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Abstract

This paper introduces a novel approach for building a robust Automatic Gesture
Recognition system based on Surface Electromyographic (sEMG) signals, acquired
at the forearm level. Our main contribution is to propose new constrained learning
strategies that ensure robustness against adversarial perturbations by controlling
the Lipschitz constant of the classifier. We focus on positive neural networks for
which accurate Lipschitz bounds can be derived, and we propose different spectral
norm constraints offering robustness guarantees from a theoretical viewpoint. Ex-
perimental results on two distinct datasets highlight that a good trade-off in terms
of accuracy and performance is achieved. We then demonstrate the robustness of
our models, compared to standard trained classifiers in three scenarios, considering
both white-box and black-box attacks.

Keywords: Recognition, Machine Learning, Perturbations, Stability,

Lipschitz regularity, Optimization, EMG

1. Introduction

In recent years, the concept of human-computer interaction (HCI) has

been at the core of many scientific and sociological developments. Combined

with the power of machine learning algorithms, it has led to some of the most

outstanding achievements in nowadays technology which are used successfully

in an ever-increasing number of areas impacting our lives, e.g. medicine [1],
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autonomous driving [2], natural language processing [3], etc. Researchers

all around the world focus on providing new intuitive and accurate ways of

interacting with devices around, based on gesture, voice, or vision analysis [4].

Gestures constitute a universal and intuitive way of communication, with the

potential of bringing the Internet of Things (IoT) experience to a different,

more organic level [5]. Automatic gesture recognition (AGR) algorithms can

be successfully used in various applications, from sign language recognition

(SLR) [6] to VR games [7].

Various solutions for AGRs based on image or video stream analysis,

leveraging on computer vision algorithms have been proposed; see for exam-

ple [8, 9, 10]. A multi-stream solution for dynamic hand-gesture recognition is

described in [11]. Multi-modal approaches for gesture classification have been

also studied [12]. A novel method showing a fully neurmorphic implemen-

tation [13] achieves good results (96% accuracy while reducing the inference

time by 30%). Although a good performance is achieved on synthetic data, in

real-life scenarios these systems may be sensitive to environmental conditions,

e.g. light conditions, background, etc. Additionally, these systems are often

computationally demanding and consequently not always suited for real-time

applications. Accelerometers and electromyography (EMG) sensors provide

an alternative low-cost technology for gesture sensing [14]. sEMG stands for

surface electromyography and represents the electrical manifestation of the

neuromuscular activation related to the contraction of the muscles [15]. In

[16] the authors propose a method combining feature selection with ensam-

ble learning, achieving around 78% classification accuracy for 52 gestures.

The applications of sEMG-based classification systems are focused on, but
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not limited to, assertive devices and rehabilitation or postural control ther-

apy for physically impaired persons [17]. With the continuous development

of more versatile signal processing techniques, the applications of EMG sig-

nal classification expanded to a wide range of domains including augmented

reality, gaming industry, military applications, etc.[18, 19].

Two critical issues need to be addressed when developing AGR algo-

rithms: fast enough inference to ensure real-time feeling for the end-user,

and accurate and robust classification to guarantee that the gesture is cor-

rectly identified no matter the environmental conditions. Machine learning

methods have become ubiquitous tools in a wide range of tasks including

AGR, on account of their ability to solve a great variety of problems, from

simple regressions to complex multi-modal classification.

However, deep neural networks, which are probably the most powerful

methods, may appear as black boxes whose robustness is not always well-

controlled. For real-life applications, it is mandatory to guarantee the relia-

bility of such techniques. Nowadays, the main difficulty to overcome consists

in developing high-performance systems that are also trustable and safe. An

additional challenge is to avoid implementation heaviness during the learning

phase.

In [20], the authors showed that slightly altering data inputs that were

correctly classified by the network can lead to a wrong classification [21,

22, 23]. This finding was at the origin of the concept of adversarial inputs,

which constitute malicious input data that can deceive machine learning

models. For example, [22] shows how voice interfaces can be fooled by cre-

ating carefully crafted artificial audio inputs of unintelligible voice that are
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miss-classified as specific vocal commands by the system. Also, [24] intro-

duces several methods for generating adversarial examples on ImageNet that

are so close to the original data that differences are indistinguishable for the

human eye.

It must be emphasized that adversarial inputs are not necessarily artifi-

cially created with the intention to sabotage the system. As other physiolog-

ical signals, e.g. EEG or EKG, EMG signals have low frequency components

(usually between 10 – 150Hz), and low amplitudes (≤ 10 mV Peak to Peak).

This makes them very sensitive to noise and outside perturbations that can

occur innately, under the form of noise stemming from acquisition devices,

imperfect sensor contact, etc. Those can seriously flaw the performance of

real-life applications based on pre-trained models [25]. An empirical way of

training more robust AGR systems is detailed in [26], where a strategy of

training using noisy labels is proposed.

As highlighted in [24], the Lipschitz behaviour of the network is tightly

correlated with its robustness against adversarial attacks. The Lipschitz con-

stant allows to upper bound the output perturbation knowing the magnitude

of the input one, for a given metric [27]. Controlling this constant thus repre-

sents a feasible solution to limit the effect of adversarial attacks. Computing

the exact Lipschitz constant of a neural network is however a very complex

problem, so the main challenge is to find clever ways to approximate this

constant effectively.

Recently, several techniques to ensure the Lipschitz stability of neural net-

works have been explored. For example, [23] proposes a novel weight spectral

normalization technique applied to stabilize the training of the discriminator
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in Generative Adversarial Networks (GANs). The Lipschitz constant of the

network is viewed as a hyper-parameter that can be tuned in the training

process of the image generation task. Doing so leads to a model with im-

proved generalization capabilities. In [28] norm-constraint GroupSort based

architectures are proposed and it is shown that they can be used as universal

Lipschitz function approximators. The authors apply gradient norm preser-

vation to create Lipschitzian networks that offer adversarial robustness guar-

antees. In [29] the authors introduce Parseval networks, another approach

for designing networks which are intrinsically robust to adversarial noise, by

imposing the Lipschitz constant of each layer of the system to be less than

1. In [30] a convex optimization framework is introduced to compute tight

upper bounds for the Lipschitz constant of Deep Neural Networks (DNNs).

They make use of the observation that commonly used activation operators

are gradients of convex functions. Semi-definite programming approaches to

ensure robustness are also explored in [31].

The main contributions of this paper are:

• To propose a robust real-time Automatic Gesture Recognition system

based on sEMG signals. The robustness is ensured by using a novel

learning algorithm for training feedforward neural networks.

• To show that a good accuracy-robustness balance can be reached. To

do so, we train the system under carefully crafted spectral norm con-

straints, allowing us to finely control its Lipschitz constant. A tight

Lipschitz constant is efficiently estimated by focusing on neural net-

works with positive weights as in [32].

• To demonstrate the performance of the final architecture in real-life ex-
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periments where we show that the proposed robust model outperforms

those trained conventionally.

• To analyze how our system behaves when the input is affected by dif-

ferent noise levels, simulating perturbations that may occur in real

scenarios.

