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Abstract

This paper introduces a novel approach for building a robust Automatic Gesture
Recognition system based on Surface Electromyographic (sEMG) signals, acquired
at the forearm level. Our main contribution is to propose new constrained learning
strategies that ensure robustness against adversarial perturbations by controlling
the Lipschitz constant of the classifier. We focus on positive neural networks for
which accurate Lipschitz bounds can be derived, and we propose different spectral
norm constraints offering robustness guarantees from a theoretical viewpoint. Ex-
perimental results on two distinct datasets highlight that a good trade-off in terms
of accuracy and performance is achieved. We then demonstrate the robustness of
our models, compared to standard trained classifiers in three scenarios, considering
both white-box and black-box attacks.

Keywords: Recognition, Machine Learning, Perturbations, Stability,

Lipschitz regularity, Optimization, EMG

1. Introduction

In recent years, the concept of human-computer interaction (HCI) has

been at the core of many scientific and sociological developments. Combined

with the power of machine learning algorithms, it has led to some of the most

outstanding achievements in nowadays technology which are used successfully

in an ever-increasing number of areas impacting our lives, e.g. medicine [1],
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autonomous driving [2], natural language processing [3], etc. Researchers

all around the world focus on providing new intuitive and accurate ways of

interacting with devices around, based on gesture, voice, or vision analysis [4].

Gestures constitute a universal and intuitive way of communication, with the

potential of bringing the Internet of Things (IoT) experience to a different,

more organic level [5]. Automatic gesture recognition (AGR) algorithms can

be successfully used in various applications, from sign language recognition

(SLR) [6] to VR games [7].

Various solutions for AGRs based on image or video stream analysis,

leveraging on computer vision algorithms have been proposed; see for exam-

ple [8, 9, 10]. Multi-modal approaches for gesture classification have been

also studied [11]. Although a good performance is achieved on synthetic data,

in real-life scenarios these systems may be sensitive to environmental con-

ditions, e.g. light conditions, background, etc. Additionally, these systems

are often computationally demanding and consequently not always suited for

real-time applications. Accelerometers and electromyography (EMG) sensors

provide an alternative low-cost technology for gesture sensing. sEMG stands

for surface electromyography and represents the electrical manifestation of

the neuromuscular activation related to the contraction of the muscles [12].

The applications of sEMG-based classification systems are focused on, but

not limited to, assertive devices and rehabilitation or postural control ther-

apy for physically impaired persons [13]. With the continuous development

of more versatile signal processing techniques, the applications of EMG sig-

nal classification expanded to a wide range of domains including augmented

reality, gaming industry, military applications, etc.[14, 15].
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Two critical issues need to be addressed when developing AGR algo-

rithms: fast enough inference to ensure real-time feeling for the end-user,

and accurate and robust classification to guarantee that the gesture is cor-

rectly identified no matter the environmental conditions. Machine learning

methods have become ubiquitous tools in a wide range of tasks including

AGR, on account of their ability to solve a great variety of problems, from

simple regressions to complex multi-modal classification.

However, deep neural networks, which are probably the most powerful

methods, may appear as black boxes whose robustness is not always well-

controlled. For real-life applications, it is mandatory to guarantee the relia-

bility of such techniques. Nowadays, the main difficulty to overcome consists

in developing high-performance systems that are also trustable and safe. An

additional challenge is to avoid implementation heaviness during the learning

phase.

In [16], the authors showed that slightly altering data inputs that were

correctly classified by the network can lead to a wrong classification [17,

18, 19]. This finding was at the origin of the concept of adversarial inputs,

which constitute malicious input data that can deceive machine learning

models. For example, [18] shows how voice interfaces can be fooled by cre-

ating carefully crafted artificial audio inputs of unintelligible voice that are

miss-classified as specific vocal commands by the system. Also, [20] intro-

duces several methods for generating adversarial examples on ImageNet that

are so close to the original data that differences are indistinguishable for the

human eye.

It must be emphasized that adversarial inputs are not necessarily artifi-
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cially created with the intention to sabotage the system. As other physiolog-

ical signals, e.g. EEG or EKG, EMG signals have low frequency components

(usually between 10 – 150Hz), and low amplitudes (≤ 10 mV Peak to Peak).

This makes them very sensitive to noise and outside perturbations that can

occur innately, under the form of noise stemming from acquisition devices,

imperfect sensor contact, etc. Those can seriously flaw the performance of

real-life applications based on pre-trained models [21].

As highlighted in [20], the Lipschitz behaviour of the network is tightly

correlated with its robustness against adversarial attacks. The Lipschitz con-

stant allows to upper bound the output perturbation knowing the magnitude

of the input one, for a given metric [22]. Controlling this constant thus repre-

sents a feasible solution to limit the effect of adversarial attacks. Computing

the exact Lipschitz constant of a neural network is however a very complex

problem, so the main challenge is to find clever ways to approximate this

constant effectively.

Recently, several techniques to ensure the Lipschitz stability of neural net-

works have been explored. For example, [19] proposes a novel weight spectral

normalization technique applied to stabilize the training of the discriminator

in Generative Adversarial Networks (GANs). The Lipschitz constant of the

network is viewed as a hyper-parameter that can be tuned in the training

process of the image generation task. Doing so leads to a model with im-

proved generalization capabilities. In [23] norm-constraint GroupSort based

architectures are proposed and it is shown that they can be used as universal

Lipschitz function approximators. The authors apply gradient norm preser-

vation to create Lipschitzian networks that offer adversarial robustness guar-
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antees. In [24] the authors introduce Parseval networks, another approach

for designing networks which are intrinsically robust to adversarial noise, by

imposing the Lipschitz constant of each layer of the system to be less than

1. In [25] a convex optimization framework is introduced to compute tight

upper bounds for the Lipschitz constant of Deep Neural Networks (DNNs).

They make use of the observation that commonly used activation operators

are gradients of convex functions. Semi-definite programming approaches to

ensure robustness are also explored in [26].

The main contributions of this paper are:

• To propose a robust real-time Automatic Gesture Recognition system

based on sEMG signals. The robustness is ensured by using a novel

learning algorithm for training feedforward neural networks.

• To show that a good accuracy-robustness balance can be reached. To

do so, we train the system under carefully crafted spectral norm con-

straints, allowing us to finely control its Lipschitz constant. A tight

Lipschitz constant is efficiently estimated by focusing on neural net-

works with positive weights as in [27].

