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A Third order Semi-Implicit Homogeneous differentiator: Experimental
Results

Loı̈c MICHEL, Malek GHANES, Yannick AOUSTIN and Jean-Pierre BARBOT

Abstract— It is well-known that implicit-based and projector-
based differentiator schemes offer better performances, like
reducing high frequency oscillations, compared to the corre-
sponding explicit schemes. To keep the advantages of such
implicit Euler approximations, when this approximation is
applied in case of homogeneous differentiators, a semi-implicit
Euler approximation has been recently proposed for second-
order systems. In this paper, a generalization to third order
semi-implicit differentiation is proposed taking into account the
attenuation of the noise considering advanced iterative projec-
tors definition. Validation on experimental data is conducted
to highlight the well-founded of the proposed differentiation
strategy.

Index Terms— Discretization, Homogeneous differentiator,
Noise attenuation, Projectors, Experimental Data.

I. INTRODUCTION

Real-time discrete signal differentiation can be performed
using sliding-modes techniques [1] and the recent implicit
discretization technique, introduced in [2] would overcome
some limitations of the classical sliding-mode such as a
cancellation of the chattering effect as well as robustness
of the estimation under lower sampling frequencies. The
principle of the implicit-based differentiation is to replace
the classical sign function by an implicit projector and some
recent successful experiments through implicit based sliding
mode control algorithms have been obtained (see e.g. [3],
[4], [5], [6], [7], [8], [9], [10]). In the framework of the
discrete homogeneous differentiation, the proposed differen-
tiator combines explicit terms with implicit one including
two projectors in order to reduce the effects of chattering
[11]. Recent contributions include a derivation to second
order system [12], and an adaptive version regarding the
rejection of the measurement noise, that has been proposed
in [13]. A comparison of performances between classical
and advanced differentiation structures has been performed in
[14]–[16] and highlights the fact that implicit based methods
are more efficient and robust to the noise and chattering than
the corresponding explicit one.

Recently, the authors presented the derivation of a cas-
caded version of second order semi-implicit homogeneous
differentiator [12], [16], considering thus two stages of
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differentiators for which the homogeneous exponents can
be adjusted separately, but it includes delays (toward the
propagation from the first stage to the second stage) and
requires more states than the system to differentiate (for
example, four states are required to estimate the acceleration
from the measured position of a mechanical system). To
better exploit the advantages of the implicit projectors, in
this work, we propose an extension to the third order semi-
implicit differentiator, keeping the homogeneous properties
of the differentiation and for which, the tuning of the param-
eters is simpler than the cascade since a single homogeneous
exponent is considered. Moreover, it has the same order
than the dimension of the system to differentiate. Note that
additional Taylor expansion corrective terms, inspired from
[17], [18], can be included in the differentiator to improve
the precision, as well as an adaptive tuning procedure for the
homogeneous exponent in order to reject the noise [13].

To highlight the merit of the proposed strategy, experi-
ments are conducted within an electrical RLC circuit where
the output voltage across the capacitor can be differentiated
twice and compared easily with the corresponding measure-
ments but other applications can be considered, for example
in mechanics.
This paper is outlined as follows. Section II describes the
background of the homogeneous differentiation approach.
Section III presents the main contribution and describes the
third order semi-implicit homogeneous approach including
iterative projectors. The differentiation approach is applied
to experimental data in Section IV in which the benefits are
discussed. Section V concludes the paper and suggests some
future works.

II. BACKGROUND ON HOMOGENEOUS DIFFERENTIATION

Considering a signal to differentiate y, at least of class
C2 with bounded third derivative. From [1], [19], [20], a
continuous-time homogeneous differentiator of order three
can be designed as follows:

ż1 = z2 + λ1µ⌈e1⌋α

ż2 = z3 + λ2µ
2⌈e1⌋2α−1

ż3 = λ3µ
3⌈e1⌋3α−2

ŷ = z1

(1)

where α ∈ [ 23 , 1] has to be fixed [21]; e1 = y − z1 (i.e.
e1 = 0 defines the sliding surface), including the notation
⌈•⌋α = | • |α sgn(•).



The gain µ > 0 is chosen greater than the perturbation on
the 3rd output derivative and the gains (λ1, λ2, λ3) > 0 are
tuned such that e1, e2 = ẏ − z2, and e3 = ÿ − z3 converge
towards zero. Then, the system (1) allows to get an estimation
of y, ẏ and ÿ.

III. MAIN RESULTS

Let us consider now the following restriction that is to de-
fine y(t) ∈ Cω̄ i.e. an analytic signal; the exact discretization
of y is:

y(t+ h) = y(t) +

∞∑
j=1

y(j)(t)
hj

j!
(2)

where y(j)(t) denotes the jth time derivative of y(t).