• To show the validity of our solution by experimenting on two distinct

publicly available sEMG gestures datasets.

The rest of the paper is structured as follows. The theoretical background

of our work is detailed in Section 2. In Section 3, we present the proposed

optimization algorithm and we investigate the way of dealing with the con-

straints. The application and the results are discussed in Section 4, while

Section 5 deals with how our model behaves when facing adversarial data.

Finally, Section 6 contains some concluding remarks.

2. Robustness solutions in the context of nonnegative neural net-

works

2.1. Problem formulation

Any feedforward neural network is obtained by cascading m layers asso-

ciated with operators (Ti)1≤i≤m. The neural network can thus be expressed

as the following composition of operators:

T = Tm ◦ · · · ◦ T1. (1)

Each layer i ∈ {1, . . . ,m} has a real-valued vector input xi of dimension

Ni−1 which is mapped to

Ti(xi) = Ri(Wixi + bi), (2)
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Figure 1: Representation of a NN as a composition of operators

where Wi ∈ RNi×Ni−1 , bi ∈ RNi are the weight matrix and bias parameter

respectively. Ri : RNi → RNi constitutes a non-linear activation operator

which is applied component-wise (e.g., ReLU or Sigmoid) or globally (e.g,

Softmax). Figure 1 shows a graphical representation of this concept.

Even though the choice of the activation Ri may differ depending on the

task at hand, it has been shown in [33, 34] that most of them are actually αi-

averaged operators with αi ∈]0, 1]. Recall that Ri is an αi-averaged operator

if, for every pair (xi, yi) ∈ (RNi)2, the following inequality holds:

∥Ri(xi)−Ri(yi)− (1− αi)(xi − yi)∥ ≤ αi∥xi − yi∥. (3)

When αi = 1/2, Ri is said to be firmly nonexpansive. For standard choices

of activation operators, Ri is firmly nonexpansive since it is the proximity

operator of a proper, lower-semicontinous function (see [34] for more details).

Note that, in [30], it is assumed that Ri operates component-wise and is slope-

bounded. The authors emphasize that the most common case corresponds

to lower and upper slope values equal to 0 and 1, respectively. It follows

from [35, Proposition 2.4] that a function satisfies this property if and only

if it is the proximity operator of some proper lower-semicontinuous convex

function, so that similar assumptions to those made in [34] are recovered.

As explained in [33], examples of activation operators Ri which are αi-

averaged with αi > 1/2 can be encountered. They basically correspond

7



to over-relaxations of firmly nonexpansive operator. An example of such

operators is the Swish activation function [36]. Another famous example is

the group-sort operator:

(
∀xi =


xi,1

...

xi,M

 ∈ RNi

)
Ri(xi) =


x↑
i,1

...

x↑
i,M

 , (4)

where the vector xi has been decomposed in M subvectors xi,j with j ∈

{1, . . . ,M}, of dimension B (Ni = BM) and x↑
i,j designates the vector of

components of xi,j sorted in ascending order. Ri is then purely nonexpansive,

i.e. αi = 1. Note that max-pooling can be achieved by composing this group

sort operation with a linear operator. Indeed, if i < m, M = Ni+1, and Wi+1

is the matrix extracted from the Ni × Ni identity matrix IdNi
by selecting

the matrix rows with indices multiple of B, then Wi+1 ◦Ri corresponds to a

max-pooling.

2.2. Lipschitz robustness certificate

Consider a neural network T as described in Fig. 1. let x ∈ RN0 be

the input of the network and let T (x) ∈ RNm be its associated output. By

adding some small perturbation z ∈ R0 to the input, the perturbed input is

x̃ = x + z. The effect of the perturbation on the output of the system can

be quantified by the following inequality:

∥T (x̃)− T (x)∥ ≤ θm∥z∥, (5)

where θm ≥ 0 denotes a Lipschitz constant of the network. θm represents thus

an important parameter that allows us to assess and control the sensitivity of

a neural network to various perturbations. It needs however to be accurately
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estimated to provide valuable information. A standard approximation to the

Lipschitz constant [24] is given by

θm =
m∏
i=1

∥Wi∥S, (6)

where ∥ · ∥S denotes the spectral norm of a matrix. Although simple to

compute, this approximate bound is over-pessimistic. Different methods for

obtaining tighter estimates of the Lipschitz constant have been presented

in the recent literature; see for example [27, 33, 30, 37, 38]. Local esti-

mates of the Lipschitz constant can also be performed which may appear

more relevant. But they are more complex to compute and, as we will see,

controlling the global Lipschitz constant is usually sufficient to get a good

performance. Estimating the global Lispchitz constant of the network is an

NP (non-deterministic polynomial-time)-hard problem [27]. Although there

exist efficient approaches to approximate an accurate bound [30, 37, 38],

computing these estimates may be expensive for wide or deep networks. In

addition, using these bounds within a training procedure is a difficult task

[31]. In this work, we will make the following assumption.

Assumption 2.1 Let a neural network be given by (1) where the i-th layer

with i ∈ {1, . . . ,m} is given by (2). We assume that

(i) all the activation layers, except possibly the last one, consist of separa-

ble averaged operators, that is, for every i ∈ {1, . . . ,m−1}, there exist

averaged functions (ρi,k)1≤k≤Ni
from R to R such thatRi : (ξi,k)1≤k≤Ni

7→(
ρi,k(ξi,k)

)
1≤i≤k

;

(ii) at the last activation layer, Rm is an averaged operator.

Our approach will be grounded on the following result.
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Proposition 2.2 [33] Suppose that Assumption 2.1 holds. For every i ∈

{1, . . . ,m}, let Ai be the matrix whose elements are the absolute values of

those of Wi. Then,

ϑm = ∥Am · · ·A1∥S (7)

is a Lipschitz constant of T . In addition

∥Wm · · ·W1∥ ≤ ϑm. (8)

In particular if, for every i ∈ {1, . . . ,m}, Wi ∈ [0,+∞[Ni×Ni−1, ϑm is equal

to the lower bound in (8).

Based on this proposition, the best estimate for the Lipschitz constant of

a given feedforward neural network having nonnegative weights simplifies to

the spectral norm of the product of all the weight matrices composing the

network. More precisely, the obtained Lipschitz constant

ϑm = ∥Wm · · ·W1∥S

is the Lipschitz constant of a purely linear network, where all the non-linear

activation operators have been replaced with the identity operator.

The above result is guaranteed to be valid only in the case when all

the weights are nonnegative. In the general case of networks with weights

having arbitrary signs, it can be proved that ∥Wm · · ·W1∥S represents only

a lower bound of the Lipschitz constant established in [33]. It is also worth

mentioning that the proposed results hold for any algebraic structure of the

weight matrices (Wi)1≤i≤m.
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3. Optimization methods for training robust feedforward networks

3.1. Stochastic gradient descent – projected variant

Standard training in neural networks consists in the minimization of a

nonconvex cost function with respect to the model parameters by means of

an iterative strategy. Let L be the cost function defined as follows:

L(η) =
K∑
k=1

ℓ(zk, η), (9)

where η = (ηi)1≤i≤m is a vector encompassing all the model parameters. For

each layer i ∈ {1, . . . ,m}, ηi denotes a vector of dimension Ni(Ni−1+1) that

contains the scalar variables associated with the weight matrices Wi and the

corresponding bias components bi. The data information is represented by

(zk)1≤k≤K . For every k ∈ {1, . . . , K}, zk is a pair consisting of an input

of the system and the associated desired output (ground truth). Also, ℓ

represents the loss function assumed to be differentiable (almost everywhere)

with respect to η.