• To demonstrate the performance of the final architecture in real-life ex-

periments where we show that the proposed robust model outperforms

those trained conventionally.

• To analyze how our system behaves when the input is affected by dif-

ferent noise levels, simulating perturbations that may occur in real

scenarios.

• To show the validity of our solution by experimenting on two distinct

publicly available sEMG gestures datasets.
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The rest of the paper is structured as follows. The theoretical background

of our work is detailed in Section 2. In Section 3, we present the proposed

optimization algorithm and we investigate the way of dealing with the con-

straints. The application and the results are discussed in Section 4, while

Section 5 deals with how our model behaves when facing adversarial data.

Finally, Section 6 contains some concluding remarks.

2. Robustness solutions in the context of nonnegative neural net-

works

2.1. Problem formulation

Any feedforward neural network is obtained by cascading m layers asso-

ciated with operators (Ti)1≤i≤m. The neural network can thus be expressed

as the following composition of operators:

T = Tm ◦ · · · ◦ T1. (1)

Each layer i ∈ {1, . . . ,m} has a real-valued vector input xi of dimension

Ni−1 which is mapped to

Ti(xi) = Ri(Wixi + bi), (2)

where Wi ∈ RNi×Ni−1 , bi ∈ RNi are the weight matrix and bias parameter

respectively. Ri : RNi → RNi constitutes a non-linear activation operator

which is applied component-wise (e.g., ReLU or Sigmoid) or globally (e.g,

Softmax). Figure 1 shows a graphical representation of this concept.

Even though the choice of the activation Ri may differ depending on the

task at hand, it has been shown in [28, 29] that most of them are actually αi-

averaged operators with αi ∈]0, 1]. Recall that Ri is an αi-averaged operator
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Figure 1: Representation of a NN as a composition of operators

if, for every pair (xi, yi) ∈ (RNi)2, the following inequality holds:

∥Ri(xi)−Ri(yi)− (1− αi)(xi − yi)∥ ≤ αi∥xi − yi∥. (3)

When αi = 1/2, Ri is said to be firmly nonexpansive. For standard choices

of activation operators, Ri is firmly nonexpansive since it is the proximity

operator of a proper, lower-semicontinous function (see [29] for more details).

Note that, in [25], it is assumed that Ri operates component-wise and is slope-

bounded. The authors emphasize that the most common case corresponds

to lower and upper slope values equal to 0 and 1, respectively. It follows

from [30, Proposition 2.4] that a function satisfies this property if and only

if it is the proximity operator of some proper lower-semicontinuous convex

function, so that similar assumptions to those made in [29] are recovered.

As explained in [28], examples of activation operators Ri which are αi-

averaged with αi > 1/2 can be encountered. They basically correspond

to over-relaxations of firmly nonexpansive operator. An example of such

operators is the Swish activation function [31]. Another famous example is

the group-sort operator:

(
∀xi =


xi,1

...

xi,M

 ∈ RNi

)
Ri(xi) =


x↑
i,1

...

x↑
i,M

 , (4)
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where the vector xi has been decomposed in M subvectors xi,j with j ∈

{1, . . . ,M}, of dimension B (Ni = BM) and x↑
i,j designates the vector of

components of xi,j sorted in ascending order. Ri is then purely nonexpansive,

i.e. αi = 1. Note that max-pooling can be achieved by composing this group

sort operation with a linear operator. Indeed, if i < m, M = Ni+1, and Wi+1

is the matrix extracted from the Ni × Ni identity matrix IdNi
by selecting

the matrix rows with indices multiple of B, then Wi+1 ◦Ri corresponds to a

max-pooling.

2.2. Lipschitz robustness certificate

Consider a neural network T as described in Fig. 1. let x ∈ RN0 be

the input of the network and let T (x) ∈ RNm be its associated output. By

adding some small perturbation z ∈ R0 to the input, the perturbed input is

x̃ = x + z. The effect of the perturbation on the output of the system can

be quantified by the following inequality:

∥T (x̃)− T (x)∥ ≤ θm∥z∥, (5)

where θm ≥ 0 denotes a Lipschitz constant of the network. θm represents thus

an important parameter that allows us to assess and control the sensitivity of

a neural network to various perturbations. It needs however to be accurately

estimated to provide valuable information. A standard approximation to the

Lipschitz constant [20] is given by

θm =
m∏
i=1

∥Wi∥S, (6)

where ∥ · ∥S denotes the spectral norm of a matrix. Although simple to

compute, this approximate bound is over-pessimistic. Different methods for
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obtaining tighter estimates of the Lipschitz constant have been presented

in the recent literature; see for example [22, 28, 25, 32, 33]. Local esti-

mates of the Lipschitz constant can also be performed which may appear

more relevant. But they are more complex to compute and, as we will see,

controlling the global Lipschitz constant is usually sufficient to get a good

performance. Estimating the global Lispchitz constant of the network is an

NP (non-deterministic polynomial-time)-hard problem [22]. Although there

exist efficient approaches to approximate an accurate bound [25, 32, 33],

computing these estimates may be expensive for wide or deep networks. In

addition, using these bounds within a training procedure is a difficult task

[26]. In this work, we will make the following assumption.

Assumption 2.1 Let a neural network be given by (1) where the i-th layer

with i ∈ {1, . . . ,m} is given by (2). We assume that

(i) all the activation layers, except possibly the last one, consist of separa-

ble averaged operators, that is, for every i ∈ {1, . . . ,m−1}, there exist

averaged functions (ρi,k)1≤k≤Ni
from R to R such thatRi : (ξi,k)1≤k≤Ni

7→(
ρi,k(ξi,k)

)
1≤i≤k

;

(ii) at the last activation layer, Rm is an averaged operator.

Our approach will be grounded on the following result.

Proposition 2.2 [28] Suppose that Assumption 2.1 holds. For every i ∈

{1, . . . ,m}, let Ai be the matrix whose elements are the absolute values of

those of Wi. Then,

ϑm = ∥Am · · ·A1∥S (7)
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is a Lipschitz constant of T . In addition

∥Wm · · ·W1∥ ≤ ϑm. (8)

In particular if, for every i ∈ {1, . . . ,m}, Wi ∈ [0,+∞[Ni×Ni−1, ϑm is equal

to the lower bound in (8).

