary.

– Consider the automorphism of G which is the identity on Z×Z/2Z and maps z → za.
This extends to a trace-preserving automorphism of C∗(G) which maps:

u→ ud , q → q

As u, q are free, it follows that ud, q are free too, finishing the proof. �
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10d. Gaussian matrices

As an application of the semicircular and circular variable theory developed so far,
and of free probability in general, let us go back now to the random matrices. Following
Voiculescu’s paper [88], we will prove now a number of key freeness results for them,
complementing the basic random matrix theory developed in chapters 7-8 above.

We have already computed the asymptotic moments of the main random matrices
in chapters 7-8, and performed as well an asymptotic distribution study, in the self-
adjoint cases, that of the Wigner and Wishart matrices. The point now is that, with free
probability theory, we can say more about all this, with a number of new results.

As a first such result, completing our asymptotic law study, we have:

Theorem 10.34. Given a sequence of complex Gaussian matrices

ZN ∈MN(L∞(X))

having independent Gt variables as entries, with t > 0, we have

ZN√
N
∼ Γt

in the N →∞ limit, with the limiting measure being Voiculescu’s circular law.

Proof. We know from chapter 7 above, with this having been actually our very first
moment computation for random matrices, in this book, that the asymptotic moments of
the complex Gaussian matrices are given by the following formula:

Mk

(
ZN√
N

)
' t|k|/2|NC2(k)|

On the other hand, we also know from the above that an abstract noncommutative
variable a ∈ A is circular, following the law Γt, precisely when its moments are:

Mk(a) = t|k|/2|NC2(k)|
Thus, we are led to the conclusion in the statement. �

The above result is of course something quite theoretical, and having it formulated
as such is certainly something nice, complementing our previous results regarding the
Wigner and Wishart matrices. However, and here comes our point, it is actually possible
to use free probability theory in order to go well beyond this, with this time some truly
“new” results on the Gaussian, Wigner and Wishart matrices. We will explain this now,
following Voiculescu’s paper [88], which came as a big surprise at that time, and which
is one of the most influential papers ever, in mathematics in general.

Let us begin with the Wigner matrices. The point is that we can complement here
the Wigner result from chapter 7 with a key asymptotic freeness result, as follows:
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Theorem 10.35. Given a family of sequences of Wigner matrices,

Zi
N ∈MN(L∞(X)) , i ∈ I

with pairwise independent entries, each following the complex normal law Gt, with t > 0,
up to the constraint Zi

N = (Zi
N)∗, the rescaled sequences of matrices

Zi
N√
N
∈MN(L∞(X)) , i ∈ I

become with N →∞ semicircular, each following the Wigner law γt, and free.

Proof. This is something quite subtle, the idea being as follows:

(1) First of all, we know from chapter 7 above that for any i ∈ I the corresponding
sequence of rescaled Wigner matrices becomes semicircular in the N →∞ limit:

Zi
N√
N
' γt

(2) Thus, what is new here, and that we have to prove, is the asymptotic freeness
assertion. For this purpose we can assume that we are dealing with the case of 2 sequences
of matrices, |I| = 2. So, assume that we have Wigner matrices as follows:

ZN , Z
′
N ∈MN(L∞(X))

We have to prove that these matrices become asymptotically free, with N →∞.

(3) But this something that can be proved directly, via various routine computations
with partitions, which simplify as usual in the N →∞ limit, and bring freeness.

(4) However, we can prove this as well by using a trick, based on the result in Theorem
10.34 above. Consider indeed the following random matrix:

YN =
1√
2

(ZN + iZ ′N)

This is then a complex Gaussian matrix, and so by using Theorem 10.34 above, we
obtain that in the limit N →∞, we have:

YN√
N
' Γt

Now recall that the circular law Γt was by definition the law of the following variable,
with a, b being semicircular, each following the law γt, and free:

c =
1√
2

(a+ ib)

We are therefore in the situation where the variable (ZN + iZ ′N)/
√
N , which has

asymptotically semicircular real and imaginary parts, converges to the distribution of
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a + ib, equally having semicircular real and imaginary parts, but with these real and
imaginary parts being free. Thus ZN , Z

′
N become asymptotically free, as desired. �

Getting now to the complex case, we have a similar result here, as follows:

Theorem 10.36. Given a family of sequences of complex Gaussian matrices,

Zi
N ∈MN(L∞(X)) , i ∈ I

with pairwise independent entries, each following the complex normal law Gt, with t > 0,
the rescaled sequences of matrices

Zi
N√
N
∈MN(L∞(X)) , i ∈ I

become with N →∞ circular, each following the Voiculescu law Γt, and free.

Proof. This follows from Theorem 10.35 above, which applies to the real and imag-
inary parts of our complex Gaussian matrices, and gives the result. �

The above results are interesting for both free probability and random matrices. As
an illustration here, we have the folowing application to free probability:

Theorem 10.37. Consider the polar decomposition of a circular variable in some von
Neumann algebraic probability space with faithful normal state:

x = vb

Then v is Haar-unitary, b is quarter-circular and (v, b) are free.

Proof. This is indeed easy to see in the Gaussian matrix model provided by Theorem
10.36 above, and for details here, we refer to Voiculescu’s paper [88]. �

There are many other applications along this lines, and conversely, free probability
can be used as well for the detailed study of the Wigner and Gaussian matrices.

Finally, we have as well a similar result for the Wishart matrices, as follows:

Theorem 10.38. Given a family of sequences of complex Wishart matrices,

Zi
N = Y i

N(Y i
N)∗ ∈MN(L∞(X)) , i ∈ I

with each Y i
N being a N ×M matrix, with entries following the normal law G1, and with

all these entries being pairwise independent, the rescaled sequences of matrices

Zi
N

N
∈MN(L∞(X)) , i ∈ I

become with M = tN →∞ Marchenko-Pastur, each following the law πt, and free.

Proof. Here the first assertion is the Marchenko-Pastur theorem, and the second
assertion follows from the freeness result from Theorem 10.35, or from Theorem 10.36. �
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To conclude now, we have seen so far the foundations of free probability, and its basic
applications to random matrix theory. We will keep building on all this, in the remainder
of this book, but somehow with a preference towards quantum algebra topics.

For further results on the topics discussed above, we recommend, besides Voiculescu’s
papers [85], [86], [87], [88], [89], and book [90] with Dykema and Nica, [23], [26], [48],
[71], [78], [79] for general free probability, [1], [43], [50], [52], [56], [67], [69], [83] for
random matrix theory, and [27], [45], [54], [61], [76], [77] for applications to operator
algebras. But do not worry, we will be back to some of these topics, in what follows.

10e. Exercises

There has been a lot of interesting combinatorics in this chapter, and as a first exercise
on all this, which is of key theoretical importance, we have:

Exercise 10.39. Prove that the free multiplicative convolution operation � for the
real probability measures µ ∈ P(R) can be linearized as follows:

(1) Start with the sequence of moments Mk, and then compute the moment generating
function, or Stieltjes transform of the measure:

f(z) = 1 +M1z +M2z
2 +M3z

3 + . . .

(2) Perform the following operations to the Stieltjes transform:

ψ(z) = f(z)− 1

ψ(χ(z)) = z

S(z) =

(
1 +

1

z

)
χ(z)

(3) Then logS linearizes the free multiplicative convolution, in the sense that:

Sµ�ν = SµSν

This is something that we already discussed in the above, with the idea of the proof,
and links to the revelant literature. Time now to have this fully understood.

In relation now with the polar decomposition results, we have:

Exercise 10.40. Try finding the classical analogue of the polar decomposition result
of the circular variables, that we found in the above.

This is something a bit vague, but very instructive. In case you are stuck, try thinking
at the passage ON → UN , say at the level of the corresponding Lie algebras, and then at
the corresponding laws of coordinates, in the N → ∞ limit. And if you are still stuck,
even with this indication, wait for it: we will be back to this, later on in this book.



CHAPTER 11

Poisson limits

11a. Poisson limits

We have seen so far that free probability leads to three key limiting theorems, namely
the free analogues of the PLT, CLT and CCLT. The limiting measures are the Marchenko-
Pastur laws πt, the Wigner semicircle laws γt and the Voiculescu circular laws Γt.

Together with the Poisson laws pt and the Gaussian laws gt and Gt appearing from
the classical PLT, CLT and CCLT, these laws form a rectangular diagram, as follows:

πt γt Γt

pt gt Gt

In this chapter we develop some more limiting theorems, by generalizing the free PLT
that we know into a free compound Poisson limit theorem (free CPLT).

At the level of the above diagram, there are no complex analogues of pt, πt, but by using
measures found via the classical and free CPLT, namely the Bessel laws bt, Bt discussed
in chapter 2 above, and their free analogues βt,Bt to be discussed here, we will be able
to modify and then fold the diagram, as to complete it into a cube, as follows:

Bt Γt

βt γt

Bt Gt

bt gt

This is of course quite nice, theoretically speaking, because it leads to a kind of 3D
orientation inside the whole subject, classical and free probability, which is useful.

249
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In order to do all this, as already mentioned, we are first in need of a free CPLT. We
will follow the CPLT material from chapter 2 above, by performing modifications where
needed, as to replace everywhere classical probability with free probability. We will follow
as well the material from chapter 8 above, where all this was in fact discussed, a bit in
advance, in relation with the block modifications of the Wishart matrices.

Let us start with the following straightforward definition, similar to the one from the
classical case, discussed in chapter 2 above, when talking about the CPLT:

Definition 11.1. Associated to any compactly supported positive measure ρ on R is
the probability measure

πρ = lim
n→∞

((
1− c

n

)
δ0 +

1

n
ρ

)�n

where c = mass(ρ), called compound free Poisson law.

In what follows we will be mostly interested in the case where ρ is discrete, as is for
instance the case for the measure ρ = tδ1 with t > 0, which produces the free Poisson
laws, via the usual Poisson Limit Theorem (PLT), that we learned in chapter 2 above.

The following result allows one to detect compound free Poisson laws:

Proposition 11.2. For a discrete measure, written as

ρ =
s∑
i=1

ciδzi

with ci > 0 and zi ∈ R, we have the following formula,

Rπρ(y) =
s∑
i=1

cizi
1− yzi

where R denotes as usual the Voiculescu R-transform.

Proof. In order to prove this result, let µn be the measure appearing in Definition
11.1 above, under the free convolution sign, namely:

µn =
(

1− c

n

)
δ0 +

1

n
ρ

The Cauchy transform of µn is then given by the following formula:

Gµn(ξ) =
(

1− c

n

) 1

ξ
+

1

n

s∑
i=1

ci
ξ − zi

Consider now the R-transform of the measure µ�n
n , which is given by:

Rµ�nn
(y) = nRµn(y)
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By using the general theory of the R-transform, from chapter 9 above, the above
formula of Gµn shows that the equation for R = Rµ�nn

is as follows:

(
1− c

n

) 1

y−1 +R/n
+

1

n

s∑
i=1

ci
y−1 +R/n− zi

= y

=⇒
(

1− c

n

) 1

1 + yR/n
+

1

n

s∑
i=1

ci
1 + yR/n− yzi

= 1

Now multiplying by n, then rearranging the terms, and letting n→∞, we get:

c+ yR

1 + yR/n
=

s∑
i=1

ci
1 + yR/n− yzi

=⇒ c+ yRπρ(y) =
s∑
i=1

ci
1− yzi

=⇒ Rπρ(y) =
s∑
i=1

cizi
1− yzi

Thus, we are led to the conclusion in the statement. �

We have as well the following result, providing an alternative to Definition 11.1, and
which can, together with Definition 11.1, be thought of as being a free CPLT:

Theorem 11.3. For a discrete measure, written as

ρ =
s∑
i=1

ciδzi

with ci > 0 and zi ∈ R, we have the formula

πρ = law

(
s∑
i=1

ziαi

)

where the variables αi are free Poisson(ci), free.

Proof. Let α be the sum of free Poisson variables in the statement:

α =
s∑
i=1

ziαi
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In order to prove the result, we will show that the R-transform of α is given by the
formula in Proposition 11.2. We have the following computation:

Rαi(y) =
ci

1− y
=⇒ Rziαi(y) =

cizi
1− yzi

=⇒ Rα(y) =
s∑
i=1

cizi
1− yzi

Thus we have indeed the same formula as in Proposition 11.2, and we are done. �

All the above is quite general, and in practice, in order to obtain concrete results, the
simplest measures that we can use as “input” for the CPLT are the same measures as
those that we used in the classical case, in chapter 2 above, namely the measures of type
ρ = tεs, with t > 0, and with εs being the uniform measure on the s-th roots of unity.

We will discuss this in what follows, basically by following the classical material from
chapter 2 above, and [10], then we will derive some consequences of this.

11b. Bessel laws

As mentioned above, for various reasons, including the construction of the “standard
cube” discussed in the beginning of this chapter, we are interested in the applications of
the free CPLT with the “simplest” input measures, with these simplest measures being
those of type ρ = tεs, with t > 0, and with εs being the uniform measure on the s-th
roots of unity. We are led in this way the following class of measures:

Definition 11.4. The Bessel and free Bessel laws, depending on parameters s ∈
N ∪ {∞} and t > 0, are the following compound Poisson and free Poisson laws,

bst = ptεs

βst = πtεs

with εs being the uniform measure on the s-th roots of unity. In particular:

(1) At s = 1 we recover the Poisson laws pt, πt.
(2) At s = 2 we have the real Bessel laws bt, βt.
(3) At s =∞ we have the complex Bessel laws Bt,Bt.

The terminology here comes from the fact, that we know from chapter 2 above, that
the density of the measure bt, appearing at s = 2, is a Bessel function of the first kind. This
was something first discovered in [12], and we refer to that paper, and to the subsequent
literature, including [10], for more comments on this phenomenon.

Our next task will be that upgrading our results about the free Poisson law πt in this
setting, using a parameter s ∈ N ∪ {∞}. First, we have the following result:
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Theorem 11.5. The free Bessel laws have the property

βst � βst′ = βst+t′

so they form a 1-parameter semigroup with respect to free convolution.

Proof. This follows indeed from the fact that the R-transform of βst is linear in t,
which is something that we already know, from the above. �

Let us discuss now, following [10], some more advanced aspects of the free Bessel laws.
Things here will be quite technical, and all that follows will be rather an introduction to
[10], and to the subsequent literature on this interesting subject.

Let us start with some generalities. Given a real probability measure µ, one can ask
whether the convolution powers µ�s and µ�t exist, for various values of the parameters
s, t > 0. For the free Poisson law, the answer to these questions is as follows:

Proposition 11.6. The free convolution powers of the free Poisson law

π�s , π�t

exist for any positive values of the paremeters, s, t > 0.

Proof. We have two measures to be studied, the idea being as follows:

(1) The free Poisson law π is by definition the t = 1 particular case of the free Poisson
law of parameter t, or Marchenko-Pastur law of parameter t > 0, given by:

πt = max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

The Cauchy transform of this measure is given by:

G(ξ) =
(ξ + 1− t) +

√
(ξ + 1− t)2 − 4ξ

2ξ

We can compute now the R transform, by proceeding as follows:

ξG2 + 1 = (ξ + 1− t)G =⇒ Kz2 + 1 = (K + 1− t)z
=⇒ Rz2 + z + 1 = (R + 1− t)z + 1

=⇒ Rz = R− t
=⇒ R = t/(1− z)

The last expression being linear in t, the measures πt form a semigroup with respect
to free convolution. Thus we have πt = π�t, which proves the second assertion.

(2) Regarding now the measure π�s, there is no explicit formula for its density. How-
ever, we can prove that this measure exists, by using some abstract results.
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Indeed, we have the following computation for the S transform of πt:

ξG2 + 1 = (ξ + 1− t)G =⇒ zf 2 + 1 = (1 + z − zt)f
=⇒ z(ψ + 1)2 + 1 = (1 + z − zt)(ψ + 1)

=⇒ χ(z + 1)2 + 1 = (1 + χ− χt)(z + 1)

=⇒ χ(z + 1)(t+ z) = z

=⇒ S = 1/(t+ z)

In particular at t = 1 we have the following formula:

S(z) =
1

1 + z

Thus the Σ transform of π, which is by definition Σ(z) = S(z/(1− z)), is given by:

Σ(z) = 1− z
On the other hand, it is well-known from the general theory of the S-transform that the

Σ transforms of the probability measures which are �-infinitely divisible are the functions
of the form Σ(z) = ev(z), where v : C− [0,∞)→ C is analytic, satisfying:

v(z̄) = v̄(z)

v(C+) ⊂ C−

Now in the case of the free Poisson law, the function v(z) = log(1− z) satisfies these
properties, and we are led to the conclusion in the statement. See [10]. �

Getting now towards the free Bessel laws, we have the following remarkable identity,
in relation with the above convolution powers of π, also established in [10]:

Theorem 11.7. We have the formula

π�s−1 � π�t = ((1− t)δ0 + tδ1) � π�s

valid for any s ≥ 1, and any t ∈ (0, 1].

Proof. We know from the previous proof that the S transform of the free Poisson
law π is given by the following formula:

S1(z) =
1

1 + z

We also know from there that the S transform of π�t is given by:

St(z) =
1

t+ z

Thus the measure on the left in the statement has the following S transform:

S(z) =
1

(1 + z)s−1
· 1

t+ z
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The S transform of αt = (1− t)δ0 + tδ1 can be computed as follows:

f = 1 + tz/(1− z) =⇒ ψ = tz/(1− z)

=⇒ z = tχ/(1− χ)

=⇒ χ = z/(t+ z)

=⇒ S = (1 + z)/(t+ z)

Thus the measure on the right in the statement has the following S transform:

S(z) =
1

(1 + z)s
· 1 + z

t+ z

Thus the S transforms of our two measures are the same, and we are done. �

The relation with the free Bessel laws, as previously defined, comes from:

Theorem 11.8. The free Bessel law is the real probability measure βst , with

(s, t) ∈ (0,∞)× (0,∞)− (0, 1)× (1,∞)

defined concretely as follows:

(1) For s ≥ 1 we set βst = π�s−1 � π�t.
(2) For t ≤ 1 we set βst = ((1− t)δ0 + tδ1) � π�s.

Proof. This follows indeed from the above results. To be more precise, these results
show that the measures constructed in the statement exist indeed, and coincide with the
free Bessel laws, as previously defined, as compound free Poisson laws. �

In view of the above, we can regard the free Bessel law βst as being a natural two-
parameter generalization of the free Poisson law π, in connection with Voiculescu’s free
convolution operations � and �. Observe that we have the following formulae:{

βs1 = π�s

β1
t = π�t

As a comment here, concerning the precise range of the parameters (s, t), the above
results can be probably improved. The point is that the measure βst still exists for certain
points in the critical rectangle (0, 1)× (1,∞), but not for all of them.

To be more precise, the known numeric checks for this question, discussed in [10], show
that the critical values of (s, t) tend to form an algebraic curve contained in (0, 1)×(1,∞),
having s = 1 as an asymptote. However, the case we are the most interested in is t ∈ (0, 1],
and here there is no problem, because βst exists for any s > 0. Thus, we will not need in
fact all this, and we will stop this discussion about parameters here.

As before following [10], we have the following result:
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Proposition 11.9. The Stieltjes transform of βst satisfies:

f = 1 + zf s(f + t− 1)

Proof. We have the following computation:

S =
1

(1 + z)s−1
· 1

t+ z
=⇒ χ =

z

(1 + z)s
· 1

t+ z

=⇒ z =
ψ

(1 + ψ)s
· 1

t+ ψ

=⇒ z =
f − 1

f s
· 1

t+ f − 1

Thus, we obtain the equation in the statement. �

At t = 1, we have in fact the following result, also from [10], which is more explicit:

Theorem 11.10. The Stieltjes transform of βs1 with s ∈ N is given by

f(z) =
∑
p∈NCs

zk(p)

where NCs is the set of noncrossing partitions all whose blocks have as size multiples of
s, and where k : NCs → N is the normalized length.

Proof. With the notation Ck = #NCs(k), where NCs(k) ⊂ NCs consists of the
partitions of {1, . . . , sk} belonging to NCs, the sum on the right is:

f(z) =
∑
k

Ckz
k

For a given partition p ∈ NCs(k+ 1) we can consider the last s legs of the first block,
and make cuts at right of them. This gives a decomposition of p into s + 1 partitions in
NCs, and we obtain in this way the following recurrence formula for the numbers Ck:

Ck+1 =
∑

Σki=k

Ck0 . . . Cks

By multiplying now by zk+1, and then summing over k, we obtain that the generating
series of these numbers Ck satisfies the following equation:

f − 1 = zf s+1

But this is the same as the equation of the Stieltjes transform of βs1, found in Propo-
sition 11.9 above, applied at t = 1, namely:

f = 1 + zf s+1

Thus, we are led to the conclusion in the statement. �

Next, still following [10], we have the following result, dealing with the case t > 0:
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Theorem 11.11. The Stieltjes transform of βst with s ∈ N is given by:

f(z) =
∑
p∈NCs

zk(p)tb(p)

where k, b : NCs → N are the normalized length, and the number of blocks.

Proof. With notations from the previous proof, let Fkb be the number of partitions
in NCs(k) having b blocks, and set Fkb = 0 for other integer values of k, b. All sums will
be over integer indices ≥ 0. The sum on the right in the statement is then:

f(z) =
∑
kb

Fkbz
ktb

The recurrence formula for the numbers Ck in the previous proof becomes:∑
b

Fk+1,b =
∑

Σki=k

∑
bi

Fk0b0 . . . Fksbs

In this formula, each term contributes to Fk+1,b with b = Σbi, except for those of the
form F00Fk1b1 . . . Fksbs , which contribute to Fk+1,b+1. We get:

Fk+1,b =
∑

Σki=k

∑
Σbi=b

Fk0b0 . . . Fksbs

+
∑

Σki=k

∑
Σbi=b−1

Fk1b1 . . . Fksbs

−
∑

Σki=k

∑
Σbi=b

Fk1b1 . . . Fksbs

This gives the following formula for the polynomials Pk =
∑

b Fkbt
b:

Pk+1 =
∑

Σki=k

Pk0 . . . Pks + (t− 1)
∑

Σki=k

Pk1 . . . Pks

Consider now the following generating function:

f =
∑
k

Pkz
k

In terms of this generating function, we get the following equation:

f − 1 = zf s+1 + (t− 1)zf s

But this is the same as the equation of the Stieltjes transform of βst , namely:

f = 1 + zf s(f + t− 1)

Thus, we are led to the conclusion in the statement. �
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Let us discuss now the computation of the moments of the free Bessel laws. The idea
will be that of expressing these moments in terms of generalized binomial coefficients. We
recall that the coefficient corresponding to α ∈ R, k ∈ N is:(

α

k

)
=
α(α− 1) . . . (α− k + 1)

k!

We denote by m1,m2,m3, . . . the sequence of moments of a given probability measure.
With this convention, we first have the following result, from [10]:

Theorem 11.12. The moments of βs1 with s > 0 are

mk =
1

sk + 1

(
sk + k

k

)
which are the Fuss-Catalan numbers.

Proof. We can prove this in two steps, as follows:

(1) In the case s ∈ N, we know that we have:

mk = #NCs(k)

The formula in the statement follows then by counting such partitions.

(2) In the general case s > 0, observe first that the Fuss-Catalan number in the
statement is a polynomial in s:

1

sk + 1

(
sk + k

k

)
=

(sk + 2)(sk + 3) . . . (sk + k)

k!

Thus, in order to pass from the case s ∈ N to the case s > 0, it is enough to check that
the k-th moment of πs1 is analytic in s. But this is clear from the equation f = 1 + zf s+1

of the Stieltjes transform of πs1, and this gives the result. �

We have as well the following result, which deals with the general case t > 0:

Theorem 11.13. The moments of βst with s > 0 are

mk =
k∑
b=1

1

b

(
k − 1

b− 1

)(
sk

b− 1

)
tb

which are the Fuss-Narayana numbers.

Proof. We can prove this in two steps, as follows:

(1) In the case s ∈ N, we know from the above that we have the following formula,
where Fkb is the number of partitions in NCs(k) having b blocks:

mk =
∑
b

Fkbt
b
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With this observation in hand, the formula in the statement follows by counting such
partitions, with this being a well-known computation.

(2) The above result can be then extended to any parameter s > 0, by using a standard
complex variable argument, as before. See [10]. �

In the case s /∈ N, the moments of βst can be further expressed in terms of Gamma
functions. In the case s = 1/2, the result, also from [10], is as follows:

Theorem 11.14. The moments of β
1/2
1 are given by the following formulae:

m2p =
1

p+ 1

(
3p

p

)
m2p−1 =

2−4p+3p

(6p− 1)(2p+ 1)
· p!(6p)!

(2p)!(2p)!(3p)!

Proof. According to our various results above, the even moments of the free Bessel
law βst with s = n− 1/2, n ∈ N, are given by:

m2p =
1

(n− 1/2)(2p) + 1

(
(n+ 1/2)2p

2p

)
=

1

(2n− 1)p+ 1

(
(2n+ 1)p

2p

)
With n = 1 we get the formula in the statement. Now for the odd moments, we can

use here the following well-known identity:(
m− 1/2

k

)
=

4−k

k!
· (2m)!

m!
· (m− k)!

(2m− 2k)!

With m = 2np+ p− n and k = 2p− 1 we get:

m2p−1 =
1

(n− 1/2)(2p− 1) + 1

(
(n+ 1/2)(2p− 1)

2p− 1

)
=

2

(2n− 1)(2p− 1) + 2

(
(2np+ p− n)− 1/2

2p− 1

)
=

2−4p+3

(2p− 1)!
· (4np+ 2p− 2n)!

(2np+ p− n)!
· (2np− p− n+ 1)!

(4np− 2p− 2n+ 3)!

In particular with n = 1 we obtain:

m2p−1 =
2−4p+3

(2p− 1)!
· (6p− 2)!

(3p− 1)!
· p!

(2p+ 1)!

=
2−4p+3(2p)

(2p)!
· (6p)!(3p)

(3p)!(6p− 1)6p
· p!

(2p)!(2p+ 1)

But this gives the formula in the statement. �



260 11. POISSON LIMITS

There are many other interesting things, of both combinatorial and complex analytic
nature, that can be said about the free Bessel laws, their moments and their densities,
and we refer here to [10]. Also, there is as well a relation with the combinatorics of the
intermediate subfactors, and the Fuss-Catalan algebra of Bisch and Jones [28]. All this
is a bit technical, and we will be back to this later, whan taking about subfactors.

In what follows we will rather focus on the free Bessel laws that we are truly interested
in, namely those appearing at s = 1, 2,∞. We will be particularly interested in the cases
s = 2,∞, which can be thought of as being “fully real” and “purely complex”.

Also, instead of insisting on combinatorics and complex analysis, we will rather discuss
the question of finding matrix models for the free Bessel laws, which is of key importance,
in view of the various random matrix considerations from chapters 5-8 above.

11c. The standard cube

Let us get back now to the fundamental question, mentioned in the beginning of this
chapter, of arranging the main probability measures that we know, classical and free, into
a cube, and this as for having a kind of 3D orientation, inside probability at large.

For this purpose, we will need the following result, coming from the above study:

Theorem 11.15. The moments of βst are the numbers

Mk =
∑

π∈NCs(k)

t|π|

where NCs are the noncrossing partitions satisfying

#◦ = # • (s)

in each block of the partition.

Proof. This is something quite technical, which can be proved either directly, via
explicit computations, or via the above combinatorial study from [10], as follows:

(1) At t = 1 the formula to be proved is as follows:

Mk(β
s
1) = |NCs(k)|

But this can be proved either by doing some direct computations, or by using Theorem
11.10 above, via the bijection between the set NCs there and the set NCs here.

(2) At t > 0 the formula to be proved is as follows:

Mk(β
s
t ) =

∑
π∈NCs(k)

t|π|

But this can be proved again by doing some computations, or by using Theorem 11.11
above, via the bijection between the set NCs there and the set NCs here. �
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At the combinatorial level, this is quite interesting, because we can enlarge the previous
double square diagram, that we found in chapter 10 above, in the following way:

Theorem 11.16. The various classical and free central limiting theorems, namely

FCPLT FCLT FCCLT

CPLT CLT CCLT

have as limiting laws the following measures,

βst γt Γt

bst gt Gt

whose moments are always given by the same formula, involving partitions, namely

Mk =
∑

π∈D(k)

t|π|

where the sets of partitions D(k) in question are respectively

NCs

��

NC2

��

oo NC2
oo

��
P s P2
oo P2

oo

and where |.| is the number of blocks.

Proof. This follows by putting together the various moment results that we have,
namely those from chapter 10 above, and those from Theorem 11.15. �

The above result is quite nice, and is complete as well, containing all the moment
results that we have established so far, throughout this book.

However, forgetting about being as general as possible, we can in fact do better.
Nothing in life is better than having some 3D orientation, and as a main application of
the above, we can modify a bit the above diagram, as to have a cube, as follows:
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Theorem 11.17. The moments of the selected central limiting measures,

Bt Γt

βt γt

Bt Gt

bt gt

are always given by the same formula, involving partitions, namely

Mk =
∑

π∈D(k)

t|π|

where the sets of partitions D(k) in question are respectively

NCeven

{{

��

NC2
oo

��

{{
NCeven

��

NC2
oo

��

Peven

{{

P2
oo

{{
Peven P2

oo

and where |.| is the number of blocks.

Proof. This follows by putting together the various moment results that we have. To
be more precise, the result follows from Theorem 11.16 above, by restricting the attention
on the left to the cases s = 2,∞, which can be thought of as being “fully real” and “purely
complex”, and then folding the 8-measure diagram into a cube, as above. �

The above cube, which is something very nice, will basically keep us busy for the rest
of this book. Among others, we will see later more conceptual explanations for it.

11d. Matrix models

We discuss in what follows a number of random matrix models for the measures βst
with s ∈ N, both of multiplicative and of block-modification type.

We first restrict attention to the case t = 1, since βst = π�s−1 � π�t, and therefore
matrix models for βst will follow from matrix models for π�s.
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Following [10], we first have the following result:

Theorem 11.18. Let G1, . . . , Gs be a family of N × N independent matrices formed
by independent centered Gaussian variables, of variance 1/N . Then with

M = G1 . . . Gs

the moments of the spectral distribution of MM∗ converge, up to a normalization, to the
corresponding moments of βs1, as N →∞.

Proof. We proceed by induction. At s = 1 it is well-known that MM∗ is a model
for β1

1 = π. So, assume that the result holds for s− 1 ≥ 1. We have:

tr(MM∗)k = tr(G1 . . . GsG
∗
s . . . G

∗
1)k

= tr(G1(G2 . . . GsG
∗
s . . . G

∗
1G1)k−1G2 . . . GsG

∗
s . . . G

∗
1)

We can pass the first G1 matrix to the right, and we get:

tr(MM∗)k = tr((G2 . . . GsG
∗
s . . . G

∗
1G1)k−1G2 . . . GsG

∗
s . . . G

∗
1G1)

= tr(G2 . . . GsG
∗
s . . . G

∗
1G1)k

= tr((G2 . . . GsG
∗
s . . . G

∗
2)(G∗1G1))k

We know that G∗1G1 is a Wishart matrix, hence is a model for π. Also, we know by
the induction assumption that G2 . . . GsG

∗
s . . . G

∗
2 gives a matrix model for βs−1

1 .

Since the matrices G∗1G1 and G2 . . . GsG
∗
s . . . G

∗
2 are asymptotically free, their product

gives a matrix model for πs−1,1 � π11 = βs1, and we are done. �

We should mention that the above result, from [10], has inspired a whole string of
extensions and generalizations. We refer here to [10] and the subsequent literature.

Again following [10], we have as well the following result:

Theorem 11.19. If W is a complex Wishart matrix of parameters (sN,N) and

D =


1N 0 0
0 w1N 0

. . .
0 0 ws−11N


with w = e2πi/s then the moments of the spectral distribution of (DW )s converge, up to a
normalization, to the corresponding moments of βs1, as N →∞.

Proof. We use the following complex Wishart matrix formula of Graczyk, Letac and
Massam [50], whose proof is via standard combinatorics:

E(Tr(DW )K) =
∑
σ∈SK

Mγ(σ−1π)

MK
rσ(D)
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Here W is by definition a complex Wishart matrix of parameters (M,N), and D is a
deterministic M ×M matrix. As for the right term, this is as follows:

(1) π is the cycle (1, . . . , K).

(2) γ(σ) is the number of disjoint cycles of σ.

(3) If we denote by C(σ) the set of such cycles and for any cycle c, by |c| its length,
then the function on the right is given by:

rσ(D) =
∏

c∈C(σ)

Tr(D|c|)

In our situation we have K = sk and M = sN , and we get:

E(Tr(DW )sk) =
∑
σ∈Ssk

(sN)γ(σ−1π)

(sN)sk
rσ(D)

Now since D is uniformly formed by s-roots of unity, we have:

Tr(Dp) =

{
sN if s|p
0 if s6 |p

Thus if we denote by Sssk the set of permutations σ ∈ Ssk having the property that all
the cycles of σ have length multiple of s, the above formula reads:

E(Tr(DW )sk) =
∑
σ∈Sssk

(sN)γ(σ−1π)

(sN)sk
(sN)γ(σ)

In terms of the normalized trace tr, we obtain the following formula:

E(tr(DW )sk) =
∑
σ∈Sssk

(sN)γ(σ−1π)+γ(σ)−sk−1

The exponent on the right, say Lσ, can be estimated by using the distance on the
Cayley graph of Ssk, in the following way:

Lσ = γ(σ−1π) + γ(σ)− sk − 1

= (sk − d(σ, π)) + (sk − d(e, σ))− sk − 1

= sk − 1− (d(e, σ) + d(σ, π))

≤ sk − 1− d(e, π)

= 0

Now when taking the limit N → ∞ in the above formula of E(tr(DW )sk), the only
terms that count are those coming from permutations σ ∈ Sssk having the property Lσ = 0,
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which each contribute with a 1 value. We therefore obtain:

lim
N→∞

E(tr(DW )sk) = #{σ ∈ Sssk | Lσ = 0}

= #{σ ∈ Sssk | d(e, σ) + d(σ, π) = d(e, π)}
= #{σ ∈ Sssk | σ ∈ [e, π]}

But this number that we obtained is well-known to be the same as the number of
noncrossing partitions of {1, . . . , sk} having all blocks of size multiple of s. Thus we have
reached to the sets NCs(k) from the above, and we are done. �

As a consequence of the above random matrix formula, we have the following alterna-
tive approach to the free CPLT, in the case of the free Bessel laws, from [10]:

Theorem 11.20. The moments of the free Bessel law πs1 with s ∈ N coincide with
those of the variable (

s∑
k=1

wkαk

)s

where α1, . . . , αs are free random variables, each of them following the free Poisson law of
parameter 1/s, and w = e2πi/s.