Assumption 1: y(1)(t), y(2)(t) and y(3)(t) are bounded
for all t > 0 and there exists a known P > 0 such that
|y(j)(t)| < P

j
3 ∀t > 0 and j ∈ {1, 2, 3}.

Note that the continuous time homogeneous differentiator (1)
is not analytic, that is why only Euler discretization of (1) is
used, the explicit one is (see [17], [18] for an improved and
efficient version of (3)):

z+1 = z1 + h (z2 + λ1⌈e1⌋α)

z+2 = z2 + h
(
z3 + λ2⌈e1⌋2α−1

)
z+3 = z3 + h

(
λ3⌈e1⌋3α−2

) (3)

where e1 = y − z1 and for ease of reading, the notations
”• = •(kh)” and ”•+ = •((k+1)h)” are kept in the discrete-
time framework, where h > 0 is the sampling period. This
solution is not attractive since it suffers from chattering
phenomena.
The implicit Euler discretization [2] of (1) is not directly
applicable, this is due to the homogeneous term |e1|α and
that is why semi-implicit Euler discretization methods are
used (see [12] for some efficient methods). The first proposed
semi-implicit Euler discretization of (1) given hereafter is
meanly based on the projector [2] and this is an extension
to order three of the second order differentiator proposed in
[12]:



z+1 = z1 + h
(
z+2 + λ1µ|e1|αN1

)
z+2 = z2 + E+

1 h
(
z+3 + λ2µ

2 |e1|2α−1 N2

)
z+3 = z3 + E+

1 E+
2 h

(
λ3µ

3 |e1|3α−2 N3

) (4)

where the associated projectors Nq with q ∈ {1, 2, 3} and
α ∈ [ 23 , 1[ are defined by (see [22] for q ∈ {1, 2}):

Nq :=


if |e1|q(1−α) < λq(µh)

q → Nq = ⌈e1⌋q(1−α)

λq(hµ)q

if |e1|q(1−α) ≥ λq(µh)
q → Nq = sgn(e1)

(5)

Moreover, E+
i is defined for i = {1, 2} such as:

E+
i :=

{
if |e1|i(1−α) < λi(µh)

i → E+
i = 1

if |e1|i(1−α) ≥ λi(µh)
i → E+

i = 0
(6)

Each line of the differentiator must be activated once
the convergence of the corresponding previous line has
converged and therefore each variable E+

i is iteratively
activated depending on the (i)th projector convergence. In
particular, the activation of the third line in (4) depends
simultaneously on the two previous projectors E+

1 and
E+

2 in order to avoid unexpected perturbations that may
destabilize the convergence. This follows the scheme of a
recursive algorithm.

Comparing the differentiator (4), (including (5) and (6))
to the following implicit Euler discretization of order three:

x+
1 = x1 + hx+

2

x+
2 = x2 + hx+

3 (7)
x+
3 = x3 + hy(3)

where x1 = y, x2 = ẏ, and x3 = ÿ, it is possible to set the
following theorem:

Theorem 1: Considering the implicit Euler discretization
of third order integrator (7) and the differentiator (4), under
the assumption 1, there exist µ and λq (q ∈ {1, 2, 3}) such
as the differentiator errors e1 = x1 − z1, e2 = x2 − z2 and
e3 = x3 − z3 are respectively smaller or equal to h3P , h2P
and hP .

A sketch of proof is given hereafter.

Considering the error dynamics:

e+1 = e1 + h
(
e+2 − λ1µ|e1|αN1

)
e+2 = e2 + E+

1 h
(
e+3 − λ2µ

2 |e1|2α−1 N2

)
e+3 = e3 + E+

1 E+
2 h

(
y(3)+ − λ3µ

3 |e1|3α−2 N3

) . (8)

Step 1 Under the assumption 1, it is possible to
choose µ ≫ P

1
3 , and after some iterations, the condition

|e1|1−α ≤ hλ1µ implies E+
1 = 1 and e+1 = he+2 , because

hλ1µN1 is exactly equal to e1, see [12] for more details.

Step 2 When E1 = 1 then e+1 = he+2 , and as µ2 ≫ P
2
3

again under assumption 1, after some iterations, the
condition |e1|2(1−α) ≤ λ2(µh)

2 is verified, which gives
E2 = 1 and |e2|2(1−α) ≤ λ2µ

2h2α, this implies that e2 is
equal to λ2µ

2|e1|2(α−1)N2 and so e+2 = he+3 .