Based on this proposition, the best estimate for the Lipschitz constant of

a given feedforward neural network having nonnegative weights simplifies to

the spectral norm of the product of all the weight matrices composing the

network. More precisely, the obtained Lipschitz constant

ϑm = ∥Wm · · ·W1∥S

is the Lipschitz constant of a purely linear network, where all the non-linear

activation operators have been replaced with the identity operator.

The above result is guaranteed to be valid only in the case when all

the weights are nonnegative. In the general case of networks with weights

having arbitrary signs, it can be proved that ∥Wm · · ·W1∥S represents only

a lower bound of the Lipschitz constant established in [28]. It is also worth

mentioning that the proposed results hold for any algebraic structure of the

weight matrices (Wi)1≤i≤m.

3. Optimization methods for training robust feedforward networks

3.1. Stochastic gradient descent – projected variant

Standard training in neural networks consists in the minimization of a

nonconvex cost function with respect to the model parameters by means of

an iterative strategy. Let L be the cost function defined as follows:

L(η) =
K∑
k=1

ℓ(zk, η), (9)

10



where η = (ηi)1≤i≤m is a vector encompassing all the model parameters. For

each layer i ∈ {1, . . . ,m}, ηi denotes a vector of dimension Ni(Ni−1+1) that

contains the scalar variables associated with the weight matrices Wi and the

corresponding bias components bi. The data information is represented by

(zk)1≤k≤K . For every k ∈ {1, . . . , K}, zk is a pair consisting of an input

of the system and the associated desired output (ground truth). Also, ℓ

represents the loss function assumed to be differentiable (almost everywhere)

with respect to η.

To ensure robustness, we shall impose spectral norm constraints on the

weight matrices. In other words, the vector of parameters η is constrained to

belong to a closed set S that will be described in the next section. We propose

to use an extension of a standard optimization techniques for training neural

networks [34]. More specifically, we will implement a projected stochastic

gradient algorithm. A momentum parameter is introduced in this algorithm

to accelerate the convergence process.

Algorithm 1 describes the iterations performed at each epoch n > 0.

We see that there are two nested loops: the outer loop operates on the

batch index q and the second one on the layer index i. In this algorithm,

γn ∈]0,+∞[ is the learning rate, while ζn ∈ [0,+∞[ denotes the inertia

parameter for momentum. The algorithm is very similar to block-iterative

techniques used in convex optimization [34]. The parameters of each layer

are indeed updated successively by performing a gradient step on the data in

the current mini-batch (which can be epoch-dependent). ∇i represents the

gradient, computed by standard backpropagation mechanism, with respect

to ηi for each i ∈ {1, . . . ,m}. This stochastic gradient step is followed by a
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projection PSi,n
onto the constraint set Si,n. The definition of this set as well

as the way of handling this projection are detailed in the following.

Algorithm 1: Projected SGD Algorithm

Partition {1, . . . , K} into minibatches (Lq,n)1≤q≤Q foreach

q ∈ {1, . . . , Q} do

foreach i ∈ {1, . . . ,m} do

∆i,n = (1+ ζn)ηi,n− ζnηi,n−1 η̃i,n = [(η⊤j,n+1)j<i ∆⊤
i,n (η⊤j,n)j>i]

⊤

ηi,n+1 = PSi,n

(
∆i,n − γn

∑
k∈Lq,n

∇iℓ(zk, η̃i,n)
)

where Si,n =
{
ηi | [(η⊤j,n+1)j<i η⊤i (η⊤j,n)j>i]

⊤ ∈ S
}
.

3.2. Constraint sets

As mentioned before, this work revolves around feed-forward networks

with positive weights. Thus, the first condition that we impose is nonneg-

ativity for each layer i ∈ {1, . . . ,m}, which is modeled by the constraint

set

Di = {Wi ∈ RNi×Ni−1 | Wi ≥ 0} (10)

Moreover, based on our standing assumptions and Proposition 2.2, we must

impose a spectral norm constraint on the weight matrices to control the

robustness of the system. This translates mathematically as the following

upper bound constraint:

∥Wm · · ·W1∥S ≤ ϑ, (11)

where ϑ represents the target maximum Lipschitz constant of the network.

This bound constitutes a direct measure of the system level of robustness

against adversarial inputs. We need to handle these two constraints simul-

taneously during the training process. Imposing nonnegativity is fairly easy
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since (10) defines a simple convex constraint. By contrast, constraint (11)

does not satisfy the convexity property. Since (11) corresponds to a closed

set in the underlying space of weight matrices and this set has a nonempty

intersection with D1×· · ·×Dm, the projection onto the intersection of the two

sets can be defined but it is not guaranteed to be unique. To cirmcumvent

this difficulty, it can be noticed that (11) actually defines a multi-convex con-

straint in the sense that if, for every i ∈ {1, . . . ,m}, (Wj)1≤j≤m,j ̸=i are given,

then (11) imposes a convex constraint on Wi. This suggests to introduce the

following closed and convex set:

Ci,n = {Wi ∈ RNi×Ni−1 | ∥Ai,nWiBi,n∥S ≤ ϑ} (12)

in order to control the Lipschitz constant. Hereabove, the matrices Ai,n and

Bi,n represent the product of the weight matrices for the previous and the

posterior layers, respectively. By adopting the convention that Ai,n = Id if

i = m and Bi,n = Id if i = 1, we define these matrix products as

Ai,n = Wm,n · · ·Wi+1,n, Bi,n = Wi−1,n+1 · · ·W1,n+1, (13)

where (Wj,n)1≤j≤m denote the estimates of the weight matrices at each iter-

ation n, as it appears in Algorithm 1.

Thus, our objective will be to perform the projection onto the set Si,n =

Di ∩ Ci,n, for each layer i ∈ {1, . . . ,m} and at each iteration n. Several

algorithms can be envisaged to solve this convex optimization problem.

Before describing our proposed algorithmic solution, let us recall the ex-

pressions of the required elementary projections. For every W ∈ RS×T , the

projection of W onto [0,+∞[S×T is

P[0,+∞[S×T (W ) = (W̃s,t)1≤s≤S,1≤t≤T , (14)
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where, for every s ∈ {1, . . . , S} and t ∈ {1, . . . , T},

W̃s,t =

Ws,t if Ws,t ≥ 0

0 otherwise.