Proof. This is something that we already know, coming from the combinatorics
of the free CPLT, but we can prove this now by using random matrices as well. For
this purpose, let G1, . . . , Gs be a family of independent sN × N matrices formed by
independent, centered complex Gaussian variables, of variance 1/(sN). The following
matrices H1, . . . , Hs are then complex Gaussian and independent as well:

Hk =
1√
s

s∑
p=1

wkpGp

Thus the following matrix provides a model for the variable Σwkαk:

M =
s∑

k=1

wkHkH
∗
k

=
1

s

s∑
k=1

s∑
p=1

s∑
q=1

wk+kp−kqGpG
∗
q

=
s∑

p=1

s∑
q=1

(
1

s

s∑
k=1

(
w1+p−q)k)GpG

∗
q

= G1G
∗
2 +G2G

∗
3 + . . .+Gs−1G

∗
s +GsG

∗
1
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Now observe that this matrix can be written as follows:

M =
(
G1 G2 . . . Gs−1 Gs

)

G∗2
G∗3
...
G∗s
G∗1



=
(
G1 G2 . . . Gs−1 Gs

)


0 1N 0 . . . 0
0 0 1N . . . 0

. . .
0 0 0 . . . 1N

1N 0 0 . . . 0




G∗1
G∗2
...

G∗s−1

G∗s


= GOG∗

In this formula G = (G1 . . . Gs) is the sN × sN Gaussian matrix obtained by
concatenating G1, . . . , Gs, and O is the matrix in the middle. But this latter matrix is of
the form O = UDU∗ with U unitary, so and we have:

M = GUDU∗G∗

Now since GU is a Gaussian matrix, M has the same law as M ′ = GDG∗, and we get:

E

( s∑
l=1

wlαl

)sk
 = lim

N→∞
E(tr(M sk))

= lim
N→∞

E(tr(GDG∗)sk)

= lim
N→∞

E(tr(D(G∗G))sk)

Thus with W = G∗G we get the result. �

Summarizing, we have applications to the random matrices, and random matrix mod-
els for all the 8 basic probability laws, appearing from limiting theorems. As already
mentioned, the above results, from [10], have inspired a whole string of extensions and
generalizations. We refer here to [10] and the subsequent literature.

As a last topic regarding the free CPLT, which is perhaps the most important, let
us review now the results regarding the block-modified Wishart matrices from chapter 8,
with free probability tools. We will see in particular that the laws obtained there are free
combinations of free Poisson laws, or compound free Poisson laws.

Consider a complex Wishart matrix of parameters (dn, dm). In other words, we start
with a dn× dm matrix Y having independent complex G1 entries, and we set:

W = Y Y ∗
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This matrix has size dn × dn, and is best thought of as being a d × d array of n × n
matrices. We will be interested here in the study of the block-modified versions of W ,
obtained by applying to the n× n blocks a given linear map, as follows:

ϕ : Mn(C)→Mn(C)

We recall from chapter 8 above that we have the following asymptotic moment formula,
extending the usual moment computation for the Wishart matrices:

Theorem 11.21. The asymptotic moments of a block-modified Wishart matrix

W̃ = (id⊗ ϕ)W

with parameters d,m, n ∈ N, as above, are given by the formula

lim
d→∞

Me

(
W̃

d

)
=
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ)

where Λ ∈Mn(C)⊗Mn(C) is the square matrix associated to ϕ : Mn(C)→Mn(C).

Proof. This is something that we know well from chapter 8 above, coming from the
Wick formula, and with the correspondence between linear maps ϕ : Mn(C) → Mn(C)
and square matrices Λ ∈Mn(C)⊗Mn(C) being as well explained there. �

As explained in chapter 8, it is possible to further build on the above result, with some
concrete applications, by doing a lot of combinatorics and calculus. That combinatorics
and calculus was something a bit ad-hoc in the context of chapter 8, and congratulations
of course for having survived that. With the free probability theory that we learned so
far, we can now clarify all this. Following [20], [21], we first have the following result:

Proposition 11.22. Given a square matrix Λ ∈Mn(C)⊗Mn(C), having distribution

ρ = law(Λ)

the moments of the compound free Poisson law πmnρ are given by

Me(πmnρ) =
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mσ

e )(Λ)

for any choice of the extra parameter m ∈ N.

Proof. This can be proved in several ways, as follows:

(1) A first method is by a straightforward computation, based on the general formula
of the R-transform of the compound free Poisson laws, given in the above.

(2) Another method, originally used in [21], is by using the well-known fact, that we
will discuss in a moment, in chapter 12 below, that the free cumulants of πmnρ coincide
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with the moments of mnρ. Thus, these free cumulants are given by:

κe(πmnρ) = Me(mnρ)

= mn ·Me(Λ)

= mn · (Mγ
e ⊗Mγ

e )(Λ)

By using now Speicher’s free moment-cumulant formula, from [71], [78], to be ex-
plained in chapter 12 below as well, this gives the result. �

We can see now an obvious similarity with the formula in Theorem 11.21. In order to
exploit this similarity, once again by following [21], let us introduce:

Definition 11.23. We call a square matrix Λ ∈Mn(C)⊗Mn(C) multiplicative when

(Mσ
e ⊗Mγ

e )(Λ) = (Mσ
e ⊗Mσ

e )(Λ)

holds for any p ∈ N, any exponents e1, . . . , ep ∈ {1, ∗}, and any σ ∈ NCp.

This notion is something quite technical, but we will see many examples in what fol-
lows. For instance, the square matrices Λ coming from the basic linear maps ϕ appearing
in chapter 8 above are all multiplicative. More on this later.

With the above notion in hand, we can now formulate an asymptotic distribution
result regarding the block-modified Wishart matrices, as follows:

Theorem 11.24. Consider a block-modified Wishart matrix

W̃ = (id⊗ ϕ)W

and assume that the matrix Λ ∈Mn(C)⊗Mn(C) associated to ϕ is multiplicative. Then

W̃

d
∼ πmnρ

holds, in moments, in the d→∞ limit, where ρ = law(Λ).

Proof. By comparing the moment formulae in Theorem 11.21 and in Proposition

11.22, we conclude that the asymptotic formula W̃
d
∼ πmnρ is equivalent to the following

equality, which should hold for any p ∈ N, and any exponents e1, . . . , ep ∈ {1, ∗}:∑
σ∈NCp

(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ) =
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mσ

e )(Λ)

Now by assuming that Λ is multiplicative, in the sense of Definition 11.23 above, these
two sums are trivially equal, and this gives the result. �

Summarizing, we have now a much better understanding of what is going on with the
block-modified Wishart matrices, and in particular with what exactly is behind Theorem
11.24 above, improving our previous knowledge from chapter 8 above.
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Still following the material in chapter 8, but armed now with our conceptual free
probability knowledge, let us work out now some explicit consequences of Theorem 11.24,
by using some special classes of modification maps ϕ : Mn(C)→ Mn(C). We recall from
chapter 8 above that we have the following standard definition:

Definition 11.25. Associated to any partition π ∈ P (2s, 2s) is the linear map

ϕπ(ea1...as,c1...cs) =
∑
b1...bs

∑
d1...ds

δπ

(
a1 . . . as c1 . . . cs
b1 . . . bs d1 . . . ds

)
eb1...bs,d1...ds

between tensor powers of CN , with the Kronecker type symbol on the right being given by
δπ = 1 when the indices fit, and δπ = 0 otherwise.

As explained in chapter 8, there is a connection here with notion of easy group, from
chapter 3. We will be back to this later on, when talking about easy quantum groups.

In relation with our Wishart matrix considerations, the point is that the above linear
map ϕπ can be viewed as a “block-modification” map, as follows:

ϕπ : MNs(C)→MNs(C)

In order to verify that the corresponding matrices Λπ are multiplicative, we will need
to check that all the functions ϕ(σ, τ) = (M e

σ ⊗M e
τ )(Λπ) have the following property:

ϕ(σ, γ) = ϕ(σ, σ)

For this purpose, we can use the following result, coming from [21]:

Proposition 11.26. The following functions

ϕ : NCp ×NCp → R
are “multiplicative”, in the sense that they satisfy the condition ϕ(σ, γ) = ϕ(σ, σ):

(1) ϕ(σ, τ) = |στ−1| − |τ |.
(2) ϕ(σ, τ) = |στ | − |τ |.
(3) ϕ(σ, τ) = |σ ∧ τ | − |τ |.

Proof. All this is elementary, and can be proved as follows:

(1) This follows indeed from the following computation:

ϕ1(σ, γ) = |σγ−1| − 1 = p− |σ| = ϕ1(σ, σ)

(2) This follows indeed from the following computation:

ϕ2(σ, γ) = |σγ| − 1 = |σ2| − |σ| = ϕ2(σ, σ)

(3) This follows indeed from the following computation:

ϕ3(σ, γ) = |γ| − |γ| = 0 = |σ| − |σ| = ϕ3(σ, σ)

Thus, we are led to the conclusions in the statement. �
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In practice now, the above can be quite complicated, related to subtle questions of
easiness, so let us first discuss the case s = 1. There are 15 partitions π ∈ P (2, 2), and
among them, the most “basic” ones are the 4 partitions π ∈ Peven(2, 2).

With the standard convention that Aδ ∈ MN(C) denotes the diagonal of a matrix
A ∈MN(C), we have the following result, from [21], regarding these partitions:

Proposition 11.27. The partitions π ∈ Peven(2, 2) are as follows,

π1 =

[
◦ •
◦ •

]
, π2 =

[
◦ •
• ◦

]
, π3 =

[
◦ ◦
• •

]
, π4 =

[
◦ ◦
◦ ◦

]
with the associated linear maps ϕπ : Mn(C)→MN(C) being as follows:

ϕ1(A) = A , ϕ2(A) = At , ϕ3(A) = Tr(A)1 , ϕ4(A) = Aδ

The corresponding matrices Λπ are all multiplicative, in the sense of Definition 11.23.

Proof. For the above 4 partitions, the associated linear maps are given by:

ϕ1(eac) = eac , ϕ2(eac) = eca , ϕ3(eac) = δac
∑
b

ebb , ϕ4(eac) = δaceaa

Thus, we obtain the formulae in the statement. Regarding now the associated square
matrices, appearing via Λab,cd = ϕ(eac)bd, these are given by:

Λ1
ab,cd = δabδcd , Λ2

ab,cd = δadδbc , Λ3
ab,cd = δacδbd , Λ4

ab,cd = δabcd

Since these matrices are all self-adjoint, we can assume that all the exponents are 1
in Definition 11.23, and the condition there becomes:

(Mσ ⊗Mγ)(Λ) = (Mσ ⊗Mσ)(Λ)

In order to check this condition, observe that for the above 4 matrices, we have:

(Mσ ⊗M τ )(Λ1) =
1

n|σ|+|τ |

∑
i1...ip

δiσ(1)iτ(1) . . . δiσ(p)iτ(p) = n|στ
−1|−|σ|−|τ |

(Mσ ⊗M τ )(Λ2) =
1

n|σ|+|τ |

∑
i1...ip

δi1iστ(1) . . . δipiστ(p) = n|στ |−|σ|−|τ |

(Mσ ⊗M τ )(Λ3) =
1

n|σ|+|τ |

∑
i1...ip

∑
j1...jp

δi1iσ(1)δj1jτ(1) . . . δipiσ(p)δjpjτ(p) = 1

(Mσ ⊗M τ )(Λ4) =
1

n|σ|+|τ |

∑
i1...ip

δi1iσ(1)iτ(1) . . . δipiσ(p)iτ(p) = n|σ∧τ |−|σ|−|τ |

By using now the results in Proposition 11.27 above, this gives the result. �
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Summarizing, the partitions π ∈ Peven(2, 2) provide us with some concrete input for
Theorem 11.24. The point now is that, when using this input, we obtain the main known
computations for the block-modified Wishart matrices, from [4], [34], [35], [65]:

Theorem 11.28. The asymptotic distribution results for the block-modified Wishart
matrices coming from the partitions π1, π2, π3, π4 ∈ Peven(2, 2) are as follows:

(1) Marchenko-Pastur: 1
d
W ∼ πt, where t = m/n.

(2) Aubrun type: 1
d
(id⊗ t)W ∼ πν, with ν = m(n−1)

2
δ−1 + m(n+1)

2
δ1.

(3) Collins-Nechita one: n(id⊗ tr(.)1)W ∼ πt, where t = mn.
(4) Collins-Nechita two: 1

d
(id⊗ (.)δ)W ∼ πm.

Proof. These observations go back to [21]. In our setting, the maps ϕ1, ϕ2, ϕ3, ϕ4 in
Proposition 11.28 give the 4 matrices in the statement, modulo some rescalings, and the
computation of the corresponding distributions goes as follows:

(1) Here Λ =
∑

ac eac ⊗ eac, and so Λ = nP , where P is the rank one projection on∑
a ea ⊗ ea ∈ Cn ⊗ Cn. Thus we have the following formula, which gives the result:

ρ =
n2 − 1

n2
δ0 +

1

n2
δn

(2) Here Λ =
∑

ac eac ⊗ eca is the flip operator, Λ(ec ⊗ ea) = ea ⊗ ec. Thus ρ =
n−1
2n
δ−1 + n+1

2n
δ1, and so we have the following formula, which gives the result:

mnρ =
m(n− 1)

2
δ−1 +

m(n+ 1)

2
δ1

(3) Here Λ =
∑

ab eaa ⊗ ebb is the identity matrix, Λ = 1. Thus in this case we have

the following formula, which gives πmnρ = πmn, and so W̃
d
∼ πmn, as claimed:

ρ = δ1

(4) Here Λ =
∑

a eaa ⊗ eaa is the orthogonal projection on span(ea ⊗ ea) ⊂ Cn ⊗ Cn.
Thus we have the following formula, which gives the result:

ρ =
n− 1

n
δ0 +

1

n
δ1

Summarizing, we have proved all the assertions in the statement. �

As explained in chapter 8 above, it is possible to say a bit more about the case (2) in
the sbove result, the one dealing with the block-transposed Wishart matrices, by using
all sorts of mysterious complex analysis manipulations on the corresponding functional
transforms, allowing us to say more about the corresponding measures πν .

These mysterious complex analysis manipulations correspond, of course, to standard
procedures from free probability, related to the combinatorics and analysis of Voiculescu’s
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R-transform. For the continuation of all this, we refer to [4], [20], [21] and the subsequent
literature on the subject, including the more recent papers [3], [49], [68].

In what concerns us, we will rather navigate in what follows towards quantum algebra,
but we will be back to random matrix questions on several occasions, and notably in
chapter 16 below, in the context of an all-catching final discussion, regarding the relation
between Voiculescu’s free probability and Jones’ subfactor theory.

11e. Exercises

Things have been quite technical in this chapter, and as unique exercise here, which
is unfortunately even more technical than what has been said above, we have:

Exercise 11.29. Find block-modified matrix models for the free Bessel laws.

This is something which is not very obvious, and also, needless to say, was not some-
thing solved in the above. In case you get stuck with this, of course look it up.



CHAPTER 12

The bijection

12a. Free cumulants

We recall from the previous chapter that, save for replacing the Poisson and free Pois-
son laws pt, πt by the Bessel and free Bessel laws bt, Bt, βt,Bt, which have the advantage
of coming both in real and complex flavors, the main limiting measures in classical and
free probability arrange into a very nice cube, and combinatorially, we have:

Theorem 12.1. The moments of the various central limiting measures, namely

Bt Γt

βt γt

Bt Gt

bt gt

are always given by the same formula, involving partitions, namely

Mk =
∑

π∈D(k)

t|π|

where the sets of partitions D(k) in question are respectively

NCeven

{{

��

NC2
oo

��

{{
NCeven

��

NC2
oo

��

Peven

{{

P2
oo

{{
Peven P2

oo

and where |.| is the number of blocks.

273
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Proof. This is something that we know from the previous chapter, reproduced here
for convenience, in view of the importance of the result. �

What is interesting with the above cube is that it provides us with some 3D orientation
in noncommutative probability taken at large. To be more precise, the 3 “coordinate
axes” that we have, corresponding to the 3 pairs of opposing faces, are real/complex,
discrete/continuous, and classical/free. All this is very nice, and potentially fruitful.

As a first observation, just by looking at the upper and lower faces of the cube, and
how they are connected, we conclude that there should be a bijection between classical
and free probability, having something to do with crossing and noncrossing partitions.
And this is indeed the case, with this being known since the paper of Bercovici-Pata [25],
who discovered this bijection, and explaining all this will be our next task.

We will first need to do some systematic combinatorics, following Speicher [78], in
relation with the partitions. We recall that we have the following key definition:

Definition 12.2. The Möbius function of any lattice, and so of P , is given by

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π 6≤ σ

with the construction being performed by recurrence.

This is something that we already discussed in chapter 3 above, and as a first example
here, the Möbius matrix Mπσ = µ(π, σ) of the lattice P (2) = {||,u} is as follows:

M =

(
1 −1
0 1

)
At k = 3 now, we have the following formula for the Möbius matrix Mπσ = µ(π, σ),

once again written with the indices picked inreasing in P (3) = {|||,u|,u| , |u,uu}:

M =


1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1


In general, as explained in chapter 3, the Möbius matrix of P (k) looks a bit like the

above matrices at k = 2, 3, being upper triangular, with 1 on the diagonal, and so on.
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Back to the general case now, the main interest in the Möbius function comes from
the Möbius inversion formula, which states that the following happens:

f(σ) =
∑
π≤σ

g(π) =⇒ g(σ) =
∑
π≤σ

µ(π, σ)f(π)

This is something elementary, and very useful when dealing with partitions. In linear
algebra terms, the statement and proof of this formula are as follows:

Theorem 12.3. The inverse of the adjacency matrix of P , given by

Aπσ =

{
1 if π ≤ σ

0 if π 6≤ σ

is the Möbius matrix of P , given by Mπσ = µ(π, σ).

Proof. This is well-known, coming for the fact that the above adjacency matrix A is
upper triangular. Indeed, when trying to invert this matrix A, we are led to the recurrence
in Definition 12.2, and so to the Möbius matrix M , as stated. �

As a first illustration, for P (2) the formula M = A−1 appears as follows:(
1 −1
0 1

)
=

(
1 1
0 1

)−1

At k = 3 now, the formula M = A−1 for P (3) reads:
1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1

 =


1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1


−1

With these ingredients in hand, let us go back to probability. We have the following
key definition, due to Rota in the classical case, and to Speicher in the free case:

Definition 12.4. The classical and free cumulants kn(a), κn(a) of a noncommutative
random variable a are constructed as follows:

logFa(ξ) =
∑
n

kn(a)ξn

Ra(ξ) =
∑
n

κn(a)ξn

More generally, we can define quantities kπ(a), κπ(a), depending on the partitions

π ∈ P (k)

by starting with kn(a), κn(a), and using multiplicativity over the blocks.
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The main interest in the cumulants and the free cumulants lies in the moment-
cumulant formula. This is something quite general, which generalizes all sorts of com-
binatorial computations that we did in this book, starting from chapter 1 above, when
talking about moments of normal laws, and whose statement and proof are as follows:

Theorem 12.5. We have the classical and free moment-cumulant formulae

Mk(a) =
∑

π∈P (k)

kπ(a)

Mk(a) =
∑

π∈NC(k)

κπ(a)

where kπ(a), κπ(a) are the generalized cumulants and free cumulants of a.

Proof. This is standard, by using the formulae of Fa, Ra, or by doing some direct
combinatorics, based on the Möbius inversion formula, from Theorem 12.3 above. For full
details here, both in the classical and the free case, we refer to [71]. �

There are many other things that can be said about classical and free cumulants, and
we will come back to this later on, in chapter 14 below, directly in a more general setting,
that of the operator-valued free probability theory, following [79], when discussing free
de Finetti theorems, which crucially use the free cumulant technology.

As a concrete illustration however, which is something very useful, and related to what
we have been doing in the above, in connection with the CPLT, we have:

Proposition 12.6. Given a complex discrete measure ν in the complex plane, not
necessarily of mass 1, the following quantities coincide:

(1) The sequence of moments of ν.
(2) The classical cumulants of the compound Poisson law pν.
(3) The free cumulants of the free compound Poisson law πν.

Proof. This is something which follows from the classical and free theory of the
CPLT developed in the above, the idea being as follows:

(1) For the measure ν = tδ1 with t > 0, whose associated compound Poisson laws are
the usual Poisson law pt, and its free analogue πt, this follows from the formulae for the
Fourier transform and R-transform of these latter measures, established in the above.

(2) In the general case, the proof is similar, by examining and comparing the formulae
that we have for the Fourier transform of pν , and for the R-transform of πν . It is also
possible to get this directly, via pure combinatorics, and we refer here to [71]. �

As already mentioned above, there are many other explicit examples for Theorem 12.5,
which were actually partly worked out already in this book. In particular, in connection
with the main limiting laws from classical and free probability, we have:
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Theorem 12.7. For the main classical and free probability measures, namely

βst γt Γt

bst gt Gt

the classical cumulants of the lower measures are the free cumulants of the upper measures.

Proof. This follows from the results that we have. Recall indeed that we have the
following formula, for all the measures involved:

Mk =
∑

π∈D(k)

t|π|

We can process now this formula by using Theorem 12.5 above, and we obtain the
result. For details here, we refer to [71] for the measures on the right, and for the measures
in the middle as well, and to [10] or to Proposition 12.6 for the measures on the left. �

As a consequence of the above result, in relation with the standard cube, we have:

Theorem 12.8. For the standard cube of main probability measures, namely

Bt Γt

βt γt

Bt Gt

bt gt

the classical cumulants of the lower measures are the free cumulants of the upper measures.

Proof. This follows from Theorem 12.7, or directly from Theorem 12.1. Indeed, let
us recall from Theorem 12.1 that we have formulae as follows:

Mk =
∑

π∈D(k)

t|π|
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To be more precise, we know that such formulae hold indeed, with the corresponding
sets of partitions being respectively as follows:

NCeven

{{

��

NC2
oo

��

||
NCeven

��

NC2
oo

��

Peven

{{

P2
oo

||
Peven P2

oo

We can process this formula by using Theorem 12.5, and we obtain the result. As
before, for full details regarding these computations, we refer to [10], [71]. �

12b. The bijection

With the above classical and free cumulant theory in hand, we can now formulate the
following simple definition, making the connection between classical and free:

Definition 12.9. We say that a real probability measure

m ∈ P(R)

is the classical version of another measure, called its free version, or liberation

µ ∈ P(R)

when the classical cumulants of m coincide with the free cumulants of µ.

As a first observation, this definition fits with all the classical and free probability
theory developed in the above, in this whole book so far, and notably with the measures
from the standard cube, and to start with, we have the following result:

Theorem 12.10. In the standard cube of basic probability measures,

Bt Γt

βt γt

Bt Gt

bt gt

the upper measures appear as the free versions of the lower measures.



12B. THE BIJECTION 279

Proof. This follows indeed from the formulae in Theorem 12.8 above. �

In order to reach now to a more advanced theory, depending this time on a parameter
t > 0, which is something essential, and whose importance will become clear later on, let
us formulate, following Bercovici-Pata [25], and the subsequent work in [71]:

Definition 12.11. A convolution semigroup of measures

{mt}t>0 : ms ∗mt = ms+t

is in Bercovici-Pata bijection with a free convolution semigroup of measures

{µt}t>0 : µs � µt = µs+t

when the classical cumulants of mt coincide with the free cumulants of µt.

As before, this fits with all the theory developed so far in this book, and notably with
the measures from the standard cube, and we have the following result:

Theorem 12.12. In the standard cube of basic semigroups of measures,

Bt Γt

βt γt

Bt Gt

bt gt

the upper semigroups are in Bercovici-Pata bijection with the lower semigroups.

Proof. This is a technical improvement of Theorem 12.10 above, based on the fact
that the upper measures in the above diagram form indeed free convolution semigroups,
and that the lower measures form indeed classical convolution semigroups, which itself is
something that we know well, from the various semigroup results established in above. �

At the level of the general theory, there are many other things that can be said, about
the Bercovici-Pata bijection. Our approach in the above was based on the classical and
free cumnulants, and the moment-cumulant formula, from Theorem 12.5, but it is possible
to do things as well by using functional transforms and complex analysis only, and this
was in fact how this bijection was originally discovered. For more on all this, and for the
story of the whole thing, we refer to the paper of Bercovici and Pata [25].

Back to the examples now, there are many other, besides those in Theorem 12.12
above, and we will be back to this important question, on a regular basis, in what follows.
But, before anything, let us formulate the following surprising result, from [24]:
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Theorem 12.13. The normal law is infinitely divisible.

Proof. This is something tricky, involving all sorts of not very intuitive computations,
and for full details here, we refer here to the original paper [24]. �

The above result raises the following somewhat bizarre question: what is the classical
analogue of the normal law? We refer to [24] for more on all this.

12c. Quantum groups

We have seen that a bijection between classical and free probability, called Bercovici-
Pata bijection, can be established. This bijection is basically something of combinatorial
nature, based on the correspondence between partitions, and noncrossing partitions:

P ↔ NC

Moreover, we have seen that at the level of main examples for this bijection, combina-
torics and partitions play a key role as well. To be more precise, the combinatorics of the
main limiting measures in classical and free probability, which form the “standard cube”
of measures, comes from a standard cube of partitions, as follows:

Definition 12.14. The standard cube of partitions is the following cube, formed by
collections of various classes of remarkable partitions

NCeven

{{

��

NC2
oo

��

{{
NCeven

��

NC2
oo

��

Peven

{{

P2
oo

{{
Peven P2

oo

with 2 standing for pairings, even standing for partitions with even blocks, calligraphic
standing for matching partitions, and NC standing for noncrossing.

In view of this, an interesting question now is that of temporarily forgetting about
probability, and focusing on combinatorics, and this cube. We would for instance to
have an axiomatization of this cube, and see later what this axiomatization can bring, as
consequences and applications, to the probability theory where it comes from.

Normally such things can be investigated by doing some pure combinatorics, under-
graduate style, but we will adopt here a more advanced point of view on the question.
Let us recall indeed from chapters 3-4 above that we have the following result:



12C. QUANTUM GROUPS 281

Theorem 12.15. The lower, “classical” face of the standard cube, namely

Peven

��

P2
oo

��
Peven P2

oo

consists of categories of partitions, appearing from the basic rotation and reflection groups

KN
// UN

HN

OO

// ON

OO

via the correspondence between easy groups, and categories of partitions.

Proof. This is something that we know well from chapters 3-4 above, the idea being
that the correspondence between easy closed subgroups G ⊂u UN and categories of parti-
tions D = (D(k, l)) comes from the following Tannakian formula, with π → Tπ being the
standard implementation of the partitions, as linear maps:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

To be more precise, this formula, which must hold for any two colored integer expo-
nents k, l = ◦ • • ◦ . . . , and which can be thought of as being a Brauer type theorem, can
be shown to hold for each of the 4 groups in the statement, and this gives the result. �

Getting back now to the full cube, from Definition 12.14 above, the idea is clear. What
we have to do is to axiomatize the “easy quantum groups”, and then come up with an
extension of Theorem 12.15, covering the full cube. Then, once this done, we can get into
more specialized questions, such as classifying the easy quantum groups, under suitable
extra axioms, and deducing from this a suitable axiomatization of the standard cube.

As a starting point, we have the following key definition, due to Woronowicz [98]:

Definition 12.16. A Woronowicz algebra is a C∗-algebra A, given with a unitary
matrix u ∈MN(A) whose coefficients generate A, such that the formulae

∆(uij) =
∑
k

uik ⊗ ukj

ε(uij) = δij
S(uij) = u∗ji

define morphisms of C∗-algebras ∆ : A→ A⊗ A, ε : A→ C, S : A→ Aopp.
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We say that A is cocommutative when Σ∆ = ∆, where Σ(a ⊗ b) = b ⊗ a is the flip.
We have the following result, which justifies the terminology and axioms:

Proposition 12.17. The following are Woronowicz algebras:

(1) C(G), with G ⊂ UN compact Lie group. Here the structural maps are:

∆(ϕ) = (g, h)→ ϕ(gh)

ε(ϕ) = ϕ(1)

S(ϕ) = g → ϕ(g−1)

(2) C∗(Γ), with FN → Γ finitely generated group. Here the structural maps are:

∆(g) = g ⊗ g
ε(g) = 1

S(g) = g−1

Moreover, we obtain in this way all the commutative/cocommutative algebras.

Proof. In both cases, we have to indicate a certain matrix u. For the first assertion,
we can use the matrix u = (uij) formed by matrix coordinates of G, given by:

g =

u11(g) . . . u1N(g)
...

...
uN1(g) . . . uNN(g)


As for the second assertion, we can use here the diagonal matrix formed generators:

u =

g1 0
. . .

0 gN


Finally, the last assertion follows from the Gelfand theorem, in the commutative case,

and in the cocommutative case, we will be back to this later. �

In view of Proposition 12.17, we can now formulate the following definition:

Definition 12.18. Given a Woronowicz algebra A, we formally write

A = C(G) = C∗(Γ)

and call G compact quantum group, and Γ discrete quantum group.

When A is both commutative and cocommutative, G is a compact abelian group, Γ
is a discrete abelian group, and these groups are dual to each other:

G = Γ̂ , Γ = Ĝ

In general, we still agree to write the formulae G = Γ̂,Γ = Ĝ, but in a formal sense.

In general now, the structural maps ∆, ε, S have the following properties:
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Proposition 12.19. Let (A, u) be a Woronowicz algebra.

(1) ∆, ε satisfy the usual axioms for a comultiplication and a counit, namely:

(∆⊗ id)∆ = (id⊗∆)∆

(ε⊗ id)∆ = (id⊗ ε)∆ = id

(2) S satisfies the antipode axiom, on the ∗-subalgebra generated by entries of u:

m(S ⊗ id)∆ = m(id⊗ S)∆ = ε(.)1

(3) In addition, the square of the antipode is the identity, S2 = id.

Proof. The two comultiplication axioms follow from:

(∆⊗ id)∆(uij) = (id⊗∆)∆(uij) =
∑
kl

uik ⊗ ukl ⊗ ulj

(ε⊗ id)∆(uij) = (id⊗ ε)∆(uij) = uij

As for the antipode formulae, the verification here is similar. �

Summarizing, we have a nice theory of compact and discrete quantum groups going
on. As a last ingredient in relation with the formalism and notations, in order to be fully
correct, we must complement Definition 12.16 and Definition 12.18 with:

Definition 12.20. We identify two Woronowicz algebras (A, u) and (B, v), as well
as the corresponding quantum groups, when we have an isomorphism of ∗-algebras

< uij >'< vij >

mapping standard coordinates to standard coordinates.

To be more precise, this definition is here in order to avoid amenability issues, as for
any compact or discrete quantum group to correspond to a unique Woronowicz algebra.
More on this in a moment, when systematically talking about amenability.

Moving ahead, let us call corepresentation of A any unitary matrix v ∈Mn(A), where
A =< uij >, satisfying the same conditions as those satisfied by u, namely:

∆(vij) =
∑
k

vik ⊗ vkj

ε(vij) = δij

S(vij) = v∗ji
These corepresentations can be thought of as corresponding to the unitary representa-

tions of the underlying compact quantum group G. As basic examples, we have u = (uij)
itself, its conjugate ū = (u∗ij), as well as any tensor product between u, ū.

We have the following key result, due to Woronowicz [98]:
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Theorem 12.21. Any Woronowicz algebra has a unique Haar integration functional,(∫
G

⊗id
)

∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

which can be constructed by starting with any faithful positive form ϕ ∈ A∗, and setting∫
G

= lim
n→∞

1

n

n∑
k=1

ϕ∗k

where φ ∗ ψ = (φ⊗ ψ)∆. Moreover, for any corepresentation v ∈Mn(C)⊗ A we have(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Proof. Following [98], this can be done in 3 standard steps, as follows:

(1) Given ϕ ∈ A∗, our claim is that the following limit converges, for any a ∈ A:∫
ϕ

a = lim
n→∞

1

n

n∑
k=1

ϕ∗k(a)

Indeed, by linearity we can assume that a ∈ A is the coefficient of certain corepresen-
tation, a = (τ ⊗ id)v. But in this case, an elementary computation gives the following
formula, with Pϕ being the orthogonal projection onto the 1-eigenspace of (id⊗ ϕ)v:(

id⊗
∫
ϕ

)
v = Pϕ

(2) Since vξ = ξ implies [(id⊗ ϕ)v]ξ = ξ, we have Pϕ ≥ P , where P is the orthogonal
projection onto the fixed point space in the statement, namely:

Fix(v) =
{
ξ ∈ Cn

∣∣∣vξ = ξ
}

The point now is that when ϕ ∈ A∗ is faithful, by using a standard positivity trick,
we can prove that we have Pϕ = P . Assume indeed Pϕξ = ξ, and let us set:

a =
∑
i

(∑
j

vijξj − ξi

)(∑
k

vikξk − ξi

)∗
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We must prove that we have a = 0. Since v is biunitary, we have:

a =
∑
i

(∑
j

(
vijξj −

1

N
ξi

))(∑
k

(
v∗ikξ̄k −

1

N
ξ̄i

))

=
∑
ijk

vijv
∗
ikξj ξ̄k −

1

N
vijξj ξ̄i −

1

N
v∗ikξiξ̄k +

1

N2
ξiξ̄i

=
∑
j

|ξj|2 −
∑
ij

vijξj ξ̄i −
∑
ik

v∗ikξiξ̄k +
∑
i

|ξi|2

= ||ξ||2− < vξ, ξ > −< vξ, ξ >+ ||ξ||2

= 2(||ξ||2 −Re(< vξ, ξ >))

By using now our assumption that Pϕξ = ξ, we obtain from this:

ϕ(a) = 2ϕ(||ξ||2 −Re(< vξ, ξ >))

= 2(||ξ||2 −Re(< Pϕξ, ξ >))

= 2(||ξ||2 − ||ξ||2)

= 0

Now since ϕ is faithful, this formula gives a = 0, and so vξ = ξ. Thus
∫
ϕ

is independent

of ϕ, and is given on coefficients a = (τ ⊗ id)v by the following formula:(
id⊗

∫
ϕ

)
v = P

(3) With the above formula in hand, the left and right invariance of
∫
G

=
∫
ϕ

is clear

on coefficients, and so in general, and this gives all the assertions. See [98]. �

We can now develop, again following [98], the Peter-Weyl theory for the corepresen-
tations of A. Consider the dense subalgebra A ⊂ A generated by the coefficients of the
fundamental corepresentation u, and endow it with the following scalar product:

< a, b >=

∫
G

ab∗

With this convention, we have the following result, from [98]:

Theorem 12.22. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u⊗k.
(3) A =

⊕
v∈Irr(A) Mdim(v)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.
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Proof. All these results are from [98], the idea being as follows:

(1) Given v ∈ Mn(A), the intertwiner algebra End(v) = {T ∈ Mn(C)|Tv = vT} is a
finite dimensional C∗-algebra, and so decomposes as End(v) = Mn1(C) ⊕ . . . ⊕Mnr(C).
But this gives a decomposition of type v = v1 + . . .+ vr, as desired.

