
HAL Id: hal-03751878
https://hal.science/hal-03751878v1

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Avoiding square-free words on free groups
Golnaz Badkobeh, Tero Harju, Pascal Ochem, Matthieu Rosenfeld

To cite this version:
Golnaz Badkobeh, Tero Harju, Pascal Ochem, Matthieu Rosenfeld. Avoiding square-free words on
free groups. Theoretical Computer Science, 2022, 922, pp.206-217. �10.1016/j.tcs.2022.04.025�. �hal-
03751878�

https://hal.science/hal-03751878v1
https://hal.archives-ouvertes.fr


ar
X

iv
:2

10
4.

06
83

7v
3 

 [
m

at
h.

C
O

] 
 2

4 
A

ug
 2

02
1 Avoiding square-free words on free groups

Golnaz Badkobeh* Tero Harju† Pascal Ochem‡

Matthieu Rosenfeld§

August 25, 2021

Abstract

We consider sets of factors that can be avoided in square-free words on
two-generator free groups. The elements of the group are presented in terms
of {0, 1, 2, 3} such that 0 and 2 (resp.,1 and 3) are inverses of each other so
that 02, 20, 13 and 31 do not occur in a reduced word. A Dean word is a
reduced word that does not contain occurrences of uu for any nonempty u.
Dean showed in 1965 that there exist infinite square-free reduced words. We
show that if w is a Dean word of length at least 59 then there are at most
six reduced words of length 3 avoided by w. We construct an infinite Dean
word avoiding six reduced words of length 3. We also construct infinite
Dean words with low critical exponent and avoiding fewer reduced words of
length 3. Finally, we show that the minimal frequency of a letter in a Dean
word is 8

59
and the growth rate is close to 1.45818.

1 Introduction

Axel Thue [18] showed in 1912 that there exists an infinite square-free word m

over the alphabet {0, 1, 2} that avoids occurrences of the words 010 and 212 of
length 3. We shall consider a related question on the free group generated by two
elements.

For the basic notions in combinatorics on words, we refer to Lothaire [10, 11].
Let

Σk = {0, 1, . . . , k − 1}
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be an alphabet of k letters. We denote by Σ∗ the set of all finite words over an
alphabet Σ. We are interested solely in the words of Σ∗

3 and Σ∗
4. The set of in-

finite words w : N → Σ over an alphabet Σ, represented here as infinite strings
w(1)w(2) · · · , is denoted by Σω.

The length, i.e., the number of occurrences of letters, of a word w ∈ Σ∗ is
denoted by |w|.

A factor v of w is right-special in w if there exist at least two distinct letters a
and b such that va and vb both are factors of w.

A word w ∈ Σ∗ ∪ Σω is said to avoid another word v, if v is not a factor

(i.e., a finite contiguous subword) of w. Furthermore, w is square-free if it avoids
all nonempty words of the form vv. A morphism, i.e., a substitution of letters to
words, h : Σ∗ → ∆∗ is said to be square-free, if it preserves square-freeness, i.e.,
if h(w) is square-free for all square-free words w.

Example 1. The word w = 01210120210121021202101202120 of length 29 is,
up to permutations of the letters, the longest ternary square-free word w ∈ Σ∗
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avoiding three square-free words of length 3. It avoids the words 010, 020, 201.
There are infinite square-free ternary words that avoid two words of length 3; the
Hall-Thue word m as defined below is an example of these.

The following result is due to Crochemore [4].

Theorem 1. A morphism α : Σ∗
3 → ∆∗ is square-free if and only if it preserves all

square-free words of length 5.

The simplest square-free morphism is due to Thue [17] ; see Lothaire [10],

hT (0) = 01201 , hT (1) = 020121 , hT (2) = 0212021 .

The Hall-Thue word m = τω(0), also known as a variation of Thue-Morse

word [3], is obtained by iterating the (Hall) morphism [8]:

τ(0) = 012 , τ(1) = 02 , τ(2) = 1 .

Thus m = 0120210121 · · · The morphism τ is not square-free since τ(010) con-
tains a square 2020. However, the Hall-Thue word m is square-free as was shown
by Thue [17] in 1906. The word m avoids the words 010 and 212 as is immediate
from the form of τ .

2 Dean words

While considering reduced words of a free group on two generators, we work on
the alphabet Σ4 by considering 0 and 2 (resp. 1 and 3) as inverses of each other.
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Thus a reduced word w ∈ Σ∗
4 does not have factors from the set {02, 20, 13, 31}.