To ensure robustness, we shall impose spectral norm constraints on the

weight matrices. In other words, the vector of parameters η is constrained to

belong to a closed set S that will be described in the next section. We propose

to use an extension of a standard optimization techniques for training neural

networks [39]. More specifically, we will implement a projected stochastic

gradient algorithm. A momentum parameter is introduced in this algorithm

to accelerate the convergence process.

Algorithm 1 describes the iterations performed at each epoch n > 0.

We see that there are two nested loops: the outer loop operates on the

batch index q and the second one on the layer index i. In this algorithm,
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γn ∈]0,+∞[ is the learning rate, while ζn ∈ [0,+∞[ denotes the inertia

parameter for momentum. The algorithm is very similar to block-iterative

techniques used in convex optimization [39]. The parameters of each layer

are indeed updated successively by performing a gradient step on the data in

the current mini-batch (which can be epoch-dependent). ∇i represents the

gradient, computed by standard backpropagation mechanism, with respect

to ηi for each i ∈ {1, . . . ,m}. This stochastic gradient step is followed by a

projection PSi,n
onto the constraint set Si,n. The definition of this set as well

as the way of handling this projection are detailed in the following.

Algorithm 1: Projected SGD Algorithm

Partition {1, . . . , K} into minibatches (Lq,n)1≤q≤Q

foreach q ∈ {1, . . . , Q} do

foreach i ∈ {1, . . . ,m} do

∆i,n = (1+ ζn)ηi,n− ζnηi,n−1 η̃i,n = [(η⊤j,n+1)j<i ∆⊤
i,n (η⊤j,n)j>i]

⊤

ηi,n+1 = PSi,n

(
∆i,n − γn

∑
k∈Lq,n

∇iℓ(zk, η̃i,n)
)

where Si,n =
{
ηi | [(η⊤j,n+1)j<i η⊤i (η⊤j,n)j>i]

⊤ ∈ S
}
.

3.2. Constraint sets

As mentioned before, this work revolves around feed-forward networks

with positive weights. Thus, the first condition that we impose is nonneg-

ativity for each layer i ∈ {1, . . . ,m}, which is modeled by the constraint

set

Di = {Wi ∈ RNi×Ni−1 | Wi ≥ 0} (10)

Moreover, based on our standing assumptions and Proposition 2.2, we must

impose a spectral norm constraint on the weight matrices to control the
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robustness of the system. This translates mathematically as the following

upper bound constraint:

∥Wm · · ·W1∥S ≤ ϑ, (11)

where ϑ represents the target maximum Lipschitz constant of the network.

This bound constitutes a direct measure of the system level of robustness

against adversarial inputs. We need to handle these two constraints simul-

taneously during the training process. Imposing nonnegativity is fairly easy

since (10) defines a simple convex constraint. By contrast, constraint (11)

does not satisfy the convexity property. Since (11) corresponds to a closed

set in the underlying space of weight matrices and this set has a nonempty

intersection with D1×· · ·×Dm, the projection onto the intersection of the two

sets can be defined but it is not guaranteed to be unique. To cirmcumvent

this difficulty, it can be noticed that (11) actually defines a multi-convex con-

straint in the sense that if, for every i ∈ {1, . . . ,m}, (Wj)1≤j≤m,j ̸=i are given,

then (11) imposes a convex constraint on Wi. This suggests to introduce the

following closed and convex set:

Ci,n = {Wi ∈ RNi×Ni−1 | ∥Ai,nWiBi,n∥S ≤ ϑ} (12)

in order to control the Lipschitz constant. Hereabove, the matrices Ai,n and

Bi,n represent the product of the weight matrices for the previous and the

posterior layers, respectively. By adopting the convention that Ai,n = Id if

i = m and Bi,n = Id if i = 1, we define these matrix products as

Ai,n = Wm,n · · ·Wi+1,n, Bi,n = Wi−1,n+1 · · ·W1,n+1, (13)

where (Wj,n)1≤j≤m denote the estimates of the weight matrices at each iter-

ation n, as it appears in Algorithm 1.
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Thus, our objective will be to perform the projection onto the set Si,n =

Di ∩ Ci,n, for each layer i ∈ {1, . . . ,m} and at each iteration n. Several

algorithms can be envisaged to solve this convex optimization problem.

Before describing our proposed algorithmic solution, let us recall the ex-

pressions of the required elementary projections. For every W ∈ RS×T , the

projection of W onto [0,+∞[S×T is

P[0,+∞[S×T (W ) = (W̃s,t)1≤s≤S,1≤t≤T , (14)

where, for every s ∈ {1, . . . , S} and t ∈ {1, . . . , T},

W̃s,t =

Ws,t if Ws,t ≥ 0

0 otherwise.

(15)

Let B(0, ϑ) be the closed spectral ball of center 0 and radius ϑ defined as 1

B(0, ϑ) = {W ∈ RS×T | ∥W∥S ≤ ϑ}. (16)

For every W = (Ws,t)1≤s≤S,1≤t≤T ∈ RS×T , let UΛV ⊤ be the singular value

decomposition of W , where U ∈ RS×R and V ∈ RT×R are matrices such that

U⊤U = Id and V ⊤V = Id , R = min{S, T}, and Λ = Diag(λ1, . . . , λR),

(λr)1≤r≤R ∈ [0,+∞[R being the singular values of W . Then the projection

of W onto B(0, ϑ) is expressed as

PB(0,ϑ)(W ) = U Λ̃V ⊤ (17)

where Λ̃ = Diag(λ̃1, . . . , λ̃r) and

(∀i ∈ {1, . . . , r}) λ̃i =

λi if λi ≤ ϑ

ϑ otherwise.

(18)

1To simplify our notation, B(0, ϑ) will designate any spectral ball of this kind whatever the dimensions

of the involved matrices.
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To compute the projection onto Si,n of a matrix W i ∈ RNi×Ni−1 , we propose

to employ the FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) ver-

sion of a dual forward-backward method in Algorithm 2. This algorithm is

based on a dual proximal approach [40] and constitutes an extension of the

optimization method originally proposed in [41]. The rationale for this algo-

rithm is given in the appendix.

Algorithm 2: FISTA-like accelerated version of DFB algorithm

Let Y0 ∈ RNm×N0

Set γ = 1/(∥Ai,n∥S∥Bi,n∥S)2

Set α ∈]2,+∞[

for l = 0, 1, . . . do

ηl =
l

l+1+α

Zl = Yl + ηl(Yl − Yl−1)

Vl = PDi
(W i − A⊤

i,nZlB
⊤
i,n)

Ỹl = Zl + γAi,nVlBi,n

Yl+1 = Ỹl − γPB(0,ϑ)(γ
−1Ỹl)

return Vl

3.3. Handling looser constraints

The Lipchitz constant of the network can be controlled in multiple ways.