(2) Consider the Peter-Weyl corepresentations, u⊗k with k colored integer, defined by
u⊗∅ = 1, u⊗◦ = u, u⊗• = ū and multiplicativity. The coefficients of these corepresentations
span the dense algebra A, and by using (1), this gives the result.

(3) Here the direct sum decomposition, which is a ∗-coalgebra isomorphism, follows
from (2). As for the second assertion, this follows from the fact that (id ⊗

∫
G

)v is the
orthogonal projection Pv onto the space Fix(v), for any corepresentation v.

(4) Let us define indeed the character of v ∈Mn(A) to be the trace, χv = Tr(v). Since
this character is a coefficient of v, the orthogonality assertion follows from (3). As for the
norm 1 claim, this follows once again from (id⊗

∫
G

)v = Pv. �

We can now solve a problem that we left open before, namely:

Proposition 12.23. The cocommutative Woronowicz algebras appear as the quotients

C∗(Γ)→ A→ C∗red(Γ)

given by A = C∗π(Γ) with π ⊗ π ⊂ π, with Γ being a discrete group.

Proof. This follows from the Peter-Weyl theory from above. Observe that the as-
sumption π ⊗ π ⊂ π, which should be taken in a weak containment sense, is satisfied for
the regular representation, as well as the universal representation. See [98]. �

As another consequence of the above results, once again by basically following [98],
we have the following result, dealing with functional analysis aspects:

Theorem 12.24. Let Afull be the enveloping C∗-algebra of A, and let Ared be the
quotient of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Afull is faithful.
(2) The projection map Afull → Ared is an isomorphism.
(3) The counit map ε : Afull → C factorizes through Ared.
(4) We have N ∈ σ(Re(χu)), the spectrum being taken inside Ared.

If this is the case, we say that the underlying discrete quantum group Γ is amenable.

Proof. This is well-known in the group dual case, A = C∗(Γ), with Γ being a usual
group. In general, the result follows by adapting the group dual case proof:

(1) ⇐⇒ (2) This follows from the fact that the GNS construction for the algebra
Afull with respect to the Haar functional produces the algebra Ared.

(2) ⇐⇒ (3) Here =⇒ is trivial, and conversely, a counit ε : Ared → C produces an
isomorphism Ared → Afull, via a formula of type (ε⊗ id)Φ. See [98].
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(3) ⇐⇒ (4) Here =⇒ is clear, coming from ε(N −Re(χ(u))) = 0, and the converse
comes by doing some functional analysis. Once again, we refer here to [98]. �

As in the discrete group case, the most interesting criterion for amenability, leading
to interesting mathematics and physics, is the Kesten one, from Theorem 12.24 (4). This
leads us into computing character laws, and we have here the following result:

Proposition 12.25. Given a Woronowicz algebra (A, u), consider its main character,
obtained by summing the diagonal entries of u:

χ =
∑
i

uii

(1) The moments of χ are the numbers Mk = dim(Fix(u⊗k)).
(2) When u ∼ ū the law of χ is a real measure, supported by σ(χ).
(3) The notion of coamenability of A depends only on law(χ).

Proof. All this is standard and elementary, the idea being as follows:

(1) This follows from Peter-Weyl theory.

(2) When u ∼ ū we have χ = χ∗, and this gives the result.

(3) This follows from Theorem 12.24 (4), and from (2) applied to u+ ū. �

All this is quite interesting, because it tells us that, regardless on whether we want to
understand the representation theory of our compact quantum group G, or the analytic
aspects of its discrete dual Γ, we must compute the spaces Fix(u⊗k).

The computation of these spaces is a delicate algebra problem, related to results of
Schur-Weyl, Brauer and Tannaka. In order to get started, the idea is to replace the series
of fixed point spaces Fk = Fix(u⊗k) by the double series of Hom spaces:

Ckl = Hom(u⊗k, u⊗l)

Indeed, by Frobenius duality, computing the sequence of spaces {Fk} is the same as
computing the family of spaces {Ckl}. But computing the spaces {Ckl} is simpler than
computing the spaces {Fk}, because the former spaces form a category.

To be more precise, we can use here standard category theory methods, and more
specifically, the following version of Tannakian duality, due to Woronowicz [99]:

Theorem 12.26. The following operations are inverse to each other:

(1) The construction A → C, which associates to any Woronowicz algebra A the
tensor category formed by the intertwiner spaces Ckl = Hom(u⊗k, u⊗l).

(2) The construction C → A, which associates to any tensor category C the Woro-
nowicz algebra A presented by the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ Ckl.
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Proof. This is something quite deep, going back to Woronowicz’s paper [99], and to
Malacarne’s paper [64] in the simplified form presented above:

(1) The idea is that we have indeed a construction A→ C as above, whose output is
a tensor C∗-subcategory with duals of the tensor C∗-category of the Hilbert spaces. We
have as well a construction C → A as above, simply by dividing the free ∗-algebra on N2

variables by the relations in the statement.

(2) Regarding now the bijection claim, some standard algebra shows that the condition
C = CAC implies A = ACA , and also that that the condition C ⊂ CAC is automatic. Thus
we are left with proving that we have CAC ⊂ C.

(3) But this latter inclusion can be proved, by doing some algebra, and using von
Neumann’s bicommutant theorem, in finite dimensions. See [64]. �

Let us discuss now the basic examples of compact and discrete quantum groups. At
the level of the truly “new” examples, following Wang [92], we have:

Theorem 12.27. The following universal algebras are Woronowicz algebras,

C(O+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(U+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

so the underlying spaces O+
N , U

+
N are compact quantum groups.

Proof. The first assertion follows from the elementary fact that if a matrix u = (uij)
is orthogonal or biunitary, then so must be the following associated matrices:

u∆
ij =

∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Thus, we can define indeed morphisms ∆, ε, S as in Definition 12.16 above, by using
the universality property of the algebras C(O+

N), C(U+
N ). �

Getting now towards easiness, let us begin with the following definition, from [22]:

Definition 12.28. Let P (k, l) be the set of partitions between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
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The relation with the Tannakian categories coming from:

Proposition 12.29. Each partition π ∈ P (k, l) produces a linear map

Tπ : (CN)⊗k → (CN)⊗l

given by the following formula, where e1, . . . , eN is the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the Kronecker type symbols δπ ∈ {0, 1} depending on whether the indices fit or
not. The assignement π → Tπ is categorical, in the sense that we have

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.

Proof. This follows from some elementary computations, as follows:

(1) The first axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

(2) The second axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)
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(3) Finally, the third axiom follows from the following computation:

T ∗π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)
Summarizing, our correspondence is indeed categorical. �

In relation with quantum groups, we have the following result, from [22]:

Theorem 12.30. Each category of partitions D = (D(k, l)) produces a family of com-
pact quantum groups G = (GN), one for each N ∈ N, via the following formula:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

To be more precise, the spaces on the right form a Tannakian category, and so produce a
certain closed subgroup GN ⊂ U+

N , via the Tannakian duality correspondence.

Proof. This follows from Woronowicz’s Tannakian duality, in its “soft” form from
Malacarne’s paper [64], explained in the above. Indeed, let us set:

C(k, l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

By using the axioms in Definition 12.28, and the categorical properties of the operation
π → Tπ, from Proposition 12.29 above, we deduce that C = (C(k, l)) is a Tannakian
category. Thus the Tannakian duality applies, and gives the result. �

All the above might seem a bit complicated, but we will see examples in a moment.
Philosophically speaking, the quantum groups appearing in Theorem 12.30 are the sim-
plest from the perspective of Tannakian duality, so let us formulate:

Definition 12.31. A closed subgroup G ⊂ U+
N is called easy when we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way, from a category of partitions. The terminology is
quite natural, because Tannakian duality is basically our only advanced tool.

Getting into examples, we have the following Brauer type result, coming from the
work in [6], [15], [31], covering the basic, classical and free, unitary groups:



12C. QUANTUM GROUPS 291

Theorem 12.32. The basic unitary quantum groups are all easy,

UN // U+
N

ON
//

OO

O+
N

OO
P2

��

NC2
oo

��
P2 NC2
oo

with on the right being the corresponding categories of partitions.

Proof. This is something fundamental, the idea being as follows:

(1) The quantum group U+
N is by definition constructed via the following relations:

u∗ = u−1 , ut = ū−1

Thus, the following operators must be in the associated Tannakian category C:

Tπ , π = ∩
◦•

Tπ , π = ∩
•◦

It follows that the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= NC2

Thus, we are led to the conclusion in the statement.

(2) The quantum group O+
N ⊂ U+

N is defined via the following relations:

uij = ūij

Thus, the following operators must be in the associated Tannakian category C:

Tπ , π = |◦•
Tπ , π = |•◦

It follows that the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< NC2, |◦•, |•◦ >= NC2

Thus, we are led to the conclusion in the statement.

(3) The classical group UN ⊂ U+
N is defined via the following relations:

[uij, ukl] = 0 , [uij, ūkl] = 0

Thus, the following operators must be in the associated Tannakian category C:

Tπ , π = /\◦◦◦◦
Tπ , π = /\◦••◦

It follows that the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< NC2, /\◦◦◦◦, /\
◦•
•◦ >= P2
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Thus, we are led to the conclusion in the statement.

(4) In order to deal now with ON , we can simply use the following fact:

ON = O+
N ∩ UN

Indeed, at the categorical level, this tells us that the associated Tannakian category
is given by C = span(Tπ|π ∈ D), with:

D =< NC2,P2 >= P2

Thus, we are led to the conclusion in the statement. �

We have in fact the following more general result, once again of Brauer type, bringing
into picture the corresponding quantum reflection groups as well:

Theorem 12.33. We have quantum unitary and reflection groups as follows,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

which are all easy, the corresponding categories of partitions being:

NCeven

zz

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

zz

P2

��

oo

Peven P2
oo

Proof. We already have the quantum groups and easiness results on the right, from
Theorem 12.32. Regarding the quantum groups on the left, their construction is quite
standard, and the proof of their easiness property is standard as well, as follows:

(1) The first observation is that SN , regarded as group of permutations of the N
axes of RN , is a group of orthogonal matrices, SN ⊂ ON . The corresponding coordinate
functions uij : SN → {0, 1} form a matrix u = (uij) which is “magic”, in the sense that
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its entries are projections, summing up to 1 on each row and each column. In fact, by
using the Gelfand theorem, we have the following presentation result:

C(SN) = C∗comm

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

(2) Still in relation with the symmetric group SN , it is straightforward to check that
this group is easy, coming from the category of all the partitions P . This is indeed well-
known, coming from instance from the fact that the magic condition satisfied by u = (uij)
can be reformulated as follows, with µ ∈ P (2, 1) being the fork partition:

Tµ ∈ Hom(u⊗2, u)

Thus, by proceeding as in the proof of Theorem 12.32, we conclude that SN is indeed
easy, with the associated category of partitions being, as claimed:

D =< P2, µ >= P

(3) Based on the above, and following now Wang’s paper [93], we can construct the
free analogue S+

N of the symmetric group SN via the following formula:

C(S+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

Here the fact that we have indeed a Woronowicz algebra is standard, exactly as in the
proof of Theorem 12.27 above, because if a matrix u = (uij) is magic, then so are the
matrices u∆, uε, uS constructed as there, and this gives the existence of ∆, u, S.

(4) Also based on the above, and following now [7], [22], the quantum permutation
group S+

N follows to be easy, with the corresponding category of partitions being:

D =< NC2, µ >= NC

This is indeed clear by following the proof from the classical case, for the group SN ,
with some modifications only needed at the end, when finally computing D.

(5) Moving ahead now, we can generalize all the above by adding to the picture a
parameter s ∈ N∪{∞}. Consider indeed the group Hs

N ⊂ UN consisting of permutation-
like matrices having as entries the s-th roots of unity, that we already met in chapter 2
above. This group has by definition a wreath product decomposition as follows:

Hs
N = Zs o SN

It is straightforward then to construct a free analogue Hs+
N ⊂ U+

N of this group, for
instance by formulating a definition as follows, with o∗ being a free wreath product:

Hs+
N = Zs o∗ S+

N

All this is very standard, and we refer here to [10] and related papers.
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(6) What happens now is that both the group Hs
N and the quantum group Hs+

N are
easy, coming from the categories P s, NCs or partitions, and noncrossing partitions, which
are subject to the following condition, which must happen in each block:

#◦ = # • (s)

This is indeed something that we know at s = 1, where are quantum groups are
SN , S

+
N , as explained above, and the proof in general, done in [10], is quite similar.

(7) The point now is that, besides the case s = 1, of particular interest are the cases
s = 2,∞. Here the corresponding groups, that we know from chapter 2, are as follows:

HN = Z2 o SN , KN = T o SN

As for the corresponding quantum groups, from [10], [12], these are denoted as follows:

H+
N = Z2 o∗ S+

N , K+
N = T o∗ S+

N

Summarizing, we have free analogues of HN , KN , as in the statement.

(8) In relation with easiness now, the point is that at s = 2 we have:

P 2 = Peven , NC2 = NCeven

Also, at s =∞ we have the following formulae, which are clear too:

P∞ = Peven , NC∞ = NCeven

Thus, we are led to the conclusions in the statement. See [10]. �

Let us discuss now probabilistic consequences of the above. We will use:

Definition 12.34. Associated to any closed subgroup G ⊂ UN is the variable

χt =

[tN ]∑
i=1

uii

called truncated character of parameter t ∈ (0, 1].

Here the notion of main character is the usual one, and the notion of truncated char-
acter is something more technical, as in chapters 3-4 above. We have:
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Theorem 12.35. The truncated characters for the basic quantum groups, namely

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

are with N →∞ the main laws in classical and free probability, namely:

Bt Γt

βt γt

Bt Gt

bt gt

Proof. We first need linear independence results for the vectors ξπ associated to the
partitions π ∈ P (k), and all this comes indeed from the following formula:

det(GkN) =
∏

π∈P (k)

N !

(N − |π|)!

The point now is that the Gram and Weingarten matrices are asymptotically diagonal,
in all cases under consideration, and this gives:

lim
N→∞

∫
GN

χkt =
∑

π∈D(k)

t|π|

But this leads to the laws in the statement, via results that we already know. �

We refer to [22] and related papers for full details on all the above. Also, we refer to
[17], [18], [75], [80], [81] for more general theory for the easy quantum groups.

12d. Ground zero

With the above theory developed, let us go now to pure combinatorics, with of course
some quantum group ideas in mind. We have here the following result:
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Theorem 12.36 (Ground zero). Under a collection of suitable extra assumptions

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

are the unique easy quantum groups. Equivalently, under suitable extra assumptions

NCeven

zz

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

zz

P2

��

oo

Peven P2
oo

are the unique categories of partitions.

Proof. There is a long story here, first for formulating the precise statement, which
is something non-trivial, and then of course for proving it, and we refer here to [9]. �

12e. Exercises

There has been a lot of theory in this chapter, and as an exercise here, we have:

Exercise 12.37. Clarify all the details for the standard cube of measures

Bt Γt

βt γt

Bt Gt

bt gt

by proving that we have indeed the Bercovici-Pata bijection on the vertical.

This is something discussed in the above, but with some details missing, and the
problem now, which is very instructive, is that of filling all the details.
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Quantum algebra



Strangers in the night
Exchanging glances

Wandering in the night
What were the chances



CHAPTER 13

Free geometry

13a. Free manifolds

We have seen so far that classical probability has a “twin sister”, which is Voiculescu’s
free probability theory. The relation between the two comes from an almost perfect
symmetry between the main limiting theorems in both theories. It is even possible to
axiomatize the relation between the corresponding limiting laws, and between classical
and free probability in general, the main result here being the Bercovici-Pata bijection.

At a more concrete level, passed a few technical manipulations, the main limiting laws
are as follows, with the vertical correspondence being the Bercovici-Pata bijection:

Bt Γt

βt γt

Bt Gt

bt gt

All this remains however a bit abstract, because in order to have explicit instances
of the various classical and free limiting theorems, we must find in the real life explicit
examples of i.i.d. or f.i.d. sequences of random variables, satisfying the needed extra
assumptions of that classical and free limiting theorems, and this is not an easy task.

Fortunately, beasts like random matrices and quantum groups are there, providing us
with explicit models for the above laws, and for what is going on, in general.

Our purpose in this chapter is to further build on the quantum group results, by
expanding what we already have into a more general correspondence between classical
geometry and free geometry, at the probabilistic level. Then later on, in the next chapters,
we will get back to random matrices as well, and we will also add to the picture some
further beasts, which are of even more tricky type, namely the Jones subfactors.

299
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In order to get started, let us recall that the above laws appear as laws of truncated
characters for the main rotation and reflection groups, the result being follows:

Theorem 13.1. The main limiting laws in classical and free probability appear from
the main quantum rotation and reflection groups, classical and free,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

as asymptotic laws, with N →∞, of the corresponding truncated characters.

Proof. This is something that we know well from chapter 4, and then chapter 12,
the idea being that everything comes from easiness, and the Weingarten formula. �

In order to obtain more instances of the Bercovici-Pata bijection, and why not con-
structing as well some further, related correspondences between classical and free, a very
simple and natural idea, inspired by this, is that of doing “free geometry”. That is, we
would like to have free analogues of various classical manifolds that we know, and then
compare the probability theory over the classical manifolds, and their free versions.

Here we are a bit vague about what “manifold” should mean, but since we want to
integrate over our manifolds, these manifolds should be Riemannian, in some appropriate
sense. Also, we know from chapter 6 above that the operator algebra theory describes
well spaces which are compact, so our manifolds should be compact and Riemannian.

Long story short, these are our goals, and instead of thinking too much, let us just
start working, and see later for the philosophy. The simplest compact manifolds that we
know are the spheres, and if we want to have free analogues of these spheres, there are
not many choices here, the straightforward definition, from [19], being as follows:

Definition 13.2. We have compact quantum spaces, constructed as follows,

C(SN−1
R,+ ) = C∗

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2
i = 1

)

C(SN−1
C,+ ) = C∗

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
called respectively the free real sphere, and the free complex sphere.



13A. FREE MANIFOLDS 301

Here the C∗ symbols on the right stand for “universal C∗-algebra generated by”. The
fact that such universal C∗-algebras exist indeed follows by considering the corresponding
universal ∗-algebras, then completing with respect to the biggest C∗-norm. Observe that
this biggest C∗-norm exists indeed, because the above quadratic conditions give:

||xi||2 = ||xix∗i || ≤

∣∣∣∣∣
∣∣∣∣∣∑

i

xix
∗
i

∣∣∣∣∣
∣∣∣∣∣ = 1

Given a compact quantum space X, meaning as usual the abstract space associated
to a C∗-algebra, we define its classical version to be the classical space Xclass obtained by
dividing C(X) by its commutator ideal, then applying the Gelfand theorem:

C(Xclass) = C(X)/I : I =< [a, b] >

Observe that we have an embedding of compact quantum spaces Xclass ⊂ X. In this
situation, we also say that X appears as a “liberation” of X. We have:

Proposition 13.3. We have embeddings of compact quantum spaces

SN−1
C

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,+

OO

and the spaces on the right appear as liberations of the spaces of the left.

Proof. The embeddings are all clear. For the last assertion, we must establish the
following isomorphisms, where C∗comm stands for “universal commutative C∗-algebra”:

C(SN−1
R ) = C∗comm

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2
i = 1

)

C(SN−1
C ) = C∗comm

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
But these isomorphisms are both clear, by using the Gelfand theorem. �

We can now introduce a broad class of compact quantum manifolds, as follows:

Definition 13.4. A real algebraic submanifold X ⊂ SN−1
C,+ is a closed quantum space

defined, at the level of the corresponding C∗-algebra, by a formula of type

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain noncommutative polynomials fi ∈ C < x1, . . . , xN >.
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Observe that such manifolds exist indeed, because the free complex spheres themselves
exist, and this due to the fact that the quadratic conditions defining them give:

||xi|| ≤ 1

This estimate, explained before, is something extremely important, and any attempt
of further extending Definition 13.4, beyond the sphere level, stumbles into this. There
are no such things as free analogues of RN or CN , and the problem comes from this.

In practice now, while our assumption X ⊂ SN−1
C,+ is definitely something technical,

we are not losing much when imposing it, and we have the following list of examples:

Theorem 13.5. The following are algebraic submanifolds X ⊂ SN−1
C,+ :

(1) The spheres SN−1
R ⊂ SN−1

C , SN−1
R,+ ⊂ SN−1

C,+ .

(2) Any compact Lie group, G ⊂ Un, with n2 = N .

(3) The duals Γ̂ of finitely generated groups, Γ =< g1, . . . , gN >.
(4) More generally, the closed subgroups G ⊂ U+

n , with n2 = N .

Proof. These facts are all well-known, the proof being as follows:

(1) This is indeed true by definition of our various spheres.

(2) Given a closed subgroup G ⊂ Un, we have an embedding G ⊂ SN−1
C , with N = n2,

given in double indices by xij =
uij√
n
, that we can further compose with the standard

embedding SN−1
C ⊂ SN−1

C,+ . As for the fact that we obtain indeed a real algebraic manifold,
this is standard too, coming either from Lie theory or from Tannakian duality.

(3) This follows from the fact that the variables xi = gi√
N

satisfy the quadratic relations∑
i xix

∗
i =

∑
i x
∗
ixi = 1, and with the algebricity claim for the manifold being clear.

(4) This jointly generalizes (3,4), and can be proved by extending the above proof of
(3). To be more precise, given a closed subgroup G ⊂ U+

n , we have indeed an embedding
G ⊂ SN−1

C,+ , with N = n2, given in double indices by the following formula:

xij =
uij√
n

As for the fact that we obtain indeed in this way a real algebraic manifold, this comes
from the Tannakian duality results explained in chapter 12 above. �

Summarizing, we have a broad notion of real algebraic manifold, covering all the
examples that we met so far in this book. We will use this notion, in what follows.

At the level of the general theory, we have the following version of the Gelfand theorem,
which is something very useful, that we will use several times in what follows:
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Theorem 13.6. Assuming that X ⊂ SN−1
C,+ is an algebraic manifold, given by

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain noncommutative polynomials fi ∈ C < x1, . . . , xN >, we have

Xclass =
{
x ∈ SN−1

C

∣∣∣fi(x1, . . . , xN) = 0
}

and X itself appears as a liberation of Xclass.

Proof. This is something that already met, in the context of the free spheres. In
general, the proof is similar, by using the Gelfand theorem. Indeed, if we let X ′class be
the manifold constructed in the statement, then we have a quotient map of C∗-algebras
as follows, mapping standard coordinates to standard coordinates:

C(Xclass)→ C(X ′class)

Conversely, from X ⊂ SN−1
C,+ we obtain Xclass ⊂ SN−1

C , and since the relations defining
X ′class are satisfied by Xclass, we obtain an inclusion of subspaces Xclass ⊂ X ′class. Thus,
at the level of algebras of continuous functions, we have a quotient map of C∗-algebras as
follows, mapping standard coordinates to standard coordinates:

C(X ′class)→ C(Xclass)

Thus, we have constructed a pair of inverse morphisms, and this finishes the proof. �

Getting back now to the examples, the above formalism allows us to have a new, more
geometric look at the discrete group duals. Let us formulate indeed:

Definition 13.7. Given a closed subspace S ⊂ SN−1
C,+ , the subspace T ⊂ S given by

C(T ) = C(S)
/〈

xix
∗
i = x∗ixi =

1

N

〉
is called associated torus. In the real case, S ⊂ SN−1

R,+ , we also call T cube.

As a basic example, for S = SN−1
C the corresponding submanifold T ⊂ S appears by

imposing the relations |xi| = 1√
N

to the coordinates, so we obtain a torus:

S = SN−1
C =⇒ T =

{
x ∈ CN

∣∣∣|xi| = 1√
N

}
As for the case of the real sphere, S = SN−1

R , here the submanifold T ⊂ S appears by
imposing the relations xi = ± 1√

N
to the coordinates, and we obtain a cube:

S = SN−1
R =⇒ T =

{
x ∈ RN

∣∣∣xi = ± 1√
N

}
Observe that we have a relation here with groups, because the complex torus computed

above is the group TN , and the cube is the group ZN2 . In fact, we have:
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Theorem 13.8. The tori of the basic spheres are all group duals, as follows,

TN // F̂N

ZN2 //

OO

Ẑ∗N2

OO

where FN is the free group on N generators, and ∗ is a group-theoretical free product.

Proof. In order to prove this result, let us get back to Definition 13.7 above, and
assume that the subspace there S ⊂ SN−1

C,+ is an algebraic manifold, as follows:

C(S) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
In order to get to group algebras, let us rescale the coordinates, ui = xi√

N
. Consider

as well the corresponding rescalings of the polynomials fi, given by:

gi(u1, . . . , uN) = fi(
√
Nu1, . . . ,

√
NuN)

Since the relations defining T ⊂ S from Definition 13.7 correspond to the fact that
the rescaled coordinates ui must be unitaries, we obtain the following formula:

C(T ) = C∗
(
u1, . . . , uN

∣∣∣u∗i = u−1
i , gi(u1, . . . , uN) = 0

)
Now in the case of the 4 main spheres, from Proposition 13.3 above, we obtain from

this that the diagram formed by the corresponding algebras C(T ) is as follows:

C∗(ZN)

��

C∗(Z∗N)

��

oo

C∗(ZN2 ) C∗(Z∗N2 )oo

We are therefore led to the conclusion in the statement. �

All the above is very nice, and not using Hilbert spaces and the GNS theorem, or
any kind of advanced mathematics. As a conclusion to these considerations, the Gelfand
theorem alone produces out of “nothing”, or at least out of some basic common sense,
some potentially interesting mathematics. We will see in what follows that this new
mathematics can be useful in relation with our present probability purposes.

As a last piece of abstract theory, based on the above, we can now formulate a “fix”
for the functoriality issues of the Gelfand correspondence, as follows:
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Definition 13.9. The category of the real algebraic submanifolds X ⊂ SN−1
C,+ is formed

by the compact quantum spaces appearing as follows,

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
with fi ∈ C < x1, . . . , xN > being noncommutative polynomials, and with the arrows
X → Y being the ∗-algebra morphisms between the ∗-algebras of coordinates

C(Y )→ C(X)

mapping standard coordinates to standard coordinates.

In other words, what we are doing here is that of formulating a definition for the
morphisms between the compact quantum spaces, in the particular case where these
compact quantum spaces are algebraic submanifolds of the free complex sphere SN−1

C,+ .

The point is that Definition 13.9 above works fine for the discrete group duals, which is
exactly the point where the Gelfand correspondence was having a “bug”, due to amenabil-
ity issues, the precise result about the discrete group duals being as follows:

Proposition 13.10. The category of the finitely generated groups

Γ =< g1, . . . , gN >

with the morphisms mapping generators to generators, embeds contravariantly via

Γ→ Γ̂

into the category of real algebraic submanifolds X ⊂ SN−1
C,+ .

Proof. We know from Proposition 13.5 above that, given an arbitrary finitely gen-

erated group Γ =< g1, . . . , gN >, we have an embedding Γ̂ ⊂ SN−1
C,+ given by:

xi =
gi√
N

Now since a morphism of ∗-algebras of coordinates C[Γ] → C[Λ] mapping coordi-
nates to coordinates corresponds to a morphism of groups Γ→ Λ mapping generators to
generators, our notion of isomorphism is indeed the correct one, as claimed. �

More generally, Definition 13.9 above is compatible with the compact and discrete
quantum group conventions from chapter 12 above, with the compact quantum Lie groups
being algebraic manifolds in our sense, and with each quantum group corresponding to
a unique algebra. Thus, we have a good, solid axiomatization here, both for the objects
and for the arrows, and so a good and broad category, that we can effectively use.

Getting now back to the free spheres and tori, these are related to the quantum
rotation and reflection groups, and we have the following result:
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Theorem 13.11. The spheres and tori associated to the basic quantum groups,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

or rather to the corresponding “quantum geometries” are as follows:

T+
N

// SN−1
C,+

T+
N

//

==

SN−1
R,+

;;

TN //

OO

SN−1
C

OO

TN

OO

==

// SN−1
R

OO

;;

Proof. This statement, as formulated, is something a bit informal, but it is possible
to have it fully explained and justified, and we will not attempt to explain things in detail
here. Instead, we refer to the foundational paper [19], and the subsequent literature. �

In relation now with probability, we have:

Theorem 13.12. The various classical and free spheres and tori, namely

T+
N

// SN−1
C,+

T+
N

//

==

SN−1
R,+

;;

TN //

OO

SN−1
C

OO

TN

OO

==

// SN−1
R

OO

;;

all have integration functionals, that can be computed via Weingarten type formulae.
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Proof. Again, this statement as formulated is something a bit informal, and for full
details, we refer to [19] and the subsequent literature, the idea being as follows:

(1) In what regards the spheres, the idea is that, a bit like in the classical case, the
free spheres appear as homogeneous spaces over the corresponding quantum groups, and
so the Weingarten formula for the quantum groups applies by restriction to them.

(2) As for the tori, here the integration is something very simple, because we are
dealing with group duals, but by using the picture in Theorem 13.11 above, it is possible
to write as well a Weingarten formula for them as well, if we really want to. �

More generally, it is possible to integrate over suitable homogeneous spaces of type
G/H, and this unifies the Weingarten integration results for the quantum groups and for
the spheres. Again, we refer here to [19] and the subsequent literature.

As a final comment here, there is a relation of all the above with the noncommutative
geometry of Connes [39], at least at the level of the general philosophy, because both
what we are doing and what Connes is doing is based on the following two ideas:

(1) The noncommutative manifolds should come from operator algebras. Here there
is perfect agreement between Connes and us, with our motivations coming from quantum
mechanics, and more specifically from the point of view of von Neumann [91].

(2) The noncommutative manifolds should be Riemannian. Again, we are in perfect
agreement here with Connes, with our motivations coming from the fact that, in order to
do some serious mathematics, we would like to integrate on our manifolds.

In practice now, passed these two ideas which are both very good and healthy, and
that we surely share with Connes, having learned them from him, there are several ways
of doing things, and axiomatizing noncommutative geometry. At the level of the main
examples, Connes was mostly motivated by crossed products, deformations, and other
manifolds which are finally not that far from classical geometry, and his axiomatization
is something which is very close too to the classical geometry. In what concerns us, the
main examples that we have in mind are the free manifolds as above, which are quite far
from the classical world, and to which the Connes axiomatization does not apply.

Long story short, there is some controversy here, and if you are into free probability,
as we strongly believe, as being a reader of the present book, of course stay with us.

Needless to say, all this is about physics. Although Connes has some strong support-
ing physics for his axiomatization, explained in [39] and in his subsequent work, with
Chamseddine, Marcolli and others, so do we, with our physics coming from the work of
Jones, from [57] and subsequent papers, which is very related to what we are doing. But
more on this later, towards the end of the present book.
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13b. Meixner laws

Going back now to the Bercovici-Pata bijection, generally speaking, this bijection
should be thought of as being something happening in the N → ∞ limit. When N ∈ N
is fixed the situation is more complicated, and we have here many alternative corre-
spondences, coming from quantum groups, or random matrices, which are not obviously
related to the Bercovici-Pata bijection, and sometimes are “orthogonal” to it.

Our claim is that we can recover some of these interesting correspondences by using
our noncommutative geometry picture. This is certainly true for the main examples of
the Bercovici-Pata bijection, with Theorem 13.1 above being now solidly incorporated
into our noncommutative geometry program, coming from Theorem 13.11 above.

So, our claim now is that much more can be done, along these lines. All this is quite
long and technical, and we will only discuss below a few selected topics. For more I refer
to my “Affine noncommutative geometry” book, where all this is explained in detail.

As a first, famous example for our claim above, we have case of the Meixner laws. The
result here, making the link with geometry, and stated a bit informally, is as follows:

Theorem 13.13. We have a bijection between the Meixner and free Meixner laws,
which appear from the liberation operation for discrete groups

Z×N → Z∗N

by looking at the dual groups, or quantum tori, which are as follows,

TN → T+
N

and then at the laws of the corresponding main characters.

Proof. This is something standard, based on the noncommutative geometry picture
coming from Theorem 13.11 above. To be more precise, the truncated characters for the

tori T = Γ̂, with Γ =< g1, . . . , gN > being a discrete group, are as follows:

χt = g1 + . . .+ g[tN ]

Thus, according to the definition of the Meixner laws, in the classical case we obtain
the Meixner laws, and in the free case we obtain the free Meixner laws, as stated. �

There are many other things that can be said about the correspondence between
Meixner laws and free Meixner laws, sometimes of technical probabilistic nature, going
beyond the above geometric picture, and we refer here to the literature on the subject, a
good reference here, to start with, being the paper of Anshelevich [2].

Moving ahead now, by using the same geometric picture coming from Theorem 13.11
above, it is possible to talk as well about free hyperspherical laws, as follows:
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Theorem 13.14. We have a bijection between hyperspherical and free hyperspherical
laws, which appear from the liberation operation for real spheres

SN−1
R → SN−1

R,+

as well as from the liberation operation for complex spheres

SN−1
C → SN−1

C,+

by looking at the laws of the coordinates.