In other words, the even and odd letters alternate in the reduced words.
A reduced word w ∈ Σ∗

4 is said to be a Dean word if it is square-free. Dean
words are moderately numerous as suggested in Table 1.

n # n # n # n # n #
1 4 2 8 3 16 4 24 5 40
6 64 7 104 8 144 9 216 10 328

11 496 12 720 13 1072 14 1584 15 2344
16 3384 17 4952 18 7264 19 10632 20 15504

Table 1: The number of Dean words, i.e., square-free reduced words over Σ4.

Dean [7] proved in 1965 the existence of an infinite square-free reduced word.

Theorem 2. There exists an infinite Dean word.

We give here three simple proofs.

First Proof. As noticed by Baker, McNulty and Taylor [2], the construction of
Dean [7] corresponds to the fixed point

fω(0) = 01210321012303210121032301230321 · · ·

of the simple morphism f : Σ∗
4 → Σ∗

4 defined by

f(0) = 01 , f(1) = 21 , f(2) = 03 , f(3) = 23 . (1)

Clearly, the iterated word fω(0) is reduced. Its square-freeness can also be
checked with the Walnut software [12], as communicated to us by Jeffrey Shal-
lit [15]:

eval dean1 "Ei,n (n>=1) & At (t<n) => DE[i+t]=DE[i+n+t]"

Interestingly, fω(0) is a complete shuffle of (02)ω and the paper folding sequence
1131133111331331 · · · (after renaming 0 to 3); see Davis and Knuth [6] or Al-
louche and Shallit [1]. The latter claim was also verified by Shallit using Walnut,
or by considering the substitution rules for the paper folding sequence:

11 7→ 1101 , 01 7→ 1001 , 10 7→ 1100 , 00 7→ 1000 .

We can modify (1) by combining the values f(1) and f(2) to obtain h : Σ∗
3 →

Σ∗
4 from the three letter alphabet:

h(0) = 01 , h(1) = 23 , h(2) = 2103 .
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The morphism h is not square-free, since h(212) = 210(3232)103 contains a
square. However, we can check by Theorem 10 that h(m) is square-free.

Second Proof. Consider the morphism h : Σ∗
3 → Σ∗

4 given by the images of the
letters,

h(0) = 10 , h(1) = 32 , h(2) = 1230103012 .

It is not difficult to show directly that h is square-free, but Theorem 1 does it also
quickly. Since the words h(ab), for different a, b ∈ Σ3, are reduced, the infinite
word h(m) is a Dean word.

Third Proof. Let w ∈ Σω
3 be an infinite (ternary) square-free word. We construct

a word w ∈ Σω
4 by adding the letter 3 in the middle of every occurrence of 02

and 20. Then also w is square-free. Indeed, if there were a square uu in w, the
occurrences of 3 would be aligned (in the same positions) in the two instances of u,
and deleting the occurrences of 3 would evoke a square uu into w; a contradiction.
Clearly, w is reduced by its construction.

A morphism h : Σ∗
3 → Σ∗

4 that preserves Dean words, is called a Dean mor-

phism. For h to be a Dean morphism, it suffices to check that h(w) is square-free
for all square-free w of length 5 (Theorem 1) and checking that the words h(ab),
for different a, b ∈ Σ3, are reduced.

One can apply the third proof of Theorem 2 to finite words. Then applying this
operation to the Thue morphism hT , the images of which start with the letter 0,
and end with 1, yields the following Dean morphism

hT (0) = 012301 , hT (1) = 03230121 , hT (2) = 0321230321 .

The reverse operation does not work; deleting the occurrences of 3 from a Dean
word does not necessarily give a square-free ternary word.

3 Sets of avoided words

An avoided word is also called an absent word. Moreover, v is a minimal absent
word of w if it is absent in w and all its proper prefixes and suffixes occur in w.

For a Dean word w ∈ Σ∗
4 ∪ Σω

4 , let Dl(w) denote the set of minimal absent
words of length l of w and dl(w) = |Dl(w)| (the size of Dl(w)).

We are interested in the avoided (absent) words of length 3.
With the aid of a computer program, we find that the longest Dean word that

avoids the word w = 10 of length 2 has length 58:

3230123032301232123032301230321230123212303230123212301232

4



By considering the permutations of Σ4 that preserve reduced words, we have

Lemma 3. Let w be a Dean word with |w| > 59. Then d2(w) = 0.