Besides the solution formulated in Section 3.2, a more standard approach to

control it [20] consists in imposing

m∏
i=1

∥Wi∥S ≤ ϑ. (19)

Two strategies have been implemented to enforce this constraint.
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(i) The first one consists in imposing a uniform bound on the spectral

norm of each weight matrix (Wi)1≤i≤m, which leads to the following

convex constraint sets:

(∀i ∈ {1, . . . ,m}) C̃i = {Wi ∈ RNi×Ni−1 | ∥Wi∥S ≤ ϑ
1/m}. (20)

(ii) The second strategy aims at introducing more flexible bounds on the

spectral norms of each layer. It is based on the following choice for the

individual convex constraint sets:

(∀n ∈ N \ {0})(∀i ∈ {1, . . . ,m})

Či,n =
{
Wi ∈ RNi×Ni−1 | ∥Wi∥S ≤ ∥Wi,n∥S

( ϑ∏m
j=1 ∥Wj,n∥S

)1/m}
.

For every i ∈ {1, . . . ,m}, projecting onto C̃i or Či,n is performed by truncating

a singular value decomposition, similarly to the technique described at the

end of Section 3.2. The projections onto C̃i ∩ Di and Či,n ∩ Di can then

be computed by using the same iterative method as in Algorithm 2 with

Ai,n = Bi,n = Id .

In all the proposed constrained optimization methods, the projection

PB(0,ϑ̃) onto a spectral ball with radius ϑ̃ > 0 plays a prominent role. The

ball radius depends on the handled constraint (11), (20), or (10). A complex

operation such as a singular value decomposition may be very demanding in

terms of computational resources when dealing with large size matrices. In

that case, we propose to use an approximate projection [23] defined as

(∀W ∈ RS×T ) PB(0,ϑ̃)(W ) ≃


W if ∥W∥S ≤ ϑ̃

ϑ̃

∥W∥S
W otherwise.

(21)
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Figure 2: 13-gestures Dataset [42]

Using this approximation in Algorithm 2 yields approximate projections

(P̃Ci,n∩Di
)1≤i≤m,n>0. Note however that we then lose the theoretical guar-

antees of convergence Algorithm 2, even if this issue was not observed in our

implementation.

An additional advantage of Formula (21) is that it allows the nonnegativity of

the elements of the input matrix to be kept. This allows us to derive cheap

approximate versions of the projection onto C̃i ∩ Di with i ∈ {1, . . . ,m}

by first projecting onto Di and then applying the approximate projection

onto C̃i. The resulting approximate projection is denoted by (P̃C̃i∩Di
)1≤i≤m.

A similar procedure can be followed to compute approximate projections

(P̃Či,n∩Di
)1≤i≤m,n>0 onto (Či,n ∩ Di)1≤i≤m,n>0.
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Figure 3: Proposed neural network architecture for AGR. All the layers except the last one use ReLU

activation functions; the last layer uses Softmax. The number of neurons considered for each layer is:

128, 128, 128, 64, 32, 16, in the case of 7-gestures dataset and 256, 256, 256, 128, 64, 32 in the case of

13-gesture dataset. The last layer has 7 or 13 neurons representing the gesture number being recognized.

Each EMG box represents a column vector containing 8 time-descriptors.

4. AGR Experimental Setup

4.1. sEMG datasets

We test our proposed training scheme on three online datasets containing

EMG information of different hand gestures. All three were acquired using

Myo armband, a device developed by Thalmic Labs, equipped with eight

sEMG sensors displayed circularly.

The first dataset, detailed in [43] contains EMG signals characterizing 7

hand gestures correlated to the primary movements of the hand. There are

four mobility gestures (i.e., wrist flexion and extension, ulnar, and radial de-

viation) and two gestures used for grasping and releasing objects (i.e., spread

fingers and close fist). The 7th gesture characterizes the neutral position, cor-

responding to the relaxation of the muscles.

The second dataset includes 13 gestures: the same 7 gestures described

above, plus 6 additional classes. It contains gestures from 50 different sub-

jects and two sets of trials per user. All 13 gestures are depicted in Figure 2.
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More details about the dataset can be found in [42].

The third dataset is a subset of NinaPro DB5 dataset, detailed in [44].

The dataset is acquired using two Myo armbands, one positioned just below

the elbow and the other one closer to the arm. For our experiments, we

considered the subset C, which contains sEMG data associated to 24 gestures.

We also validate our models in a real-context scenario. For the real-

life predictions, we recorded the EMG activity associated with each gesture

at forearm level using Myo armband. The information collected from each

channel is transmitted to a computer via Bluetooth protocol where it is

processed to extract relevant time domain features that will be used by the

classifier to determine which gesture has been performed.

4.2. Proposed Architecture

The raw 8 channels EMG signal is split using a 250 ms sliding window,

with 50% overlap. From each window of each channel a series of 8 time

descriptors are extracted. The information from all the channels is then con-

catenated, forming a 64-dimensional vector. The 7-gestures dataset contains

around 200k vector samples, the 13-gestures dataset has around 59k vector

samples, while the 24-gestures dataset has around 20k vector samples. Those

are split in training, validation, and test sets at user level according to the ra-

tio: 70%, 20%, 10%. These vectors are fed to the network in mini-batches of

size 2048. The considered architectures consists of a 6-hidden layer (m = 6)

fully connected neural networks, with different parameters depending on the

considered datasets, but the same core structure, as displayed in Figure 3.

Let x = (xk)0≤k≤K−1 be the vector of EMG samples acquired on a window

from one channel. For this work we considered some of the most relevant
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features to describe sEMG data, as follows.

(i) Mean Absolute Value (MAV) – the mean of the absolute values of

the signal is given by

MAV(x) =
1

K

K−1∑
k=0

|xk|. (22)

(ii) Zero Crossing Rate (ZCR) – this feature counts the frequency at

which the signal passes through zero. A threshold α ≥ 0 is used in

order to lessen the noise effect. This feature can be computed in an

incremental manner and it is defined as

ZCR(x) =
∣∣∣{k ∈ {1, . . . , K − 1} |

|xk − xk−1| ≥ α and xkxk−1 < 0
}∣∣∣. (23)

(iii) Waveform Length (WL) – this feature offers a simple characteri-

zation of the signal waveform. It corresponds to the following total

variation seminorm:

WL(x) =
K−1∑
k=1

|xk − xk−1|. (24)

(iv) Slope Sign Changes (SSC) – measures the frequency at which the

sign of the signal slope changes. It amounts in checking a condition on

three consecutive samples xk, xk−1, xk+1 with k ∈ {2, . . . , K − 2}:

SSC(x) =
∣∣∣{k ∈ {2, . . . , K−2} | (xk− xk−1)(xk − xk+1) ≥ α}

∣∣∣, (25)

where the threshold α > 0 is employed to reduce the influence of the

noise.
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(v) Root Mean Square (RMS) – this feature, also related to the quadratic

mean or local energy of the signal is given by

RMS(x) =

√√√√ 1

K

K−1∑
k=0

x2
k . (26)

(vi) Hjorth parameters – are a set of three features originally developed

for characterizing electroencephalography signals and then successfully

applied to sEMG signal recognition. The most relevant Hjorth activity

parameter can be thought of as the integrated power spectrum and

basically corresponds to the variance of the signal calculated as follows:

σ2(x) =
1

K

K−1∑
k=0

(xk − µ(x))2, (27)

where µ(x) represents the mean value of the signal. The standard

deviation and RMS(x) are equal when the mean of the signal is zero.