Proof. This is something standard, based on the geometric picture coming from
Theorem 13.11. In practice, there are many other things that can be said about this
correspondence, and we will be back to it in a moment, with a detailed study. �

Finally, it is possible to talk as well about hypergeometric and free hypergeometric
laws, with a number of quite surprising results, the idea being as follows:

Theorem 13.15. We have a bijection between hypergeometric and free hypergeometric
laws, which appear from the liberation operation for permutation groups

SN → S+
N

and in the free case, the free hypergeometric laws are in fact related to the free hyperspher-
ical laws, via a subtle twisting procedure, having no classical counterpart.

Proof. Again, in what concerns the generalities, and more specifically the first as-
sertion, this is something standard, based on the geometric picture coming from Theorem
13.11. As for explicit computations, and also for the second assertion, which is something
non-trivial, we will be back to this in a moment, with a detailed study. Let us just men-
tion here that the reasons behind the latter correspondence in the statement comes from
the following remarkable identification, having no classical counterpart:

NC2(2k) ' NC(k)

As already mentioned, more on this later, when systematically studying this. �

All the above was of course very brief, but as already mentioned, too many things to
be explained, and for full details on all this we refer to [19] and the subsequent literature,
with all this being discussed in my “Affine noncommutative geometry” book.

Summarizing, our noncommutative geometry picture is something quite successful,
enabling us to go well beyond the Bercovici-Pata results from Theorem 13.1, with results
about the Meixner laws, and with potentially interesting results on the hyperspherical
and hypergeometric laws. We will explore all this, in the remainder of this chapter.
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13c. Hyperspherical laws

We discuss here the classical and free hyperspherical laws. In the classical case, we
will need the following result, that we know well from chapter 1 above:

Proposition 13.16. The spherical integral of xi1 . . . xik vanishes, unless each index
a ∈ {1, . . . , N} appears an even number of times in the sequence i1, . . . , ik. We have∫

SN−1
R

xi1 . . . xik dx =
(N − 1)!!l1!! . . . lN !!

(N + Σli − 1)!!

with la being this number of occurrences.

Proof. As a first observation, the result holds indeed at N = 2, due to the following
formula, from chapter 1, where ε(p) = 1 when p is even, and ε(p) = 0 when p is odd:∫ π/2

0

cosp t sinq t dt =
(π

2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!

In general, when N ∈ N is arbitrary, the result follows by using polar coordinates and
Fubini, which reduces everything to the case N = 2. We refer to chapter 1 for details. �

In connection now with our probabilistic questions, we have:

Theorem 13.17. The even moments of the hyperspherical variables are∫
SN−1
R

xki dx =
(N − 1)!!k!!

(N + k − 1)!!

and the variables yi = xi/
√
N become normal and independent with N →∞.

Proof. The moment formula in the statement follows from Proposition 13.16. Now
observe that with N →∞ we have the following estimate:∫

SN−1
R

xki dx =
(N − 1)!!

(N + k − 1)!!
× k!!

' Nk/2 × k!!

= Nk/2Mk(g1)

Thus we have, as claimed, the following asymptotic formula:

xi/
√
N ∼ g1

Finally, the independence assertion follows as well from the formula in Proposition
13.16, via standard probability theory. Again, we refer here to chapter 1 above. �

In the case of the free real sphere now, the computations are substantially more com-
plicated than those in the classical case. Let us start with the following result, from [19],
that we basically know from the above, and that we will recall now:
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Theorem 13.18. For the free sphere SN−1
R,+ , the rescaled coordinates

yi =
√
Nxi

become semicircular and free, in the N →∞ limit.

Proof. As explained in the above, the Weingarten formula for the free sphere, to-
gether with the standard fact that the Gram matrix, and hence the Weingarten matrix
too, is asymptotically diagonal, gives the following estimate:∫

SN−1
R,+

xi1 . . . xik dx ' N−k/2
∑

σ∈NC2(k)

δσ(i1, . . . , ik)

With this formula in hand, we can compute the asymptotic moments of each coordinate
xi. Indeed, by setting i1 = . . . = ik = i, all Kronecker symbols are 1, and we obtain:∫

SN−1
R,+

xki dx ' N−k/2|NC2(k)|

Thus the rescaled coordinates yi =
√
Nxi become semicircular in the N →∞ limit, as

claimed. As for the asymptotic freeness result, this follows as well from the above general
joint moment estimate, via standard free probability theory. See [15], [19]. �

Summarizing, we have good results for the free sphere, with N → ∞. The problem
now, which is non-trivial, is that of computing the moments of the coordinates of the free
sphere at fixed values of N ∈ N. The answer here, from [16], which is based on advanced
quantum group and calculus techniques, that we will briefly explain here, is as follows:

Theorem 13.19. The moments of the free hyperspherical law are given by∫
SN−1
R,+

x2l
1 dx =

1

(N + 1)l
· q + 1

q − 1
· 1

l + 1

l+1∑
r=−l−1

(−1)r
(

2l + 2
l + r + 1

)
r

1 + qr

where q ∈ [−1, 0) is such that q + q−1 = −N .

Proof. The idea is that x1 ∈ C(SN−1
R,+ ) has the same law as u11 ∈ C(O+

N), which
has the same law as a certain variable w ∈ C(SU q

2 ), which can modelled by an explicit
operator on l2(N), and whose law can be computed by using advanced calculus.

Let us first explain the relation between O+
N and SU q

2 . To any matrix F ∈ GLN(R)
satisfying F 2 = 1 we associate the following universal algebra:

C(O+
F ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = FūF = unitary
)

Observe that we have O+
IN

= O+
N . In general, the above algebra satisfies Woronowicz’s

generalized axioms in [98], which do not include the antipode axiom S2 = id.
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At N = 2 now, up to a trivial equivalence relation on the matrices F , and on the
quantum groups O+

F , we can assume that F is as follows, with q ∈ [−1, 0):

F =

(
0

√
−q

1/
√
−q 0

)
Our claim is that for this matrix we have the following formula:

O+
F = SU q

2

Indeed, the relations u = FūF tell us that u must be of the following form:

u =

(
α −qγ∗
γ α∗

)
Thus C(O+

F ) is the universal algebra generated by two elements α, γ, with the relations
making the above matrix u a unitary. But these unitarity conditions are:

αγ = qγα

αγ∗ = qγ∗α

γγ∗ = γ∗γ

α∗α + γ∗γ = 1

αα∗ + q2γγ∗ = 1

We recognize here the relations in [98] defining the algebra C(SU q
2 ), and it follows

that we have an isomorphism of Hopf algebras, as follows:

C(O+
F ) ' C(SU q

2 )

Now back to the general case, where F ∈ GLN(R) satisifes F 2 = 1, let us try to
understand the integration over O+

F . Given π ∈ NC2(2k) and i = (i1, . . . , i2k), we set:

δFπ (i) =
∏
s∈π

Fisl isr

Here the product is over all the strings s = {sl y sr} of π. Our claim is that the
following family of vectors, with π ∈ NC2(2k), spans the space of fixed vectors of u⊗2k:

ξπ =
∑
i

δFπ (i)ei1 ⊗ . . .⊗ ei2k

Indeed, having ξ∩ fixed by u⊗2 is equivalent to assuming that u = FūF is unitary. By
using now these vectors, as in [15], we obtain the following Weingarten formula:∫

O+
F

ui1j1 . . . ui2kj2k =
∑
πσ

δFπ (i)δFσ (j)WkN(π, σ)
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With these preliminaries in hand, we can now start the computation that we are
interested in. Let N ∈ N, and consider the number q ∈ [−1, 0) satisfying:

q + q−1 = −N
Our claim is that we have the following formula:∫

O+
N

ϕ(
√
N + 2uij) =

∫
SUq2

ϕ(α + α∗ + γ − qγ∗)

Indeed, according to the above, the moments of the variable on the left are given by:∫
O+
N

u2k
ij =

∑
πσ

WkN(π, σ)

On the other hand, the moments of the variable on the right, which in terms of the
fundamental corepresentation v = (vij) is given by w =

∑
ij vij, are as follows:∫

SUq2

w2k =
∑
ij

∑
πσ

δFπ (i)δFσ (j)WkN(π, σ)

We deduce that w/
√
N + 2 has the same moments as uij, which proves our claim.

In order to do now the computation over SU q
2 , we can use a well-known matrix model,

due to Woronowicz [98], where the standard generators α, γ are mapped as follows:

πu(α)ek =
√

1− q2kek−1

πu(γ)ek = uqkek

Here u ∈ T is a parameter, and (ek) is the standard basis of l2(N). The point with
this representation is that it allows the computation of the Haar functional. Indeed, if D
is the diagonal operator given by D(ek) = q2kek, then we have the following formula:∫

SUq2

x = (1− q2)

∫
T
tr(Dπu(x))

du

2πiu

With the above explicit model in hand, we conclude that the law of the variable that
we are interested in is subject to the following formula:∫

SUq2

ϕ(α + α∗ + γ − qγ∗) = (1− q2)

∫
T
tr(Dϕ(M))

du

2πiu

To be more precise, this formula holds indeed, with M being as follows:

M(ek) = ek+1 + qk(u− qu−1)ek + (1− q2k)ek−1

The point now is that the integral on the right in the above can be computed, by
using advanced calculus methods, and this gives the result. We refer here to [16]. �

The computation of the joint free hyperspherical laws remains an open problem. Open
as well is the question of finding a more conceptual proof for the above formula.



314 13. FREE GEOMETRY

13d. Hypergeometric laws

Following now [13], let us discuss an interesting relation of all this with the quantum
permutations, and with the free hypergeometric laws. The idea will be that of working
out some abstract algebraic results, regarding twists of quantum automorphism groups,
which will particularize into results relating quantum rotations and permutations, having
no classical counterpart, both at the algebraic and the probabilistic level.

In order to explain this material, from [13], which is quite technical, requiring good
algebraic knowledge, let us begin with some generalities. We first have:

Definition 13.20. A finite quantum space F is the abstract dual of a finite dimen-
sional C∗-algebra B, according to the following formula:

C(F ) = B

The number of elements of such a space is |F | = dimB. By decomposing the algebra B,
we have a formula of the following type:

C(F ) = Mn1(C)⊕ . . .⊕Mnk(C)

With n1 = . . . = nk = 1 we obtain in this way the space F = {1, . . . , k}. Also, when k = 1
the equation is C(F ) = Mn(C), and the solution will be denoted F = Mn.

We endow each finite quantum space F with its counting measure, corresponding as
the algebraic level to the integration functional obtained by applying the regular repre-
sentation, and then the unique normalized trace of the matrix algebra L(F ):

tr : C(F ) ⊂ L(F )→ C

Now if we denote by µ, η the multiplication and unit map of the algebra C(F ), we
have the following standard result, from [7]:

Proposition 13.21. Consider a linear map Φ : C(F )→ C(F )⊗ C(G), written as

Φ(ei) =
∑
j

ej ⊗ uji

with {ei} being a linear space basis of C(F ), orthonormal with respect to tr.

(1) Φ is a linear space coaction ⇐⇒ u is a corepresentation.
(2) Φ is multiplicative ⇐⇒ µ ∈ Hom(u⊗2, u).
(3) Φ is unital ⇐⇒ η ∈ Hom(1, u).
(4) Φ leaves invariant tr ⇐⇒ η ∈ Hom(1, u∗).
(5) If these conditions hold, Φ is involutive ⇐⇒ u is unitary.

Proof. This is a bit similar to the proof for S+
N from chapter 12 above, via some

routine computations, and for full details here, we refer to [7]. �
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Again following [7], we have the following result, extending the basic theory of S+
N

from chapter 12 to the present finite quantum space setting:

Theorem 13.22. Given a finite quantum space F , there is a universal compact quan-
tum group S+

F acting on F , leaving the counting measure invariant. We have

C(S+
F ) = C(U+

N )
/〈

µ ∈ Hom(u⊗2, u), η ∈ Fix(u)
〉

where N = |F | and where µ, η are the multiplication and unit maps of C(F ). Also:

(1) For F = {1, . . . , N} we have S+
F = S+

N .
(2) For F = Mn we have S+

F = PO+
n = PU+

n .

Proof. Consider a linear map Φ : C(F ) → C(F ) ⊗ C(G), written as follows, with
{ei} being a linear space basis of the algebra C(F ), orthonormal with respect to tr:

Φ(ej) =
∑
i

ei ⊗ uij

It is routine to check, via standard algebraic computations, that Φ is a coaction pre-
cisely when u is a unitary corepresentation, satisfying the following conditions:

µ ∈ Hom(u⊗2, u) , η ∈ Fix(u)

But this gives the first assertion. Regarding now the statement about F = {1, . . . , N},
this is clear. Finally, regarding F = M2, here we have embeddings as followss:

PO+
n ⊂ PU+

n ⊂ S+
F

Now since the fusion rules of all these 3 quantum groups are known to be the same as
the fusion rules for SO3, these inclusions follow to be isomorphisms. See [7]. �

We have as well the following result, also from [7]:

Theorem 13.23. The quantum groups S+
F have the following properties:

(1) The associated Tannakian categories are TL(N), with N = |F |.
(2) The main character follows the Marchenko-Pastur law π1, when N ≥ 4.
(3) The fusion rules for S+

F with |F | ≥ 4 are the same as for SO3.

Proof. This result is from [7], the idea being as follows:

(1) Our first claim is that the fundamental representation is equivalent to its adjoint,
u ∼ ū. Indeed, let us go back to the coaction formula in Proposition 13.21, namely:

Φ(ei) =
∑
j

ej ⊗ uji

We can pick our orthogonal basis {ei} to be the standard multimatrix basis of C(F ),
so that we have, for a certain involution i→ i∗ on the index set:

e∗i = ei∗
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With this convention made, by conjugating the formula of Φ(ei), we obtain:

Φ(ei∗) =
∑
j

ej∗ ⊗ u∗ji

Now by interchanging i↔ i∗ and j ↔ j∗, this latter formula becomes:

Φ(ei) =
∑
j

ej ⊗ u∗j∗i∗

We therefore conclude, by comparing with the original formula, that we have:

u∗ji = uj∗i∗

But this shows that we have an equivalence of corepresentations as follows, as claimed:

u ∼ ū

Now with this in hand, the proof goes as for the proof for S+
N . To be more precise,

the result follows from the fact that the multiplication and unit of any complex algebra,
and in particular of C(F ), can be modelled by the following two diagrams:

m = | ∪ | , u = ∩

(2) The proof here is as for S+
N , by using moments. To be more precise, according to

(1) these moments are the Catalan numbers, which are the moments of π1.

(3) Once again same proof as for S+
N , by using the fact that the moments of χ are the

Catalan numbers, which lead to the Clebsch-Gordan rules. See [7]. �

Let us discuss now a number of more advanced twisting aspects, which will eventually
lead us into probability, and hypergeometric laws. Following [13], we have:

Proposition 13.24. Given a finite group F , the algebra C(S+

F̂
) is isomorphic to the

algebra presented by generators xgh with g, h ∈ F , with the following relations:

x1g = xg1 = δ1g , xs,gh =
∑
t∈F

xst−1,gxth , xgh,s =
∑
t∈F

xgt−1xh,ts

The comultiplication, counit and antipode are given by the formulae

∆(xgh) =
∑
s∈F

xgs ⊗ xsh , ε(xgh) = δgh , S(xgh) = xh−1g−1

on the standard generators xgh.

Proof. This follows indeed from a direct verification, based either on Theorem 13.22
above, or on its equivalent formulation from Wang’s paper [93]. �
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Let us discuss now the twisted version of the above result. Consider a 2-cocycle on
our group F , which is by definition a map σ : F × F → C∗ satisfying:

σgh,sσgh = σg,hsσhs

σg1 = σ1g = 1

Given such a cocycle, we can construct the associated twisted group algebra C(F̂σ),

as being the vector space C(F̂ ) = C∗(F ), with product defined as follows:

egeh = σghegh

We have then the following generalization of Proposition 13.24:

Proposition 13.25. The algebra C(S+

F̂σ
) is isomorphic to the abstract algebra pre-

sented by generators xgh with g, h ∈ G, with the relations x1g = xg1 = δ1g and:

σghxs,gh =
∑
t∈F

σst−1,txst−1,gxth

σ−1
gh xgh,s =

∑
t∈F

σ−1
t−1,tsxgt−1xh,ts

The comultiplication, counit and antipode are given by the formulae

∆(xgh) =
∑
s∈F

xgs ⊗ xsh

ε(xgh) = δgh

S(xgh) = σh−1hσ
−1
g−1gxh−1g−1

on the standard generators xgh.

Proof. Once again, this follows from a direct verification. Note that by using the
cocycle identities we obtain the following formula, needed in the proof:

σgg−1 = σg−1g

Thus we are led to the conclusion in the statement. �

Now let H be an arbitrary Hopf algebra. We recall that a left 2-cocycle on H is a
convolution invertible linear map σ : H ⊗H → C satisfying the following conditions:

σx1y1σx2y2,z = σy1z1σx,y2z2

σx1 = σ1x = ε(x)

Given a left 2-cocycle σ on H, we can form the 2-cocycle twist Hσ as follows. As a
coalgebra, Hσ = H, and an element x ∈ H, when considered in Hσ, is denoted [x]. The
product in Hσ is defined, in Sweedler notation, by the following formula:

[x][y] =
∑

σx1y1σ
−1
x3y3

[x2y2]

With these conventions, following [13], we have the following result:
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Theorem 13.26. If F is a finite group and σ is a 2-cocycle on F , the Hopf algebras

C(S+

F̂
) , C(S+

F̂σ
)

are 2-cocycle twists of each other, in the above sense.

Proof. In order to prove this result, we will use the following Hopf algebra map:

π : C(S+

F̂
)→ C(F̂ ) , xgh → δgheg

Our 2-cocycle σ : F × F → C∗ can be extended by linearity into a linear map as
follows, which is both a left and right 2-cocycle in the above sense:

σ : C(F̂ )⊗ C(F̂ )→ C
Consider now the following composition of maps:

α = σ(π ⊗ π) : C(S+

F̂
)⊗ C(S+

F̂
)→ C(F̂ )⊗ C(F̂ )→ C

Then α is a left and right 2-cocycle, because it is induced by a cocycle on a group
algebra, and so its convolution inverse is α−1. Thus we can construct the twisted algebra
C(S+

F̂
)α
−1

, and inside this algebra we have the following computation:

[xgh][xrs] = α−1(xg, xr)α(xh, xs)[xghxrs]

= σ−1
gr σhs[xghxrs]

By using this, we obtain next the following formula:∑
t∈F

σst−1,t[xst−1,g][xth] =
∑
t∈F

σst−1,tσ
−1
st−1,tσgh[xst−1,gxth]

= σgh[xs,gh]

Similarly, we have the following formula, obtained in the same way:∑
t∈F

σ−1
t−1,ts[xg,t−1 ][xh,ts] = σ−1

gh [xgh,s]

We deduce from the above formulae that we have a Hopf algebra map, as follows:

Φ : C(S+

F̂σ
)→ C(S+

F̂
)α
−1

, xgh → [xg,h]

But this map is clearly surjective, and is injective as well, as desired, by a standard
fusion semiring argument, because both Hopf algebras have the same fusion semiring. �

Let us discuss now some concrete applications of the above general result. Consider
the group F = Z2

n, let w = e2πi/n, and consider the following map:

σ : F × F → C∗

σ(ij)(kl) = wjk

Then σ is a bicharacter, and hence a 2-cocycle on F . Thus, we can apply our general
twisting result, to this situation. We obtain a concrete result, from [13], as follows:
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Theorem 13.27. Let n ≥ 2 and w = e2πi/n. Then the formula

Θ(uijukl) =
1

n

n−1∑
ab=0

w−a(k−i)+b(l−j)pia,jb

defines a coalgebra isomorphism, as follows

C(PO+
n )→ C(S+

n2)

which commutes with the corresponding Haar integrals.

Proof. This follows indeed from our general result from Theorem 13.26 above, by
using as ingredients the group and the cocycle indicated above. �

As a probabilistic consequence now, which is of interest for us, we have:

Theorem 13.28. The following families of variables have the same joint law,

(1) {u2
ij} ∈ C(O+

n ),

(2) {Xij = 1
n

∑
ab pia,jb} ∈ C(S+

n2),

where u = (uij) and p = (pia,jb) are the corresponding fundamental corepresentations.

Proof. This follows indeed from Theorem 13.27 above, because the variables in the
statement are in correspondence, via the correspondence established there. An alterna-
tive approach is by using the Weingarten formula for our two quantum groups, and the
shrinking operation π → π′. Indeed, we obtain the following moment formulae:∫

O+
n

u2k
ij =

∑
π,σ∈NC2(2k)

W2k,n(π, σ)∫
S+

n2

Xk
ij =

∑
π,σ∈NC2(2k)

n|π
′|+|σ′|−kWk,n2(π′, σ′)

But by doing some standard combinatorics, the summands coincide, and so the mo-
ments are equal, as desired. The proof for joint moments is similar. See [13]. �

In order to derive now some explicit consequences from the above, let us formulate:

Definition 13.29. The noncommutative random variable

X(n,m,N) =
n∑
i=1

m∑
j=1

uij ∈ C(S+
N)

is called free hypergeometric, of parameters (n,m,N).

The terminology comes from the fact that the variable X ′(n,m,N), defined as above,
but over the algebra C(SN), follows a hypergeometric law of parameters (n,m,N).

Now back to Theorem 13.28, this has as consequence the following quite surprising
result, which is of purely free probabilistic nature, having no classical counterpart:
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Theorem 13.30. The free hypergeometric variable

Xij =
1

n

n∑
a,b=1

uia,jb ∈ C(S+
n2)

has the same law as the squared free hyperspherical variable, namely:

x2
i ∈ C(SN−1

R,+ )

Proof. This follows indeed from Theorem 13.28, particularized to the case of single
variables. For details on all this, and for more, we refer to [13]. �

As a conclusion to all this, very interesting things when doing noncommutative geom-
etry, on one hand with explicit models for all the basic instances of the Bercovici-Pata
bijection, on the other hand with some new bijections, such as the Meixner/free Meixner
one, and on the other other hand some new phenomena, which are of purely free nature,
such as the above one, relating the free hypergeometric and free hyperspherical laws.

Needless to say, all this is of interest in relation with physics. For instance in the
Connes interpretation of the Standard Model, coming from [39], the probabilistic study
of the corresponding free gauge group leads to beasts as above. Also, it is believed that
QCD should appear as some kind of “free electrodynamics”, with free geometry and free
probability playing a key role in its study, although all this is not confirmed yet.

13e. Exercises

Things have been quite advanced in this chapter, and as a unique exercise, which is
rather elementary, and very instructive, we have:

Exercise 13.31. Prove that the free hypergeometric laws are as follows:

(1) Let n,m,N →∞, with nm
N
→ t ∈ (0,∞). Then the law of

X(n,m,N)

converges to Marchenko-Pastur law πt.
(2) Let n,m,N →∞, with n

N
→ ν ∈ (0, 1) and m

N
→ 0. Then the law of

S(n,m,N) = (X(n,m,N)−mν)/
√
mν(1− ν)

converges to the semicircle law γ1.

Here the computations are quite standard, and very instructive. In case you are stuck
with something, all this is done in [13], so read and write a brief account of that.



CHAPTER 14

Invariance questions

14a. Invariance questions

An interesting question, which often appears in theoretical probability, as well in
connection with various questions coming from physics, is the study of the sequences of
random variables x1, x2, x3, . . . ∈ L∞(X) which are exchangeable, in the sense that their
joint distribution is invariant under the infinite permutations σ ∈ S∞:

µx1,x2,x3,... = µxσ(1),xσ(2),xσ(3),...

This question is solved by the classical De Finetti theorem, which basically says that
the variables x1, x2, x3, . . . must be i.i.d., in some asymptotic sense. We will see a precise
statement of this theorem, along with a complete proof, in a minute.

The De Finetti theorem has many generalizations. One can replace for instance the
action of the group S∞ = ∪NSN by the action of the bigger group O∞ = ∪NON , and
the sequences x1, x2, x3, . . . ∈ L∞(X) which are invariant in this stronger sense, which are
called “rotatable”, can be characterized as well, via a De Finetti type theorem.

All this is interesting for us, in connection with what we have been doing so far, in
this book. On one hand the groups SN , ON are easy, and we would like to understand
how the above-mentioned De Finetti theorems, involving SN , ON , as well as their various
technical generalizations, follow from the easiness property of SN , ON . On the other hand,
we would like to understand as well what happens for S+

N , O
+
N .

Long story short, we would like to discuss here probabilistic invariance questions with
respect to the basic quantum permutation and rotation groups, namely:

S+
N

// O+
N

SN //

OO

ON

OO

As a second objective, in tune with what we have been doing so far in this book, we
would like as well to understand what happens to the invariance questions with respect

321
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to the basic quantum reflection and rotation groups, from our beloved cube, namely:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

We will discuss here most of these questions, following the classical theory of the De
Finetti theorem, then the foundational paper of Köstler and Speicher [62], in the free
case, and then the more advanced paper [18], deling with both the classical and free De
Finetti theorems, and their other easy quantum group generalizations.

Let us start by fixing some notations. In order to deal with our first question above,
we will use here the formalism of the orthogonal quantum groups, which best covers the
main quantum groups that we are interested in. We first have the following definition:

Definition 14.1. Given a closed subgroup G ⊂ O+
N , we denote by

α : C < t1, . . . , tN >→ C < t1, . . . , tN > ⊗C(G)

ti →
∑
j

tj ⊗ uji

the standard coaction of C(G) on the free complex algebra on N variables.

Observe that the map α constructed above is indeed a coaction, in the sense that it
satisfies the following standard coassociativity and counitality conditions:

(id⊗∆)α = (α⊗ id)α

(id⊗ ε)α = id

With the above notion of coaction in hand, we can now talk about invariant sequences
of classical or noncommutative random variables, in the following way:

Definition 14.2. Let (B, tr) be a C∗-algebra with a trace, and x1, . . . , xN ∈ B. We
say that x = (x1, . . . , xN) is invariant under G ⊂ O+

N if the distribution functional

µx : C < t1, . . . , tN >→ C
P → tr(P (x1, . . . , xN))

is invariant under the coaction α, in the sense that we have

(µx ⊗ id)α(P ) = µx(P )

for any noncommuting polynomial P ∈ C < t1, . . . , tN >.
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In the classical case, where G ⊂ ON is a usual group, we recover in this way the
usual invariance notion from classical probability. In the general case, where G ⊂ O+

N is
arbitrary, what we have is a natural generalization of this. For further comments on all
this, including examples, and motivations too, we refer to [18], [40], [41], [62], [63].

We have the following equivalent formulation of the above invariance condition:

Proposition 14.3. Let (B, tr) be a C∗-algebra with a trace, and x1, . . . , xN ∈ B.
Then x = (x1, . . . , xN) is invariant under G ⊂ O+

N precisely when

tr(xi1 . . . xik) =
∑
j1...jk

tr(xj1 . . . xjk)uj1i1 . . . ujkik

as an equality in C(G), for any k ∈ N, and any i1, . . . , ik ∈ {1, . . . , N}.
Proof. By linearity, in order for a sequence x = (x1, . . . , xN) to be G-invariant in

the sense of Definition 14.2, the formula there must be satisfied for any noncommuting
monomial P ∈ C < t1, . . . , tN >. But an arbitrary such monomial can be written as
follows, for a certain k ∈ N, and certain indices i1, . . . , ik ∈ {1, . . . , N}:

P = ti1 . . . tik

Now with this formula for P in hand, we have the following computation:

(µx ⊗ id)α(P ) = (µx ⊗ id)
∑
j1,...,jk

tj1 . . . tjk ⊗ uj1i1 . . . ujkik

=
∑
j1,...,jk

µx(tj1 . . . tjk)uj1i1 . . . ujkik

=
∑
j1...jk

tr(xj1 . . . xjk)uj1i1 . . . ujkik

On the other hand, by definition of the distribution µx, we have:

µx(P ) = µx(ti1 . . . tik) = tr(xi1 . . . xik)

Thus, we are led to the conclusion in the statement. �

As already mentioned after Definition 14.2 above, in the classical case, where G ⊂ ON

is a usual compact group, our notion of G-invariance coincides with the usual G-invariance
notion from classical probability. We have in fact the following result:

Proposition 14.4. In the classical group case, G ⊂ ON , a sequence (x1, . . . , xN) is
G-invariant in the above sense if and only if

tr(xi1 . . . xik) =
∑
j1...jk

gj1i1 . . . gjkiktr(xj1 . . . xjk)

for any k ∈ N, any i1, . . . , ik ∈ {1, . . . , N}, and any g = (gij) ∈ G, and this coincides
with the usual notion of G-invariance for a sequence of classical random variables.
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Proof. According to Proposition 14.3, the invariance property happens precisely
when we have the following equality, for any k ∈ N, and any i1, . . . , ik ∈ {1, . . . , N}:

tr(xi1 . . . xik) =
∑
j1...jk

tr(xj1 . . . xjk)uj1i1 . . . ujkik

Now by evaluating both sides of this equation at a given g ∈ G, we obtain:

tr(xi1 . . . xik) =
∑
j1...jk

gj1i1 . . . gjkiktr(xj1 . . . xjk)

Thus, we are led to the conclusion in the statement. �

Summarizing, what we have so far is a general notion of probabilistic invariance,
generalizing the classical notions of exchangeability and rotatability, than we can use for
reformulating the classical De Finetti problematics, and its various generalizations.

In order to formulate De Finetti type theorems, that we can try to prove afterwards,
we are still in need of a few pieces of general theory. Indeed, in the classical De Finetti
theorem, the independence occurs after conditioning. Likewise, we can expect the free De
Finetti theorem to be a statement about freeness with amalgamation.

Both these concepts may be expressed in terms of operator-valued probability theory,
that we will recall now. There are many things to be said here, and in what follows
we will mainly present the main definitions and theorems, with some brief explanations.
Following Speicher’s paper [79], we first have the following definition:

Definition 14.5. An operator-valued probability space consists of:

(1) A unital algebra A.
(2) A unital subalgebra B ⊂ A.
(3) An expectation E : A→ B, which must be unital, E(1) = 1, and satisfying

E(b1ab2) = b1E(a)b2

for any a ∈ A, and any b1, b2 ∈ B.

As a basic example, which motivates the whole theory, we have the case where A =
L∞(X) is a usual algebra of classical random variables, and B = L∞(Y ) is a subalgebra.
Here the expectation E : A→ B is the usual one from classical probability.

Given an operator-valued probability space as above, the joint distribution of a family
of variables (xi)i∈I in the algebra A is by definition the following functional:

µx : B < (ti)i∈I >→ B

P → E(P (x))

We refer to Speicher’s paper [79] and related papers for more on all this, general
results and examples, in relation with the operator-valued probability theory.
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Next in line, we have the following key definition, also from [79]:

Definition 14.6. Let (A,B,E) be as above, and (xi)i∈I be a family of variables.

(1) These variables are called independent if the following algebra is commutative

< B, (xi)i∈I >⊂ A

and for i1, . . . , ik ∈ I distinct and P1, . . . , Pk ∈ B < t >, we have:

E(P1(xi1) . . . Pk(xik)) = E(P1(xi1)) . . . E(Pk(xik))

(2) These variables are called free if for any i1, . . . , ik ∈ I such that il 6= il+1, and
any P1, . . . , Pk ∈ B < t > such that E(Pl(xil)) = 0, we have:

E(P1(xi1) . . . Pk(xik)) = 0

The above notions are straighforward extensions of the usual notions of independence
and freeness, that we discussed in chapter 9, which correspond to the case B = C.

As in the scalar case, B = C, in order to deal with invariance questions, we will need
the theory of classical and free cumulants, in the present setting. Let us start with:

Definition 14.7. Let (A,B,E) be an operator-valued probability space.

(1) A B-functional is a N-linear map ρ : AN → B such that:

ρ(b0a1b1, a2b2 . . . , aNbN) = b0ρ(a1, b1a2, . . . , bN−1aN)bN

Equivalently, ρ is a linear map of the following type

A⊗BN → B

where the tensor product is taken with respect to the natural B − B bimodule
structure on the algebra A.

(2) Suppose that B is commutative. For k ∈ N let ρ(k) be a B-functional. Given
π ∈ P (n), we define a B-functional ρ(π) : AN → B by the formula

ρ(π)(a1, . . . , aN) =
∏
V ∈π

ρ(V )(a1, . . . , aN)

where if V = (i1 < . . . < is) is a block of π then:

ρ(V )(a1, . . . , aN) = ρs(ai1 , . . . , ais)

As before with the notions of independence and freeness, these are classical extensions
of the notions that we discussed in chapter 12 above. See [79].

When B is not commutative, there is no natural order in which to compute the product
appearing in the above formula for ρ(π). However, the nesting property of the noncrossing
partitions allows for a natural definition of ρ(π) for π ∈ NC(N), which we now recall:
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Definition 14.8. For k ∈ N let ρ(k) : Ak → B be a B-functional. Given π ∈ NC(N),
define a B-functional ρ(N) : AN → B recursively as follows:

(1) If π = 1N is the partition having one block, define ρ(π) = ρ(N).
(2) Otherwise, let V = {l + 1, . . . , l + s} be an interval of π and define:

ρ(π)(a1, . . . , aN) = ρ(π−V )(a1, . . . , alρ
(s)(al+1, . . . , al+s), al+s+1, . . . , aN)

As before, we refer to [71], [79] and related work for more on all this.

Finally, we have the following definition:

Definition 14.9. Let (xi)i∈I be a family of random variables in A.

(1) The operator-valued classical cumulants c
(k)
E : Ak → B are the B-functionals

defined by the following classical moment-cumulant formula:

E(a1 . . . aN) =
∑

π∈P (N)

c
(π)
E (a1, . . . , aN)

(2) The operator-valued free cumulants κ
(k)
E : Ak → B are the B-functionals defined

by the following free moment-cumulant formula:

E(a1, . . . , aN) =
∑

π∈NC(N)

κ
(π)
E (a1, . . . , aN)

As basic illustrations here, in the scalar case, where the subalgebra is B = C, we
recover in this way the classical and free cumulants, as discussed in chapter 12 above. In
general, we refer to [79] for more on the above notions.

We have the following result, which is well-known in the classical case, due to Rota,
and which in the free case is due to Speicher [79]:

Theorem 14.10. Let (xi)i∈I a family of random variables in A.