We have already seen, by the third proof of Theorem 2, that every ternary
square-free word w ∈ Σ∗

3 gives rise to a Dean word w ∈ Σ∗
4. There are 15504

Dean words of length 20 divided into 709 different sets of avoided words including
the empty set. Though up to the eight permutations of the letters that preserve
reduced words (see the Appendix), there are ‘just’ 1938 Dean words of length 20.

The word w = 01030121012321230323 of length 20 is an example of a Dean
word that accommodates all reduced words of length 3, i.e., d3(w) = 0. The
length 20 is optimal: a Dean word of length 19 always avoids some word of
length 3. Note that w is not ‘de Bruijn -type’ since both 012 and 123 occur twice
in w.

Example 2. The Hall-Thue word m avoids 010 and 212. The corresponding Dean
word m has D3(m) = {010, 030, 212, 232} simply since the letter 3 is never added
between two 0’s or two 2’s.

The following two simple lemmas deal with repetitions of the form abvab for
a pair ab. They are verified by the aid of a computer. Up to permutations, the
words 010321230 and 012303210 are the maximum length Dean words without
repetitions of pairs.

Lemma 4. A Dean word that has no repetitions of pairs, has length at most 9.

A reduced word, w is extendable if there is at least a letter a ∈ Σ4, such that
wa is a reduced word, wa ia called the extension of w. Clearly, any reduced word
has two extentions.

Lemma 5. Let w be a Dean word that has only one right-special factor of length

2. Then |w| 6 23.

Example 3. The word w = 01032301032123010323010 is a longest Dean word
with only one right-special factor of length 2, v = 32. We have d2(w) = 0 and
D3(w) = {012, 030, 101, 121, 210, 232, 303} of seven elements.

A prefix v of w is proper if |v| < |w|.

Lemma 6. Let w be a Dean word of length |w| > 24 such that every reduced pair

occurs in a proper prefix of w. Then d3(w) 6 6.
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Proof. By the hypothesis, each of the eight reduced pairs ab has at least one exten-
sion in w. Hence d3(w) 6 8.

Suppose that d3(w) = 8. Then no reduced pair ab is a right-special factor
in w. However, by Lemma 4, each Dean word of length 10 has a repetition of some
pair abzab. By the uniqueness of the extensions, this would eventually result in a
square abz·abz in the prefix of w of length 16.

The case d3(w) = 7 allows that exactly one pair is a right-special factor in w,
and the other seven pairs are not right-special. By Lemma 5, |w| 6 23, and the
claim follows.

The bound 24 in Lemma 6 is optimal as witnessed by Example 3.

Corollary 7. If w is an infinite Dean word then d3(w) 6 6.

By applying a computer search on all Dean words of length 59, we see that
there are only four possible sets of avoided Dean words, as specified in Theorem 8.
The claim of Theorem 8 for words |w| > 59 immediately follows from this result.
We shall show in Theorem 12 that these sets are actual for infinite Dean words.

Theorem 8. Let w be a Dean word of length |w| > 59 with d3(w) = 6. Then

D3(w) is one of the following sets

S1 = {101, 123, 212, 232, 303, 321}

S2 = {012, 030, 101, 121, 210, 232}

S3 = {010, 032, 212, 230, 303, 323}

S4 = {010, 030, 103, 121, 301, 323}

As expected, the family of the sets Si in Theorem 8 is closed under permuta-
tions that preserve reduced words. E.g., the third set S3 can be obtained from S1 by
the permutation (0 1)(2 3), and (1 3) fixes S1. Moreover, each Si is closed under
reversals of their elements.

Remark 9. For the length 58, there are still 12 different sets of cardinality six of

avoided words. The drop in the number between the lengths 58 to 59 is dramatic

due to the fact that there are no longer any avoided words of length 2.

The next proof relies on a strong result due to Currie [5].

Theorem 10. Let h : Σ∗
3 → ∆∗ be a morphism, and let w ∈ Σω

3 be an infinite word

with {010, 212} ⊆ D3(w). Then h(w) is square-free if and only if h preserves

square-freeness of the factors of w of length 7.
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We apply Theorem 10 to the Hall-Thue word m which does avoid the words
010 and 212.

Corollary 11. Let h : Σ∗
3 → Σ∗

4 be a non-erasing morphism. Then h(m) is square-

free if and only if h is square-free on the factors of m of length 7.

For the sake of completeness, the factors of length 7 of m are listed in the
Appendix.