(15)

Let B(0, ϑ) be the closed spectral ball of center 0 and radius ϑ defined as 1

B(0, ϑ) = {W ∈ RS×T | ∥W∥S ≤ ϑ}. (16)

For every W = (Ws,t)1≤s≤S,1≤t≤T ∈ RS×T , let UΛV ⊤ be the singular value

decomposition of W , where U ∈ RS×R and V ∈ RT×R are matrices such that

U⊤U = Id and V ⊤V = Id , R = min{S, T}, and Λ = Diag(λ1, . . . , λR),

(λr)1≤r≤R ∈ [0,+∞[R being the singular values of W . Then the projection

of W onto B(0, ϑ) is expressed as

PB(0,ϑ)(W ) = U Λ̃V ⊤ (17)

where Λ̃ = Diag(λ̃1, . . . , λ̃r) and

(∀i ∈ {1, . . . , r}) λ̃i =

λi if λi ≤ ϑ

ϑ otherwise.

(18)

To compute the projection onto Si,n of a matrix W i ∈ RNi×Ni−1 , we propose

to employ the FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) ver-

sion of a dual forward-backward method in Algorithm 2. This algorithm is

based on a dual proximal approach [35] and constitutes an extension of the

optimization method originally proposed in [36]. The rationale for this algo-

rithm is given in the appendix.
1To simplify our notation, B(0, ϑ) will designate any spectral ball of this kind whatever the dimensions

of the involved matrices.
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Algorithm 2: FISTA-like accelerated version of DFB algorithm

Let Y0 ∈ RNm×N0

Set γ = 1/(∥Ai,n∥S∥Bi,n∥S)2

Set α ∈]2,+∞[

for l = 0, 1, . . . do

ηl =
l

l+1+α

Zl = Yl + ηl(Yl − Yl−1)

Vl = PDi
(W i − A⊤

i,nZlB
⊤
i,n)

Ỹl = Zl + γAi,nVlBi,n

Yl+1 = Ỹl − γPB(0,ϑ)(γ
−1Ỹl)

return Vl

3.3. Handling looser constraints

The Lipchitz constant of the network can be controlled in multiple ways.

Besides the solution formulated in Section 3.2, a more standard approach to

control it [16] consists in imposing

m∏
i=1

∥Wi∥S ≤ ϑ. (19)

Two strategies have been implemented to enforce this constraint.

(i) The first one consists in imposing a uniform bound on the spectral

norm of each weight matrix (Wi)1≤i≤m, which leads to the following

convex constraint sets:

(∀i ∈ {1, . . . ,m}) C̃i = {Wi ∈ RNi×Ni−1 | ∥Wi∥S ≤ ϑ
1/m}. (20)

(ii) The second strategy aims at introducing more flexible bounds on the

spectral norms of each layer. It is based on the following choice for the
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individual convex constraint sets:

(∀n ∈ N \ {0})(∀i ∈ {1, . . . ,m})

Či,n =
{
Wi ∈ RNi×Ni−1 | ∥Wi∥S ≤ ∥Wi,n∥S

( ϑ∏m
j=1 ∥Wj,n∥S

)1/m}
.

For every i ∈ {1, . . . ,m}, projecting onto C̃i or Či,n is performed by truncating

a singular value decomposition, similarly to the technique described at the

end of Section 3.2. The projections onto C̃i ∩ Di and Či,n ∩ Di can then

be computed by using the same iterative method as in Algorithm 2 with

Ai,n = Bi,n = Id .

In all the proposed constrained optimization methods, the projection

PB(0,ϑ̃) onto a spectral ball with radius ϑ̃ > 0 plays a prominent role. The

ball radius depends on the handled constraint (11), (20), or (10). A complex

operation such as a singular value decomposition may be very demanding in

terms of computational resources when dealing with large size matrices. In

that case, we propose to use an approximate projection [19] defined as

(∀W ∈ RS×T ) PB(0,ϑ̃)(W ) ≃


W if ∥W∥S ≤ ϑ̃

ϑ̃

∥W∥S
W otherwise.

(21)

Using this approximation in Algorithm 2 yields approximate projections

(P̃Ci,n∩Di
)1≤i≤m,n>0. Note however that we then lose the theoretical guar-

antees of convergence Algorithm 2, even if this issue was not observed in our

implementation.

An additional advantage of Formula (21) is that it allows the nonnegativity of

the elements of the input matrix to be kept. This allows us to derive cheap

approximate versions of the projection onto C̃i ∩ Di with i ∈ {1, . . . ,m}
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Figure 2: 13-gestures Dataset [37]

by first projecting onto Di and then applying the approximate projection

onto C̃i. The resulting approximate projection is denoted by (P̃C̃i∩Di
)1≤i≤m.

A similar procedure can be followed to compute approximate projections

(P̃Či,n∩Di
)1≤i≤m,n>0 onto (Či,n ∩ Di)1≤i≤m,n>0.

4. AGR Experimental Setup

4.1. sEMG datasets

We test our proposed training scheme on two online datasets containing

EMG information of different hand gestures. Both were acquired using Myo

armband, a device developed by Thalmic Labs, equipped with eight sEMG

sensors displayed circularly. To the best of our knowledge these are the

only gesture-based datasets currently acquired with this armband which are

publicly available.

The first dataset, detailed in [38] contains EMG signals characterizing 7

hand gestures correlated to the primary movements of the hand. There are
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Figure 3: Proposed neural network architecture for AGR. All the layers except the last one use ReLU

activation functions; the last layer uses Softmax. The number of neurons considered for each layer is:

128, 128, 128, 64, 32, 16, in the case of 7-gestures dataset and 256, 256, 256, 128, 64, 32 in the case of

13-gesture dataset. The last layer has 7 or 13 neurons representing the gesture number being recognized.

Each EMG box represents a column vector containing 8 time-descriptors.

four mobility gestures (i.e., wrist flexion and extension, ulnar, and radial de-

viation) and two gestures used for grasping and releasing objects (i.e., spread

fingers and close fist). The 7th gesture characterizes the neutral position, cor-

responding to the relaxation of the muscles.

The second dataset includes 13 gestures: the same 7 gestures described

above, plus 6 additional classes. It contains gestures from 50 different sub-

jects and two sets of trials per user. All 13 gestures are depicted in Figure 2.

More details about the dataset can be found in [37].