(1) If the algebra < B, (xi)i∈I > is commutative, then (xi)i∈I are conditionally inde-
pendent given B if and only if when there are 1 ≤ k, l ≤ N such that ik 6= il:

c
(N)
E (b0xi1b1, . . . , xiN bN) = 0

(2) The variables (xi)i∈I are free with amalgamation over B if and only if when there
are 1 ≤ k, l ≤ N such that ik 6= il:

κ
(N)
E (b0xi1b1, . . . , xiN bN) = 0

Proof. As a first observation, the condition in (1) is equivalent to the statement that
if π ∈ P (N), then the following happens, unless π ≤ ker i:

c
(π)
E (b0xi1b1, . . . , xiN bN) = 0
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Similarly, the condition (2) above is equivalent to the statement that if π ∈ NC(N),
then the following happens, unless π ≤ ker i:

κ
(π)
E (b0xi1b1, . . . , xiN bN) = 0

Observe also that in the case B = C we obtain the usual notions of independence
and freeness. In general now, the proof is via standard combinatorics, following the proof
from the case B = C, and as before, we refer to [71], [79] for more on all this. �

Stronger characterizations of the joint distribution of (xi)i∈I can be given by specifying
what types of partitions may contribute to the nonzero cumulants.

To be more precise, we have here the following result, also from [79]:

Theorem 14.11. Let (xi)i∈I be a family of random variables in A.

(1) Suppose that < B, (xi)i∈I > is commutative. The B-valued joint distribution of
(xi)i∈I is independent for D = P and independent centered Gaussian for D = P2

if and only if, for any π ∈ P (N), unless π ∈ D(N) and π ≤ ker i:

c
(π)
E (b0xi1b1, . . . , xiN bN) = 0

(2) The B-valued joint distribution of (xi)i∈I is freely independent for D = NC and
freely independent centered semicircular for D = NC2 if and only if, for any
π ∈ NC(N), unless π ∈ D(N) and π ≤ ker i:

κ
(π)
E (b0xi1b1, . . . , xiN bN) = 0

Proof. These results are indeed well-known, coming from the definition of the clas-
sical and free cumulants, in the present setting, via some combinatorics. See [79]. �

Finally, here is one more basic result that we will need:

Theorem 14.12. Let (xi)i∈I be a family of random variables. Define the B-valued
moment functionals E(N) by the following formula:

E(N)(a1, . . . , aN) = E(a1 . . . aN)

(1) If B is commutative, then for any σ ∈ P (N) and a1, . . . , aN ∈ A we have:

c
(σ)
E (a1, . . . , aN) =

∑
π∈P (N),π≤σ

µP (N)(π, σ)E(π)(a1, . . . , aN)

(2) For any σ ∈ NC(N) and a1, . . . , aN ∈ A we have:

κ
(σ)
E (a1, . . . , aN) =

∑
π∈NC(N),π≤σ

µNC(N)(π, σ)E(π)(a1, . . . , aN)

Proof. This follows indeed from the Möbius inversion formula. See [71], [79]. �
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This was the general operator-valued free probability theory that we will need, in what
follows. For the detailed proofs, examples and comments on all the above, and for more
operator-valued free probability in general, we refer to [71], [79].

14b. Reverse De Finetti

With the above ingredients in hand, we can now investigate invariance questions for
the sequences of classical or noncommutative random variables, with respect to the main
quantum permutation and rotation groups that we are interested in here, namely:

S+
N

// O+
N

SN //

OO

ON

OO

To be more precise, we first have a reverse De Finetti theorem, from [18], as follows:

Theorem 14.13. Let (x1, . . . , xN) be a sequence in A.

(1) If x1, . . . , xN are freely independent and identically distributed with amalgamation
over B, then the sequence is S+

N -invariant.
(2) If x1, . . . , xN are freely independent and identically distributed with amalgamation

over B, and have centered semicircular distributions with respect to E, then the
sequence is O+

N -invariant.
(3) If < B, x1, . . . , xN > is commutative and x1, . . . , xN are conditionally independent

and identically distributed given B, then the sequence is SN -invariant.
(4) If < x1, . . . , xN > is commutative and x1, . . . , xN are conditionally independent

and identically distributed given B, and have centered Gaussian distributions with
respect to E, then the sequence is ON -invariant.

Proof. Assume that the joint distribution of (x1, . . . , xN) satisfies one of the condi-
tions in the statement, and let D be the category of partitions associated to the corre-
sponding easy quantum group. We have then the following computation:∑

j1...jk

tr(xj1 . . . xjk)uj1i1 . . . ujkik =
∑
j1...jk

tr(E(xj1 . . . xjk))uj1i1 . . . ujkik

=
∑
j1...jk

∑
π≤ker j

tr(ξ
(π)
E (x1, . . . , x1))uj1i1 . . . ujkik

=
∑

π∈D(k)

tr(ξ
(π)
E (x1, . . . , x1))

∑
ker j≥π

uj1i1 . . . ujkik

Here ξ denotes the free and classical cumulants in the cases (1,2) and (3,4) respectively.
On the other hand, it follows from a direct computation that if π ∈ D(k) then we have
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the following formula, in each of the 4 cases in the statement:∑
ker j≥π

uj1i1 . . . ujkik =

{
1 if π ≤ ker i

0 otherwise

By using this formula, we can finish our computation, in the following way:∑
j1...jk

tr(xj1 . . . xjk)uj1i1 . . . ujkik =
∑

π∈D(k)

tr(ξ
(π)
E (x1, . . . , x1))δπ≤ker i

=
∑
π≤ker i

tr(ξ
(π)
E (x1, . . . , x1))

= tr(xi1 . . . xik)

Thus, we are led to the conclusions in the statement. �

Summarizing, we have so far a reverse De Finetti theorem, for the various quantum
groups that we are interested in here. Our goal in what follows will be that of proving
the corresponding De Finetti theorems, which are converse to the above theorem.

This will be something quite technical, getting us, among others, into certain technical
aspects of the Weingarten integration and combinatorics.

Let us begin with some technical results, in view to establish the above-mentioned
converse De Finetti theorems. We will use the following standard fact:

Proposition 14.14. Assume that a sequence (x1, . . . , xN) is G-invariant. Then there
is a coaction

α̃ : MN(C)→MN(C)⊗ C(G)

determined by the following formula:

α̃(p(x)) = (evx ⊗ πN)α(p)

Moreover, the fixed point algebra of α̃ is the G-invariant subalgebra BN .

Proof. This follows indeed after identifying the GNS representation of the algebra
C < t1, . . . , tN > for the state µx with the morphism evx : C < t1, . . . , tN >→MN(C). �

In order to further advance, we use the fact that there is a natural conditional expec-
tation given by integrating the coaction α̃ with respect to the Haar state, as follows:

EN : MN(C)→ BN

EN(m) =

(
id⊗

∫
G

)
α̃(m)

The point now is that by using the Weingarten formula, we can give a simple combi-
natorial formula for the moment functionals with respect to EN , in the case where G is
one of the easy quantum groups under consideration.
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To be more precise, we have the following result, from [18]:

Theorem 14.15. Assume that (x1, . . . , xN) is G-invariant, and that either we have
G = O+

N , S
+
N , or that G = ON , SN and (x1, . . . , xN) commute. We have then

E
(π)
N (b0x1b1, . . . , x1bk) =

1

N |π|

∑
π≤ker i

b0xi1 . . . bxikbk

for any π in the partition category D(k) for G, and any b0, . . . , bk ∈ BN .

Proof. We prove this result by recurrence on the number of blocks of π. First suppose
that π = 1k is the partition with only one block. Then:

E
(1k)
N (b0x1b1, . . . , x1bk) = EN(b0x1 . . . x1bk)

=
∑
i1...ik

b0xi1 . . . xikbk

∫
G

ui11 . . . uik1

Here we have used the fact that the elements b0, . . . , bk are fixed by the coaction α̃.
Applying now the Weingarten integration formula, we have:

EN(b0x1 . . . x1bk) =
∑
i1...ik

b0xi1 . . . xikbk
∑
π≤ker i

∑
σ

WkN(π, σ)

=
∑

π∈D(k)

 ∑
σ∈D(k)

WkN(π, σ)

 ∑
π≤ker i

b0xi1 . . . xikbk

Now observe that for any σ ∈ D(k) we have the following formula:

GkN(σ, 1k) = N |σ∨1k| = N

It follows that for any partition π ∈ D(k), we have:

N
∑

σ∈D(k)

WkN(π, σ) =
∑

σ∈D(k)

WkN(π, σ)GkN(σ, 1k)

= δπ1k

Applying this in the above context, we find, as desired:

EN(b0x1 . . . x1bk) =
∑

π∈D(k)

1

N
δπ1k

∑
π≤ker i

b0xi1 . . . xikbk

=
1

N

N∑
i=1

b0xi . . . xibk

If the condition (3) or (4) is satisfied, then the general case follows from:

E
(π)
N (b0x1b1, . . . , x1bk) = b1 . . . bk

∏
V ∈π

EN(V )(x1, . . . , x1)
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Indeed, the one thing that we must check here is that if π ∈ D(k) and V is a block of
π with s elements, then 1s ∈ D(s). But this is easily verified, in each case.

Assume now that the condition (1) or (2) is satisfied. Let π ∈ D(k). Since π is
noncrossing, π contains an interval V = {l + 1, . . . , l + s+ 1}, and we have:

E
(π)
N (b0x1b1, . . . , x1bk)

= E
(π−V )
N (b0x1b1, . . . , EN(x1bl+1 . . . x1bl+s)x1, . . . , x1bk)

To apply induction, we must check that we have π − V ∈ D(k − s) and 1s ∈ D(s).
Indeed, this is easily verified for NC,NC2. Applying induction, we have:

E
(π)
N (b0x1b1, . . . , x1bk)

=
1

N |π|−1

∑
π−V≤ker i

b0xi1 . . . bl (En(x1bl+1 . . . x1bl+s))xil+s . . . xikbk

=
1

N |π|−1

∑
π−V≤ker i

b0xi1 . . . bl

(
1

N

N∑
i=1

xibl+1 . . . bxibl+s

)
xil+s . . . xikbk

=
1

N |π|

∑
π≤ker i

b0xi1 . . . xikbk

Thus, we are led to the conclusion in the statement. �

Summarizing, we have so far reverse De Finetti theorems for the quantum groups that
we are interested in here, along with some technical results, connecting the corresponding
potential De Finetti theorems to the Weingarten function combinatorics.

14c. Weingarten estimates

In order to advance, we will need some standard Weingarten estimates for our quantum
groups, which have their own interest, and that we will discuss now. So, consider the
diagram formed by the main quantum permutation and quantum rotation groups:

S+
N

// O+
N

SN //

OO

ON

OO

Regarding the symmetric group SN , the situation here is very simple, because we can
explicitely compute the Weingarten function, and estimate it, as follows:
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Proposition 14.16. For SN the Weingarten function is given by

WkN(π, σ) =
∑
τ≤π∧σ

µ(τ, π)µ(τ, σ)
(N − |τ |)!

N !

and satisfies the folowing estimate,

WkN(π, σ) = N−|π∧σ|(µ(π ∧ σ, π)µ(π ∧ σ, σ) +O(N−1))

with µ being the Möbius function of P (k).

Proof. The first assertion follows from the usual Weingarten formula, namely:∫
SN

ui1j1 . . . uikjk =
∑

π,σ∈P (k)

δπ(i)δσ(j)WkN(π, σ)

Indeed, in this formula the integrals on the left are in fact known, from the explicit
integration formula over SN that we established before, namely:∫

SN

gi1j1 . . . gikjk =

{
(N−| ker i|)!

N !
if ker i = ker j

0 otherwise

But this allows the computation of the right term, via the Möbius inversion formula,
explained before. As for the second assertion, this follows from the first one. �

The above result is of course something very special, coming from the fact that the
Haar integration over the permutation group SN , save for being just an averaging, this
group being finite, is something very simple, combinatorially speaking.

Regarding now the quantum group S+
N , that we are particularly interested in here, let

us begin with some explicit computations. We first have the following simple and final
result at k = 2, 3, directly in terms of the quantum group integrals:

Proposition 14.17. At k = 2, 3 we have the following estimate:∫
S+
N

ui1j1 . . . uikjk =

{
0 (ker i 6= ker j)

' N−| ker i| (ker i = ker j)

Proof. Since at k ≤ 3 we have NC(k) = P (k), the Weingarten integration formulae
for SN and S+

N coincide, and we obtain, by using the above formula for SN :∫
S+
N

ui1j1 . . . uikjk =

∫
SN

ui1j1 . . . uikjk

= δker i,ker j
(N − | ker i|)!

N !

Thus, we obtain the formula in the statement. �
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In general now, the idea will be that of working out a “master estimate” for the
Weingarten function, as above. Before starting, let us record the formulae at k = 2, 3,
which will be useful later, as illustrations. At k = 2, with indices ||,u as usual, and with
the convention that ≈ means componentwise dominant term, we have:

W2N ≈
(
N−2 −N−2

−N−2 N−1

)
At k = 3 now, with indices |||, |u,u|,u|,uu as usual, and same meaning for ≈, we have:

W3N ≈


N−3 −N−3 −N−3 −N−3 2N−3

−N−3 N−2 N−3 N−3 −N−2

−N−3 N−3 N−2 N−3 −N−2

−N−3 N−3 N−3 N−2 −N−2

2N−3 −N−2 −N−2 −N−2 N−1


These formulae follow indeed from the plain formulae for the Weingarten matrix WkN

at k = 2, 3 from [15] and related papers, after rearranging the matrix indices as above.

Observe in particular, in the context of the above computations, that we have the
following formula, which will be of interest in what follows:

W3N(|u,u|) ' N−3

In order to deal now with the general case, let us start with some standard facts:

Proposition 14.18. The following happen, regarding the partitions in P (k):

(1) |π|+ |σ| ≤ |π ∨ σ|+ |π ∧ σ|.
(2) |π ∨ τ |+ |τ ∨ σ| ≤ |π ∨ σ|+ |τ |.
(3) d(π, σ) = |π|+|σ|

2
− |π ∨ σ| is a distance.

Proof. All this is well-known, the idea being as follows:

(1) This is well-known, coming from the fact that P (k) is a semi-modular lattice.

(2) This follows from (1), as explained for instance in the paper [18].

(3) This follows from (2) above, which says that the following holds:

|π|+ |τ |
2

− d(π, τ) +
|τ |+ |σ|

2
− d(τ, σ)

≤ |π|+ |σ|
2

− d(π, σ) + |τ |

Thus, we obtain in this way the triangle inequality:

d(π, τ) + d(τ, σ) ≥ d(π, σ)

As for the other axioms for a distance, these are all clear. �
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Actually in what follows we will only need (3) in the above statement. For more on
this, and on the geometry and combinatorics of partitions, we refer to [71].

As a main result now regarding the Weingarten functions, we have:

Theorem 14.19. The Weingarten matrix WkN has a series expansion in N−1,

WkN(π, σ) = N |π∨σ|−|π|−|σ|
∞∑
g=0

Kg(π, σ)N−g

where the various objects on the right are defined as follows:

(1) A path from π to σ is a sequence as follows:

p = [π = τ0 6= τ1 6= . . . 6= τr = σ]

(2) The signature of such a path is + when r is even, and − when r is odd.
(3) The geodesicity defect of such a path is:

g(p) =
r∑
i=1

d(τi−1, τi)− d(π, σ)

(4) Kg counts the signed paths from π to σ, with geodesicity defect g.

Proof. We recall that the Weingarten matrix WkN appears as the inverse of the
Gram matrix GkN , which is given by the following formula:

GkN(π, σ) = N |π∨σ|

Now observe that the Gram matrix can be written in the following way:

GkN(π, σ) = N |π∨σ|

= N
|π|
2 N |π∨σ|−

|π|+|σ|
2 N

|σ|
2

= N
|π|
2 N−d(π,σ)N

|σ|
2

This suggests considering the following diagonal matrix:

∆ = diag(N
|π|
2 )

So, let us do this, and consider as well the following matrix:

H(π, σ) =

{
0 (π = σ)

N−d(π,σ) (π 6= σ)

In terms of these two matrices, the above formula for GkN simply reads:

GkN = ∆(1 +H)∆

Thus, the Weingarten matrix WkN is given by the following formula:

WkN = ∆−1(1 +H)−1∆−1
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In order to compute now the inverse of 1 +H, we will use the following formula:

(1 +H)−1 = 1−H +H2 −H3 + . . .

Consider indeed the set Pr(π, σ) of length r paths between π and σ. We have:

Hr(π, σ) =
∑

p∈Pr(π,σ)

H(τ0, τ1) . . . H(τr−1, τr)

=
∑

p∈Pr(π,σ)

N−d(π,σ)−g(p)

Thus by using (1 +H)−1 = 1−H +H2 −H3 + . . . we obtain:

(1 +H)−1(π, σ) =
∞∑
r=0

(−1)rHr(π, σ)

= N−d(π,σ)

∞∑
r=0

∑
p∈Pr(π,σ)

(−1)rN−g(p)

It follows that the Weingarten matrix is given by the following formula:

WkN(π, σ) = ∆−1(π)(1 +H)−1(π, σ)∆−1(σ)

= N−
|π|
2
− |σ|

2
−d(π,σ)

∞∑
r=0

∑
p∈Pr(π,σ)

(−1)rN−g(p)

= N |π∨σ|−|π|−|σ|
∞∑
r=0

∑
p∈Pr(π,σ)

(−1)rN−g(p)

Now by rearranging the various terms in the above double sum according to their
geodesicity defect g = g(p), this gives the following formula:

WkN(π, σ) = N |π∨σ|−|π|−|σ|
∞∑
g=0

Kg(π, σ)N−g

Thus, we are led to the conclusion in the statement. �

As an illustration for all this, we have the following explicit estimates:

Theorem 14.20. Consider an easy quantum group G = (GN), coming from a category
of partitions D = (D(k)). For any π ≤ σ we have the estimate

WkN(π, σ) = N−|π|(µ(π, σ) +O(N−1))

and for π, σ arbitrary we have

WkN(π, σ) = O(N |π∨σ|−|π|−|σ|)

with µ being the Möbius function of D(k).
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Proof. We have two assertions here, the idea being as follows:

(1) The first estimate is clear from the general expansion formula established in The-
orem 14.19 above, namely:

WkN(π, σ) = N |π∨σ|−|π|−|σ|
∞∑
g=0

Kg(π, σ)N−g

(2) In the case π ≤ σ it is known that K0 coincides with the Möbius function of
NC(k), as explained for instance in [18], so we obtain once again from Theorem 14.19
above the fine estimate in the statement as well, namely:

WkN(π, σ) = N−|π|(µ(π, σ) +O(N−1)) ∀π ≤ σ

Observe that, by symmetry of WkN , we obtain as well that we have:

WkN(π, σ) = N−|σ|(µ(σ, π) +O(N−1)) ∀π ≥ σ

Thus, we are led to the conclusions in the statement. �

When π, σ are not comparable by ≤, things are quite unclear. The simplest example
appears at k = 3, where we have the following formula, which is elementary:

W3N(|u,u|) ' N−3

Observe that the exponent −3 is precisely the dominant one, and this because:∣∣∣| u ∨ u |∣∣∣− ∣∣∣| u ∣∣∣− ∣∣∣ u |∣∣∣ = 1− 2− 2 = −3

As for the corresponding coefficient, K0(|u,u|) = 1, this is definitely not the Möbius
function, which vanishes for partitions which are not comparable by ≤. According to
Theorem 14.19, this is rather the number of signed geodesic paths from |u to u|.

In relation to all this, observe that geometrically, NC(5) consists of the partitions
|u,u|,u|, which form an equilateral triangle with edges worth 1, and then the partitions
|||,uu, which are at distance 1 apart, and each at distance 1/2 from each of the vertices
of the triangle. It is not obvious how to recover the formula K0(|u,u|) = 1 from this.

Finally, also following [18], we will need as well the following result:

Proposition 14.21. We have the following results:

(1) If D = NC,NC2, then µD(k)(π, σ) = µNC(k)(π, σ).
(2) If D = P, P2 then µD(k)(π, σ) = µP (k)(π, σ).

Proof. Let Q = NC,P according to the cases (1,2) above. It is easy to see in each
case that D(k) is closed under taking intervals in Q(k), in the sense that if π1, π2 ∈ D(k),
σ ∈ Q(k) and π1 < σ < π2 then σ ∈ D(k). With this observation in hand, the result now
follows from the definition of the Möbius function. See [18]. �
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14d. De Finetti theorems

With the above ingredients in hand, let us go back now to invariance questions with
respect to the main quantum permutation and rotation groups, namely:

S+
N

// O+
N

SN //

OO

ON

OO

More generally, we would like in fact to have, ideally, de Finetti type theorems for all
the easy quantum groups that we know, from the previous chapters. This is of course
something quite technical, and time consuming, but we would like at least to understand
what happens for the main quantum reflection and rotation groups, namely:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

In order to discuss these questions, or at least some of them, let us start with a basic
approximation result for the finite sequences, in the real case, from [18], as follows:

Theorem 14.22. Suppose that (x1, . . . , xN) is GN -invariant, and that GN = O+
N , S

+
N ,

or that GN = ON , SN and (x1, . . . , xN) commute. Let (y1, . . . , yN) be a sequence of BN -
valued random variables with BN -valued joint distribution determined as follows:

(1) G = O+: Free semicircular, centered with same variance as x1.
(2) G = S+: Freely independent, yi has same distribution as x1.
(3) G = O: Independent Gaussian, centered with same variance as x1.
(4) G = S: Independent, yi has same distribution as x1.

Then if 1 ≤ j1, . . . , jk ≤ N and b0, . . . , bk ∈ BN , we have the following estimate,

||EN(b0xj1 . . . xjkbk)− E(b0yj1 . . . yjkbk)|| ≤
Ck(G)

N
||x1||k||b0|| . . . ||bk||

with Ck(G) being a constant depending only on k and G.

Proof. First we note that it suffices to prove the result for N large enough. We will
assume that N is sufficiently large, as for the Gram matrix GkN to be invertible.
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Let 1 ≤ j1, . . . , jk ≤ N and b0, . . . , bk ∈ BN . We have then:

EN(b0xj1 . . . xjkbk) =
∑
i1...ik

b0xi1 . . . xikbk

∫
ui1j1 . . . uikjk

=
∑
i1...ik

b0xi1 . . . xikbk
∑
π≤ker i

∑
σ≤ker j

WkN(π, σ)

=
∑
σ≤ker j

∑
π

WkN(π, σ)
∑
π≤ker i

b0xi1 . . . xikbk

On the other hand, it follows from our assumptions on (y1, . . . , yN), and from the
various moment-cumulant formulae given before, that we have:

E(b0yj1 . . . yjkbk) =
∑
σ≤ker j

ξ
(σ)
EN

(b0x1b1, . . . , x1bk)

Here, and in what follows, ξ denote the relevant free or classical cumulants.

The right hand side can be expanded, via the Möbius inversion formula, in terms of
expectation functionals of the following type, with π being a partition in NC,P according
to the cases (1,2) or (3,4) in the statement, and with π ≤ σ for some σ ∈ D(k):

E
(π)
N (b0x1b1, . . . , x1bk)

Now if π /∈ D(k), we claim that this expectation functional is zero.

Indeed this is only possible if D = NC2, P2, and if π has a block with an odd number
of legs. But it is easy to see that in these cases x1 has an even distribution with respect
to EN , and therefore we have, as claimed, the following formula:

E
(π)
N (b0x1b1, . . . , x1bk) = 0

Now this observation allows to to rewrite the above equation as follows:

E(b0yj1 . . . yjkbk) =
∑
σ≤ker j

∑
π≤σ

µD(k)(π, σ)E
(π)
N (b0x1b1, . . . , x1bk)

We therefore obtain the following formula:

E(b0yj1 . . . yjkbk) =
∑
σ≤ker j

∑
π≤σ

µD(k)(π, σ)N−|π|
∑
π≤ker i

b0xi1 . . . xikbk

Comparing the above two equations, we find that:

EN(b0xj1 . . . xjkbk)− E(b0yj1 . . . yjkbk)

=
∑
σ≤ker j

∑
π

(
WkN(π, σ)− µD(k)(π, σ)N−|π|

) ∑
π≤ker i

b0xi1 . . . xikbk
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Now since x1, . . . , xN are identically distributed with respect to the faithful state ϕ,
it follows that these variables have the same norm. Thus, for any π ∈ D(k):∣∣∣∣∣

∣∣∣∣∣ ∑
π≤ker i

b0xi1 . . . xikbk

∣∣∣∣∣
∣∣∣∣∣ ≤ N |π|||x1||k||b0|| . . . ||bk||

Combining this with the former equation, we obtain the following estimate:

||EN(b0xj1 . . . xjkbk)− E(b0yj1 . . . yjkbk)||
≤

∑
σ≤ker j

∑
π

∣∣WkN(π, σ)N |π| − µD(k)(π, σ)
∣∣ ||x1||k||b0|| . . . ||bk||

Let us set now, according to the above:

Ck(G) = sup
N∈N

N × ∑
σ,π∈D(k)

∣∣WkN(π, σ)N |π| − µD(k)(π, σ)
∣∣

But this number is finite by our main estimate, which completes the proof. �

We will use in what follows the inclusions GN ⊂ GM for N < M , which correspond
to the Hopf algebra morphisms ωN,M : C(GM)→ C(GN) given by:

ωN,M(uij) =

{
uij if 1 ≤ i, j ≤ N

δij if max(i, j) > N

Still following [18], we begin by extending the notion of GN -invariance to the infinite
sequences of variables, in the following way:

Definition 14.23. Let (xi)i∈N be a sequence in a noncommutative probability space
(A,ϕ). We say that (xi)i∈N is G-invariant if

(x1, . . . , xN)

is GN -invariant for each N ∈ N.

In other words, the condition is that the joint distribution of (x1, . . . , xN) should be
invariant under the following coaction map, for each N ∈ N:

αN : C < t1, . . . , tN >→ C < t1, . . . , tN > ⊗C(GN)

It is convenient to extend these coactions to a coaction on the algebra of noncommu-
tative polynomials on an infinite number of variables, in the following way:

βN : C < ti|i ∈ N >→ C < ti|i ∈ N > ⊗C(GN)

Indeed, we can define βN to be the unique unital morphism satisfying:

βN(tj) =

{∑N
i=1 ti ⊗ uij if 1 ≤ j ≤ N

tj ⊗ 1 if j > N
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It is clear that βN as constructed above is a coaction of GN . Also, we have the following
relations, where ιN : C < t1, . . . , tN >→ C < ti|i ∈ N > is the natural inclusion:

(id⊗ ωN,M)βM = βN

(ιN ⊗ id)αN = βN ιN

By using these compatibility relations, we obtain the following result:

Proposition 14.24. An infinite sequence of random variables (xi)i∈N is G-invariant
if and only if the joint distribution functional

µx : C < ti|i ∈ N >→ C

P → tr(P (x))

is invariant under the coaction βN , for each N ∈ N.

Proof. This is clear indeed from the above discussion. �

In what follows (xi)i∈N will be a sequence of self-adjoint random variables in a von
Neumann algebra (M, tr). We will assume that M is generated by (xi)i∈N. We denote by
L2(M, tr) the corresponding GNS Hilbert space, with inner product as follows:

< m1,m2 >= tr(m1m
∗
2)

Also, the strong topology on M , that we will use in what follows, will be taken by
definition with respect to the faithful representation on the space L2(M, tr).

We let PN be the fixed point algebra of the action βN , and we set:

BN =
{
p(x)

∣∣∣p ∈ PN}′′
We have then an inclusion BN+1 ⊂ BN , for any N ≥ 1, and we can then define the

G-invariant subalgebra as the common intersection of these algebras:

B =
⋂
N≥1

BN

With these conventions, we have the following result, from [18]:

Proposition 14.25. If an infinite sequence of random variables (xi)i∈N is G-invariant,
then for each N ∈ N there is a coaction

β̃N : M →M ⊗ L∞(GN)

determined by the following formula, for any p ∈ P∞:

β̃N(p(x)) = (evx ⊗ πN)βN(p)

The fixed point algebra of β̃N is then BN .
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Proof. This is indeed clear from definitions, and from the various compatibility for-
mulae given above, between the coactions αN and βN . �

We have as well the following result, which is clear as well:

Proposition 14.26. In the above context, that of an infinite sequence of random
variables belonging to an arbitrary von Neumann algebra M with a trace

(xi)i∈N

which is G-invariant, for each N ∈ N there is a trace-preserving conditional expectation

EN : M → BN given by integrating the action β̃N :

EN(m) =

(
id⊗

∫
G

)
β̃N(m)

By taking the limit of these expectations as N →∞, we obtain a trace-preserving condi-
tional expectation onto the G-invariant subalgebra.

Proof. Once again, this is clear from definitions, and from the various compatibility
formulae given above, between the coactions αN and βN . �

We are now prepared to state and prove the main theorem, from [18], which comes as
a complement to the reverse De Finetti theorem that we already established:

Theorem 14.27. Let (xi)i∈N be a G-invariant sequence of self-adjoint random vari-
ables in (M, tr), and assume that M =< (xi)i∈N >. Then there exists a subalgebra B ⊂M
and a trace-preserving conditional expectation E : M → B such that:

(1) If G = (SN), then (xi)i∈N are conditionally independent and identically distributed
given B.

(2) If G = (S+
N), then (xi)i∈N are freely independent and identically distributed with

amalgamation over B.
(3) If G = (ON), then (xi)i∈N are conditionally independent, and have Gaussian

distributions with mean zero and common variance, given B.
(4) If G = (O+

N), then (xi)i∈N form a B-valued free semicircular family with mean
zero and common variance.

Proof. We use the various partial results and formulae established above. Let
j1, . . . , jk ∈ N and b0, . . . , bk ∈ B. We have then the following computation:

E(b0xj1 . . . xjkbk) = lim
N→∞

EN(b0xj1 . . . xjkbk)

= lim
N→∞

∑
σ≤ker j

∑
π

WkN(π, σ)
∑
π≤ker i

b0xi1 . . . xikbk

= lim
N→∞

∑
σ≤ker j

∑
π≤σ

µD(k)(π, σ)N−|π|
∑
π≤ker i

b0xi1 . . . xikbk
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Let us recall now from the above that we have the following compatibility formula,
where ι̃N : W ∗(x1, . . . , xN)→M is the canonical inclusion, and α̃N is as before:

(ι̃N ⊗ id)α̃N = β̃N ι̃N

By using this formula, and the above cumulant results, we have:

E(b0xj1 . . . xjkbk) = lim
N→∞

∑
σ≤ker j

∑
π≤σ

µD(k)(π, σ)E
(π)
N (b0x1b1, . . . , x1bk)

We therefore obtain the following formula:

E(b0xj1 . . . xjkbk) =
∑
σ≤ker j

∑
π≤σ

µD(k)(π, σ)E(π)(b0x1b1, . . . , x1bk)

We can replace the sum of expectation functionals by cumulants, as to obtain:

E(b0xj1 . . . xjkbk) =
∑
σ≤ker j

ξ
(σ)
E (b0x1b1, . . . , x1bk)

Here and in what follows ξ denotes as usual the relevant free or classical cumulants,
depending on the quantum group that we are dealing with, free or classical.

Now since the cumulants are determined by the moment-cumulant formulae, we con-
clude that we have the following formula:

ξ
(σ)
E (b0xj1b1, . . . , xjkbk) =

{
ξ

(σ)
E (b0x1b1, . . . , x1bk) if σ ∈ D(k) and σ ≤ ker j

0 otherwise

With this formula in hand, the result then follows from the characterizations of these
joint distributions in terms of cumulants, and we are done. �

Summarizing, we are done with our first and main objective, namely establishing De
Finetti theorems for the main quantum permutation and rotation groups, namely:

S+
N

// O+
N

SN //

OO

ON

OO

The story is of course not over here, and there are many related interesting questions
left, which are more technical, in relation with the invariance questions with respect to
these quantum groups. We refer here to [18], [40], [41], [62], [63] and related papers.

Regarding now our second objective, which appears as a variation of this, fully in tune
with the present book, we would like to understand as well what happens to the invariance
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questions with respect to the basic quantum reflection and rotation groups, namely:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

Here the answer is more or less known as well from [18], but with the problem however
that the paper [18] is extremely general, and in relation with our cube question, more
general than needed. In any case, for this and for further aspects of invariance questions,
we refer as before to [18], [40], [41], [62], [63] and related papers.

14e. Exercises

Things have been quite technical in this chapter, dealing with advanced probability
theory, and so will be our exercises here. As a first exercise, we have:

Exercise 14.28. Formulate and prove the classical De Finetti theorem, concerning
sequences which are invariant under S∞, without using representation theory methods.

This is something very standard, and is a must-do exercise, the point being that all
the Weingarten technology used in this chapter, which is something quite heavy, was
motivated by the fact that we want to deal with several quantum groups at the same
time, in a “uniform” way. In the case of the symmetric group itself things are in fact
much simpler, and the exercise is about understanding how this works.

We have as well the following exercise, regarding now the free case:

Exercise 14.29. Formulate and prove the free De Finetti theorem, concerning se-
quences which are invariant under (S+

N), without using representation theory methods.

The same comments as for the previous exercise apply, the idea being that, once again,
the Weingarten function machinery can be avoided in this case.

We have as well several exercises in connection with the Weingarten function estimates,
that we needed in the proof of the De Finetti theorems, and which are of independent
interest as well. First, we have the following exercise:
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Exercise 14.30. Work out the full proof of the explicit formula for the Weingarten
function for SN , namely

WkN(π, σ) =
∑
τ≤π∧σ

µ(τ, π)µ(τ, σ)
(N − |τ |)!

N !

then of the main estimate for this function, namely

WkN(π, σ) = N−|π∧σ|(µ(π ∧ σ, π)µ(π ∧ σ, σ) +O(N−1))

where µ is the Möbius function of P (k).

This was something that was already discussed in the above, the idea being that all
this comes from the explicit knowledge of the integrals over SN , via the Möbius inversion
formula, and the problem now is that of working out all the details.

As a second exercise now, which is quite technical, we have:

Exercise 14.31. Work out estimates for the integrals of type∫
S+
N

ui1j1ui2j2ui3j3ui4j4

and then for the Weingarten function of S+
N at k = 4.

