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Summary. A very compact weighted residual formulation is proposed for the construction of periodic solutions of oscillators subject to
unilateral contact and frictional occurrences. The key idea is to express all governing equations as equalities, which can then be satisfied
in a weighted residual sense.

Toy system

In order to introduce the proposed formulation, a simple toy system, illustrated in Figure 1, is considered. It is a simple
geometrically nonlinear mass-spring system lying on a moving belt of constant linear velocity v. The mass is denoted by m
and the stiffness, by k. The length of the spring at rest (in a vertical position when the mass is lying on the belt) is L. The
vertical displacement of the mass is y(¢) and vertical separation from the belt is possible. The horizontal displacement is
x(t). The position at rest is (x, y) = (0, 0). The frictional force acting on the mass is rp(¢) while the unilateral contact
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Figure 1: One-dimensional mass-spring moving on a rotating belt. Point A is fixed. The position of point B is (x(¢), y(¢)). The belt is
assumed to be infinitely long.

force is rn(t). The relative tangential velocity between the mass and the belt is 1(t) = —v + x(¢). In the remainder, time
is often dropped for readability purposes.

Signorini unilateral contact and Coulomb’s friction conditions expressed as equalities
Given the parametrization of the system of interest, the classical Signorini conditions are expressed as the complementarity
conditions

w=>0, y=>0, rn-y=0 @))

which can be recast into various equivalent nonsmooth equalities, one of which being
Von >0, ry—max(ry—pny,0) =0. 2)

Briefly said, the set of points solution to Equation (1) and Equation (2) is the same [1, 2]. Also, with the considered
parameterization, Coulomb’s friction classically says the following: given a closed contact in the normal direction,

ur=0 = |rr| <purx 3)
ur#0 =— |rr| = p|ryland o > 0| rp = —atit
where u is the coefficient of friction. Among others, the above condition can equivalently be recast into the nonsmooth
equality [2, 7, 8]
Vor >0, rrmax(ury, |rr — prir|) — urn(rr — pritt) =0 (@)
or
Vor >0, ur+ min(0, pr(rr + urn) — ur) + max(0, pr(rr — urn) — ) = 0. (5

Newton’s impact law

Depending on the context of the investigation, an impact law y+ = —ey ™~ relating the pre- and post-impact velocities,
¥~ and y* respectively, through a coefficient of restitution e € [0, 1] might be required for the well-posedness of the
formulation since Equation (1) alone might not guarantee the uniqueness of the solution [4]. The idea is to test whether a
penetration between the bodies in contact has occurred and then enforce the unilateral contact conditions at the velocity
level with the above impact law inserted. Altogether, this reads [2]:

y<0 = =0, yT4+ey =0 -G +ey)=0
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y>0 - =0 ©)
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which can be recast into the single equality
VYon, (signy —1)(ry —max(ry — pn(3 T +€97),0) + (signy + Dy =0 @)
with the convention sign y = 1 if y > 0 and sign y = —1 otherwise.

Governing equations
Given the geometric nonlinearity induced by the action of the spring on the mass, we introduce the quantity

x24+(L+y)?2-L

y(x,y) = NCESTEEE ®)

The two coupled nonlinear and nonsmooth Ordinary Differential Equations
mX +ky(x,y)x —rpr =0 (9a)
my +ky(x,y)(y +L)—rm+mg=0 (9b)

together with either Equation (2) and Equation (4), or Equation (7) and Equation (4), govern the dynamics of the system
considered. In Equation (9b), g is the gravity constant. Depending on the level of regularity of the targeted solution,
Equation (9) might have to be read in the distributional sense.