(vii) Skewness – measures the overall asymmetry of probability distribution

of the data:

Skew(x) =
1

K

K−1∑
k=0

(
xk − µ(x)

σ(x)

)3

. (28)

(viii) Integrated Square-root EMG (ISEMG) – is a feature returning

the sum of the fully-rectified signal:

ISEMG(x) =
K−1∑
k=0

√
| xk |. (29)

4.3. Performance analysis in terms of accuracy and robustness

The performance of our AGR system trained conventionally achieves

state-of-art performance [46, 42, 14], of over 99% accuracy for the first two
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Method Dataset # of gestures Accuracy [%] Year

Fusion-Lohi [13] DVS-EMG 5 96.04 2020

EELM [16] NinaPro DB5 52 77.90 2022

MResLSTM [11] NinaPro DB1 52 89.65 2021

GRU-Res [14] sEMG-IMU 20 99.49 2022

EMG-CNN [45] 15Myo-sEMG 15 98.67 2022

7-DNN (ours) Myo-sEMG 7 99.67 2020

13-DNN (ours) 13Myo-sEMG 13 99.31 2021

24-DNN (ours)
NinaPro DB5

(Exercise C)
24 86.20 2023

Table 1: Comparison to other State of the Art sEMG-based AGR systems

datasets and around 86% in the case of the 24-gestures dataset [16, 26]. A

more detailed comparison with other new sEMG-based AGR systems is pre-

sented in Table 1. Since in this case the weights are not guaranteed to be

positive, the lower bound introduced in Proposition 2.2 does not constitute a

valid Lipschitz constant. Computing the exact Lipschitz constant θm of the

system is a very difficult task [33], but we can easily bound θm between the

estimate given by (6) and the spectral norm of the product of all the weight

matrices from the network. We found that the Lipschitz constant estimate

θm ∈ [1.56×1012, 1.59×1014] for all three datasets. This suggests that despite

the high performance of the classifiers, their robustness is poorly controlled,

leaving the systems vulnerable to adversarial perturbations.

A first step towards controlling the Lipschitz constant of the classifica-

tion algorithm and implicitly its robustness is to impose the nonnegativity

condition associated with constraint D. Training under such a nonnegativity

constraint is shown to improve the network operation interpretability [32]

and acts as a regularization, reducing overfitting. On the other hand, it
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Accuracy 75 % 80 % 85 % 90 % 95%

Lipschitz

constant

7-gestures

C̃i ∩ Di

P̃C̃i∩Di
19.5 37.5 68.3 3.5× 104 3.5× 108

PC̃i∩Di
0.66 13.47 74.16 1.04× 103 1.39× 105

Či,n ∩ Di

P̃Či,n∩Di
0.71 1.84 3.42 6.87 11.60

PČi∩Di
0.70 1.35 3.41 6.79 11.20

Ci,n ∩ Di

P̃Ci,n∩Di
0.44 1.79 2.93 4.85 5.68

PCi,n∩Di
0.35 0.46 0.65 0.82 0.95

Lipschitz

constant

13 gestures

C̃i ∩ Di

P̃C̃i∩Di
20.2 41.8 145.2 2.2× 105 1.21× 1011

PC̃i∩Di
0.85 20.47 112.3 1.62× 104 2.31× 108

Či,n ∩ Di

P̃Či,n∩Di
0.84 2.08 4.23 7.54 12.02

PČi∩Di
0.81 2.01 4.12 7.50 11.92

Ci,n ∩ Di

P̃Ci,n∩Di
0.54 1.87 3.38 4.20 5.78

PCi,n∩Di
0.49 0.53 0.75 0.92 1.25

Accuracy 65 % 70 % 75 % 80 % 85%

Lipschitz

constant

24-gestures

C̃i ∩ Di

P̃C̃i∩Di
25.13 57.16 188.26 2.5× 106 2.14× 1011

PC̃i∩Di
1.85 31.12 112.3 1.82× 104 4.63× 108

Či,n ∩ Di

P̃Či,n∩Di
1.74 2.41 6.02 10.17 20.14

PČi∩Di
1.57 2.18 5.94 10.58 19.69

Ci,n ∩ Di

P̃Ci,n∩Di
0.88 2.05 4.28 5.74 6.84

PCi,n∩Di
0.77 0.96 1.27 1.44 1.96

Table 2: Lipschitz constant obtained with various constrained optimization strategies for different accu-

racies – 7-gestures dataset.

can affect its approximation capability and potentially lead to a performance

decay. Training the proposed system subject to constraint D results in an

overall accuracy of 96.92 %, 95.87%, and 84.75 % for the case of 7, 13, and 24

classes, respectively. The performance decay was balanced by an increase in

the robustness, since the Lipschitz constant, computed as indicated in Propo-

sition 2.2, equals θm = 9.69×1010 for 7 classes, θm = 9.73×1010 for 13 classes

and θm = 1.03×1011 for 24 classes. We observed that the accuracy reduction

can be overcome by adding additional layers to the architecture. Indeed, we
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were able to obtain a similar accuracy to the baseline by adding an extra

layer to the existing architecture and retraining both systems subject to D,

i.e. 98.68%, 97.21% and 85.12% for the 7-gesture, 13-gesture, and 24-gesture

datasets, respectively. Furthermore, compared to the unconstrained models,

we managed to maintain a high performance while improving the robustness

with respect to unconstrained training, i.e. θm = 1.02×1011 for the 7-classes

dataset, θm = 9.96 × 1010 for the 13-classes dataset and θm = 4.24 × 1011

for the 24-classes dataset. We can however conclude from these tests that

imposing the nonnegativity of the weight coefficients is not sufficient to reach

satisfactory robustness.

To further control the robustness of the systems, we have to manage the

Lipschitz constant of the networks by training them under additional spectral

norm constraints, as described by (11). Searching for the optimal accuracy

robustness trade-off, we trained several models considering each of the three

aforementioned constraints, namely (Ci,n)1≤i≤m,n∈N in (12), (C̃i)1≤i≤m in (20),

and (Či,n)1≤i≤m,n∈N in (10).

By adjusting the upper bound ϑ, we were able to assess the effect of a

robustness constraint on the overall performance of the neural network-based

classifiers, and finally to achieve the optimal trade-off. All our models were

trained using Algorithm 1 as the optimizer.