Once again, this was something partly discussed in the above, with the comment that
things are clear at k = 2, 3, due to the formula P (k) = NC(k) valid here. The problem
now is that of working out what happens at k = 4, where things are non-trivial.

Finally, we have the following very standard exercise:

Exercise 14.32. Prove directly that the function

d(π, σ) =
|π|+ |σ|

2
− |π ∨ σ|

is a distance on P (k).

To be more precise here, this is something that we talked about in the above, with the
idea being that this follows from a number of well-known facts regarding the partitions
in P (k). The problem now is that of proving directly this result.



CHAPTER 15

Operator algebras

15a. Operator algebras

We have now a quite complete picture of free probability from a combinatorial point
of view, in relation with basic questions from random matrices and quantum groups. In
this chapter and the next one we go for the real thing, namely discussing the connections
between free probability and selected topics from von Neumann algebra theory.

The von Neumann algebras are the algebras of bounded operators A ⊂ B(H) which
are weakly closed, and we will see their basic properties in a moment. These algebras are
important in the general context of quantum mechanics, somewhat of equal importance
as the Lie groups and their generalizations, and with all this going back to the influential
work and books of John von Neumann [91] and Hermann Weyl [96].

From a modern perspective, some time has passed since [91], [96], with quantum
mechanics having evolved a bit, and finding what exact von Neumann algebra A ⊂ B(H)
or Lie group G ⊂ GLN(C) is to be studied, and what exactly is to be done with it, is
already a quite difficult task. We will slowly make our way here, through these difficult
questions, by always orienting our presentation towards things which seem modern.

Needless to say, all this will be quite subjective, and sometimes even controversial.
The main problem, in connection with free probability, is that freeness, or rather “true
and useful freeness” in von Neumann algebras appears where you would expect it the
least, namely in the context of a certain special, innocent and far-from-free looking von
Neumann algebra, namely the Murray-von Neumann hyperfinite factor R.

So, this will be our goal here, explaining what this R beast is, how freeness appears
inside it, why all this is interesting, and why everyone thinking otherwise, with dozens of
research directions to be discussed here, both old and more recent, is wrong.

In short, welcome to theoretical physics. Take it easy, and enjoy.

In order to get started now, recall from chapters 5-6 above that we already know a
few things about the algebras of operators A ⊂ B(H), which are norm closed. The von
Neumann algebras will be by definition such algebras which are weakly closed. In order
to discuss this, let us start with a standard result, as follows:

345
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Proposition 15.1. For an algebra A ⊂ B(H), the following are equivalent:

(1) A is closed under the weak operator topology, making each of the linear maps
T →< Tx, y > continuous.

(2) A is closed under the strong operator topology, making each of the linear maps
T → Tx continuous.

In the case where these conditions are satisfied, A is closed under the norm topology.

Proof. There are several statements here, the proof being as follows:

(1) It is clear that the norm topology is stronger than the strong operator topology,
which is in turn stronger than the weak operator topology. At the level of the subsets
S ⊂ B(H) which are closed things get reversed, in the sense that weakly closed implies
strongly closed, which in turn implies norm closed. Thus, we are left with proving that
for any operator algebra A ⊂ B(H), strongly closed implies weakly closed.

(2) But this latter fact is standard, and can be proved by using an amplification trick.
Consider the Hilbert space obtained by summing n times H with itself:

K = H ⊕ . . .⊕H

The operators over K can be regarded as being square matrices with entries in B(H),
and in particular, we have a representation π : B(H)→ B(K), given by:

π(T ) =

T . . .
T


Assume now that we are given an operator T ∈ Ā, with the bar denoting the weak

closure. We have, by using the Hahn-Banach theorem, for any x ∈ K:

T ∈ Ā =⇒ π(T ) ∈ π(A)

=⇒ π(T )x ∈ π(A)x

=⇒ π(T )x ∈ π(A)x
||.||

Now observe that the last formula tells us that for any x = (x1, . . . , xn), and any ε > 0,
we can find an operator S ∈ A such that the following holds, for any i:

||Sxi − Txi|| < ε

It follows that T belongs to the strong operator closure of A, as desired. �

In the above statement the terminology, while quite standard, is a bit confusing,
because the norm topology is stronger than the strong operator topology. As a solution
to this issue, we agree in what follows to call the norm topology “strong”, and the weak
and strong operator topologies “weak”, whenever these two topologies coincide.
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With this convention, the operator algebras A ⊂ B(H) from Proposition 15.1 are
those which are weakly closed, and we can now formulate:

Definition 15.2. A von Neumann algebra is a ∗-algebra of operators

A ⊂ B(H)

which is closed under the weak topology.

As basic examples, we have the algebra B(H) itself, then the singly generated von
Neumann algebras, A =< T >, with T ∈ B(H), and then the multiply generated von
Neumann algebras, namely A =< Ti >, with Ti ∈ B(H). There are many other examples,
and also general methods for constructing examples, and we will discuss this later.

At the level of the general results, we first have the bicommutant theorem of von
Neumann, which provides a useful alternative to Definition 15.2 above, as follows:

Theorem 15.3. For a ∗-algebra A ⊂ B(H), the following are equivalent:

(1) A is weakly closed, so it is a von Neumann algebra.
(2) A equals its algebraic bicommutant A′′, taken inside B(H).

Proof. Since the commutants are weakly closed, it is enough to show that weakly
closed implies A = A′′. For this purpose, we will prove something a bit more general,
stating that given a ∗-algebra of operators A ⊂ B(H), the following holds, with A′′ being
the bicommutant inside B(H), and with Ā being the weak closure:

A′′ = Ā

We can prove this by double inclusion, as follows:

“⊃” Since any operator commutes with the operators that it commutes with, we have
an inclusion S ⊂ S ′′, valid for any set S ⊂ B(H). In particular, we have:

A ⊂ A′′

Our claim now is that the algebra A′′ ⊂ B(H) is closed, with respect to the strong
operator topology. Indeed, assuming that we have Ti → T in this topology, we have:

Ti ∈ A′′ =⇒ STi = TiS, ∀S ∈ A′

=⇒ ST = TS, ∀S ∈ A′

=⇒ T ∈ A

Thus our claim is proved, and together with Proposition 15.1, which allows to pass
from the strong to the weak operator topology, this gives the desired inclusion, namely:

Ā ⊂ A′′
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“⊂” Here we must prove that we have the following implication, valid for any operator
T ∈ B(H), with the bar denoting as usual the weak operator closure:

T ∈ A′′ =⇒ T ∈ Ā
For this purpose, we use the same amplification trick as in the proof of Proposition

15.1. Consider the Hilbert space obtained by summing n times H with itself:

K = H ⊕ . . .⊕H
The operators over K can be regarded as being square matrices with entries in B(H),

and in particular, we have a representation π : B(H)→ B(K), given by:

π(T ) =

T . . .
T


The idea will be that of doing the computations in this latter representation. First,

in this representation, the image of our algebra A ⊂ B(H) is given by:

π(A) =


T . . .

T

∣∣∣T ∈ A


We can now compute the commutant of this image, exactly as in the usual scalar
matrix case, and we obtain the following formula:

π(A)′ =


S11 . . . S1n

...
...

Sn1 . . . Snn

∣∣∣Sij ∈ A′


We conclude from this that, given T ∈ A′′ as above, we have:T . . .
T

 ∈ π(A)′′

In other words, the conclusion of all this is that we have the following implication:

T ∈ A′′ =⇒ π(T ) ∈ π(A)′′

Now given x ∈ K, consider the orthogonal projection P ∈ B(K) on the norm closure
of the vector space π(A)x ⊂ K. Since the subspace π(A)x ⊂ K is invariant under the
action of π(A), so is its norm closure inside K, and we obtain from this:

P ∈ π(A)′

By combining this with what we found above, we conclude that:

T ∈ A′′ =⇒ π(T )P = Pπ(T )
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Now since this holds for any x ∈ K, it follows that any T ∈ A′′ belongs to the strong
operator closure of A. By using now Proposition 15.1, which allows us to pass from the
strong to the weak operator closure, we conclude that we have A′′ ⊂ Ā, as desired. �

In order to develop now some general theory for the von Neumann algebras, let us
start by investigating the commutative case. The result here is as follows:

Theorem 15.4. The commutative von Neumann algebras are the algebras of type

A = L∞(X)

with X being a measured space.

Proof. We have two assertions to be proved, the idea being as follows:

(1) In one sense, we must prove that given a measured space X, we can realize the
commutative algebra A = L∞(X) as a von Neumann algebra, on a certain Hilbert space
H. But this can be done as follows, using a probability measure on X:

L∞(X) ⊂ B(L2(X)) , f → (g → fg)

(2) In the other sense, given a commutative von Neumann algebra A ⊂ B(H), any
operator T ∈ A is normal. So, ley us pick a linear space basis {Ti} ⊂ A, as to have:

A =< Ti >

The generators Ti ∈ B(H) are then commuting normal operators, and by using the
spectral theorem for such families of operators, we obtain the result. �

The above result is very interesting, because it shows that an arbitrary von Neumann
algebra A ⊂ B(H) can be thought of as being of the form A = L∞(X), with X being a
“quantum measured space”. Thus, we have here a connection with the various quantum
group and noncommutative geometry considerations in the above.

15b. Freeness, factors

Moving ahead now, we will be interested here in the “free” von Neumann algebras.
These algebras, traditionally called factors, can be axiomatized as follows:

Definition 15.5. A factor is a von Neumann algebra A ⊂ B(H) whose center

Z(A) = A ∩ A′

which is a commutative von Neumann algebra, reduces to the scalars, Z(A) = C.

Here the fact that the center is indeed a von Neumann algebra follows from the bicom-
mutant theorem, which shows that the commutant of any ∗-algebra is a von Neumann
algebra. Thus, the intersection Z(A) = A ∩ A′ is indeed a von Neumann algebra.

As already mentioned, Definition 15.5 comes somehow as something opposed to Theo-
rem 15.4, the idea being that of axiomatizing the von Neumann algebras which are “free”,
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with this meaning being as far as possible from the commutative ones. In what follows,
we will mainly use this point of view on the factors, which fits our purposes.

Before going further, let us mention however that there are some deeper reasons as well
for the consideration of the factors, which among others fully justify the term “factor”,
coming from the following advanced theorem of von Neumann:

Theorem 15.6. Given a von Neumann algebra A ⊂ B(H), if we write its center as

Z(A) = L∞(X)

then we have a decomposition as follows, with the fibers Ax being factors:

A =

∫
X

Ax dx

Moreover, in the case where A has a trace, tr : A→ C, this trace decomposes as

tr =

∫
X

trx dx

with each trx : Ax → C being the restriction of tr to the factor Ax.

Proof. As a first observation, this is something that we know to hold in finite dimen-
sions, because here the algebra decomposes as follows, with the summands corresponding
precisely to the points of the spectrum of the center, Z(A) ' Ck:

A = MN1(C)⊕ . . .⊕MNk(C)

In general, however, this is something quite difficult to prove, requiring a good knowl-
edge of advanced operator theory and advanced functional analysis. We will not need this
result in what follows, and we refer here to any good operator algebra book. �

Moving ahead now, in order to do probability on our factors we will need a trace as
well. Leaving aside the somewhat trivial case A = MN(C), we are led in this way to:

Definition 15.7. A II1 factor is a von Neumann algebra A ⊂ B(H) which is infinite
dimensional, has trivial center, and has a trace tr : A→ C.

As a first observation, according to Theorem 15.6 above, such factors are exactly
those appearing in the spectral decomposition of the von Neumann algebras A ⊂ B(H)
which have traces, tr : A → C, provided that we add some extra axioms which avoid
trivial summands of type MN(C). Moreover, by results of Connes, adding to those of von
Neumann, and which are non-trivial as well, the non-tracial case basically reduces to the
tracial case, via certain crossed product type operations, and so the conclusion is that
“the II1 factors are the building blocks of the von Neumann algebra theory”.

Summarizing, some heavy things going on here. In what follows we will be mainly
interested in concrete mathematics and combinatorics, and we will take Definition 15.7
as it is, as a simple and intuitive definition for the “free von Neumann algebras”.
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As a first observation, in practice, and forgetting about Theorem 15.6, it is not even
clear that such beasts exist. Fortunately the group von Neumann algebras are there, and
we have the following result, providing us with examples of II1 factors:

Theorem 15.8. The center of a group von Neumann algebra L(Γ) is

Z(L(Γ)) =

{∑
g

λgg
∣∣∣λgh = λhg

}′′
and if Γ 6= {1} has infinite conjugacy classes, in the sense that∣∣∣{ghg−1|g ∈ G}

∣∣∣ =∞ , ∀h 6= 1

with this being called ICC property, the algebra L(Γ) is a II1 factor.

Proof. There are two assertions here, the idea being as follows:

(1) Consider a linear combination of group elements, which is in the weak closure of
the group algebra C[Γ], and so defines an element of the von Neumann algebra L(Γ):

a =
∑
g

λgg

By linearity, this element a ∈ L(Γ) belongs to the center of the algebra L(Γ) precisely
when it commutes with all the group elements h ∈ Γ, and this gives:

a ∈ Z(A) ⇐⇒ ah = ha

⇐⇒
∑
g

λggh =
∑
g

λghg

⇐⇒
∑
k

λkh−1k =
∑
k

λh−1kk

⇐⇒ λkh−1 = λh−1k

Thus, we obtain the formula for the center Z(L(Γ)) in the statement.

(2) We have to examine here the 3 conditions defining the II1 factors. We already
know, from chapter 6 above, that the group algebra L(G) has a trace, given by:

tr(g) = δg,1

Regarding now the center, the condition λgh = λhg that we found above is equivalent
to the fact that g → λg is constant on the conjugacy classes, and we obtain:

Z(L(Γ)) = C ⇐⇒ Γ = ICC

Finally, assuming that this ICC condition is satisfied, and with Γ 6= {1}, then our
group Γ is infinite, and so the algebra L(Γ) is infinite dimensional, as desired. �
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In order to investigate now the II1 factors, the idea, following Murray and von Neu-
mann [70], will be that of looking at the projections. We first have the following result:

Proposition 15.9. Given two projections p, q ∈ A in a II1 factor, we have

p � q or q � p

and so � is a total order on the equivalence classes of projections p ∈ A.

Proof. This is something which actually holds for any factor, with the only non-
trivial part being that of proving the following implication:

p � q, q � p =⇒ p ' q

But this is clear in the present II1 factor setting, by using the trace. �

We can now formulate a first main result regarding the II1 factors, as follows:

Theorem 15.10. Given a II1 factor A, the traces of the projections

tr(p) ∈ [0, 1]

can take any values in [0, 1].

Proof. Given a number c ∈ [0, 1], consider the following set:

S =
{
p2 = p = p∗ ∈ A

∣∣∣tr(p) ≤ c
}

This set satisfies the assumptions of the Zorn lemma, and so by this lemma we can
find a maximal element p ∈ S. Assume by contradiction that:

tr(p) < c

Now by using some standard operator theory arguments, we can slightly enlarge the
trace of p, and we obtain a contradiction, as desired. See [70]. �

As a second main result now regarding the II1 factors, also from [70], we have:

Theorem 15.11. The trace of a II1 factor

tr : A→ C
is unique.

Proof. This can be proved in many ways, a standard one being that of proving that
any two traces agree on the projections, as a consequence of the above results. We refer
here to [70], or to our go-to operator algebra book by Blackadar [29]. �

This was for the basic theory of the II1 factors, following Murray and von Neumann
[70]. From a modern perspective, an interesting question is that of working out the
quantum group analogue of Theorem 15.8, and also to work out the reduction theory of
the quantum group algebras L(Γ), and we refer here to [30] and related papers.



15B. FREENESS, FACTORS 353

In relation to these questions, the conjecture is that if a compact quantum groupG = Γ̂
is free, in a suitable sense, then the corresponding von Neumann algebra L∞(G) = L(Γ)
should be a II1 factor. More generally, the conjecture is that the algebras of type L∞(X),
with X being a free manifold in the sense of chapter 13 above, are II1 factors. These are
all difficult questions, and once again we refer here to [30] and related papers.

Getting back now to generalities, from an abstract algebraic perspective, with a touch
of functional analysis, a II1 factor A ⊂ B(H) is not really in need of the ambient Hilbert
space H, and the question of “representing” it appears. We first have:

Definition 15.12. Given a von Neumann algebra A with a trace tr : A → C, the
emdedding

A ⊂ B(L2(A))

obtained by GNS construction is called standard form of A.

Here we use the GNS construction, explained in chapter 6 above. As the name in-
dicates, the standard representation is something “standard”, to be compared with any
other representation A ⊂ B(H), in order to understand this latter representation.

As already seen in chapter 6, the GNS construction has a number of unique features,
that can be exploited. In the present setting, the main result is as follows:

Proposition 15.13. In the context of the standard representation we have

A′ = JAJ

with J : L2(A)→ L2(A) being the antilinear map given by T → T ∗.

Proof. Observe first that any T ∈ A can be regarded as a vector T ∈ L2(A), to which
we can associate, in an antilinear way, the vector T ∗ ∈ L2(A). Thus we have indeed an
antilinear map J as in the statement. In terms of the standard cyclic and separating
vector Ω for the GNS representation, the formula of this map J is:

J(xΩ) = x∗Ω

But this gives the equality A′ = JAJ in the statement, via double inclusion, with the
proof of both inclusions being routine computations. �

As a basic illustration for the above result, the commutant of a group algebra L(Γ),
which is obtained by definition by using the left regular representation, is the group
algebra R(Γ), obtained by using the right regular representation.

We are now in position of constructing the coupling constant, a key notion, due again
to Murray and von Neumann [70], which eventually closes the discussion regarding the
various Hilbert space representations A ⊂ B(H) of a given II1 factor A:
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Theorem 15.14. Given a representation of a II1 factor A ⊂ B(H), we can talk about
the corresponding coupling constant

dimAH ∈ (0,∞]

which for the standard form, where H = L2(A), takes the value 1, and which in general
mesures how far is A ⊂ B(H) from the standard form.

Proof. There are several proofs for this fact, the idea being as follows:

(1) We can amplify the standard representation of A, on the Hilbert space L2(A), into
a representation on L2(A)⊗ l2(N), and then cut it down with a projection. We obtain in
this way a whole family of embeddings A ⊂ B(H), which are quite explicit.

(2) The point now is that of proving, via a technical 2 × 2 matrix trick, that any
representation A ⊂ B(H) appears in this way. In this picture, the coupling constant
appears as the trace of the projection used to cut down L2(A)⊗ l2(N).

(3) Thus, we are led to the conclusion in the statement. Alternatively, the coupling
constant can be defined as follows, with the number on the right being independent of the
choice on a nonzero vector x ∈ H, and with this being the original definition from [70]:

dimAH =
trA(PA′x)

trA′(PAx)

We refer to [70], or for instance to the book [29], for more details here. �

As an illustration for the above, given an inclusion of ICC groups Λ ⊂ Γ, whose group
algebras are both II1 factors, we have the following formula:

dimL(Λ) L
2(Γ) = [Γ : Λ]

There are many other examples of explicit computations of coupling constants, all
leading us into interesting mathematics. We will be back to this.

15c. Subfactor theory

Given a II1 factor A, let us discuss now the representations A ⊂ B, with B being
another II1 factor. This is a quite natural notion too, and perhaps even more natural
than the representations A ⊂ B(H) studied above, because we have decided in the above
that the II1 factors B, and not the full operator algebras B(H), are the correct infinite
dimensional generalization of the usual matrix algebras MN(C).

Given an inclusion of II1 factors A ⊂ B, a first question is that of defining its index,
measuring how big is B, when compared to A. This can be done as follows:
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Theorem 15.15. Given an inclusion of II1 factors A ⊂ B, the number

N =
dimAH

dimBH

is independent of the ambient Hilbert space H, and is called index.

Proof. This is standard, with the fact that the index as defined by the above formula
is indeed independent of the ambient Hilbert space H coming from the various basic
properties of the coupling constant, from Theorem 15.14 above and its proof. �

There are many examples of subfactors coming from groups, and every time we obtain
the intuitive index. We will be back with details in a moment. In general now, following
Jones [57], let us start with the following standard result:

Proposition 15.16. Given a subfactor A ⊂ B, there is a unique linear map

E : B → A

which is positive, unital, trace-preserving and satisfies the following condition:

E(b1ab2) = b1E(a)b2

This map is called conditional expectation from B onto A.

Proof. We make use of the standard representation of the II1 factor B, with respect
to its unique trace tr : B → C, as constructed before, namely:

B ⊂ L2(B)

If we denote by Ω the standard cyclic and separating vector of L2(B), we have an
identification of vector spaces AΩ = L2(A). Consider now the following projection:

e : L2(B)→ L2(A)

It follows from definitions that we have an inclusion e(BΩ) ⊂ AΩ. Thus the above
projection e induces by restriction a certain linear map, as follows:

E : B → A

This linear map E and the orthogonal projection e are related by:

exe = E(x)e

But this shows that the linear map E satisfies the various conditions in the state-
ment, namely positivity, unitality, trace preservation and bimodule property. As for the
uniqueness assertion, this follows by using the same argument, applied backwards, the
idea being that a map E as in the statement must come from a projection e. �

Following Jones [57], we will be interested in what follows in the orthogonal projection
e : L2(B)→ L2(A) producing the expectation E : B → A, rather than in E itself:
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Definition 15.17. Associated to any subfactor A ⊂ B is the orthogonal projection

e : L2(B)→ L2(A)

producing the conditional expectation E : B → A via the following formula:

exe = E(x)e

This projection is called Jones projection for the subfactor A ⊂ B.

Quite remarkably, the subfactor A ⊂ B, as well as its commutant, can be recovered
from the knowledge of this projection, in the following way:

Proposition 15.18. Given a subfactor A ⊂ B, with Jones projection e, we have

A = B ∩ {e}′

A′ = (B′ ∩ {e})′′

as equalities of von Neumann algebras, acting on the space L2(B).

Proof. The above two formulae both follow from exe = E(x)e, via some elementary
computations, and for details here, we refer to Jones’ paper [57]. �

We are now ready to formulate a key definition, as follows:

Definition 15.19. Associated to any subfactor A ⊂ B is the basic construction

A ⊂e B ⊂ C

with C =< B, e > being the algebra generated by B and by the Jones projection

e : L2(B)→ L2(A)

acting on the Hilbert space L2(B).

The idea now, following [57], will be that B ⊂ C appears as a kind of “reflection” of
A ⊂ B, and also that the basic construction can be iterated, and with all this leading to
non-trivial results. Let us start by further studying the basic construction:

Theorem 15.20. Given a subfactor A ⊂ B having finite index,

[B : A] <∞
the basic construction A ⊂e B ⊂ C has the following properties:

(1) C = JA′J .
(2) C = B +Beb.
(3) C is a II1 factor.
(4) [C : B] = [B : A].
(5) eCe = Ae.
(6) tr(e) = [B : A]−1.
(7) tr(xe) = tr(x)[B : A]−1, for any x ∈ B.
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Proof. All this is standard, the idea being as follows:

(1) We know that we have JB′J = B and JeJ = e, and this gives:

JA′J = J < B′, e > J

= < JB′J, JeJ >

= < B, e >

= C

(2) This simply follows from the fact that B + BeB is closed under multiplication,
and from the fact that we have exe = E(x)e.

(3) This follows from the fact, that we know from the above, that our finite index
assumption [B : A] <∞ is equivalent to the fact that the algebra A′ is a factor. But this
is in turn is equivalent to the fact that C = JA′J is a factor, as desired.

(4) This follows indeed from the following computation:

[C : B] =
dimB L

2(B)

dimC L2(B)

=
1

dimC L2(B)

=
1

dimJA′J L2(B)

=
1

dimA′ L2(B)

= dimA L
2(B)

= [B : A]

(5) This follows from (2) and from the formula exe = E(x)e.

(6) We have here the following computation:

1 = dimA L
2(A)

= dimA(eL2(B))

= trA′(e) dimA(L2(B))

= trA′(a)[B : A]

Now since C = JA′J and JeJ = e, we obtain from this, as desired:

tr(e) = trJA′J(JeJ) = trA′(e) = [B : A]−1

(7) We already know from (6) above that the formula in the statement holds for x = 1.
In order to discuss the general case, observe first that for x, y ∈ A we have:

tr(xye) = tr(yex) = tr(yxe)
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Thus the linear map x→ tr(xe) is a trace on A, and by uniqueness of the trace on A,
we must have tr(xe) = c · tr(x), for a certain constant c > 0. Now by using (6) above we
conclude that the constant must be c = [B : A]−1. Thus, we have proved the result for
x ∈ A. The passage to the general case x ∈ B can be performed as follows:

tr(xe) = tr(exe)

= tr(E(x)e)

= tr(E(x))c

= tr(x)c

Thus, we have proved the last formula in the statement, and we are done. �

The above result is quite interesting, potentially leading to some interesting mathe-
matics, so let us perform now twice the basic construction, and see what we get. The
result here, which is something more technical, at least at the first glance, is as follows:

Proposition 15.21. Associated to A ⊂ B is the double basic construction

A ⊂e B ⊂f C ⊂ D

with e : L2(B)→ L2(A) and f : L2(C)→ L2(B) having the following properties:

fef = [B : A]−1f , efe = [B : A]−1e

Proof. We have two formulae to be proved, the idea being as follows:

(1) The first formula in the statement is clear, because we have:

fef = E(e)f = tr(e)f = [B : A]−1f

(2) Regarding now the second formula, it is enough to check this on the dense subset
(B +BeB)Ω. Thus, we must show that for any x, y, z ∈ B, we have:

efe(x+ yez)Ω = [B : A]−1e(x+ yez)Ω

For this purpose, we will prove that we have, for any x, y, z ∈ B:

efexΩ = [B : A]−1exΩ

efeyezΩ = [B : A]−1eyezΩ

But the first formula can be established as follows:

efexΩ = efexfΩ

= eE(ex)fΩ

= eE(e)xfΩ

= [B : A]−1exfΩ

= [B : A]−1exΩ
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As for the second formula, this can be established as follows:

efeyezΩ = efeyezfΩ

= eE(eyez)fΩ

= eE(eye)zfΩ

= eE(E(y)e)zfΩ

= eE(y)E(e)zfΩ

= [B : A]−1eE(y)zfΩ

= [B : A]−1eyezfΩ

= [B : A]−1eyezΩ

Thus, we are led to the conclusion in the statement. �

We can in fact perform the basic construction by recurrence, and we obtain:

Theorem 15.22. Associated to any subfactor A0 ⊂ A1 is the Jones tower

A0 ⊂e1 A1 ⊂e2 A2 ⊂e3 A3 ⊂ . . . . . .

with the Jones projections having the following properties:

(1) e2
i = ei = e∗i .

(2) eiej = ejei for |i− j| ≥ 2.
(3) eiei±1ei = [B : A]−1ei.
(4) tr(wen+1) = [B : A]−1tr(w), for any word w ∈< e1, . . . , en >.

Proof. This follows from Theorem 15.20 and Proposition 15.21, because the triple
basic construction does not need in fact any further study. See [57]. �

The relations found in Theorem 15.22 are in fact well-known, from the standard theory
of the Temperley-Lieb algebra. This algebra, discovered by Temperley and Lieb in the
context of statistical mechanics [82], has a very simple definition, as follows:

Definition 15.23. The Temperley-Lieb algebra of index N ∈ [1,∞) is defined as

TLN(k) = span(NC2(k, k))

with product given by vertical concatenation, with the rule

© = N

for the closed circles that might appear when concatenating.

In other words, the algebra TLN(k), depending on parameters k ∈ N and N ∈ [1,∞),
is the linear span of the pairings π ∈ NC2(k, k). The product operation is obtained by
linearity, for the pairings which span TLN(k) this being the usual vertical concatenation,
with the conventions that things go “from top to bottom”, and that each circle that might
appear when concatenating is replaced by a scalar factor, equal to N .
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As already mentioned, this algebra was discovered by Temperley and Lieb in the
context of general statistical mechanics, and we refer here to [82], and subsequent work.
In what concerns us, we will just need some elementary results. First, we have:

Proposition 15.24. The Temperley-Lieb algebra TLN(k) is generated by the diagrams

ε1 = ∪
∩

ε2 = | ∪∩
ε3 = || ∪∩

...

which are all multiples of projections, in the sense that their rescaled versions

ei = N−1εi

satisfy the abstract projection relations e2
i = ei = e∗i .

Proof. We have two assertions here, the idea being as follows:

(1) The fact that the Temperley-Lieb algebra TLN(k) is indeed generated by the
sequence ε1, ε2, . . . follows by drawing pictures, and more specifically by decomposing
each basis element π ∈ NC2(k, k) as a product of such elements εi.

(2) Regarding now the projection assertion, when composing εi with itself we obtain
εi itself, times a circle. Thus, according to our multiplication convention, we have:

ε2
i = Nεi

Also, when turning upside-down εi, we obtain εi itself. Thus, according to our invo-
lution convention for the Temperley-Lieb algebra, we have the following formula:

ε∗i = εi

We conclude that the rescalings ei = N−1εi satisfy e2
i = ei = e∗i , as desired. �

As a second result now, making the link with Theorem 15.22, we have:

Proposition 15.25. The standard generators ei = N−1εi of the Temperley-Lieb al-
gebra TLN(k) have the following properties, where tr is the trace obtained by closing:

(1) eiej = ejei for |i− j| ≥ 2.
(2) eiei±1ei = [B : A]−1ei.
(3) tr(wen+1) = [B : A]−1tr(w), for any word w ∈< e1, . . . , en >.

Proof. This follows indeed by doing some elementary computations with diagrams,
in the spirit of those performed in the proof of Proposition 15.24. �

With the above results in hand, and still following Jones’ paper [57], we can now
reformulate Theorem 15.22 into something more conceptual, as follows:
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Theorem 15.26. Given a subfactor A0 ⊂ A1, construct its the Jones tower:

A0 ⊂e1 A1 ⊂e2 A2 ⊂e3 A3 ⊂ . . . . . .

The rescaled sequence of projections e1, e2, e3, . . . ∈ B(H) produces then a representation

TLN ⊂ B(H)

of the Temperley-Lieb algebra of index N = [A1 : A0].

Proof. We know from Theorem 15.22 that the rescaled sequence of projections
e1, e2, e3, . . . ∈ B(H) behaves algebrically exactly as the following TLN diagrams:

ε1 = ∪
∩

ε2 = | ∪∩
ε3 = || ∪∩

...

But these diagrams generate TLN , and so we have an embedding TLN ⊂ B(H), where
H is the Hilbert space where our subfactor A0 ⊂ A1 lives, as claimed. �

Before going further, with some examples, more theory, and consequences of Theorem
15.26 above, let us make the following key observation, also from [57]:

Theorem 15.27. Given a finite index subfactor A0 ⊂ A1, the graded algebra P = (Pk)
formed by the sequence of higher relative commutants

Pk = A′0 ∩ Ak
contains the copy of the Temperley-Lieb algebra constructed above, TLN ⊂ P . This graded
algebra P = (Pk) is called “planar algebra” of the subfactor.

Proof. As a first observation, since the Jones projection e1 : A1 → A0 commutes
with A0, we have e1 ∈ P2. By translation we obtain, for any k ∈ N:

e1, . . . , ek−1 ∈ Pk
Thus we have indeed an inclusion of graded algebras TLN ⊂ P , as claimed. �

The point with the above result, which explains among others the terminology at the
end, is that, in the context of Theorem 15.26 above, the planar algebra structure of TLN ,
obtained by composing diagrams, extends into an abstract planar algebra structure of P .
See [58]. We will discuss all this, with full details, in the next chapter.

As an interesting consequence of Theorem 15.26, somehow contradicting the “contin-
uous geometry” philosophy that has being going on so far, in relation with the II1 factors,
we have the following surprising result, also from Jones’ original paper [57]:
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Theorem 15.28. The index of subfactors A ⊂ B is “quantized” in the [1, 4] range,

N ∈
{

4 cos2
(π
n

) ∣∣∣n ≥ 3
}
∪ [4,∞]

with the obstruction coming from the existence of the representation TLN ⊂ B(H).

Proof. This comes from the combinatorics of e1, e2, e3, . . . , as folows:

(1) In order to best comment on what happens, when iterating the basic construction,
let us record the first few values of the numbers in the statement, namely:

4 cos2
(π

3

)
= 1 , 4 cos2

(π
4

)
= 2

4 cos2
(π

5

)
=

3 +
√

5

2
, 4 cos2

(π
6

)
= 3

(2) By using a basic construction, we get, by trace manipulations on e1:

N /∈ (1, 2)

With a double basic construction, we get, by trace manipulations on < e1, e2 >:

N /∈

(
2,

3 +
√

5

2

)
And so on. Thus, by doing computations, we are led to the conclusion in the statement,

by a kind of recurrence, involving a certain family of orthogonal polynomials.

(3) In practice now, following [57], the most elegant way of proving the result is by
using the fact, explained in Theorem 15.26 above, that that sequence of Jones projections
e1, e2, e3, . . . ⊂ B(H) generate a copy of the Temperley-Lieb algebra of index N :

TLN ⊂ B(H)

With this result in hand, we must prove that such a representation cannot exist in
index N < 4, unless we are in the following special situation:

N = 4 cos2
(π
n

)
But this can be proved by using some suitable trace and positivity manipulations on

TLN , as in (2) above, and for full details here, we refer to Jones’ paper [57]. �

15d. Basic examples

Let us discuss now some basic examples of subfactors, with concrete illustrations for
all the above notions, constructions, and general theory. These examples will all come
from group actions Gy P , which are assumed to be minimal, in the sense that:

(PG)′ ∩ P = C
As a starting point, we have the following result, heavily used by Jones [57]:
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Proposition 15.29. Assuming that G is a compact group, acting minimally on a II1

factor P , and that H ⊂ G is a subgroup of finite index, we have a subfactor

PG ⊂ PH

having index N = [G : H], called Jones subfactor.

Proof. This is something standard, the idea being that the factoriality of PG, PH

comes from the minimality of the action, and that the index formula is clear. �

Along the same lines, we have the following result, due to Ocneanu [72]:

Proposition 15.30. Assuming that G is a finite group, acting minimally on a II1

factor P , we have a subfactor as follows,

P ⊂ P oG

having index N = |G|, called Ocneanu subfactor.