Theorem 12. There exists an infinite Dean word w ∈ Σω
4 such that D3(w) = Si,

for each i = 1, 2, 3, 4.

Proof. We obtain a solution h(m) for the first set

S1 = {101, 123, 212, 232, 303, 321};

solutions for the other three sets are obtained by suitable permutations applied to
the following morphism.

Let g : Σ∗
3 → Σ∗

4 be defined by

g(0) = 103230 , g(1) = 1030 , g(2) = 12 ,

where the images have lengths 6, 4, 2, respectively. The morphism g is not square-
free since the image g(010) contains a square. However, a computer check can ver-
ify that g preserves square-freeness of the factors of m of length 7. Therefore, by
Corollary 11, the word g(m) is square-free. Clearly, the images g(w) are reduced
for all w ∈ Σ∗

3. By inspection, the words of S1 are avoided by all words g(ab) with
a 6= b. Since d3(g(m)) 6 6 by Corollary 7, it follows that D3(g(m)) = S1.

By the next theorem and the remark that follows, g is, in effect, the only mor-
phism Σ∗

3 → Σ∗
4 that produces Dean words avoiding the words of S1.

Theorem 13. Let w be an infinite Dean word such that S1 ⊆ D3(w). Then w =
ug(v), where |u| 6 5, and v is a square-free ternary word.

Proof. Let w = x1z, where x has no occurrences of 1. (The word x can be empty.)
By analysing the words without factors in S1, we conclude that 1 is preceded in w
only by a suffix of g(0) = 103230, g(1) = 1030, or g(2) = 12. This gives the
bound |x| 6 |g(0)| − 1 = 5 for the prefix x. We conclude that the suffix 1z has a
decomposition in terms of g(a), a ∈ Σ3. This means that w = ug(v), where v is
square-free since w is.

7



Remark 14. The set S1 is closed under the permutation (1 3), and thus the mor-

phism g′, where 1 and 3 are interchanged, also satisfies Theorem 13. Also, besides

permuting with (1 3), we can conjugate the images with respect to a common prefix:

if g(a) = uva, for all a ∈ Σ3 then also g′′ with g′′(a) = vau satisfies Theorem 13

with only slight changes. We notice that the morphism gR where the images g(a)
are reversed in order, is obtained from g by conjugation and the permutation (1 3).

4 Critical exponent VS number of factors of length 3

Theorem 12 exhibits a Dean word with critical exponent 2 that avoids 6 factors of
length 3. In this section, we complement this result by considering the trade-off
between the critical exponent of an infinite Dean word and the number of avoided
factors of length 3. Negative results are obtained by standard backtracking. Pos-
itive results are proved by uniform morphisms that generate infinite Dean words
with suitable properties using the method described in [13].

Lemma 15. Let w be a 5
3 -free Dean word, then |w| < 62.

Lemma 16. There exists an infinite 5
3
+

-free Dean word avoiding 323.

The image of any 7
5
+

-free 4-ary word by the following 136-uniform morphism

is a 5
3
+

-free Dean word avoiding 323.

0 → 0123032123012103012321012303210301210321230103

2101232103012303212301032101230321030123210123

01032123032101232103012103212301032101232103

1 → 0123032123012103012321012303210301210321230103

2101230321030123210123010321230321012321030123

03212301032101230321030121032123032101232103

2 → 0123032123012103012321012301032123012103012303

2123010321012321030121032123010321012303210301

23210123010321230321012321030121032123010321

3 → 0123032123012103012321012301032123012103012303

2123010321012303210301232101230103212303210123

21030123032123010321012321030121032123010321

Lemma 17. Let w be a 17
10 -free Dean word and d3(w) > 2, then |w| < 289.

Lemma 18. There exists an infinite 17
10

+
-free Dean word avoiding 030 and 232.
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The image of any 7
5
+

-free 4-ary word by the following 358-uniform morphism

is a 17
10

+
-free Dean word avoiding 030 and 232.