Weighted residual formulation

It is suggested to search for periodic solutions by solving the above formulation in a weighted residual sense. All unknowns
of the problem are expanded on an appropriate truncated basis of 7' -periodic functions with N members, commonly the
Fourier basis in the Harmonic Balance Method but not necessarily, as follows:

x(1) =Yg i), y(0) =g yepi (1), () = D2, N (1), rr(t) = 3o Tiepie (0). (10)
Depending on the smoothness of the selected basis functions, time derivatives might either be obtained by pointwise
differentiation in time or expanded on a less smooth basis and related to the differentiated quantity in a weak sense.
Concerning Equation (7) which requires access to ™ and y~, a Discontinuous Galerkin scheme could be used [6]. If we
decide to solve Equation (9), Equation (2) and Equation (4), the weighted residual formulation would take the following
form: once the expressions of Equation (10) are inserted in the selected governing equations, find the 4N unknowns x,
Yk, N and T which satisfy

T T T T
/ ¢0 (1) (Eq. (90)) dr = / ¢x (1) (Eq. (9b)) di = / ¢0 (1) (Bq. (2)) di = / (D)(Eq. @)dr =0, vk (1)
0 0 0 0

The above integrals can be numerically computed using an appropriate quadrature scheme such as a Riemann sum. The
resulting system of nonlinear equations can be also solved using a nonsmooth Newton solver, for instance. The proposed
strategy can be seen as a very compact form of the AFT methodology [5] without regularization and shares similarities with
the DLFT technique [3] which also relies on the AFT. The rate of convergence of the proposed procedure might depend on
the two parameters py and pr, which have to be assigned a value in the solvers.

Conclusions

The proposed formulation is very compact and involves simple implementations such as basic integral quadrature schemes
and existing nonlinear solvers. Its engineering value lies in its capability to generate coarse approximations without
difficulty in contrast to much more advanced time-stepping or event-driven schemes [2]. It can be extended to more
elaborate mechanical systems in a straightforward fashion. However, the convergence rate in terms of the number of
unknowns is expected to be low and should be investigated with great care.

References

[1] LuT. and Legrand M. (2021), Nonsmooth Modal Analysis via the Boundary Element Method for One-Dimensional Bar Systems. Nonlinear Dynamics
10.1007/s11071-021-06994-z

[2] Acary V. and Brogliato B. (2008), Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics, Springer
10.1007/978-3-540-75392-6

[3] Nacivet S., Pierre C., Thouverez F. and Jézéquel, L. (2003) A dynamic Lagrangian frequency—time method for the vibration of dry-friction-damped
systems, Journal of Sound and Vibration 10.1016/S0022-460X(02)01447-5

[4] Moreau J.J. (2004), An introduction to Unilateral Dynamics. Novel Approaches in Civil Engineering. Lecture Notes in Applied and Computational
Mechanics 10.1007/978-3-540-45287-4_1

[5] Cameron T.M. and Griffin J.H. (1989), An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear
Dynamic Systems, Journal of Applied Mechanics 10.1115/1.3176036

[6] Schindler T., Rezaei S., Kursawe J. and Acary V. (2015), Half-explicit timestepping schemes on velocity level based on time-discontinuous Galerkin
methods, Computer Methods in Applied Mechanics and Engineering 10.1016/j.cma.2015.03.001

[7] Stadler G. (2004), Semismooth Newton and Augmented Lagrangian Methods for a Simplified Friction Problem, SIAM Journal on Optimization
10.1137/S1052623403420833

[8] Hiieber S., Stadler G. and Wohlmuth B. (2008), A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction,
SIAM Journal on Scientific Computing 10.1137/060671061


https://dx.doi.org/10.1007/s11071-021-06994-z
https://dx.doi.org/10.1007/978-3-540-75392-6
https://dx.doi.org/10.1016/S0022-460X(02)01447-5
https://dx.doi.org/10.1007/978-3-540-45287-4_1
https://dx.doi.org/10.1115/1.3176036
https://dx.doi.org/10.1016/j.cma.2015.03.001
https://dx.doi.org/10.1137/S1052623403420833
https://dx.doi.org/10.1137/060671061

	Toy system
	Signorini unilateral contact and Coulomb's friction conditions expressed as equalities
	Newton's impact law
	Governing equations

	Weighted residual formulation
	Conclusions