Proof. This is standard as well, the idea being that the factoriality of P oG comes
from the minimality of the action, and that the index formula is clear. �

We have as well a third result of the same type, due to Wassermann [94], namely:

Proposition 15.31. Assuming that G is a compact group, acting minimally on a II1

factor P , and that G→ PUn is a projective representation, we have a subfactor

PG ⊂ (Mn(C)⊗ P )G

having index N = n2, called Wassermann subfactor.

Proof. As before, the idea is that the factoriality of PG, (Mn(C)⊗ P )G comes from
the minimality of the action, and the index formula is clear. �

The above subfactors look quite related, and indeed they are, due to:

Theorem 15.32. The Jones, Ocneanu and Wassermann subfactors are all of the same
nature, and can be written as follows,(

PG ⊂ PH
)
'
(
(C⊗ P )G ⊂ (l∞(G/H)⊗ P )G

)
(P ⊂ P oG) '

(
(l∞(G)⊗ P )G ⊂ (L(l2(G))⊗ P )G

)
(
PG ⊂ (Mn(C)⊗ P )G

)
'
(
(C⊗ P )G ⊂ (Mn(C)⊗ P )G

)
with standard identifications for the various tensor products and fixed point algebras.

Proof. This is something standard, from [8], modulo all kinds of standard identifi-
cations. We will explain all this more in detail later, after unifying these subfactors. �
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In order to unify now the above constructions of subfactors, following [8], [94], the
idea is quite clear. Given a compact group G, acting minimally on a II1 factor P , and an
inclusion of finite dimensional algebras B0 ⊂ B1, endowed as well with an action of G, we
would like to construct a kind of generalized Wassermann subfactor, as follows:

(B0 ⊗ P )G ⊂ (B1 ⊗ P )G

In order to do this, we must talk first about the finite dimensional algebras B, and
about inclusions of such algebras B0 ⊂ B1. Let us start with the following definition:

Definition 15.33. Associated to any finite dimensional algebra B is its canonical
trace, obtained by composing the left regular representation with the trace of L(B):

tr : B ⊂ L(B)→ C
We say that an inclusion of finite dimensional algebras B0 ⊂ B1 is Markov if it comm-
mutes with the canonical traces of B0, B1.

In what regards the first notion, that of the canonical trace, this is something that
we know well, from chapter 13 above. Indeed, as explained there, we can formally write
B = C(X), with X being a finite quantum space, and the canonical trace tr : B → C is
then precisely the integration with respect to the “counting measure” on X.

In what regards the second notion, that of a Markov inclusion, this is something very
natural too, and as a first example here, any inclusion of type C ⊂ B is Markov. In
general, if we write B0 = C(X0) and B1 = C(X1), then the inclusion B0 ⊂ B1 must come
from a certain fibration X1 → X0, and the inclusion B0 ⊂ B1 is Markov precisely when
the fibration X1 → X0 commutes with the respective counting measures.

We will be back to Markov inclusions and their various properties on several occasions,
in what follows. For our next purposes here, we just need the following result:

Proposition 15.34. Given a Markov inclusion of finite dimensional algebras B0 ⊂ B1

we can perform to it the basic construction, as to obtain a Jones tower

B0 ⊂e1 B1 ⊂e2 B2 ⊂e3 B3 ⊂ . . . . . .

exactly as we did in the above for the inclusions of II1 factors.

Proof. This is something standard, from [57], by following the computations in the
above, from the case of the II1 factors, and with everything extending well. It is of course
possible to do something more general here, unifying the constructions for the inclusions
of II1 factors A0 ⊂ A1, and for the inclusions of Markov inclusions of finite dimensional
algebras B0 ⊂ B1, but we will not need this degree of generality, in what follows. �

With these ingredients in hand, getting back now to the Jones, Ocneanu and Wasser-
mann subfactors, from Theorem 15.32 above, the point is that these constructions can be
unified, and then further studied, the final result on the subject being as follows:
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Theorem 15.35. Let G be a compact group, and G → Aut(P ) be a minimal action
on a II1 factor. Consider a Markov inclusion of finite dimensional algebras

B0 ⊂ B1

and let G → Aut(B1) be an action which leaves invariant B0, and which is such that its
restrictions to the centers of B0 and B1 are ergodic. We have then a subfactor

(B0 ⊗ P )G ⊂ (B1 ⊗ P )G

of index N = [B1 : B0], called generalized Wassermann subfactor, whose Jones tower is

(B1 ⊗ P )G ⊂ (B2 ⊗ P )G ⊂ (B3 ⊗ P )G ⊂ . . .

where {Bi}i≥1 are the algebras in the Jones tower for B0 ⊂ B1, with the canonical actions
of G coming from the action G→ Aut(B1), and whose planar algebra is given by:

Pk = (B′0 ∩Bk)
G

These subfactors generalize the Jones, Ocneanu and Wassermann subfactors.

Proof. This is something which is routine, from [8], following Wassermann [94], and
we will be back to this in a moment, with details, directly in a more general setting. �

In addition to the Jones, Ocneanu and Wassermann subfactors, discussed and unified
in the above, we have the Popa subfactors, which are constructed as follows:

Proposition 15.36. Given a discrete group Γ =< g1, . . . , gn >, acting faithfully via
outer automorphisms on a II1 factor Q, we have the following “diagonal” subfactor

g1(q)
. . .

gn(q)

∣∣∣q ∈ Q
 ⊂Mn(Q)

having index N = n2, called Popa subfactor.

Proof. This is something standard, a bit as for the Jones, Ocneanu and Wassermann
subfactors, with the result basically coming from the work of Popa [73], [74], who was
the main user of such subfactors. We will come in a moment with a more general result
in this direction, involving discrete quantum groups, along with a complete proof. �

In order to unify now Theorem 15.35 and Proposition 15.36, observe that the diagonal
subfactors can be written in the following way, by using a group dual:

(Qo Γ)Γ̂ ⊂ (Mn(C)⊗ (Qo Γ))Γ̂

Here the group dual Γ̂ acts on P = Qo Γ via the dual of the action Γ ⊂ Aut(Q), and
on Mn(C) via the adjoint action of the following formal representation:

⊕gi : Γ̂→ Cn

Summarizing, we are led into quantum groups. So, let us start with:
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Definition 15.37. A coaction of a Woronowicz algebra A on a finite von Neumann
algebra P is an injective morphism Φ : P → P ⊗ A′′ satisfying the following conditions:

(1) Coassociativity: (Φ⊗ id)Φ = (id⊗∆)Φ.
(2) Trace equivariance: (tr ⊗ id)Φ = tr(.)1.
(3) Smoothness: P w

= P , where P = Φ−1(P ⊗alg A).

The above conditions come from what happens in the commutative case, A = C(G),
where they correspond to the usual associativity, trace equivariance and smoothness of
the corresponding action Gy P . In general, what we have is a generalization of this.

Along the same lines, but more technically now, we have as well:

Definition 15.38. A coaction Φ : P → P ⊗ A′′ as above is called:

(1) Ergodic, if the algebra PΦ =
{
p ∈ P

∣∣Φ(p) = p⊗ 1
}

reduces to C.

(2) Faithful, if the span of
{

(f ⊗ id)Φ(P )
∣∣f ∈ P∗} is dense in A′′.

(3) Minimal, if it is faithful, and satisfies (PΦ)′ ∩ P = C.

Observe that the minimality of the action implies in particular that the fixed point
algebra PΦ is a factor. Thus, we are getting here to the case that we are interested in,
actions producing factors, via their fixed point algebras. More on this later.

In order to prove our subfactor results, we need of some general theory regarding the
minimal actions. Following Wassermann [94], let us start with the following definition:

Definition 15.39. Let Φ : P → P ⊗A′′ be a coaction. An eigenmatrix for a corepre-
sentation u ∈ B(H)⊗ A is an element M ∈ B(H)⊗ P satisfying:

(id⊗ Φ)M = M12u13

A coaction is called semidual if each corepresentation has a unitary eigenmatrix.

As a basic example here, the canonical coaction ∆ : A→ A⊗A is semidual. Following
the work of Wassermann in the usual compact group case, we have:

Theorem 15.40. The minimal coactions are semidual.

Proof. Let K be the set of finite dimensional unitary corepresentations of A which
have unitary eigenmatrices. It is then routine to check that K is stable under:

(1) Making sums.

(2) Making tensor products.

(3) Performing substractions.

(4) Taking complex conjugates.

By using now the Peter-Weyl theory for the compact quantum groups, due to Woro-
nowicz [98], we conclude that we have K = Rep(A), which gives the result. See [8]. �



15D. BASIC EXAMPLES 367

Following [8], let us construct now the fixed point subfactors. We first have:

Proposition 15.41. Consider a Woronowicz algebra A = (A,∆, S), and denote by
Aσ the Woronowicz algebra (A, σ∆, S), where σ is the flip. Given two coactions

β : B → B ⊗ A
π : P → P ⊗ Aσ

with B being finite dimensional, the following linear map, while not being multiplicative
in general, is coassociative with respect to the comultiplication σ∆ of Aσ,

β � π : B ⊗ P → B ⊗ P ⊗ Aσ
b⊗ p→ π(p)23((id⊗ S)β(b))13

and its fixed point space, which is by definition the following linear space,

(B ⊗ P )β�π =
{
x ∈ B ⊗ P

∣∣∣(β � π)x = x⊗ 1
}

is then a von Neumann subalgebra of B ⊗ P .

Proof. This is something standard, which follows from a straightforward algebraic
verification, explained in [8]. As mentioned in the statement, to be noted is that the
tensor product coaction β � π is not multiplicative in general. See [8]. �

Our first task is to investigate the factoriality of such algebras, and we have here:

Theorem 15.42. If β : B → B ⊗ A is a coaction and π : P → P ⊗ Aσ is a minimal
coaction, then the following conditions are equivalent:

(1) The von Neumann algebra (B ⊗ P )β�π is a factor.
(2) The coaction β is centrally ergodic, Z(B) ∩Bβ = C.

Proof. This is something standard, from [8], the idea being as follows:

(1) Our first claim, which is something whose proof is a routine verification, explained
in [8], based on the semiduality of the minimal coaction π, that we know from Theorem
15.40 above, is that the following diagram is a non-degenerate commuting square:

P ⊂ B ⊗ P
∪ ∪
P π ⊂ (B ⊗ P )β�π

(2) In order to prove now the result, it is enough to check the following equality,
between subalgebras of the von Neumann algebra B ⊗ P :

Z((B ⊗ P )β�π) = (Z(B) ∩Bβ)⊗ 1

So, let x be in the algebra on the left. Then x commutes with 1⊗ P π, so it has to be
of the form b⊗ 1. Thus x commutes with 1⊗ P . But x commutes with (B ⊗ P )β�π, and
from the non-degeneracy of the above square, x commutes with B ⊗ P , and in particular
with B ⊗ 1. Thus b ∈ Z(B) ∩Bβ. As for the other inclusion, this is obvious. �



368 15. OPERATOR ALGEBRAS

With the above technical results in hand, we can now formulate our main theorem
regarding the fixed point subfactors, of the most possible general type, as follows:

Theorem 15.43. Let G be a compact quantum group, and G→ Aut(P ) be a minimal
action on a II1 factor. Consider a Markov inclusion of finite dimensional algebras

B0 ⊂ B1

and let G → Aut(B1) be an action which leaves invariant B0 and which is such that its
restrictions to the centers of B0 and B1 are ergodic. We have then a subfactor

(B0 ⊗ P )G ⊂ (B1 ⊗ P )G

of index N = [B1 : B0], called generalized Wassermann subfactor, whose Jones tower is

(B1 ⊗ P )G ⊂ (B2 ⊗ P )G ⊂ (B3 ⊗ P )G ⊂ . . .

where {Bi}i≥1 are the algebras in the Jones tower for B0 ⊂ B1, with the canonical actions
of G coming from the action G→ Aut(B1), and whose planar algebra is given by:

Pk = (B′0 ∩Bk)
G

These subfactors generalize the Jones, Ocneanu, Wassermann and Popa subfactors.

Proof. This is something routine, based on the above general theory and results,
and for the full story here, and technical details, we refer to [8], [94]. �

The above result is important in connection with probability questions, because our
usual character computations for G, for instance in the case where G ⊂ U+

N is easy, take
place in the associated planar algebra Pk = (B′0 ∩Bk)

G. More on this later.

15e. Exercises

There have been many things in this chapter, and as a first exercise, we have:

Exercise 15.44. Learn some further fundamental von Neumann algebra theory, and
write a brief account of what you learned.

This is something quite loose, and things here can vary a lot. Ideally, you should learn
about reduction theory, hyperfiniteness, and the combination of the two.

In the same spirit, this time about subfactors, we have:

Exercise 15.45. Learn some further fundamental Jones subfactor theory, and write
a brief account of what you learned.

As before, this is something quite loose, and things here can vary a lot. We will
actually be back to this in the next chapter, with more generalities about subfactors.



CHAPTER 16

Quantum algebra

16a. Planar algebras

We have seen in the previous chapter the foundations of von Neumann algebra theory,
which naturally leads into factors, and then into subfactors. In this final chapter we discuss
what can be done with all this, and hopefully, with some help from free probability.

As already mentioned in the previous chapter, things here will be quite tricky, not
to say controversial, or even bitterly controversial, requiring a number of smart choices,
based on personal feeling, and knowledge of mathematics and physics. Hang on.

Taking for granted the fact that the factors are the most interesting von Neumann
algebras, which is something largely agreed upon, a first crossroads appears when talking
about subfactors. Shall we really do this, or stay with the factors? More specifically, we
have two types of problems that we can try to solve, as follows:

(1) On one hand we can try to further investigate the II1 factors, which are by definition
the “free” von Neumann algebras, with tools from free probability. An interesting question
here, which actually was the main motivation of Voiculescu, when starting free probability
[85], is that of finding probabilistic tools in order to distinguish the group von Neumann
algebras L(Γ). For instance it is unknown whether L(F2) is isomorphic to L(F3) or not,
and Voiculescu’s idea from his later paper [89] was that a clever, entropy type invariant
can produce 2 for L(F2) and 3 for L(F3), as to prove the non-isomorphism. This is
certainly nice, and although a lot of work has gone into such questions [27], [45], [54],
[61], [76], [77], [89], the problem is still open, and waiting for volunteers.

(2) On the other hand, we can simply declare that we are overwhelmed by the
beauty of Jones’ subfactor discovery, concerning the combinatorics of the Jones projec-
tions e1, e2, e3, . . . , which leads into the Temperley-Lieb algebra TLN , so forget about
pure mathematics, forget about free probability, forget about everything, and let us just
stick with this. And with the remark of course that by doing so, we are not far from
free probability, and this because the simplest examples of subfactors are the fixed point
subfactors (B0 ⊗ P )G ⊂ (B1 ⊗ P )G, whose simplest instances are those coming from the
simplest quantum groups G ⊂ U+

N , which are our old friends the easy quantum groups.
And so that no worries, we are certainly into free probability here.

369
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We will choose here (2), isn’t quantum mechanics a bit crazy, so let us be a bit crazy
too. Now with this choice made, we are facing another crossroads, about what to do with
our subfactors. Obviously, everything happens inside the planar algebra Pk = A′0 ∩ Ak,
and with this in mind, we have again two types of questions to be solved:

(3) A first question is that of understanding the exact relation between the planar
algebra P = (Pk) and the original subfactor A0 ⊂ A1. This was something basically solved
by Popa in [74], by using algebras A0, A1 of free group factor type, and incorporated by
Jones into his planar algebra theory, in [58]. So, no interesting questions here, with the
whole thing being quite technical, basicially downgrading us to (1) above, although a
more modern version of all this was worked out by Guionnet, Jones and Shlyakhtenko
in [51]. On the positive side, however, there is a big interesting question, going back
to [57], regarding the axiomatization of the planar algebras appearing from hyperfinite
subfactors, in continuation of another paper of Popa, namely [73].

(4) A second question is that of forgetting about the subfactor A0 ⊂ A1 itself, and
rather focusing on the planar algebra P = (Pk). Indeed, in the case of the simplest among
the simplest subfactors, namely the fixed point subfactors (B0⊗P )G ⊂ (B1⊗P )G coming
from easy quantum groups G ⊂ U+

N , the corresponding planar algebra P = (Pk) is what
is needed for computing laws of characters, doing free probability, Weingarten calculus,
and many more things. Thus, we would to understand whether such things can be done
or not with an arbitrary planar algebra P = (Pk). As for the subfactor A0 ⊂ A1 itself,
we can conjecturally assume that it is a hyperfinite subfactor, and patiently wait for an
improvement of the above-mentioned paper of Popa [73], before getting into it.

Summarizing, what we have here are two closely related directions of research, with
everything gravitating around the notion of hyperfinite subfactor, and Popa’s paper [73].
However, passed this key common problem, which is extremely difficult, with no valuable
idea in sight, at least so far, (3,4) above appear quite different, with (3) rather bringing
us back to (1), and with (4) being most likely the future. So, we will choose here (4).

This was for our general discussion, and as a conclusion, we would like first to talk
about planar algebras P = (Pk), then about the “laws of characters” associated to such
planar algebras, making of course the link with free probability, and even extending free
probability to this broad, virgin territory which is subfactor theory, and finally talking
about Weingarten integration and other advanced things, again in the subfactor context.
And with all this being promised for some further discussion, later, involving von Neumann
algebras and functional analysis, with the relevant von Neumann algebra being, perhaps
a bit surprisingly, the good old Murray-von Neumann hyperfinite factor R.

So, many things to be explained. Let us start with a discussion regarding planar
algebras. As a starting point here, we have the following result, from chapter 15:
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Theorem 16.1. Given an inclusion of II1 factors A0 ⊂ A1, with Jones tower

A0 ⊂e1 A1 ⊂e2 A2 ⊂e3 A3 ⊂ . . . . . .

the sequence of projections e1, e2, e3, . . . ∈ B(H) produces a representation

TLN ⊂ B(H)

of the Temperley-Lieb algebra of index N = [A1 : A0]. Moreover, we have

TLN ⊂ P

where P = (Pk) is the graded algebra formed by the commutants Pk = A′0 ∩ Ak.

Proof. This is the main result in [57], that we know well from chapter 15 above,
coming from a detailed study of the iterated basic construction, which leads to the conclu-
sion that the corresponding sequence of Jones projections e1, e2, e3, . . . ∈ B(H) behaves
algebrically exactly as the sequence of standard generators ε1, ε2, ε3, . . . ∈ TLN . �

Quite remarkably, the planar algebra structure of TLN , taken in an intuitive sense, of
composing diagrams, extends to a planar algebra structure on P . In order to discuss this,
let us start with axioms for the planar algebras. Following Jones [58], we have:

Definition 16.2. The planar algebras are defined as follows:

(1) We consider rectangles in the plane, with the sides parallel to the coordinate axes,
and taken up to planar isotopy, and we call such rectangles boxes.

(2) A labelled box is a box with 2k marked points on its boundary, k on its upper side,
and k on its lower side, for some integer k ∈ N.

(3) A tangle is labelled box, containing a number of labelled boxes, with all marked
points, on the big and small boxes, being connected by noncrossing strings.

(4) A planar algebra is a sequence of finite dimensional vector spaces P = (Pk),
together with linear maps Pk1 ⊗ . . . ⊗ Pkr → Pk, one for each tangle, such that
the gluing of tangles corresponds to the composition of linear maps.

In this definition we are using rectangles, but everything being up to isotopy, we could
have used instead circles with marked points, as in [58]. Our choice for using rectangles
comes from the main examples that we have in mind, to be discussed below, where the
planar algebra structure is best viewed by using rectangles, as above.

Let us also mention that Definition 16.2 is something quite simplified, based on [58].
As explained in [58], in order for subfactors to produce planar algebras and vice versa,
there are quite a number of supplementary axioms that must be added, and in view of
this, it is perhaps better to start with something stronger than Definition 16.2, as basic
axioms. However, as before with rectangles vs circles, our axiomatic choices here are
mainly motivated by the concrete examples that we have in mind. More on this later.

As a basic example of a planar algebra, we have the Temperley-Lieb algebra:
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Theorem 16.3. The Temperley-Lieb algebra TLN , viewed as graded algebra

TLN = (TLN(k))k∈N

is a planar algebra, with the corresponding linear maps associated to the planar tangles

TLN(k1)⊗ . . .⊗ TLN(kr)→ TLN(k)

appearing by putting the various TLN(ki) diagrams into the small boxes of the given tangle,
which produces a TLN(k) diagram.

Proof. This is something trivial, which follows from definitions:

(1) Assume indeed that we are given a planar tangle π, as in Definition 16.2, consisting
of a box having 2k marked points on its boundary, and containing r small boxes, having
respectively 2k1, . . . , 2kr marked points on their boundaries, and then a total of k + Σki
noncrossing strings, connecting the various 2k + Σ2ki marked points.

(2) We want to associate to this tangle π a linear map as follows:

Tπ : TLN(k1)⊗ . . .⊗ TLN(kr)→ TLN(k)

For this purpose, by linearity, it is enough to construct elements as follows, for any
choice of Temperley-Lieb diagrams σi ∈ TLN(ki), with i = 1, . . . , r:

Tπ(σ1 ⊗ . . .⊗ σr) ∈ TLN(k)

(3) But constructing such an element is obvious, just by putting the various diagrams
σi ∈ TLN(ki) into the small boxes the given tangle π. Indeed, this procedure produces a
certain diagram in TLN(k), that we can call Tπ(σ1 ⊗ . . .⊗ σr), as above.

(4) Finally, we have to check that everything is well-defined up to planar isotopy, and
that the gluing of tangles corresponds to the composition of linear maps. But both these
checks are trivial, coming from the definition of TLN , and we are done. �

As a conclusion to all this, P = TLN is indeed a planar algebra, but of somewhat
“trivial” type, with the triviality coming from the fact that, in this case, the elements of
P are planar diagrams themselves, and so the planar structure appears trivially.

The Temperley-Lieb planar algebra TLN is however an important planar algebra,
because it is the “smallest” one, appearing inside the planar algebra of any subfactor.
But more on this later, when talking about planar algebras and subfactors.

Moving ahead now, here is our second basic example of a planar algebra, which is
also “trivial” in the above sense, with the elements of the planar algebra being planar
diagrams themselves, but which appears in a bit more complicated way:
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Theorem 16.4. The Fuss-Catalan algebra FCN,M , which appears by coloring the
Temperley-Lieb diagrams with black/white colors, clockwise, as follows

◦ • • ◦ ◦ • • ◦ . . . . . . . . . ◦ • • ◦

and keeping those diagrams whose strings connect either ◦−◦ or •−•, is a planar algebra,
with again the corresponding linear maps associated to the planar tangles

FCN,M(k1)⊗ . . .⊗ FCN,M(kr)→ FCN,M(k)

appearing by putting the various FCN,M(ki) diagrams into the small boxes of the given
tangle, which produces a FCN,M(k) diagram.

Proof. The proof here is nearly identical to the proof of Theorem 16.3, with the only
change appearing at the level of the colors. To be more precise:

(1) Forgetting about upper and lower sequences of points, which must be joined by
strings, a Temperley-Lieb diagram can be thought of as being a collection of strings, say
black strings, which compose in the obvious way, with the rule that the value of the circle,
which is now a black circle, is N . And it is this obvious composition rule that gives the
planar algebra structure, as explained in the proof of Theorem 16.3 above.

(2) Similarly, forgetting about points, a Fuss-Catalan diagram can be thought of as
being a collection of strings, which come now in two colors, black and white. These Fuss-
Catalan diagrams compose then in the obvious way, with the rule that the value of the
black circle is N , and the value of the white circle is M . And it is this obvious composition
rule that gives the planar algebra structure, as before for TLN . �

Getting back now to generalities, and to Definition 16.2 above, that of a general
planar algebra, we have so far two illustrations for it, which, while both important, are
both “trivial”, with the planar structure simply coming from the fact that, in both these
cases, the elements of the planar algebra are planar diagrams themselves.

In general, the planar algebras can be more complicated than this, and we will see some
further examples in a moment. However, the idea is very simple, namely “the elements
of a planar algebra are not necessarily diagrams, but they behave like diagrams”.

In relation now with subfactors, the result, which extends Theorem 16.1 above, and
which was found by Jones in [58], almost 20 years after [57], is as follows:

Theorem 16.5. Given a subfactor A0 ⊂ A1, the collection P = (Pk) of linear spaces

Pk = A′0 ∩ Ak
has a planar algebra structure, extending the planar algebra structure of TLN .
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Proof. We know from Theorem 16.1 above that we have an inclusion as follows,
coming from the basic construction, and with TLN itself being a planar algebra:

TLN ⊂ P

Thus, the whole point is that of proving that the trivial planar algebra structure of
TLN extends into a planar algebra structure of P . But this can be done via a long
algebraic study, and for the full computation here, we refer to Jones’ paper [58]. �

As a first illustration for the above result, we have:

Theorem 16.6. We have the following universality results:

(1) The Temperley-Lieb algebra TLN appears inside the planar algebra of any sub-
factor A ⊂ B having index N .

(2) The Fuss-Catalan algebra FCN,M appears inside the planar algebra of any sub-
factor A ⊂ B, in the presence of an intermediate subfactor A ⊂ C ⊂ B.

Proof. Here the first assertion is something that we already know, from Theorem
16.1 above, and the second assertion is something quite standard as well, by carefully
working out the basic construction for A ⊂ B, in the presence of an intermediate subfactor
A ⊂ C ⊂ B. For details here, we refer to the paper of Bisch and Jones [28]. �

As a free probability comment here, the Temperley-Lieb algebra, which appears by
definition as the span of NC2, is certainly a free probability object, and one way of
being more concrete here is by saying that suitable fixed point subfactors associated to
S+
N , O

+
N , U

+
N have planar algebra equal to TLN . See [6], [7], [8]. As in what regards the

Fuss-Catalan algebra, this is related to the bicolored partitions appearing in the study of
H+
N , and more generally of Hs+

N , and again, the precise subfactor statement about this
concerns fixed point subfactors associated to the quantum groups Hs+

N . See [10], [80].

The above results raise the question on whether any planar algebra produces a sub-
factor. The answer here is yes, but with many subtleties, and in order to talk about this,
we first need to introduce a certain distinguished II1 factor R, as follows:

Definition 16.7. The Murray-von Neumann hyperfinite II1 factor is

R =
⋃
i

Mni(C)
w

independently of the choice of the algebras Mni(C), and of the embeddings between them.

To be more precise, all this is based on two theorems of Murray and von Neumann
[70], stating on one hand that when performing the above inductive limit construction
we obtain, after taking the weak closure, a certain II1 factor, and on the other hand, that
the factor that we obtain is independent on the choice of the algebras Mni(C), and of the
embeddings between them. All this is certainly non-trivial, and even less trivial is the
following theorem, coming as a continuation of the work in [70], due to Connes [38]:
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Theorem 16.8. The Murray-von Neumann II1 factor R is the unique II1 factor which
is amenable, in the sense that we have a conditional expectation as follows:

E : B(H)→ R

In particular, for a discrete group Γ we have L(Γ) = R precisely when Γ 6= {1} has the
ICC property, and is amenable in the usual group theory sense.

Proof. This is something terribly complicated, to the point of causing troubles not
only to mathematicians, and no surprise here, but to physicists as well. In case you know
a good physicist, best is to ask that physicist, but there is no guarantee here, guy might
well be clueless on all this. So, read from time to time operator algebras, say from [29],
and once ready go through [38]. And in the meantime do not hesitate to ask around, this
being a good test for distinguishing good physicists from first-class physicists. �

Jokes left aside now, what is difficult in the above is the proof of “amenability implies
hyperfiniteness”. Indeed, the converse can only be something standard, namely proving
that a certain concrete algebra, R from Definition 16.7, has a certain concrete property.
As for the last assertion, this cannot be complicated either, because one of the possible
definitions of the amenability of Γ is in terms of an invariant mean m : l∞(Γ) → C, and
this makes the connection with the expectation E : B(l2(Γ))→ L(Γ). See [38].

Getting back now to subfactors, and to our questions regarding the correspondence
between subfactors and planar algebras, these are difficult questions too, and the various
answers to these questions can be summarized, a bit informally, as follows:

Theorem 16.9. We have the following results:

(1) Any planar algebra with positivity produces a subfactor.
(2) In particular, we have TL and FC type subfactors.
(3) In the amenable case, and with A1 = R, the correspondence is bijective.
(4) In general, we must take A1 = L(F∞), and we do not have bijectivity.
(5) The axiomatization of P , in the case A1 = R, is not known.

Proof. All this is quite heavy, basically coming from the work of Popa in the 90s,
using heavy functional analysis, the idea being as follows:

(1) As already mentioned in the comments after Definition 16.2, our planar algebra
axioms here are something quite simplified, based on [58]. However, when getting back to
Theorem 16.6, the conclusion is that the subfactor planar algebras there satisfy a number
of supplementary “positivity” conditions, basically coming from the positivity of the II1

factor trace. And the point is that, with these positivity conditions axiomatized, we reach
to something which is equivalent to Popa’s axiomatization of the lattice of higher relative
commutants A′i ∩ Aj of the finite index subfactors [74], obtained in the 90s via heavy
functional analysis. For the full story here, and details, we refer to Jones’ paper [58].
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(2) The existence of the TLN subfactors, also known as “A∞ subfactors”, is something
which was known for some time, since some early work of Popa on the subject. As for the
existence of the FCN,M subfactors, this can be shown by using the intermediate subfactor
picture, A ⊂ C ⊂ B, by composing two A∞ subfactors of suitable indices, A ⊂ C and
C ⊂ B. For the full story here, we refer to [28], [58].

(3) This is something fairly heavy, as it is always the case with operator algebra results
regarding hyperfiniteness and amenability, due to Popa [73], [74].

(4) This is something a bit more recent, obtained by further building on the above-
mentioned constructions of Popa, and we refer here to [51] and related work.

(5) This is the big open question in subfactors. The story here goes back to Jones’
original paper [57], which contains at the end the question, due to Connes, of finding
the possible values of the index for the irreducible subfactors of R. This question, which
certainly looks much easier than (5) in the statement, is in fact still open, now 40 years
after its formulation, and with on one having any valuable idea in dealing with it. �

In relation with question (5) above, let us mention that, even in the case of the simplest
subfactors, namely the fixed point subfactors (B0⊗P )G ⊂ (B1⊗P )G, things are far from
being understood. Passed some algebra, to be explained in what follows, the whole thing
comes down to the question on wheteher, given a closed subgroup G ⊂ U+

N , we can find
or not a II1 factor P , with a minimal action Gy P , such that the following happens:

PG ' R

This is something non-trivial, and many efforts, starting with Ocneanu [72], have

focused on constructing examples of type P = Ro Γ, with Γ = Ĝ, based on:

Proposition 16.10. Assuming that a discrete group or quantum group Γ has an
action Γ y R which is outer, we can form the crossed product

P = Ro Γ

and then we have a dual action G y P of the compact quantum group G = Γ̂, which is
minimal, and with the corresponding fixed point algebra being PG = R.

Proof. This is indeed something trivial, coming straight from the definitions of the
various quantum groups and actions involved, explained in chapter 15 above. �

Summarizing, we are led in this way to the construction of outer actions Γ y R. And
the subject here is quite interesting, related to a wide array of questions from mathematics
and physics, with the central notion being that of a matrix model. All this is quite
technical, and for more on all this, we refer to [8], [30], [72], [84] and related papers.

Let us mention however that the conjectural answer to these quantum group action
questions is “yes”, and so from the perspective of the associated fixed point subfactors,
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which can be chosen to be hyperfinite, we are led to the conclusion that the best algebra
for doing free probability is, guess who, the good old hyperfinite II1 factor R.

Needless to say, you may agree or not with this. Up to you here, and in any case
always remember that we have only one life given in this world. Whether we should use
this life for doing physics inside R, or mathematics inside L(F∞), is up to you.

16b. Bipartite graphs

Let us discuss now, as a continuation of the above, what exactly happens for the fixed
point subfactors. We recall from chapter 15 above that the main examples of subfactors
are all of integer index, appearing as particular cases of the following construction:

Theorem 16.11. Given a compact quantum group G, acting on a Markov inclusion
of finite dimensional algebras B0 ⊂ B1, and acting minimally on a II1 factor P ,

(B0 ⊗ P )G ⊂ (B1 ⊗ P )G

is a subfactor, of same index as B0 ⊂ B1, whose planar algebra is

Pk = (B′0 ∩Bk)
G

where {Bk} are the algebras in the Jones tower for B0 ⊂ B1.

Proof. This is something that we know from chapter 15, with the key step in the
proof being that of proving that {(Bk ⊗ P )G} is the Jones tower for the subfactor. �

In order to further advance, the idea will be that of associating to the original inclusion
B0 ⊂ B1 a certain combinatorial planar algebra P (B0 ⊂ B1), as for the planar algebra
associated to the fixed point subfactor itself to appear as follows:

P = P (B0 ⊂ B1)G

In practice, we will need for all this the notion of planar algebra of a bipartite graph,
constructed by Jones in [59]. So, let Γ be a bipartite graph, with vertex set Γa ∪ Γb. It is
useful to think of Γ as being the Bratteli diagram of an inclusion A ⊂ B.

Our first task is to define the graded vector space P . Since the elements of P will be
subject to a planar calculus, it is convenient to introduce them in boxes, as follows:

Definition 16.12. Associated to Γ is the abstract vector space Pk spanned by the
2k-loops based at points of Γa. The basis elements of Pk will be denoted

x =

(
e1 e2 . . . ek
e2k e2k−1 . . . ek+1

)
where e1, e2, . . . , e2k is the sequence of edges of the corresponding 2k-loop.
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Consider now the adjacency matrix of Γ, which is a matrix of the following type:

M =

(
0 m
mt 0

)
We pick first an M -eigenvalue γ 6= 0, and then a γ-eigenvector, as follows:

η : Γa ∪ Γb → C− {0}

With this data in hand, we have the following construction, of Jones [59]:

Definition 16.13. Associated to any tangle is the multilinear map

T (x1 ⊗ . . .⊗ xr) = γc
∑
x

δ(x1, . . . , xr, x)
∏
m

µ(em)±1x

where the objects on the right are as follows:

(1) The sum is over the basis of Pk, and c is the number of circles of T .
(2) δ = 1 if all strings of T join pairs of identical edges, and δ = 0 if not.
(3) The product is over all local maxima and minima of the strings of T .
(4) em is the edge of Γ labelling the string passing through m (when δ = 1).