The obtained results are summarized in Table 2. As expected, obtaining

a good robustness-accuracy trade-off requires paying attention to the way we

design our constrained networks. In all the cases, we show that using tight

constraints during the training phase to approximate the Lipschitz bound

improves the overall performance of the classifier, proving the generaliza-
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tion properties of our solution. For comparison, for each of the proposed

constraints, we also evaluated the use of an inexact projection, designated

by P̃ (see Section 3.3). It can be observed that using an exact projection

yields significantly better results. By combining tight constraints and exact

projection techniques, we observe that the robustness of the network can be

properly ensured while keeping a good accuracy in both cases. Indeed, we

succeeded in ensuring a Lipschitz constant around 1 for a 95% accuracy. The

observed loss in accuracy with respect to a standard training is consistent

with the “no free lunch theorem” [47].

Training neural networks subject to tight spectral norm constraints can

be challenging,2 and the cost of obtaining a good performance is the training

time. We used a learning rate scheduler strategy during training, reducing

the learning rate by a factor of 2 if the performance does not improve for

1000 epochs. Figure 4 shows the training curves for both validation and

training sets in the context of the unconstrained baseline model (yellow and

green lines), and in the case of training a constrained version (red and blue

lines) using the optimal projection PCi,n∩Di
, with ϑm = 0.95. Even though

it requires more iterations, the constrained model is capable of reaching an

accuracy comparable with the baseline, while providing a robustness certifi-

cate.

Since the training curves may show some slight variations, we measured

the accuracy variations in two ways: by computing the classical standard

deviation (std), and by employing median absolute deviation (mad). For a

2A code in TensorFlow will be made available upon the acceptance of the paper.
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Figure 4: Accuracy vs. Iterations – constrained and unconstrained models in the context of 7-gesture

dataset. The training and validation curves are displayed in green and yellow, respectively, for the un-

constrained model. The training and validation curves are displayed in blue and red, respectively, in the

case of constrained training, with the bound ϑ = 0.95.

vector (xi)1≤i≤I , it is expressed as MAD = median
(
(|xi−ζ(x)|)1≤i≤I

)
, where

ζ(x) represents the median of the vector components. From this quantity,

we can derive an empirical estimate of the standard deviation by multiplying

MAD with a factor equal to 1.4826. The latter estimate is known to be

more robust to outliers for Gaussian distributed data, especially in the case

of small populations. The results are summarized in Table 3. It can be

observed that the empirical standard deviation is below 1.6% and the robust

estimate of it is below 1.1% for all three datasets. These deviations values

are normal considering the size of the dataset and shows that the presented

results are relevant and consistent.

Next, we have also evaluated how the positivity constraint impacts the

overall accuracy of our system. We trained a robust network by allowing the

weights to have arbitrary signs. For this purpose, we control individually the

Lipschitz constant of each layer i ∈ {1, . . . ,m} to be less than a given value

ϑ
1/m

. The exact projection onto C̃i, PC̃i , as well as the approximate one P̃C̃i
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Accuracy 75% 80% 85% 90% 95%

7-gestures dataset

Model Variation

empirical std 0.65 1.22 0.56 1.35 1.10

robust std 1.02 0.94 0.53 0.87 1.07

13-gestures

Model Variation

empirical std 0.65 1.05 0.75 0.75 0.72

robust std 0.77 0.81 0.72 0.97 0.59

Accuracy 65% 70% 75% 80% 85%

24-gestures

Model Variation

empirical std 0.68 0.95 0.87 0.77 0.76

robust std 0.89 0.74 0.79 0.89 0.64

Table 3: Standard deviation of accuracy computed on 15 epochs, after convergence, on the test set for

constrained models.

were computed as described previously. In this case ϑ represents an upper

bound on the Lipschitz constant of the system. Table 4 summarize the re-

sults for different values of ϑ, for two datasets. We compare our method for

dealing with Lipschitz constraints with the approach proposed in [48]. This

approach which is implemented in the deel-lip library allows the user to train

robust networks in a convenient manner, offering a robustness certificate by

performing a spectral normalization for each layer. It can be observed on

these datasets that our method yields similar results when using the approx-

imate projection, but better ones when using the exact projection. These

results underline again the importance of carefully managing the projections

and the effect it has on the accuracy of the system.

5. Robustness validation

In this section we investigate to what extent the theoretical concepts

described in the previous sections help in improving the robustness of the

classifier in different settings. To this goal, we consider the following three

scenarios. In the first one, we examine the impact of adversarial attacks on
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Accuracy 75% 80% 85% 90% 95%

7-gestures dataset

Lipschitz constant

Ci
P̃C̃i 72.03 127.5 1296 8.75× 104 5.43× 109

PC̃i 52.06 102.49 905.45 7.23× 104 8.14× 108

Deel-lip[48] 75.81 126.9 1283.6 8.70× 104 5.43× 109

13-gestures dataset

Lipschitz constant

Ci
P̃C̃i 76.59 125.20 1016 2.03× 104 4.3× 108

PC̃i 61.22 99.74 740 1.26× 104 6.7× 107

Deel-lip[48] 77.21 125.63 1120 2.04× 104 4.5× 108

Table 4: Lipschitz constant for networks trained with arbitrary signs – 7-gestures / 13-gestures datasets.

the performance of the classifier. The second scenario takes into account

the effect of noise in the acquisition process. In the case of sEMG signals,

this noise may come from imperfect skin-sensor contact caused by hairs or

drops of sweat. In the last scenario we perform a real-life experiment using

10 able-bodied volunteers.

5.1. Sensitivity to adversarial attacks

We evaluate our robust model on purposely designed perturbations, by

studying their influence on the overall performance of the system. We lead at-

tacks on our best robust model in terms of accuracy and robustness achieving

92.95% accuracy and a Lipschitz constant ϑ = 0.87 for the 7-gesture dataset.

We compare the results with two conventionally trained models: the best

one in terms of performance, which achieves 99.78% prediction accuracy on

non-adversarial data, and another one trained to have similar performance

as our robust model reaching 92.99% accuracy on the original test set.

To create the adversarial samples we used some of the most popular white-

box attackers, namely: Fast gradient sign method (FGSM) [24] – generates

adversarial data based on the gradient of the cost function with respect to

the input data; Jacobian Saliency Map Attacker (JSMA) [49] – computes a
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Accuracy [%]

robust model baseline model adversarial trained model – PGD

Attack adversarial non-adversarial adversarial non-adversarial adversarial non-adversarial adversarial non-adversarial

FGSM [24] 91.75

92.95

76.48

99.78

71.21

92.99

...

97.25
C&W ℓ2 [51] 90.09 48.03 45.85 ...

PGD [50] 91.92 59.36 56.38 ...

JSMA [49] 91.10 89.37 81.27 ...

Table 5: White-box attack results. We consider out best constrained model, having a Lipschitz constant

θ = 0.97, two models trained conventionally: the best baseline and another one having similar performance

as the constrained one. On the last columns we feature an adversarial trained model using PGD-generated

perturbations.

perturbation based on ℓ2 distance metric by iteratively selecting the input

sample that will increase the chance of miss-classification; Projected gradient

descent (PGD)[50] – uses local first order information about the network to

create adversarial examples; Carlini and Wagner (C&W) [51] – utilizes ℓ2

distance to compute the optimal adversarial perturbation.