0 → 0103230121032123010321012303212301210323010321230

3210123010321230121032301032101230321230121032123

0321012301032301210321230103210123032123010323012

1032123032101230103212301210323010321230321012301

0323012103212301032101230321230121032123032101230

1032123012103230103210123010323012103212301032101

2303212301032301210321230321012301032123012103230

103210123032123

1 → 0103230121032123010321012303212301210323010321230

3210123010321230121032301032101230321230121032123

0321012301032301210321230103210123032123010323012

1032123032101230103212301210323010321012301032301

2103212301032101230321230121032123032101230103212

3012103230103212303210123010323012103212301032101

2303212301032301210321230321012301032123012103230

103210123032123

2 → 0103230121032123010321012303212301210323010321230

3210123010321230121032301032101230103230121032123

0103210123032123010323012103212303210123010321230

1210323010321230321012301032301210321230103210123

0321230121032301032101230103230121032123032101230

1032123012103230103210123032123010323012103212301

0321012303212301210321230321012301032123012103230

103212303210123

3 → 0103230121032123010321012303212301210323010321230

3210123010321230121032301032101230103230121032123

0103210123032123010323012103212303210123010321230

1210323010321230321012301032301210321230103210123

0321230121032123032101230103212301210323010321012

3032123010323012103212301032101230321230121032301

0321012301032301210321230321012301032123012103230

103212303210123

Lemma 19. Let w be a 7
4 -free Dean word and d3(w) > 3, then |w| < 68.

Lemma 20. There exists an infinite 7
4

+
-free Dean word avoiding 232, 212, 303,

and 323.
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The image of any 7
5
+

-free 4-ary word by the following 46-uniform is a 7
4
+

-free
Dean word avoiding 232, 212, 303, and 323.

0 → 0103210123012103010321030121032101230121030123

1 → 0103012101230121032101230103012103210121030123

2 → 0103012101230121030103210123012103210121030123

3 → 0103012101230103210301210321012103010321030123

Lemma 21. Let w be a 15
8 -free Dean word and d3(w) > 5, then |w| < 136.

Lemma 22. There exists an infinite 15
8
+

-free Dean word avoiding 010, 032, 212,

303, and 323.

The image of any 7
4

+
-free ternary word by the following 100-uniform mor-

phism is a 15
8

+
-free Dean word avoiding 010, 032, 212, 303, and 323.

0 → 01232101230121030123210121030121012321030123210123

01210123210301210123012103012321030121012321012103

1 → 01210123012103012321012301210123210121030121012321

03012321012103012101230121030123210123012101232103

2 → 01210123012103012321012103012101232103012321012301

21030123210301210123210121030123210123012101232103

5 Critical exponent VS directedness

A word u is d-directed if for every factor f of u of length d, the reverse of f ,
denoted by fR, is not a factor of u. In this section, we consider the trade-off
between the critical exponent of an infinite Dean word and the smallest d such that
it is d-directed. We use the same techniques as in the previous section for positive
and negative results. In order to verify that a word is d-directed, we only have to
check for occurrences of factors of length d and their reverse.

Lemma 23. There exists an infinite 5
3

+
-free 12-directed Dean word.

The image of any 7
5

+
-free 4-ary word by the following 72-uniform morphism

is a 5
3

+
-free Dean word that is 12-directed.

10



0 → 010321012303210301210323010321230321

030123210323012103212303210123210323

1 → 010321012303210301210323010321230321

012321032301210321230321030123210323

2 → 010321012303210301210323010321012321

032301210321230321012321030121032123

3 → 010321012303210301210323010321012321

030121032123032101232103230121032123

Lemma 24. Let w be a 27
16 -free 11-directed Dean word, then |w| < 129.

Lemma 25. There exists an infinite 27
16

+
-free 10-directed Dean word.

The image of any 7
5

+
-free 4-ary word by the following 564-uniform morphism

is a 27
16

+
-free Dean word that is 10-directed.

0 → 01032101230321030123210123032123010323012103012321012303210301232103230121032123010321

01230321230103230121030123210123032123010321012303210301232103230121030123210123032123

01032301210321230103210123032103012321012303212301032301210301232103230121032123010321

01230321230103230121030123210123032123010321012303210301232103230121032123010323012103

01232101230321230103230121032123010321012303210301232103230121030123210123032123010323

01210301232103230121032123010321012303212301032301210301232101230321030123210323012103

212301032301210301232101230321230103230121032123

1 → 01032101230321030123210123032123010323012103012321012303210301232103230121032123010321

01230321230103230121030123210123032123010321012303210301232103230121030123210123032123

01032301210321230103210123032103012321012303212301032301210301232103230121032123010321

01230321230103230121030123210123032103012321032301210321230103230121030123210123032123

01032301210321230103210123032103012321032301210301232101230321230103230121030123210323

01210321230103210123032123010323012103012321012303212301032101230321030123210323012103