(5) µ(e) =
√
η(ef )/η(ei), where ei, ef are the initial and final vertex of e.

(6) The ± sign is + for a local maximum, and − for a local minimum.

In other words, we plug the loops x1, . . . , xr into the input boxes of T , then we con-
struct the “output”, as being the sum of all loops x satisfying the compatibility condition
δ = 1, altered by certain normalization factors, coming from the eigenvector η.

Let us work out now the precise formula of the action, for 6 carefully chosen tangles,
which are of key importance for the considerations to follow. This will be useful as well
as an introduction to Jones’ result in [59], stating that P is a planar algebra:

Definition 16.14. We have the following examples of tangles:

(1) Identity 1k: the (k, k)-tangle having 2k vertical strings.
(2) Multiplication Mk: the (k, k, k)-tangle having 3k vertical strings.
(3) Inclusion Ik: the (k, k + 1)-tangle like 1k, with an extra string at right.
(4) Shift Jk: the (k, k + 2)-tangle like 1k, with two extra strings at left.
(5) Expectation Uk: the (k + 1, k)-tangle like 1k, with a curved string at right.
(6) Jones projection Ek: the (k + 2)-tangle having two semicircles at right.

Let us look first at the identity tangle 1k. Since the solutions of δ(x, y) = 1 are the
pairs of the form (x, x), this tangle acts by the identity:

1k

(
f1 . . . fk
e1 . . . ek

)
=

(
f1 . . . fk
e1 . . . ek

)
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A similar argument applies to the multiplication tangle Mk, which acts as follows:

Mk

((
f1 . . . fk
e1 . . . ek

)
⊗
(
h1 . . . hk
g1 . . . gk

))
= δf1g1 . . . δfkgk

(
h1 . . . hk
e1 . . . ek

)
Regarding now the inclusion tangle Ik, the solutions of δ(x0, x) = 1 being the elements

x obtained from x0 by adding to the right a vector of the form (gg), we have:

Ik

(
f1 . . . fk
e1 . . . ek

)
=
∑
g

(
f1 . . . fk g
e1 . . . ek g

)
The same method applies to the shift tangle Jk, whose action is given by:

Jk

(
f1 . . . fk
e1 . . . ek

)
=
∑
gh

(
g h f1 . . . fk
g h e1 . . . ek

)
Let us record now some partial conclusions, coming from the above formulae:

Proposition 16.15. The graded vector space P = (Pk) constructed above becomes a
graded algebra, with the multiplication map given by

xy = Mk(x⊗ y)

on each vector space Pk, and with the above inclusion maps Ik. Also, the shift tangle Jk
acts as an injective morphism of algebras Pk → Pk+2.

Proof. The fact that the multiplication is associative follows from its formula above,
which is nothing but a generalization of the usual matrix multiplication. The assertions
about the inclusions and shifts follow as well by using their above explicit formula. �

Let us go back now to the remaining tangles in Definition 16.14. The usual method
applies to the expectation Uk, which acts with a spin factor, as follows:

Uk

(
f1 . . . fk h
e1 . . . ek g

)
= δghµ(g)2

(
f1 . . . fk
e1 . . . ek

)
As for the Jones projection tangle Ek, this has no input box, so we can only apply it

to the unit of C. And when doing so, we obtain the following element:

Ek(1) =
∑
egh

µ(g)µ(h)

(
e1 . . . ek h h
e1 . . . ek g g

)
Once again, let us record some partial conclusions, coming from these formulae:

Proposition 16.16. The elements ek = γ−1Ek(1) are projections, and define a rep-
resentation of the Temperley-Lieb algebra, as follows:

TL(γ)→ P

The maps Uk are bimodule morphisms with respect to Ik, and their composition is the
canonical trace on the image of TL(γ).
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Proof. The proof of all these assertions is standard, by using the fact that η is a γ-
eigenvector of the adjacency matrix. Note that the statement itself is just a generalization
of the usual Temperley-Lieb algebra representation on tensors, from [58]. �

In fact, more generally, we have the following result, from Jones’ paper [59]:

Theorem 16.17. The graded linear space P = (Pk), together with the action of the
planar tangles given above, is a planar algebra.

Proof. This is something which is quite routine, starting from the above study of
the main planar algebra tangles, which are known to generate the whole set of planar
tangles. For full details on all this, we refer to Jones’ paper [59]. �

In order to formulate our main result, regarding the subfactors associated to the
compact quantum groups G, we will need a few abstract notions. Let us start with:

Definition 16.18. Let P1, P2 be two finite dimensional algebras, coming with coac-
tions αi : Pi → Pi ⊗ L∞(G), and let T : P1 → P2 be a linear map.

(1) We say that T is G-equivariant if (T ⊗ id)α1 = α2T .
(2) We say that T is weakly G-equivariant if T (PG

1 ) ⊂ PG
2 .

Consider now a planar algebra P = (Pk). The annular category over P is the collection
of maps T : Pk → Pl coming from the annular tangles, having at most one input box.
These maps form sets Hom(k, l), and these sets form a category [58]. We have:

Definition 16.19. A coaction of L∞(G) on P is a graded algebra coaction

α : P → P ⊗ L∞(G)

such that the annular tangles are weakly G-equivariant.

This definition is something a bit technical, but this is what comes out of the known
examples that we have, all coming from the fixed point subfactors. In fact, as we will
show below, the examples are basically those coming from actions of quantum groups on
Markov inclusions A ⊂ B, under the following abelianity assumption:

[A,B] = 0

For the moment, at the generality level of Definition 16.19, we have:

Proposition 16.20. If G acts on on a planar algebra P , then PG is a planar algebra.

Proof. The weak equivariance condition tells us that the annular category is con-
tained in the suboperad P ′ ⊂ P consisting of tangles which leave invariant PG. On the
other hand the multiplicativity of α gives Mk ∈ P ′, for any k. Now since P is generated
by multiplications and annular tangles, we obtain P ′ = P , and we are done. �

Let us go back now to the abelian inclusions. We have the following result:
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Proposition 16.21. If G acts on an abelian inclusion A ⊂ B, the canonical extension
of this coaction to the Jones tower is a coaction of G on the planar algebra P (A ⊂ B).

Proof. We know from the above that, as a graded algebra, P = P (A ⊂ B) coincides
with the Jones tower for our inclusion, that we can denote as follows:

A ⊂ B ⊂ A1 ⊂ B1 ⊂ . . .

Thus the coaction in the statement is a graded coaction, as follows:

α : P → P ⊗ L∞(G)

In order to finish, we have to prove that the annular tangles are weakly equivariant,
in the sense of Definition 16.18 above, and this can be done as follows:

(1) First, since the annular category is generated by the tangles Ik, Ek, Uk, Jk, we just
have to prove that these 4 particular tangles are weakly equivariant. Now since Ik, Ek, Uk
are plainly equivariant, by construction of the coaction of G on the Jones tower, it remains
to prove that the shift Jk is weakly equivariant.

(2) We know that the image of the fixed point subfactor shift J ′k is formed by the
G-invariant elements of the commutant A′1∩Pk+2 = Pk. Now since this commutant is the
image of the planar shift Jk, we have Im(Jk) = Im(J ′k), and this gives the result. �

With the above result in hand, we can now prove:

Proposition 16.22. Assume that G acts on an abelian inclusion A ⊂ B. Then the
graded vector space of fixed points P (A ⊂ B)G is a planar subalgebra of P (A ⊂ B).

Proof. This follows indeed from Proposition 16.20 and Proposition 16.21. �

We are now in position of stating and proving our main result:

Theorem 16.23. In the abelian case, the planar algebra of the fixed point subfactor

(P ⊗ A)G ⊂ (P ⊗B)G

is the fixed point algebra P (A ⊂ B)G of the bipartite graph algebra P (A ⊂ B).

Proof. This basically follows from what we have, as follows:

(1) Let P = P (A ⊂ B), and let Q be the planar algebra of the fixed point subfactor.
We know that we have an equality of graded algebras Q = PG. Thus, it remains to prove
that the planar algebra structure on Q coming from the fixed point subfactor agrees with
the planar algebra structure of P , the one from Theorem 16.17 above.

(2) Since P is generated by the annular category A and by the multiplications Mk, we
just have to check that the annular tangles agree on P,Q. Moreover, since A is generated
by Ik, Ek, Uk, Jk, we just have to check that these tangles agree on P,Q.
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(3) We know that Q ⊂ P is an inclusion of graded algebras, that all Jones projections
for P are contained in Q, and that the conditional expectations agree. Thus the tangles
Ik, Ek, Uk agree on P,Q, and the only verification left is that for the shift Jk.

(4) Now by using either the axioms of Popa in [74], or the construction of Jones in
[57], it is enough to show that the image of the subfactor shift J ′k coincides with that of
the planar shift Jk. But this follows as in the proof of Proposition 16.22. �

This was for the basic theory of the bipartite planar algebras, and their subalgebras.
For further details on all the above, and for more, we refer to [8], [59], [80].

16c. Spectral measures

In what follows we discuss various structure and classification questions for the subfac-
tors, all interesting questions, related to physics, regarded from a probabilistic viewpoint.
In order to get started, we need invariants for our subfactors. We have the choice here
between algebraic and analytic invariants, the situation being as follows:

Definition 16.24. Associated to any finite index subfactor A ⊂ B, having planar
algebra P = (Pk), are the following invariants:

(1) Its principal graph X, which describes the inclusions P0 ⊂ P1 ⊂ P2 ⊂ . . . , with
the reflections coming from basic constructions removed.

(2) Its fusion algebra F , which describes the fusion rules for the various types of
bimodules that can appear, namely A− A, A−B, B − A, B −B.

(3) Its Poincaré series f , which is the generating series of the graded components of
the planar algebra, f(z) =

∑
k dim(Pk)z

k.
(4) Its spectral measure µ, which is the probability measure having as moments the

dimensions of the planar algebra components,
∫
xkdµ(x) = dim(Pk).

This definition is of course something a bit informal, and there is certainly some work to
be done, in order to fully define all these invariants X,F, f, µ, and to work out the precise
relation between them. We will be back to this later, but for the moment, let us keep in
mind the fact that associated to a given subfactor A ⊂ B are several invariants, which are
not exactly equivalent, but are definitely versions of the same thing, the “combinatorics
of the subfactor”, and which come in algebraic or analytic flavors.

More in detail, let us begin by explaining how the principal graph X is constructed.
Consider a finite index irreducible subfactor A0 ⊂ A1, with associated planar algebra
Pk = A′0 ∩ Ak, and let us look at the following system of inclusions:

P0 ⊂ P1 ⊂ P2 ⊂ . . .

By taking the Bratelli diagram of this system of inclusions, and then deleting the
reflections coming from basic constructions, which appear at each step, according to the
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various results from chapter 15 above, we obtain a certain graph X, called principal graph
of A0 ⊂ A1. The main properties of X can be summarized as follows:

Proposition 16.25. The principal graph X has the following properties:

(1) The higher relative commutant Pk = A′0 ∩Ak is isomorphic to the abstract vector
space spanned by the 2k-loops on X based at the root.

(2) In the amenable case, where A1 = R and when the subfactor is “amenable”, the
index of A0 ⊂ A1 is given by N = ||X||2.

Proof. This is something standard, the idea being as follows:

(1) The statement here, which explains among others the relation between the prin-
cipal graph X, and the other subfactor invariants, from Definition 16.24, comes from the
definition of the principal graph, as a Bratelli diagram, with the reflections removed.

(2) This is actually a quite subtle statement, but for our purposes here, we can take the
equality N = ||X||2, which reminds the Kesten amenability condition for discrete groups,
as a definition for the amenability of the subfactor. With the remark that for the Popa
diagonal subfactors what we have here is precisely the Kesten amenability condition for the
underlying discrete group Γ, and that, more generally, for the arbitrary generalized Popa
or Wassermann subfactors, what we have here is precisely the Kesten type amenability
condition for the underlying discrete quantum group Γ. �

Regarding now the Poincaré series, following [14] and related papers, it is convenient
to stay, at least for the beginning, at a rather elementary level, and associate such series
to any rooted bipartite graph. We have the following definition, which is something
straightforward, inspired by Definition 16.24 and Proposition 16.25 above:

Definition 16.26. The Poincaré series of a rooted bipartite graph X is

f(z) =
∞∑
k=0

loopX(2k)zk

where loopX(2k) is the number of 2k-loops based at the root.

In the case where X is the principal graph of a subfactor A0 ⊂ A1, this series f is the
Poincaré series of the subfactor, in the usual sense, namely:

f(z) =
∞∑
k=0

dim(A′0 ∩ Ak)zk

In general, the Poincaré series should be thought of as being a basic representation
theory invariant of the underlying group-like object. For instance for the Wassermann
subfactor associated to a compact Lie group G ⊂ UN , the Poincaré series is:

f(z) =

∫
G

1

1− Tr(g)z
dg
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Again following [14], let us discuss now the measure-theoretic versions of the above
invariants. Once again, we start with an arbitrary rooted bipartite graph X. We can first
introduce a real measure µ, whose Stieltjes transform is f , as follows:

Definition 16.27. The real measure µ of a rooted bipartite graph X is given by

f(z) =

∫ ∞
0

1

1− xz
dµ(x)

where f is the Poincaré series.

In the case where X is the principal graph of a subfactor A0 ⊂ A1, we recover in
this way the spectral measure of the subfactor, as introduced in Definition 16.24, with
the remark however that the existence of such a measure µ was not discussed there. In
general, and so also in the particular subfactor case, clarifying the things here, the fact
that a measure µ as above exists indeed comes from the following simple fact:

Proposition 16.28. The real measure µ of a rooted bipartite graph X is given by the
following formula, where L = MM t, with M being the adjacency matrix of the graph,

µ = law(L)

and with the probabilistic computation being with respect to the expectation

A→< A >

with < A > being the (∗, ∗)-entry of a matrix A, where ∗ is the root.

Proof. With the conventions in the statement, namely L = MM t, with M being the
adjacency matrix, and < A > being the (∗, ∗)-entry of a matrix A, we have:

f(z) =
∞∑
k=0

loopX(2k)zk

=
∞∑
k=0

〈
Lk
〉
zk

=

〈
1

1− Lz

〉
But this shows that we have indeed the formula µ = law(L), as desired. �

In the subfactor case some further interpretations are available as well. For instance
in the case of the fixed point subfactors coming from of a compact Lie group G ⊂ UN ,
discussed after Definition 16.26 above, µ is the spectral measure of the main character:

µ = law(χ)

Before getting into computations, again following [14], let us introduce as well some
alternative invariants, inspired by the fundamental work of Jones in [60], in relation with
the annular structure of the subfactors. The main result in [60] is as follows:
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Theorem 16.29. The theta series of a subfactor of index N > 4, which is given by

Θ(q) = q +
1− q
1 + q

f

(
q

(1 + q)2

)
with f =

∑
k dim(Pk)z

k being the Poincaré series, has positive coefficients.

Proof. This is something advanced, the idea being that Θ is the generating series of a
certain series of multiplicities associated to the subfactor, and more specifically associated
to the canonical inclusion TLN ⊂ P . We refer here to Jones’ paper [60]. �

Regarding now the theta series for the graphs, this can introduced as a version of the
Poincaré series, via the change of variables z−1/2 = q1/2 + q−1/2, as follows:

Definition 16.30. The theta series of a rooted bipartite graph X is

Θ(q) = q +
1− q
1 + q

f

(
q

(1 + q)2

)
where f is the Poincaré series.

The theta series can be written as Θ(q) =
∑
arq

r, and it follows from the above
formula, via some simple manipulations, that its coefficients ar are integers. In fact, we
have here the following explicit formula from [60], relating the coefficients of the theta
series Θ(q) =

∑
arq

r to those of the Poincaré series f(z) =
∑
ckz

k:

ar =
r∑

k=0

(−1)r−k
2r

r + k

(
r + k
r − k

)
ck

In the case where X is the principal graph of a subfactor A0 ⊂ A1 of index N > 4, it
is known from [60] that the numbers ar are certain multiplicities associated to the planar
algebra inclusion TLN ⊂ P , as explained in Theorem 16.29 and its proof. In particular,
the coefficients of the theta series are in this case positive integers:

ar ∈ N
Still following [14], let us introduce as well the following notion:

Definition 16.31. The circular measure ε of a rooted bipartite graph X is given by

dε(q) = dµ((q + q−1)2)

where µ is the associated real measure.

In other words, the circular measure ε appears as the pullback of the usual real measure
µ via the following map, coming from the theory of the theta series in [60]:

R ∪ T→ R+

q → (q + q−1)2
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As a basic example for this, assume that µ is a discrete measure, supported by n
positive numbers x1 < . . . < xn, with corresponding densities p1, . . . , pn:

µ =
n∑
i=1

piδxi

For each i ∈ {1, . . . , n} the equation (q + q−1)2 = xi has then four solutions, that we
can denote qi, q

−1
i ,−qi,−q−1

i , and with this notation, we have:

ε =
1

4

n∑
i=1

pi

(
δqi + δq−1

i
+ δ−qi + δ−q−1

i

)
In general, the basic properties of the circular measure ε can be summarized as follows:

Proposition 16.32. The circular measure has the following properties:

(1) ε has equal density at q, q−1,−q,−q−1.
(2) The odd moments of ε are 0.
(3) The even moments of ε are half-integers.
(4) When X has norm ≤ 2, ε is supported by the unit circle.
(5) When X is finite, ε is discrete.
(6) If K is a solution of L = (K +K−1)2, then ε = law(K).

Proof. These results can be deduced from definitions, the idea being that (1-5) are
trivial, and that (6) follows from the formula of µ from Proposition 16.28 above. �

In addition to the above result, we have the following key formula, which gives the
even moments of ε, and makes the connection with the Jones theta series:

Theorem 16.33. We have the Stieltjes transform type formula

2

∫
1

1− qu2
dε(u) = 1 + T (q)(1− q)

where the T series of a rooted bipartite graph X is by definition given by

T (q) =
Θ(q)− q

1− q
with Θ being the associated theta series.

Proof. This follows by applying the change of variables q → (q + q−1)2 to the fact
that f is the Stieltjes transform of µ. Indeed, we obtain:

2

∫
1

1− qu2
dε(u) = 1 +

1− q
1 + q

f

(
q

(1 + q)2

)
= 1 + Θ(q)− q
= 1 + T (q)(1− q)

Thus, we are led to the conclusion in the statement. �



16C. SPECTRAL MEASURES 387

As a final theoretical result about all these invariants, which is this time something
non-trivial, in the subfactor case, we have the following result, due to Jones [60]:

Theorem 16.34. In the case where X is the principal graph of an irreducible subfactor
of index > 4, the moments of ε are positive numbers.

Proof. This follows indeed from the result in [60] stating that the coefficients of Θ
are positive numbers, from Theorem 16.29, via the formula in Theorem 16.33. �

As an illustration for all this, let us first discuss the case of the small index subfactors,
N ∈ [1, 4]. Following Jones [57] and related work, we first have the following result:

Theorem 16.35. The index of the subfactors is subject to the condition

N ∈
{

4 cos2
(π
n

) ∣∣∣n ≥ 3
}
∪ [4,∞]

and at N ≤ 4, the principal graph must be one of the Coxeter-Dynkin ADE graphs.

Proof. Here the first assertion is something that we already know, from chapter
15 above. As for the second assertion, this comes via a refinement of all this, the key
ingredient being the fact that in index N ≤ 4, and in fact more generally in the amenable
case, as discussed before, we must have N = ||X||2. See [57]. �

More in detail now, the usual Coxeter-Dynkin ADE graphs are as follows:

An = • − ◦ − ◦ · · · ◦ − ◦ − ◦ A∞ = • − ◦ − ◦ − ◦ · · ·

Dn = • − ◦ − ◦ · · · ◦ −

◦
|
◦ − ◦

Ã2n =

◦− ◦ − ◦ · · · ◦ − ◦ −◦
| |
• − ◦ − ◦ − ◦ − ◦ − ◦ A−∞,∞ =

◦− ◦ − ◦ − ◦ · · ·
|
•− ◦ − ◦ − ◦ · · ·

D̃n = • −

◦
|
◦ − ◦ · · · ◦ −

◦
|
◦ − ◦ D∞ = • −

◦
|
◦ − ◦ − ◦ · · ·

In the above, the graphs An with n ≥ 2 and Dn with n ≥ 3 have by definition n
vertices each, Ã2n with n ≥ 1 has 2n vertices, and D̃n with n ≥ 4 has n + 1 vertices.
Thus, the first graph in each series is by definition as follows:

A2 = • − ◦ D3 =

◦
|
• − ◦ Ã2 =

◦
||
• D̃4 = • −

◦ ◦
\ /
◦ − ◦
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There are as well a number of exceptional Coxeter-Dynkin graphs. First we have:

E6 = • − ◦ −

◦
|
◦ − ◦ − ◦

E7 = • − ◦ − ◦ −

◦
|
◦ − ◦ − ◦

E8 = • − ◦ − ◦ − ◦ −

◦
|
◦ − ◦ − ◦

Finally, we have index 4 versions of the above exceptional graphs, as follows:

Ẽ6 = • − ◦ −

◦
|
◦
|
◦− ◦ − ◦

Ẽ7 = • − ◦ − ◦ −

◦
|
◦ − ◦ − ◦ − ◦

Ẽ8 = • − ◦ − ◦ − ◦ − ◦ −

◦
|
◦ − ◦ − ◦

Getting back now to Theorem 16.35, with this list in hand, the story is not over,
because we still have to understand which of these graphs can really appear as principal
graphs of subfactors. And, for those graphs which can appear, we must understand the
structure and classification of the subfactors of R, having them as principal graphs.

In short, still a lot of work to be done, as a continuation of Theorem 16.35. The
subfactors of index ≤ 4 were intensively studied in the 80s and early 90s, and about 10
years after Jones’ foundational paper [57], a complete classification result was found, with
contributions by many authors. A simplified form of this result is as follows:

Theorem 16.36. The principal graphs of subfactors of index ≤ 4 are:

(1) Index < 4 graphs: An, Deven, E6, E8.
(2) Index 4 finite graphs: Ã2n, D̃n, Ẽ6, Ẽ7, Ẽ8.
(3) Index 4 infinite graphs: A∞, A−∞,∞, D∞.

Proof. As already mentioned, this is something quite heavy, with contributions by
many authors, and notably Ocneanu [72]. Observe that the graphs Dodd and E7 don’t
appear in the above list, a subtlety of subfactor theory. For a discussion, see [73]. �
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Getting back to probability, our claim is that the circular measure ε is the “best”
invariant. As a first illustration, let us compute ε for the simplest graph in the index
range N ∈ [1, 4], namely the graph Ã2n. We obtain here something nice, as follows:

Theorem 16.37. The circular measure of the basic index 4 graph, namely

Ã2n =

◦− ◦ − ◦ · · · ◦ − ◦ −◦
| |
• − ◦ − ◦ − ◦ − ◦ − ◦

is the uniform measure on the 2n-roots of unity.

Proof. Let us identify indeed the vertices of X = Ã2n with the group {wk} formed
by the 2n-th roots of unity in the complex plane, where w = eπi/n. The adjacency matrix
of X acts then on the functions f ∈ C(X) in the following way:

Mf(ws) = f(ws−1) + f(ws+1)

But this formula shows that we have M = K +K−1, where K is given by:

Kf(ws) = f(ws+1)

Thus we can use the last assertion in Proposition 16.32, and we obtain ε = law(K),
which is the uniform measure on the 2n-roots of unity. See [14]. �

In order to discuss all this more systematically, and for all ADE graphs, the idea will
be that of looking at the combinatorics of the roots of unity. Let us introduce:

Definition 16.38. The series of the form

ξ(n1, . . . , ns : m1, . . . ,mt) =
(1− qn1) . . . (1− qns)
(1− qm1) . . . (1− qmt)

with ni,mi ∈ N are called cyclotomic.

The point is that the Poincaré series of the ADE graphs are given by quite complicated
formulae, but the corresponding T series are all cyclotomic. In order to explain this, and
formulate our final results, we will need some more theory. Let us introduce as well:

Definition 16.39. A cyclotomic measure is a probability measure ε on the unit circle,
having the following properties:

(1) ε is supported by the 2n-roots of unity, for some n ∈ N.
(2) ε has equal density at q, q−1,−q,−q−1.

With all these ingredients in hand, following [14] and follow-up papers, we are now
ready to discuss the circular measures of the various ADE graphs.
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The idea is that all these measures are all cyclotomic, of level≤ 3, and can be expressed
in terms of the basic polynomial densities of degree ≤ 6, namely:

α = Re(1− q2)

β = Re(1− q4)

γ = Re(1− q6)

To be more precise, we have the following result, with the densities α, β, γ being
as above, with dn being the uniform measure on the 2n-th roots of unity, and with
d′n = 2d2n − dn being the uniform measure on the odd 4n-roots of unity:

Theorem 16.40. The circular measures of the ADE graphs are given by:

(1) An−1 → αn.
(2) Ã2n → dn.
(3) Dn+1 → α′n.
(4) D̃n+2 → (dn + d′1)/2.
(5) E6 → α12 + (d12 − d6 − d4 + d3)/2.
(6) E7 → β′9 + (d′1 − d′3)/2.
(7) E8 → α′15 + γ′15 − (d′5 + d′3)/2.
(8) Ẽn+3 → (dn + d3 + d2 − d1)/2.

Proof. This is something that we already know for Ã2n, from Theorem 16.37. In
general, this follows by a similar method, namely counting loops, then computing the
corresponding T series, and finally converting the T series formulae into measure-theoretic
results, as in the statement. We refer here to [14] and follow-up papers. �

It is possible to further build along the above lines, with a combinatorial refinement
of the formulae in Theorem 16.40, making appear a certain connection with the Deligne
work on the exceptional series of Lie groups, which is not understood yet.

All the above, which was something nice, was about index N ∈ [1, 4], where the Jones
annular theory result from [60] does not apply. In higher index now, N ∈ (4,∞), where
the Jones result does apply, the precise correct “blowup” manipulation on the spectral
measure is not known yet. The known results here are as follows:

(1) One one hand, there is as a computation for certain basic Hadamard subfactors,
with nice blowup, on a certain noncommutative manifold [11].

(2) On the other hand, there are many computations by Evans-Pugh, with quite
technical blowup results, on suitable real algebraic manifolds [46].

We will briefly discuss in what follows (1), and to be more precise the computation of
the spectral measure, and then the blowup problem, for the subfactors coming from the
deformed Fourier matrices. Following [11], let us start with:



16C. SPECTRAL MEASURES 391

Definition 16.41. Given two finite abelian groups G,H, we consider the correspond-
ing deformed Fourier matrix, given by the following formula

(FG ⊗Q FH)ia,jb = Qib(FG)ij(FH)ab

and we factorize the associated representation πQ of the algebra C(S+
G×H),

C(S+
G×H)

πQ //

$$

MG×H(C)

C(GQ)

π

::

with C(GQ) being the Hopf image of this representation πQ.

All this is perhaps a bit heavy, but the idea is that, passed some trivial examples, the
above complex Hadamard matrices are the most basic ones. Following [11], we have:

Theorem 16.42. When Q is generic, the minimal factorization for πQ is

C(S+
G×H)

πQ //

&&

MG×H(C)

C∗(ΓG,H) o C(G)

π

88

where the group on the bottom is ΓG,H ' Z(|G|−1)(|H|−1) oH.

Proof. This is something quite technical, obtained by doing a lot of technical abstract
algebra, and for full details on this computation, we refer here to [11]. �

In what regards now the law of the main character, the result here is as follows:

Theorem 16.43. We have the moment formula∫
χp =

1

|G| · |H|
#

{
i1, . . . , ip ∈ G
d1, . . . , dp ∈ H

∣∣∣ [(i1, d1), (i2, d2), . . . , (ip, dp)]
= [(i1, dp), (i2, d1), . . . , (ip, dp−1)]

}
where the sets between square brackets are by definition sets with repetition.

Proof. This is a straightforward consequence of the result from Theorem 16.42 above,
and for full details for this computation, we refer to [11]. �

The point now is that the above formula can be interpreted as follows:
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Theorem 16.44. With M = |G|, N = |H| we have the formula

law(χ) =

(
1− 1

N

)
δ0 +

1

N
law(A)

where the matrix
A ∈ C(TMN ,MM(C))

is given by A(q) = Gram matrix of the rows of q.

Proof. This follows indeed from a standard compuatation, based on the formula
from Theorem 16.43. As before, for details on all this, we refer to [11]. �

Getting back now to our subfactor blowup questions, the conclusion is that the correct
blowup most likely appears on some suitable noncommutative manifold. This finding,
which is not exactly in tune with the computations in [46], remains to be confirmed.

Finally, let us mention that in a suitable M,N → ∞ regime we obtain as limiting
measure a free Poisson law. This is certainly something very nice, especially in view of
what we are doing in this book, free probability, and for more here, we refer to [11].

16d. Further questions

All the above was a study, sometimes in great detail, not to say of truly maniac type,
of the spectral measure of subfactors, which in the case of the fixed point subfactors
corresponds to the computation of the spectral measure of the main character.

Beyond this, the world remains large. We have meander determinant problemat-
ics. Weingarten function problematics. De Finetti theorem problematics. Matrix model
problematics. And so on. All these questions are interesting for subfactors, and they are
related as well to random matrices, via the block-modified Wishart matrices.

However, above everything, but at a highly difficult level now, we have the hyper-
finiteness questions mentioned in the beginning of this chapter. But these are again, at
least in the quantum group case, related to matrix model questions. So, in the end, our
conclusion is that the thing to be done is still good old combinatorics, and good old free
probability theory, in the subfactor context, and not bother much for the rest.

16e. Exercises

Congratulations for having read this book, and no exercises here.
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Hankel determinants, 165
higher commutant, 361, 373
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Kesten measure, 287
Kronecker symbols, 71

lattice of projections, 352
law, 13, 109, 115, 123, 127, 142, 204
liberation, 292, 301, 302
limiting measures, 261, 277
linear operator, 130

Möbius function, 76, 85, 274
Möbius inversion, 77, 275
main character, 40
maps associated to partitions, 71
Marchenko-Pastur law, 173, 185, 222
Markov inclusion, 364
matching pairings, 28, 73, 155
measurable calculus, 147
Meixner laws, 308
minimal coaction, 366
modified Bessel law, 51
moment method, 165
moment-cumulant formula, 276
moments, 13, 19, 109, 142, 204
moments of characters, 66, 79
multiplicative free convolution, 210, 233, 234
multiplicative matrix, 192, 268

noncrossing pairings, 180, 223, 230, 359

noncrossing partitions, 180, 223, 290
normal element, 135, 143, 205
normal law, 16, 42, 79, 279
normal matrix, 120, 123
normal operator, 145, 146, 150, 349

Ocneanu subfactor, 363
operator algebra, 132, 203
operator-valued cumulants, 327
operator-valued probability, 324
order of projections, 352
order on partitions, 76
orthogonal group, 27, 42, 73, 97
ortogonal group, 86

pairings, 19
partitions, 36
Pauli matrices, 169
Peter-Weyl, 60, 61, 67, 68, 285
Peter-Weyl representations, 58, 66, 69
planar algebra, 361, 371, 373
planar tangle, 371
PLT, 35
Poincaré series, 382, 383
Poisson law, 33, 40, 42, 84
Poisson Limit Theorem, 35
polar coordinates, 15
polar decomposition, 235, 236
polynomial integral, 44
polynomial integrals, 81
Pontrjagin dual, 212
Popa subfactor, 365
positive element, 138
positive form, 140
positive matrix, 118
principal graph, 382, 388
probability space, 13
product of representations, 57

quantum automorphism group, 315
quantum group, 281
quantum reflection group, 292
quantum symmetry group, 315
quarter-circular, 236

R, 374
R-transform, 218, 220, 250
random matrix, 107
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random matrix algebra, 132
random permutations, 39
random variable, 13, 142, 204
random walk, 215
rational calculus, 135
real algebraic manifold, 304
real Bessel law, 79, 252
reduction theory, 350
reflection group, 54, 74, 97
relative commutant, 361
representation, 57
reverse De Finetti, 328
rotatability, 321
rotation, 173
rotation group, 27

S-transform, 234
self-adjoint element, 135
self-adjoint matrix, 116
self-adjoint operator, 148
semicircle law, 163, 167, 170, 215, 220, 310
semidual coaction, 366
semigroup, 237
semigroup algebra, 216, 238
series expansion, 334
shift, 134, 214, 216, 229
shrinking partitions, 180
smooth representation, 61
space-time sphere, 169
special functions, 311
spectral measure, 143, 205, 382
spectral radius, 135
spectral theorem, 148, 150, 349
spectrum, 134
spherical coordinates, 23
spherical function, 93
spherical integral, 24, 310
standard cube, 261, 277, 292, 294
standard form, 353
Stieltjes inversion, 164
Stieltjes transform, 234
Stirling numbers, 45
stochastic matrix, 98
strictly positive matrix, 119
strong operator topology, 345
subfactor, 354, 360
sum of representations, 57

super-easiness, 103
super-identity, 102
super-orthogonal group, 103
super-space, 102
symmetric group, 44, 73, 83
symplectic group, 103

Tannakian category, 69
Tannakian duality, 70, 72, 287, 290
Temperley-Lieb, 374
Temperley-Lieb algebra, 359, 360
tensor category, 59, 69, 287
tensor product, 208, 213
theta series, 384, 385
torus, 303
trace, 204
truncated character, 42, 46, 95, 294
truncated characters, 94
twisting, 311, 317

uniform group, 94, 95
unitary element, 135
unitary group, 42, 73, 97
unitary matrix, 119

vacuum vector, 216
variance, 17
Voiculescu law, 227
volume of sphere, 24
von Neumann algebra, 346, 351
von Neumann factor, 352

Wassermann subfactor, 363, 364, 368
weak operator topology, 345
weak topology, 345, 346
Weingarten formula, 82, 83, 87
Weingarten function, 85, 92, 331, 334
Wick formula, 155
Wigner law, 170, 221
Wigner matrix, 108, 153, 167, 245
Wishart matrix, 108, 154, 177, 181, 186, 263
Woronowicz algebra, 281
wreath product, 46

Young tableaux, 93
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