We also show a comparison with another popular technique of ensuring

the robustness of neural network-based models, namely Adversarial train-

ing. This implies training an extended version of the dataset, containing the

original training data together with a perturbed version of the samples in

an effort to increase the system stability against adversarial inputs. Note

that this method is purely empirical and gives no theoretical robustness cer-

tificates. We implemented an adversarial training strategy detailed in [50],

training the system using an augmented version of the dataset which was

updated every 25 epochs. The adversarial samples were created using PGD

attack and then the model was validated using data containing perturbations

computed with various attacks.

The results summarised in Table 5 show the performance obtained for
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the 7-gesture test set. Note that the robust model performance is barely

affected by the adversarial perturbations, whereas the baseline models show

a huge drop in accuracy. It can be observed that adversarial training helps to

increase the robustness, but our method of controlling the Lipschitz constant

the network provides better results when facing data perturbed with other

attackers than PGD. This shows that our method is more versatile, since its

performance remains stable whatever the attacker.

5.2. Noisy input behaviour

To simulate the effect of underlying noise generated during the acquisition

process, we added synthetic noise directly to the raw sEMG data, prior to

the feature extraction step. The noise is chosen independent and identically

distributed according to a Gaussian mixture law (1−p)N (0, σ2
0)+pN (0, σ2

1).

The mixture comprises a background component, corresponding to the in-

trinsic electronic noise in the armband, such as thermal or quantization noise,

and an impulsive component accounting for outliers. Those may be related

to imperfect wiring that can generate impulse-like artifacts. In our experi-

ments, we consider background and impulse noises with standard deviations

σ0 = α and σ1 = 10α with α ∈ [0,+∞[. We generate different levels of

noise, by varying the parameter α. The probability of peaks p ∈ [0, 1] is also

adjusted to simulate more or less severe scenarios in terms of outliers.

From the resulting noisy signals, we extract the features described in

Section 4 and pass them to the classifier, using our robust models reaching

an accuracy of 92.95% (ϑ = 0.87) for the 7-gestures dataset, and 93.05%

(ϑ = 0.98) in the case of the 13-gestures dataset, trained with non-altered

data. We compared the results achieved with our robust training with those
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(a) σ0 = α; σ1 = 10α; p = 0.15 (b) σ0 = α; σ1 = 10α; p = 0.3 (c) σ0 = α; σ1 = 10α; p = 0.45

(d) σ0 = α; σ1 = 10α; p = 0.15 (e) σ0 = α; σ1 = 10α; p = 0.3 (f) σ0 = α; σ1 = 10α; p = 0.45

Figure 5: Accuracy vs. α in the context Noisy Inputs training. First row: 7-gesture dataset; Second

row: 13-gestures dataset. Red line: robust model; Blue line: baseline model; Green line: adversarial

trained model

obtained with i) classical training and ii) adversarial training. In this case,

the adversarial training was performed by generating an extended dataset,

containing the original data and corrupted versions of them by additive noise

following the Gaussian mixture law described above, where the parameters p

and α were drawn randomly in a uniform manner on [0.15, 0.45] and [0, 2], re-

spectively. In the absence of noise, a similar performance in terms of accuracy

was obtained: 7-gestures dataset – 92.99%, and 92.97%, 13-gestures dataset

– 93.03% and 92.98% for baseline and the adversarial training, respectively.

The experimental results obtained on two datasets are depicted in Figure 5.

The red, blue, and green lines correspond to the unconstrained, constrained,

and adversarial models, respectively. We observe that the constrained model

is significantly less affected by the presence of noise in the inputs than the one
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Movement User #1 User#2 User#3 User#4 User#5 User#6 User#7 User#8 User#9 User#10

C U C U C U C U C U C U C U C U C U C U

up 2 2 1 3 0 0 0 1 0 0 0 2 0 2 1 2 0 2 1 3

down 1 1 0 2 2 3 0 0 2 4 1 0 2 3 1 1 0 1 0 1

right 0 4 0 0 0 1 0 1 1 1 0 2 0 0 0 0 0 1 1 2

left 3 5 1 4 0 1 0 1 2 5 0 0 0 1 2 3 1 2 0 1

fist 0 2 2 4 0 0 1 0 0 3 0 1 1 1 0 2 1 1 1 3

spread 0 3 2 5 3 4 2 4 1 0 0 0 1 2 1 0 0 1 0 3

Sum 6 17 6 18 5 9 3 7 6 13 1 5 4 9 6 7 2 8 3 3

Error rate (%) 5 14 5 15 4.1 7.5 2.5 5.7 5 10.7 0.7 4.1 3.3 7.5 5 5.7 1.6 6.6 2.5 10.7

Table 6: Experiment results

trained without robustness guarantees. It is also worth noting that training

with adversarial inputs also leads to satisfactory results, although usually

slightly less accurate. The Lipschitz lower and upper bounds computed for

the networks trained in an adversarial manner are indeed much lower than

those with standard training, but they remain quite large ((1845.23, 79534.2)

for 7-gestures dataset and (1754.74, 64595.8) for 13-gestures dataset).

This experiment emphasizes that controlling the Lipschitz constant of a

network improves its robustness not only against targeted adversarial attacks,

as shown previously, but also in the case of black-box attacks, where no prior

information about the model is used.

5.3. Real-life scenario validation

To illustrate the practical applicability of our findings, we proceed to

validate our model in a real-life context. For this purpose, we designed an

experiment to compare a conventionally trained model with the constrained

one. We integrated both models in a real-time application that controls a

3D hand on a screen, as well as a game that can be controlled by gestures,
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(a) 3-D hand control

(b) Gesture-control game

Figure 6: Real-life experimental setup

to give the user a tangible feedback. We used the Unity3 platform to design

and control a 3D hand and then encapsulated our models in an application

which performed real-time inference and the hand was moving on the screen

in accordance with the predicted gesture. We asked 10 volunteers (males

and females) to test both models by performing each gesture 20 times. We

emphasize that the user had no prior knowledge about what model was im-

plemented, since it was randomly selected at the beginning of each new trial.

Pictures of the experimental setup are provided in Figure 6. Table 6 details

on a user level, how many (out of the 20) trials were erroneously classified.

U and C denote the Unconstrained and the Constrained models, respectively.

Note that, despite obtaining very good results on the test set, the uncon-

strained model loses a lot in terms of performance (up to 15%) when facing

real-life data. We can observe that training a positive neural networks sub-

ject to Lipschitz constraints improves the overall robustness of the classifier

against adversarial perturbations, not only from a theoretical viewpoint, but

3https://unity.com/
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also practically by leading to more reliable systems with greater generaliza-

tion power.