212301032301210301232101230321230103230121032123

2 → 01032101230321030123210123032123010323012103012321012303210301232103230121032123010321

01230321230103230121030123210123032123010321012303210301232103230121030123210123032123

01032301210321230103210123032103012321012303212301032301210301232101230321030123210323

01210321230103230121030123210123032123010323012103212301032101230321030123210323012103

01232101230321230103230121030123210323012103212301032101230321230103230121030123210123

03210301232103230121032123010323012103012321012303212301032101230321030123210323012103

012321012303212301032301210301232103230121032123

3 → 01032101230321030123210123032123010323012103012321012303210301232103230121032123010321

01230321230103230121030123210123032123010321012303210301232103230121030123210123032123

01032301210321230103210123032103012321012303212301032301210301232101230321030123210323

01210321230103230121030123210123032123010321012303210301232103230121030123210123032123

01032301210301232103230121032123010321012303212301032301210301232101230321030123210323

01210321230103230121030123210123032123010323012103212301032101230321030123210323012103

012321012303212301032301210301232103230121032123

Lemma 26. Let w be a 7
4 -free 9-directed Dean word, then |w| < 114.

Lemma 27. There exists an infinite 7
4

+
-free 6-directed Dean word.

The image of any 7
5

+
-free 4-ary word by the following 40-uniform morphism

is a 7
4

+
-free Dean word that is 6-directed.
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0 → 0103012101232123012101230103012321230323

1 → 0103012101232123010301230323012321230323

2 → 0103012101230323012321230121012321230323

3 → 0103012101230103012303230121012321230323

Lemma 28. Let w be a 5-directed Dean word, then |w| < 10.

6 Letter frequencies

Theorem 29. The minimum frequency of a letter in an infinite Dean word is 8
59 .

The image of every Dean word by the morphism f below is a Dean word such
that the frequency of the letter 3 is 8

59 .

f(0) = 010

f(1) = 30121012321012103012101230121032101210

30121012321012103210123012101232101210

301210123012103210121030121012321012103

f(2) = 212

f(3) = 32101210301210123210121032101230121012

32101210301210123012103210121030121012

321012103210123012101232101210301210123

It is easy to see that the f -image of a Dean word is reduced. Let us check
that it is also square free. A computer check rules out squares of period at most
500. Notice that |f(0)| = |f(2)| = 3 and |f(1)| = |f(3)| = 115. Moreover,
the factor 010 (resp. 212) only appears as the f -image of 0 (resp. 2). So the
period of a potential square in the f -image of a Dean word must be a multiple of
|f(01)| = 118. Since the longest common prefix (resp. suffix) of f(1) and f(3)
has length 1, our square implies the existence of a square with the same period
and that contains the f -image of a letter as a prefix. This forces a square in the
pre-image by f , which is a contradiction.

A computer check shows that every Dean word of length 118 and containing
only 15 occurrences of the letter 3 is not extendable. Thus 8

59 is an optimal bound.

7 Growth rate

Let Tn be the set of Dean words of length n. We use the same technique as in [14]
(which is really close to the technique introduced in [16] that was itself inspired by
[9]) to show the following.
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Theorem 30. For all n,

|Tn| > 1.4581846n .

Let p = 36 and let F6p be the set of reduced words that contain no squares of
period at most p. Let Λ be the set of reduced words that are prefixes of minimal
squares of period at most p. For any w, we let Λ(w) be the longest word from
Λ that is a suffix of w. For any set of words S, and any w ∈ Λ, we let S(w)

be the set of words from S whose longest prefix that belongs to Λ is w, that is
S(w) = {u ∈ S : Λ(u) = w}.

Lemma 31. There exist coefficients (Cw)w∈Λ such that C0 > 0 and for all v ∈ Λ,

αCv 6
∑

a∈{0,1,2,3}
va∈F6p

CΛ(va) (2)

where α = 33075185/22682414 ≈ 1.4581862847578.

The proof of this lemma relies on computer verifications. If one let M ∈
Z|Λ|×|Λ| be the matrix indexed over Λ such that for all u, v ∈ Λ,

Mu,v = |{a ∈ {0, 1, 2, 3} : u = Λ(va)}| .

Then one can choose for the coefficients α the largest eigenvalue and for (Cw)w∈Λ

any corresponding eigenvector. To find a vector close enough to this eigenvector,
one can simply iterate the matrix (starting with the vector containing 1 everywhere)
and renormalize the vector. One can then simply verify that the vector obtained
after n iterations (say n = 100), has the desired property. We implemented this
procedure in C++ 1 and it verifies Lemma 31 in less than 10 minutes and using
9GB of RAM on a laptop.