We also validate our models in a real-context scenario. For the real-

life predictions, we recorded the EMG activity associated with each gesture

at forearm level using Myo armband. The information collected from each

channel is transmitted to a computer via Bluetooth protocol where it is

processed to extract relevant time domain features that will be used by the

classifier to determine which gesture has been performed.
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4.2. Proposed Architecture

The raw 8 channels EMG signal is split using a 250 ms sliding window,

with 50% overlap. From each window of each channel a series of 8 time

descriptors are extracted. The information from all the channels is then con-

catenated, forming a 64-dimensional vector. The 7-gestures dataset contains

around 200k vector samples, while the 13-gestures dataset has around 59k

vector samples. Those are split in training, validation, and test sets at user

level according to the ratio: 70%, 20%, 10%. These vectors are fed to the

network in mini-batches of size 2048. The considered architectures consists

of a 6-hidden layer (m = 6) fully connected neural networks, with different

parameters depending on the considered datasets, but the same core struc-

ture, as displayed in Figure 3. Let x = (xk)0≤k≤K−1 be the vector of EMG

samples acquired on a window from one channel. For this work we considered

some of the most relevant features to describe sEMG data, as follows.

(i) Mean Absolute Value (MAV) – the mean of the absolute values of

the signal is given by

MAV(x) =
1

K

K−1∑
k=0

|xk|. (22)

(ii) Zero Crossing Rate (ZCR) – this feature counts the frequency at

which the signal passes through zero. A threshold α ≥ 0 is used in

order to lessen the noise effect. This feature can be computed in an

incremental manner and it is defined as

ZCR(x) =
∣∣∣{k ∈ {1, . . . , K − 1} |

|xk − xk−1| ≥ α and xkxk−1 < 0
}∣∣∣. (23)
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(iii) Waveform Length (WL) – this feature offers a simple characteri-

zation of the signal waveform. It corresponds to the following total

variation seminorm:

WL(x) =
K−1∑
k=1

|xk − xk−1|. (24)

(iv) Slope Sign Changes (SSC) – measures the frequency at which the

sign of the signal slope changes. It amounts in checking a condition on

three consecutive samples xk, xk−1, xk+1 with k ∈ {2, . . . , K − 2}:

SSC(x) =
∣∣∣{k ∈ {2, . . . , K−2} | (xk− xk−1)(xk − xk+1) ≥ α}

∣∣∣, (25)

where the threshold α > 0 is employed to reduce the influence of the

noise.

(v) Root Mean Square (RMS) – this feature, also related to the quadratic

mean or local energy of the signal is given by

RMS(x) =

√√√√ 1

K

K−1∑
k=0

x2
k . (26)

(vi) Hjorth parameters – are a set of three features originally developed

for characterizing electroencephalography signals and then successfully

applied to sEMG signal recognition. The most relevant Hjorth activity

parameter can be thought of as the integrated power spectrum and

basically corresponds to the variance of the signal calculated as follows:

σ2(x) =
1

K

K−1∑
k=0

(xk − µ(x))2, (27)

where µ(x) represents the mean value of the signal. The standard

deviation and RMS(x) are equal when the mean of the signal is zero.
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Accuracy 75 % 80 % 85 % 90 % 95%

Lipschitz

constant

C̃i ∩ Di

P̃C̃i∩Di
19.5 37.5 68.3 3.5× 104 3.5× 108

PC̃i∩Di
0.66 13.47 74.16 1.04× 103 1.39× 105

Či,n ∩ Di

P̃Či,n∩Di
0.71 1.84 3.42 6.87 11.60

PČi∩Di
0.70 1.35 3.41 6.79 11.20

Ci,n ∩ Di

P̃Ci,n∩Di
0.44 1.79 2.93 4.85 5.68

PCi,n∩Di
0.35 0.46 0.65 0.82 0.95

Table 1: Lipschitz constant obtained with various constrained optimization strategies for different accu-

racies – 7-gestures dataset.

(vii) Skewness – measures the overall asymmetry of probability distribution

of the data:

Skew(x) =
1

K

K−1∑
k=0

(
xk − µ(x)

σ(x)

)3

. (28)

(viii) Integrated Square-root EMG (ISEMG) – is a feature returning

the sum of the fully-rectified signal:

ISEMG(x) =
K−1∑
k=0

√
| xk |. (29)

4.3. Performance analysis in terms of accuracy and robustness

The performance of our AGR system trained conventionally achieves

state-of-art performance [43, 37], of over 99% accuracy for both datasets.

Since in this case the weights are not guaranteed to be positive, the lower

bound introduced in Proposition 2.2 does not constitute a valid Lipschitz

constant. Computing the exact Lipschitz constant θm of the system is a

very difficult task [28], but we can easily bound θm between the estimate

given by (6) and the spectral norm of the product of all the weight ma-
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Accuracy 75 % 80 % 85 % 90 % 95%

Lipschitz

constant

C̃i ∩ Di

P̃C̃i∩Di
20.2 41.8 145.2 2.2× 105 1.21× 1011

PC̃i∩Di
0.85 20.47 112.3 1.62× 104 2.31× 108

Či,n ∩ Di

P̃Či,n∩Di
0.84 2.08 4.23 7.54 12.02

PČi∩Di
0.81 2.01 4.12 7.50 11.92

Ci,n ∩ Di

P̃Ci,n∩Di
0.54 1.87 3.38 4.20 5.78

PCi,n∩Di
0.49 0.53 0.75 0.92 1.25

Table 2: Lipschitz constant obtained with various constrained optimization strategies for different accu-

racies – 13-gestures dataset.

Accuracy 75% 80% 85% 90% 95%

Model

Variation

empirical std 0.65 1.22 0.56 1.35 1.10

robust std 1.02 0.94 0.53 0.87 1.07

Table 3: Standard deviation of accuracy computed on 15 epochs, after convergence, on the test set for

constrained models – 7-gestures dataset

trices from the network. We found that the Lipschitz constant estimate

θm ∈ [1.56 × 1012, 1.59 × 1014] for both datasets. This suggests that despite

the high performance of the classifiers, their robustness is poorly controlled,

leaving the systems vulnerable to adversarial perturbations.