As for the other application, we asked the volunteers to play 2 rounds

of a gesture-controlled game, one with each model. The game was inspired

by the famous Temple Run 4, and consists of a moving cube which the user

controls via gestures. The player can move his/hers hand left or right to

move the character to either side of the screen to avoid obstacles. The player

can also move the hand up to jump or spread its fingers to shoot and clear

the obstacles ahead. The game is over when the player fails to take a turn or

to jump/ clear an obstacle. We observed that 70% of the users were able to

obtain higher scores when they used the constrained model, showing again

that our solution is more stable when it comes to real-life applications.

5.4. Limitations

Increased training time is one of the main limitations of our proposed

approach. Indeed, to compute the true projection, the proposed method

uses an iterative algorithm which performs singular value decomposition at

each iteration, which is a resource consuming operation, especially when

performed on large matrices. We propose several lower complexity solutions,

which have proved to offer a good trade-off between training time, robustness

and performance.

Another limitation is related to the fact that our method for controlling

the Lipschitz constant of the system is currently applicable in the context

4https://play.google.com/store/apps/details?id=com.imangi.templerun&hl=

en&gl=US&pli=1
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of nonnegative-weighted fully connected feed-forward neural networks. Al-

though, the performance remains good for the considered AGR systems, the

nonnegativity constraint might lead to a loss of expressivity of the neural

networks in other inference tasks. In a future work, we plan to extend our

method towards more general neural network architectures, including convo-

lutional layers, skip connections, etc.

6. Conclusion

This work has shown the usefulness of designing robust feed-forward neu-

ral networks for automatic gesture recognition based on sEMG physiological

signals. More precisely, we proposed to finely control the Lipschitz constant

of these nonlinear systems by considering positively weighted neural architec-

tures. To offer robustness certificates, we also developed new optimization

techniques for training classifiers subject to spectral norm constraints on

the weights. We studied various constrained formulations and showed that

robustness can be secured without sacrificing accuracy when using a com-

bination of tight constraints and exact projections. We also provide several

lower-complexity solutions, which reduce the training time significantly.

Experiments on three distinct datasets illustrated the good performance

of our approach. We further demonstrated the effectiveness of our robust

classifier, compared to classically trained ones, when facing white-box and

black-box attacks, as well as in real-life usage.

In future works, it would be interesting to apply such a robust training

procedure to other applications in pattern recognition involving data acquired

in real-time.
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Appendix – Accelerated DFB algorithm

Let n ∈ N \ {0} and i ∈ {1, . . . ,m}. Computing the projection of a

matrix W i ∈ RNi×Ni−1 onto Di ∩ Ci,n is equivalent to solve the following

matrix optimization problem:

minimize
Wi∈RNi×Ni−1

ιDi
(Wi) + ιB(0,ϑ)(Ai,nWiBi,n) +

1

2
∥Wi −W i∥2F (30)

where ∥·∥F is the Frobenius norm and ιS denotes the indicator of a set S (this

function is equal to 0 on this set and +∞ otherwise.) The dual optimization

problem associated to this strongly convex minimization problem reads

minimize
Y ∈RNm×N0

f ∗(−A⊤
i,nY B⊤

i,n) + ι∗B(0,ϑ)(Y ), (31)

where for a given function g, g∗ denotes its Fenchel-Legendre conjugate. In

our case f = ιDi
+ 1

2
∥ · −W i∥2F. From standard conjugation rules [40], f ∗ is

equal to

(∀Wi ∈ RNi×Ni−1) f ∗(Wi) = ι̃Di
(Wi +W i), (32)

where ι̃Di
is the Moreau envelope of ι∗Di

given by

ι̃Di
(Wi) = inf

W ′
i∈R

Ni×Ni−1

ι∗Di
(W ′

i ) +
1

2
∥W ′

i −Wi∥2F. (33)

The Moreau envelope of a proper lower-semincontinuous convex function is

differentiable. Thus f ∗ is differentiable and its gradient is [52, Example 17.33]

∇f ∗(Wi) = PDi
(Wi +W i). (34)

We deduce that the gradient of Y 7→ f ∗(−A⊤
i,nY B⊤

i,n) is

−Ai,nPDi
(W i − A⊤

i,nY B⊤
i,n)Bi,n.
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Since PDi
is a nonexpansive operator, the latter function has a Lipschitz

gradient with constant β = ∥Ai,n∥2S∥Bi,n∥2S. The dual problem (31) thus cor-

responds to the minimization of the sum of a smooth convex function and

a proper lower-semicontinuous function. Consequently, it can be minimized

by a proximal algorithm. Such a strategy will require to calculate the prox-

imity operator of γι∗B(0,ϑ) for some scaling parameter γ ∈]0,+∞[. By using

Moreau’s formula [52], this proximity operator is expressed as

(∀Y ∈ RNm×N0) proxγι∗
B(0,ϑ)

(Y ) = Y − γPB(0,ϑ)(γ
−1Y ). (35)

A classical solution for solving the dual problem consists in using the standard

forward-backward algorithm [53, 35]. This leads to Algorithm 3 [41]. Another

solution consists in using the FISTA-like algorithm in [54], which leads to the

accelerated version in Algorithm 2. The sequences (Yℓ)ℓ∈N generated by these

two algorithms is guaranteed to converge to a solution Ŷ to the dual problem.

In addition, from Kuhn-Tucker conditions, the solution to the primal problem

Ŵi = PSi,n
(W i) is equal to ∇f ∗(−A⊤

i,nŶ B⊤
i,n). It follows from (34) and the

continuity of PDi
that the sequence (Vℓ)ℓ∈N converges to Ŵi.

Algorithm 3: Dual Forward-backward algorithm

Let Y0 ∈ RNm×N0

Set ϵ ∈]0, 1/(∥Ai,n∥S∥Bi,n∥S)2[

for l = 0, 1, . . . do

Set γℓ ∈ [ϵ, 2/(∥Ai,n∥S∥Bi,n∥S)2 − ϵ] Vℓ = PDi
(W i − A⊤

i,nYℓB
⊤
i,n)

Ỹℓ = Yℓ + γℓAi,nVℓBi,n Yℓ+1 = Ỹℓ − γℓPB(0,ϑ)(γ
−1
ℓ Ỹℓ)
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[19] A. D. Orjuela-Cañón, A. F. Rúız-Olaya, L. Forero, Deep neural network for EMG signal classification

of wrist position: Preliminary results, in: IEEE Latin American Conf. Comput. Intell., Arequipa,

Peru, 2017, pp. 1–5.

[20] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing

properties of neural networks, in: Proc. Int. Conf. Learn. Represent., Banff, Canada, 2014.

[21] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial machine learning at scale, in: Int. Conf. Learn.

Represent., Toulon, France, 2017.

[22] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner, W. Zhou, Hidden voice

commands, in: USENIX Security Symp., Austin, TX, USA, 2016, pp. 513–530.

[23] M. Takeru, K. Toshiki, K. Masanori, Y. Yuichi, Spectral normalization for generative adversarial

networks, in: Int. Conf. Learn. Represent., Vancouver, Canada, 2018.

[24] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, in: Int.

Conf. Learn. Represent., San Diego, CA, USA, 2015.
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