Notice, that this procedure to find the largest eigenvalue of a matrix converges
quickly, so we know that α should be a really good approximation of this quantity.
Since this matrix is the adjacency matrix of an automaton that recognizes reduced
words without squares of period at most p, we deduce that there exists a constant
C such that the number of such words of length n is as most C · 1.4581863n . The
same bound holds for |Tn|, that is, for all n, |Tn| < C · 1.4581863n . We deduce
that Theorem 30 is almost sharp.

For the rest of this section, let us fix coefficients (Cw)w∈Λ that respect the
conditions given by Lemma 31. For each set S of words, we let

Ŝ =
∑

w∈Λ

Cw|S
(w)| .

1The program can be dowloaded at https://www.lirmm.fr/~mrosenfeld/codes/Finding_the_coefficient_for_Dean_words.cpp

13

https://www.lirmm.fr/~mrosenfeld/codes/Finding_the_coefficient_for_Dean_words.cpp


Whenever we mention the weight of a word w in informal definitions, we mean
CΛ(w). We are now ready to state our main Lemma.

Lemma 32. Let β > 1 be a real number such that

α−
β2−⌈ p+1

2 ⌉

β2 − 1
> β .

Then for all n,

T̂n+1 > βT̂n .

Proof. We proceed by induction on n. Let n be an integer such that the lemma

holds for any integer smaller than n and let us show that T̂n+1 > βT̂n.
By induction hypothesis, for all i,

T̂n > βiT̂n−i (3)

A word of length n+1 is good, if its prefix of length n is in Tn, if it is a reduced
word and if it contains no square of period at most p. The set of good words is G.
A word is wrong, if it is good, but contains a square of period larger than p. The
set of wrong words is F . Then for any w, Tn+1 = G \ F and

T̂n+1 > Ĝ− F̂ (4)

Let us first lower-bound Ĝ =
∑

w∈Λ |G(w)|Cw .
The extensions of any word v ∈ Sn that belongs to G are the words of the

form va where a ∈ {0, 1, 2, 3} and such that va ∈ F6p. By definition, Λ(v) is the
longest suffix of v amongst prefixes of squares of period of length at most p. This
implies that for any Dean word v and for any letter u, vu ∈ F6p if and only if
Λ(v)u ∈ F6p. For the same reason, for any square-free word v and for any word
u, Λ(vu) = Λ(Λ(v)u). We then deduce that the contribution of the extentions of
any word v ∈ Tn to Ĝ is

∑

a∈{0,1,2,3}

va∈F6p

CΛ(va) =
∑

a∈{0,1,2,3}

Λ(v)a∈F6p

CΛ(Λ(v)a) >
∑

a∈{0,1,2,3}

Λ(v)a∈F6p

CΛ(Λ(v)a) .

By Lemma 31, we deduce that the contribution of the extentions of any word v ∈
Tn to Ĝ is at least αCΛ(v). We sum the contribution over Tn

Ĝ >
∑

v∈Tn

αCΛ(v) =
∑

u∈Λ

αCu|T
(u)
n | = αT̂n (5)
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Let us now bound F . For all i, let Fi be the set of words from F that end with
a square of period i. Clearly, F = ∪i>1Fi and

F̂ 6
∑

i>1

F̂i . (6)

By definition of G and F , for every i 6 p, |Fi| = 0 and F̂i = 0. Moreover,
since reduced words contain no square of odd period, for all i, |F2i+1| = 0 and

F̂2i+1 = 0.
Let us now upper-bound F̂i for any even i > p.
Let u ∈ Fi be a word. For the sake of contradiction suppose, i 6 Λ(u) and

let v be the square of period i at the end of u and let k = |Λ(u)|. By hypothesis,
v1 · · · vi = vi+1 · · · v2i. There exists j 6 p such that Λ(u) has period j, but since
Λ(u) is the suffix of length k of v, v2i+1−k · · · v2i−j = v2i+1+j−k · · · v2i (using
that j 6 p < i 6 k one easily verifies that the indices are valid). So in particular,
using the two previous equations together,

vj+1 · · · vi = vi+j+1 · · · v2i = vi+1 · · · v2i−j

(one easily verifies that all the indices are valid). So there is a square inside u
which is not a suffix of u which is a contradiction, since by definition of F the only
squares inside u are suffixes of u. Hence, i > Λ(u).