A first step towards controlling the Lipschitz constant of the classifica-

Accuracy 75% 80% 85% 90% 95%

Model

Variation

empirical std 0.65 1.05 0.75 0.75 0.72

robust std 0.77 0.81 0.72 0.97 0.59

Table 4: Standard deviation of accuracy computed on 15 epochs, after convergence, on the test set for

constrained models – 13-gestures dataset
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Accuracy 75% 80% 85% 90% 95%

Lipschitz

constant

Ci
P̃C̃i 72.03 127.5 1296 8.75× 104 5.43× 109

PC̃i 52.06 102.49 905.45 7.23× 104 8.14× 108

Deel-lip[39] 75.81 126.9 1283.6 8.70× 104 5.43× 109

Table 5: Lipschitz constant for networks trained with arbitrary signs – 7-gestures dataset.

Accuracy 75% 80% 85% 90% 95%

Lipschitz

constant

Ci
P̃C̃i 76.59 125.20 1016 2.03× 104 4.3× 108

PC̃i 61.22 99.74 740 1.26× 104 6.7× 107

Deel-lip[39] 77.21 125.63 1120 2.04× 104 4.5× 108

Table 6: Lipschitz constant for networks trained with arbitrary signs – 13-gestures dataset.

tion algorithm and implicitly its robustness is to impose the nonnegativity

condition associated with constraint D. Training under such a nonnegativity

constraint is shown to improve the network operation interpretability [27]

and acts as a regularization, reducing overfitting. On the other hand, it

can affect its approximation capability and potentially lead to a performance

decay. Training the proposed system subject to constraint D results in an

overall accuracy of 96.92 % and 95.87% for the case of 7 and 13 classes,

respectively. The performance decay was balanced by an increase in the

robustness, since the Lipschitz constant, computed as indicated in Propo-

sition 2.2, equals θm = 9.69 × 1010 for 7 classes and θm = 9.73 × 1010 for

13 classes. We observed that the accuracy reduction can be overcome by

adding additional layers to the architecture. Indeed, we were able to obtain

a similar accuracy to the baseline by adding an extra layer to the existing ar-

chitecture and retraining both systems subject to D. Furthermore, compared

to the unconstrained models, we managed to maintain a high performance
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Figure 4: Accuracy vs. Iterations – constrained and unconstrained models in the context of 7-gesture

dataset. The training and validation curves are displayed in green and yellow, respectively, for the un-

constrained model. The training and validation curves are displayed in blue and red, respectively, in the

case of constrained training, with the bound ϑ = 0.95.

while improving the robustness with respect to unconstrained training, i.e.

θm = 1.02 × 1011 for the 7-classes dataset and θm = 9.96 × 1010 for the 13-

classes dataset. We can however conclude from these tests that imposing the

nonnegativity of the weight coefficients is not sufficient to reach satisfactory

robustness.

To further control the robustness of the systems, we have to manage

the Lipschitz constant of the networks by training them under an additional

spectral norm constraints, as described by (11). Searching for the optimal ac-

curacy robustness trade-off, we trained several models considering each of the

three aforementioned constraints, namely (Ci,n)1≤i≤m,n∈N in (12), (C̃i)1≤i≤m

in (20), and (Či,n)1≤i≤m,n∈N in (10). By adjusting the upper bound ϑ, we were

able to assess the effect of a robustness constraint on the overall performance

of the neural network-based classifiers, and finally to achieve the optimal

trade-off. All our models were trained using Algorithm 1 as the optimizer.

The obtained results are summarized in Tables 1 and 2 for the two
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Accuracy [%]

robust model baseline model

Attack adversarial non-adversarial adversarial non-adversarial adversarial non-adversarial

FGSM [20] 91.75

92.95

76.48

99.78

71.21

92.99
C&W ℓ2 [40] 90.09 48.03 45.85

PGD [41] 91.92 59.36 56.38

JSMA [42] 91.10 89.37 81.27

Table 7: White-box attack results. We consider out best constrained model, having a Lipschitz constant

θ = 0.97 and two models trained conventionally: the best baseline [43] and another one having similar

performance as the constrained one.

Movement User #1 User#2 User#3 User#4 User#5 User#6 User#7 User#8 User#9 User#10

C U C U C U C U C U C U C U C U C U C U

up 2 2 1 3 0 0 0 1 0 0 0 2 0 2 1 2 0 2 1 3

down 1 1 0 2 2 3 0 0 2 4 1 0 2 3 1 1 0 1 0 1

right 0 4 0 0 0 1 0 1 1 1 0 2 0 0 0 0 0 1 1 2

left 3 5 1 4 0 1 0 1 2 5 0 0 0 1 2 3 1 2 0 1

fist 0 2 2 4 0 0 1 0 0 3 0 1 1 1 0 2 1 1 1 3

spread 0 3 2 5 3 4 2 4 1 0 0 0 1 2 1 0 0 1 0 3

Sum 6 17 6 18 5 9 3 7 6 13 1 5 4 9 6 7 2 8 3 3

Error rate (%) 5 14 5 15 4.1 7.5 2.5 5.7 5 10.7 0.7 4.1 3.3 7.5 5 5.7 1.6 6.6 2.5 10.7

Table 8: Experiment results

datasets, respectively. As expected, obtaining a good robustness-accuracy

trade-off requires paying attention to the way we design our constrained net-

works. We show that using tight constraints to approximate the Lipschitz

constant accurately has a positive impact on the overall performance of both

networks. We also evaluated the use of an inexact projection, designated

by P̃ (see Section 3.3). It can be observed that using an exact projection

yields significantly better results. By combining tight constraints and exact

projection techniques, we observe that the robustness of the network can be

properly ensured while keeping a good accuracy in both cases. Indeed, we
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(a) σ0 = α; σ1 = 10α; p = 0.15 (b) σ0 = α; σ1 = 10α; p = 0.3 (c) σ0 = α; σ1 = 10α; p = 0.45

(d) σ0 = α; σ1 = 10α; p = 0.15 (e) σ0 = α; σ1 = 10α; p = 0.3 (f) σ0 = α; σ1 = 10α; p = 0.45

Figure 5: Accuracy vs. α in the context Noisy Inputs training. First row: 7-gesture dataset; Second

row: 13-gestures dataset. Red line: robust model; Blue line: baseline model; Green line: adversarial

trained model

succeeded in ensuring a Lipschitz constant around 1 for a 95% accuracy. The

observed loss in accuracy with respect to a standard training is consistent

with the “no free lunch theorem” [44].