Step 3 Finally, for E1 = 1 and E2 = 1, as
µ3 ≫ P and under assumption 1, after some iterations
|e1|3(1−α) ≤ λ3µ

3h3 which gives |e3|3(1−α) ≤ λ3µ
3h6α−3

and thus λ3µ
3|e1|3α−2N3 is exactly equal to e3 then

e+3 = hy(3)
+

and as |y(3)| < P . It is possible to conclude
that |e1| < h3P , |e2| < h2P and |e3| < hP . ■



Remark 1: The previous theorem gives the error between
the state of the integrator (7) and the state of the differentiator
(4). Nevertheless, the integrator (4) is only an approximation
in O(h2). It is why hereafter and based on [17], [18], some
corrective terms are added to take into account that the
signal to differentiate is analytical and consequently, an exact
explicit solution1 of 3rd order integrator can be used.

x+
1 = x1 + hx2 +

h2

2!
x3 +

h3

3!

...
y

x+
2 = x2 + hx3 +

h2

2!

...
y (9)

x+
3 = x3 + h

...
y

Then, the exact implicit solution of (9) of 3rd order
integrator, assuming that ...

y =
...
y +, is obtained as follow

considering e.g. in

x+
2 = x2 + hx3 +

h2

2!

...
y

substituting x3 by x+
3 , and ...

y + =
...
y this gives:

x+
2 = x2 + h (x3 + h

...
y +)− h2

2!

...
y +

Finally2, recursively, we obtain:

x+
1 = x1 + hx+

2 − h2

2!
x+
3 + 7

h3

3!

...
y +

x+
2 = x2 + hx+

3 − h2

2!

...
y + (10)

x+
3 = x3 + h

...
y +

From the exact implicit solution (10), the corrective term
−E+

2 h1
2
z+
3 has been added in (4); and the semi-implicit

differentiator of order three including the corrective term (in
bold) reads:

z+1 = z1 + h
(
z+2 −E+

2 h1
2
z+
3 +λ1µ|e1|αN1

)
z+2 = z2 + E+

1 h
(
z+3 + λ2µ

2 |e1|2α−1 N2

)
z+3 = z3 + E+

1 E+
2 h

(
λ3µ

3 |e1|3α−2 N3

)
(11)

Remark that the correcting term −E+
2 h 1

2z
+
3 is different

from the one computed in [18]. First, this is due to the
fact that in the studied case, the implicit discretization is
considered instead of the explicit one.

Secondly, the term E+
2 has been added in order to inject

the corrective term only when z3 is closed to its switching
surface. As usual, all terms in ...

y are not taken into account
in the differentiator (11) because they represent unknown
perturbations.

1under the assumption that ...
y is constant during the sampling period.

2The term in h3 in x+
1 is obtained as follow. In (9) , all the coefficients

of corrective terms in h2 are equal to −h2

2!
and the coefficient X of the

corrective term in h3 is obtained from −h3

2!
− h3

2!
+X = h3

3!
.

IV. EXPERIMENTAL APPLICATION

A. Experimental setup
Previous work of the authors [12], [16] considered some

homogeneous differentiation algorithms that have been com-
pared in the framework of velocity/acceleration estimation
regarding the position of a pneumatic actuator, and the
estimation of the current in the case of an electronics RC
low pass circuit.

In this study, the objective is to differentiate the output of
a RLC series circuit (see Fig. 1 with R = 890Ω, L = 1H
and C = 1µF); the input signal being a sine function of
frequency f = 160 Hz, set at the resonance of the circuit
ω0 = 1000 rad/s.

Fig. 1. RLC circuit.

The measured signal to differentiate (Fig. 2 without nor-
malization), has been obtained by scoping the voltage vC
across the capacitor C.

Fig. 2. Measured vC versus time (s).

Firstly, the voltage vR = R i is measured across the terminals
of the resistor R, and constitutes the reference differentiated
signal v̇C since

v̇C =
1

RC
vR, (12)

then, the voltage vL = L di/dt is measured across the
terminals of the inductance L and constitutes the reference
twice differentiated signal v̈C since

v̈C =
1

LC
vL. (13)



The proposed differentiator allows avoiding the use of a
current sensor given that i = Cv̇C and an extra voltage
sensor given that vL = L di/dt.

B. Attenuation noise projectors

In this experiment, the measured signal ym is noisy i.e.
ym = y + η where η is a measurement noise and then, the
output variable e1 becomes e1m = ym− z1. Consequently, a
modified projector including a new parameter θ is introduced
in order to mitigate the influence of noise on the sliding
surface. Roughly speaking, on the sliding surface, for θ
equals to zero, finite-time convergence is ensured and when
θ is different from zero, the convergence is only asymptotic
but the differentiator is less sensitive to noise. This is due
to the fact that the influence of noise on the sliding surface
is multiplied by (1− θ); thus, this improves the behavior of
the differentiator in regard to the measurement noise. To take
into account the measurement noise, instead of being on the
”sliding” domain (i.e. |e1m|(1−α) < λ1µh), e+1m = y+m − z+1
converges in one step to he+2 for which the convergence is
now only exponential and realized as follows:

z+1 = z1 + h
(
z+2 + λ1µ|e1m|αNθ1

)
z+2 = z2 + E+

θ1
h
(
z+3 + λ2µ

2 |e1m|2α−1 Nθ2

)
z+3 = z3 + E+

θ1
E+

θ2
h
(
λ3µ

3 |e1m|3α−2 Nθ3

) (14)

with

Nθq :=



(1− θq)|e1m|q(1−α) < λq(µh)
q

→ Nθq =
(1−θq)⌈e1m⌋q(1−α)