For any u ∈ Fi, u ends with a square of period i so the last i letters are uniquely
determined by the prefix v of length |u| − i. By definition, v ∈ Tn+1−i. Moreover,
by the previous paragraph the suffix of size |Λ(u)|+1 of u and v are the same which

implies Λ(v) = Λ(u) and v ∈ T
(Λ(u))
n+1−i. So for every w ∈ Λ, any word of F

(w)
i is

uniquely determined by a word of T
(w)
n+1−i, which implies |F

(w)
i | 6 |T

(w)
n+1−i|. By

summing over all w ∈ Λ,

F̂i 6 T̂n+1−i .

Together with (3) it yields,
F̂i 6 T̂nβ

1−i .

We can now sum the Fi to upper bound F using equation (6),

F̂ 6
∑

i>⌈ p+1

2 ⌉

T̂nβ
1−i =

β2−⌈ p+1

2 ⌉

β2 − 1
T̂n .

Using this bound and (5) with (4) yields

T̂n+1 > T̂n

(
α−

β2−⌈ p+1

2 ⌉

β2 − 1

)
.
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By theorem hypothesis we deduce

T̂n+1 > βT̂n

which concludes our proof.

One easily verifies that β = 1.4581846 satisfies the condtions of Lemma 32
and we deduce the following corollary.

Lemma 33. For all n,

T̂n+1 > 1.4581846T̂n .

It implies that for all n, T̂n > 1.4581846n−1T̂1 > 1.4581846n−1C0 . There
exists a constant C , such that |Tn| > C1.4581846n . Using the fact that the set of
Dean words is factorial, it is routine to deduce that for all n,

|Tn| > 1.4581846n .

This proves Theorem 30.
Let us mention that, using the same technique, we were able to show that there

exist at least 1.12n 5
3

+
-free Dean words of length n.

8 Problems

There are Dean words of length n > 7 that do not occur in any infinite Dean words,
i.e., they cannot be extended in any infinite Dean word (but a finite amount). One
example of such a word is 0103010.

Due to minimality of Dl(w), there is no obvious relation between dl(w) and
dl+1(w).

Example 4. We have D3(g(m)) = S1 for the morphism g of Theorem 12. How-
ever, d4(g(m)) = d5(g(m)) = d6(g(m)) = 0.

Problem 1. Are there infinite Dean words w such that dl(w) > 0 for all l > 3?

If Problem 1 has a solution w then the (nonempty) sets Dl(w) stabilise, i.e., for
each l, there is a bound Nl such that for any prefix v of w with |v| > Nl one has
Dl(v) = Dl(w) (since always Dl(w) ⊆ Dl(v)). We conjecture that in such a case
the integers dl(w) are very small.

As mentioned, there are Dean words that are non extendable. We formally
define the set of extendable Dean worrds as following:

Ω = {w | for all n, there is a Dean word unwvn with |un|, |vn| > n}.
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Problem 2. Give a characterisation of the set Ω.

For a Dean word w, let ml(w) = |Ml(w)| denote the size of the set of minimal

extendable avoided words:

Ml(w) = Ω ∩Dl(w).

Problem 3. Are there infinite Dean words w such that ml(w) = 0 for all l?

A solution word for Problem 3 would contain all words in Ω. Clearly, if
mj(w) = 0 then also mk(w) = 0 for all k < j.

Example 5. The Dean word w = 010301210123032123210323010301 of length
30 satisfies d2(w) = d3(w) = d4(w) = 0 but d5(w) = 16.

Problem 4. Each Dean word w ∈ Σ∗
3 alternates between even and odd letters, and

thus w is a letter-to-letter shuffle of even we ∈ {0, 2}∗ and odd words wo ∈ {1, 3}∗.
What are the forbidden words v ∈ {0, 2}∗ that are not of the form v = we?

Appendix

(1) Below we list in the cycle form the permutations of Σ4 that preserve reduced
words (apart from the identity):

(0 2), (1 3), (0 2)(1 3), (0 1)(2 3), (0 3)(2 1), (0 1 2 3), (0 3 2 1).

(2) The list of the factors of length 7 of the Hall-Thue word m needed in Theo-
rem 12:

0120210 1202101 2021012 0210121 2101210

1012102 0121020 1210201 2102012 1020120

0201202 2012021 1202102 2021020 0210201

1020121 0201210 2012101 0121012 1210120

2101202 1012021
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