Training neural networks subject to tight spectral norm constraints can

be challenging,2 and the cost of obtaining a good performance is the training

time. Figure 4 shows the training curves for both validation and training sets

in the context of the unconstrained baseline model (yellow and green lines),

and in the case of training a constrained version (red and blue lines) using the

optimal projection PCi,n∩Di
, with ϑm = 0.95. Even though it requires more

2A code in TensorFlow will be made available upon the acceptance of the paper.
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(a) 3-D hand control

(b) Gesture-control game

Figure 6: Real-life experimental setup

iterations, the constrained model is capable of reaching an accuracy compa-

rable with the baseline, while providing a robustness certificate. Since the

training curves may show some slight variations, we measured the accuracy

variations in two ways: by computing the classical standard deviation (std),

and by employing median absolute deviation (mad). For a vector (xi)1≤i≤I ,

it is expressed as MAD = median
(
(|xi − ζ(x)|)1≤i≤I

)
, where ζ(x) represents

the median of the vector components. From this quantity, we can derive

an empirical estimate of the standard deviation by multiplying MAD with a

factor equal to 1.4826. The latter estimate is known to be more robust to

outliers for Gaussian distributed data, especially in the case of small popu-

lations. The results are summarized in Tables 3 and 4. It can be observed

that the empirical standard deviation is below 1.6% and the robust estimate

of it is below 1.1% for both datasets.

We have also evaluated how the positivity constraint impacts the overall

accuracy of our system. We trained a robust network by allowing the weights

to have arbitrary signs. For this purpose, we control individually the Lips-

27



chitz constant of each layer i ∈ {1, . . . ,m} to be less than a given value ϑ
1/m

.

The exact projection onto C̃i, PC̃i , as well as the approximate one P̃C̃i were

computed as described previously. In this case ϑ represents an upper bound

on the Lipschitz constant of the system. Tables 5 and 6 summarize the results

for different values of ϑ, for the two respective datasets. We compare our

method for dealing with Lipschitz constraints with the approach proposed in

[39]. This approach which is implemented in the deel-lip library allows the

user to train robust networks in a convenient manner, offering a robustness

certificate by performing a spectral normalization for each layer. It can be

observed on these datasets that our method yields similar results when using

the approximate projection, but better ones when using the exact projection.

5. Robustness validation

In this section we investigate to what extent the theoretical concepts

described in the previous sections help in improving the robustness of the

classifier in different settings. To this goal, we consider the following three

scenarios. In the first one, we examine the impact of adversarial attacks on

the performance of the classifier. The second scenario takes into account

the effect of noise in the acquisition process. In the case of sEMG signals,

this noise may come from imperfect skin-sensor contact caused by hairs or

drops of sweat. In the last scenario we perform a real-life experiment using

10 able-bodied volunteers.

5.1. Sensitivity to adversarial attacks

We evaluate our robust model on purposely designed perturbations, by

studying their influence on the overall performance of the system. We lead at-
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tacks on our best robust model in terms of accuracy and robustness achieving

92.95% accuracy and a Lipschitz constant ϑ = 0.87 for the 7-gesture dataset.

We compare the results with two conventionally trained models: the best

one in terms of performance, which achieves 99.78% prediction accuracy on

non-adversarial data, and another one trained to have similar performance

as our robust model reaching 92.99% accuracy on the original test set.

To create the adversarial samples we used some of the most popular white-

box attackers, namely: Fast gradient sign method (FGSM) [20] – generates

adversarial data based on the gradient of the cost function with respect to

the input data; Jacobian Saliency Map Attacker (JSMA) [42] – computes a

perturbation based on ℓ0 distance metric by iteratively selecting the input

sample that will increase the chance of miss-classification; Projected gradient

descent (PGD)[41] – uses local first order information about the network to

create adversarial examples; Carlini and Wagner (C&W) [40] – utilizes ℓ2

distance to compute the optimal adversarial perturbation.

The results summarised in Table 7 show the performance obtained for

the 7-gesture test set. Note that the robust model performance is barely

affected by the adversarial perturbations, whereas the baseline models show

a huge drop in accuracy. It can be concluded that our goal of building a

robust AGR system is achieved. It also proves that precisely controlling

the Lipschitz constant of the system contributes greatly in improving its

robustness against adversarial samples.

5.2. Noisy input behaviour

To simulate the effect of underlying noise generated during the acquisition

process, we added synthetic noise directly to the raw sEMG data, prior to
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the feature extraction step. The noise is chosen independent and identically

distributed according to a Gaussian mixture law (1−p)N (0, σ2
0)+pN (0, σ2

1).

The mixture comprises a background component, corresponding to the in-

trinsic electronic noise in the armband, such as thermal or quantization noise,

and an impulsive component accounting for outliers. Those may be related

to imperfect wiring that can generate impulse-like artifacts. In our experi-

ments, we consider background and impulse noises with standard deviations

σ0 = α and σ1 = 10α with α ∈ [0,+∞[. We generate different levels of

noise, by varying the parameter α. The probability of peaks p ∈ [0, 1] is also

adjusted to simulate more or less severe scenarios in terms of outliers.

From the resulting noisy signals, we extract the features described in

Section 4 and pass them to the classifier, using our robust models reaching

an accuracy of 92.95% (ϑ = 0.87) for the 7-gestures dataset, and 93.05% (ϑ =

0.98) in the case of the 13-gestures dataset, trained with non-altered data. We

compared the results achieved with our robust training with those obtained

with i) classical training and ii) adversarial training. The adversarial training

was performed by generating an extended dataset, containing the original

data and corrupted versions of them by additive noise following the Gaussian

mixture law described above, where the parameters p and α were drawn

randomly in a uniform manner on [0.15, 0.45] and [0, 2], respectively. In the

absence of noise, a similar performance in terms of accuracy was obtained:

7-gestures dataset – 92.99%, and 92.97%, 13-gestures dataset – 93.03% and

92.98% for baseline and the adversarial training, respectively.

The experimental results obtained on both datasets are depicted in Fig-

ure 5. The red, blue, and green lines correspond to the unconstrained, con-
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strained, and adversarial models, respectively. We observe that the con-

strained model is significantly less affected by the presence of noise in the

inputs than the one trained without robustness guarantees. It is also worth

noting that training with adversarial inputs also leads to satisfactory re-

sults, although usually slightly less accurate. The Lipschitz lower and upper

bounds computed for the networks trained in an adversarial manner are in-

deed much lower than those with standard training, but they remain quite

large ((1845.23, 79534.2) for 7-gestures dataset and (1754.74, 64595.8) for

13-gestures dataset).