λq(hµ)q

(1− θq)|e1m|q(1−α) ≥ λq(µh)
q

→ Nθq = sgn(e1m)

(15)

where q = {1, 2, 3} and Eθi is defined only for i = {1, 2}

Eθi :=

{
(1− θi) |e1m|i(1−α) < λi(µh)

i → Eθi = 1
(1− θi) |e1m|i(1−α) ≥ λi(µh)

i → Eθi = 0
(16)

C. Results

To operate the differentiator, the measured sampling period
hm = 4µs has been increased in the sequel to the sampling
period hd = 103 hm = 4ms to avoid dealing with huge
numbers due to the second derivative of the sine function,
that is of the order (2πf)2 ≈ 106. This ”normalization”
allows an easier tuning of the parameters. For the seek of
simplicity, after the normalization, the time derivative of
vC becomes v′C and is called ”velocity”. In the same way,
the second time derivative of vC becomes v′′C and is noted
”acceleration”.

The µ parameter is chosen according to the magnitude of
the third derivative of the sine function such as µ3 ≫ (2πf)3.
The λi parameters are chosen such as the linear part is
stable and typically λ1 = λ2 = 3 and λ3 = 1. The

homogeneous exponent α is chosen between the coefficient
of Levant’s differentiator and the linear solution i.e. α =
0.81. The θi parameters are chosen to allow a good filtering
of the noise i.e. 0.5 < θi < 1 and can been refined
thanks to an optimization procedure to improve the SSE
performance index3 [23]: the parameters θi are set such as:
θ1 = 0.8980, θ2 = 0.9979, and θ3 = 0.9999.

Without the normalization, the µ parameter is of order
104; the normalization allows manipulating much smaller
numbers, thus avoiding truncation and numerical errors. The
normalization would allow to systematize the tuning of the
differentiator depending on the considered application.

Figures (3) and (4) show respectively the estimated first
derivative and the second derivative of the capacitor voltage
according to their measured reference regarding the explicit
differentiator and Figures (5) and (6) show respectively
the estimated first derivative and the second derivative of
the capacitor voltage according to their measured reference
regarding the semi-implicit differentiator.

The Sum of Square Error (SSE) index of ”velocity” and
”acceleration” are displayed in Fig. (7) for both explicit and
semi-implicit methods; the smallest the SSE index, the better
the result.

Even if the ”velocity” estimation seems to be similar for
explicit (Fig. (3)) and semi-implicit (Fig. (5)) solutions, the
SSE index with respect to ”velocity” (Fig. (7)) highlights the
fact that the semi-implicit solution has better performances.
In the same way, with respect to the ”acceleration”, the semi-
implicit solution (Fig. (6)) has better rejection to the noise
than the explicit one (Fig. (4)). This is confirmed by the SSE
index in Fig. (7). Moreover, the semi-implicit solution seems
to have less phase delay.

Fig. 3. Measured and estimated (normalized) v′C for the explicit differen-
tiator.

V. CONCLUSIONS AND FUTURE WORKS

This paper deals with an homogeneous differentiator of
high order in the implicit framework proposed in [2]. The
proposed scheme considers semi-implicit homogeneous dif-
ferentiators instead of classical sliding mode differentiators

3The SSE is given by SSE(•) = 1
n

∑n
l=1 •2l with n the data size.



Fig. 4. Measured and estimated (normalized) v′′C for the explicit differen-
tiator.

Fig. 5. Measured and estimated (normalized) v′C for the semi-implicit
differentiator.

Fig. 6. Measured and estimated (normalized) v′′C for the semi-implicit
differentiator.

including three projectors. These theoretical projectors, de-
fined in the main part, have been modified in order to reduce
chattering and measurement noise effects. An experimental
validation has been conducted on an electronics RLC filter
for which promising performances of the differentiators have
been obtained in term of estimation error and noise rejection.
Future investigations include the generalization of the pro-
posed approach to variable exponent differentiators [1]. In
addition, more investigations will be conducted with respect

Fig. 7. Normalized SSE.

to recent implicit differentiation techniques. Moreover, it will
be very interesting to adapt the Taylor expansion corrective
term proposed in [17] for the explicit Euler differentiator. In
addition, one can also consider not only a regular sampling
but also the self and event triggering case [18], [24], [25].
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