This experiment emphasizes that controlling the Lipschitz constant of a

network improves its robustness not only against targeted adversarial attacks,

as shown previously, but also in the case of black-box attacks, where no prior

information about the model is used.

5.3. Real-life scenario validation

To illustrate the practical applicability of our findings, we proceed to

validate our model in a real-life context. For this purpose, we designed an

experiment to compare a conventionally trained model with the constrained

one. We integrated both models in a real-time application that controls a 3D

hand on a screen, as well as a game that can be controlled by gestures, to give

the user a tangible feedback. We asked 10 volunteers (males and females)

to test both models by performing each gesture 20 times. We emphasize

that the user had no prior knowledge about what model was implemented,

since it was randomly selected at the beginning of each new trial. Pictures

of the experimental setup are provided in Figure 6. Table 8 details on a user

level, how many (out of the 20) trials were erroneously classified. U and C
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denote the Unconstrained and the Constrained models, respectively. Note

that, despite obtaining very good results on the test set, the unconstrained

model loses a lot in terms of performance (up to 15%) when facing real-life

data. We can observe that training a positive neural networks subject to

Lipschitz constraints improves the overall robustness of the classifier against

adversarial perturbations, not only from a theoretical viewpoint, but also

practically by leading to more reliable systems with greater generalization

power.

6. Conclusion

This work has shown the usefulness of designing robust feed-forward neu-

ral networks for automatic gesture recognition based on sEMG physiological

signals. More precisely, we proposed to finely control the Lipschitz constant

of these nonlinear systems by considering positively weighted neural architec-

tures. To offer robustness certificates, we also developed new optimization

techniques for training classifiers subject to spectral norm constraints on

the weights. We studied various constrained formulations and showed that

robustness can be secured without sacrificing accuracy when using a combi-

nation of tight constraints and exact projections. Experiments on two dis-

tinct datasets illustrated the good performance of our approach. We further

demonstrated the effectiveness of our robust classifier, compared to classi-

cally trained ones, when facing white-box and black-box attacks, as well as

in real-life usage.

In future works, it would be interesting to apply such a robust training

procedure to other applications in pattern recognition involving data acquired

in real-time.
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Appendix – Accelerated DFB algorithm

Let n ∈ N \ {0} and i ∈ {1, . . . ,m}. Computing the projection of a

matrix W i ∈ RNi×Ni−1 onto Di ∩ Ci,n is equivalent to solve the following

matrix optimization problem:

minimize
Wi∈RNi×Ni−1

ιDi
(Wi) + ιB(0,ϑ)(Ai,nWiBi,n) +

1

2
∥Wi −W i∥2F (30)

where ∥·∥F is the Frobenius norm and ιS denotes the indicator of a set S (this

function is equal to 0 on this set and +∞ otherwise.) The dual optimization

problem associated to this strongly convex minimization problem reads

minimize
Y ∈RNm×N0

f ∗(−A⊤
i,nY B⊤

i,n) + ι∗B(0,ϑ)(Y ), (31)

where for a given function g, g∗ denotes its Fenchel-Legendre conjugate. In

our case f = ιDi
+ 1

2
∥ · −W i∥2F. From standard conjugation rules [35], f ∗ is

equal to

(∀Wi ∈ RNi×Ni−1) f ∗(Wi) = ι̃Di
(Wi +W i), (32)

where ι̃Di
is the Moreau envelope of ι∗Di

given by

ι̃Di
(Wi) = inf

W ′
i∈R

Ni×Ni−1

ι∗Di
(W ′

i ) +
1

2
∥W ′

i −Wi∥2F. (33)

The Moreau envelope of a proper lower-semincontinuous convex function is

differentiable. Thus f ∗ is differentiable and its gradient is [45, Example 17.33]

∇f ∗(Wi) = PDi
(Wi +W i). (34)

We deduce that the gradient of Y 7→ f ∗(−A⊤
i,nY B⊤

i,n) is

−Ai,nPDi
(W i − A⊤

i,nY B⊤
i,n)Bi,n.
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Since PDi
is a nonexpansive operator, the latter function has a Lipschitz

gradient with constant β = ∥Ai,n∥2S∥Bi,n∥2S. The dual problem (31) thus cor-

responds to the minimization of the sum of a smooth convex function and

a proper lower-semicontinuous function. Consequently, it can be minimized

by a proximal algorithm. Such a strategy will require to calculate the prox-

imity operator of γι∗B(0,ϑ) for some scaling parameter γ ∈]0,+∞[. By using

Moreau’s formula [45], this proximity operator is expressed as

(∀Y ∈ RNm×N0) proxγι∗
B(0,ϑ)

(Y ) = Y − γPB(0,ϑ)(γ
−1Y ). (35)

A classical solution for solving the dual problem consists in using the standard

forward-backward algorithm [46, 30]. This leads to Algorithm 3 [36]. Another

solution consists in using the FISTA-like algorithm in [47], which leads to the

accelerated version in Algorithm 2. The sequences (Yℓ)ℓ∈N generated by these

two algorithms is guaranteed to converge to a solution Ŷ to the dual problem.

In addition, from Kuhn-Tucker conditions, the solution to the primal problem

Ŵi = PSi,n
(W i) is equal to ∇f ∗(−A⊤

i,nŶ B⊤
i,n). It follows from (34) and the

continuity of PDi
that the sequence (Vℓ)ℓ∈N converges to Ŵi.

Algorithm 3: Dual Forward-backward algorithm

Let Y0 ∈ RNm×N0

Set ϵ ∈]0, 1/(∥Ai,n∥S∥Bi,n∥S)2[

for l = 0, 1, . . . do

Set γℓ ∈ [ϵ, 2/(∥Ai,n∥S∥Bi,n∥S)2 − ϵ] Vℓ = PDi
(W i − A⊤

i,nYℓB
⊤
i,n)

Ỹℓ = Yℓ + γℓAi,nVℓBi,n Yℓ+1 = Ỹℓ − γℓPB(0,ϑ)(γ
−1
ℓ Ỹℓ)
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