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It is well-known that implicit-based and projectorbased differentiator schemes offer better performances, like reducing high frequency oscillations, compared to the corresponding explicit schemes. To keep the advantages of such implicit Euler approximations, when this approximation is applied in case of homogeneous differentiators, a semi-implicit Euler approximation has been recently proposed for secondorder systems. In this paper, a generalization to third order semi-implicit differentiation is proposed taking into account the attenuation of the noise considering advanced iterative projectors definition. Validation on experimental data is conducted to highlight the well-founded of the proposed differentiation strategy.

I. INTRODUCTION

Real-time discrete signal differentiation can be performed using sliding-modes techniques [START_REF] Ghanes | A new varying gain exponent based differentiator/observer: an efficient balance between linear and sliding-mode algorithms[END_REF] and the recent implicit discretization technique, introduced in [START_REF] Acary | Implicit euler numerical scheme and chattering-free implementation of sliding mode systems[END_REF] would overcome some limitations of the classical sliding-mode such as a cancellation of the chattering effect as well as robustness of the estimation under lower sampling frequencies. The principle of the implicit-based differentiation is to replace the classical sign function by an implicit projector and some recent successful experiments through implicit based sliding mode control algorithms have been obtained (see e.g. [START_REF] Huber | Comparison between explicit and implicit discrete-time implementations of sliding-mode controllers[END_REF], [START_REF] Acary | Chattering-free digital slidingmode control with state observer and disturbance rejection[END_REF], [START_REF] Huber | Discrete-time twisting controller without numerical chattering: analysis and experimental results with an implicit method[END_REF], [START_REF] Wang | Experimental comparisons between implicit and explicit implementations of discrete-time sliding mode controllers: Toward input and output chattering suppression[END_REF], [START_REF] Brogliato | Globally stable implicit euler timediscretization of a nonlinear single-input sliding-mode control system[END_REF], [START_REF] Huber | Lyapunov stability and performance analysis of the implicit discrete sliding mode control[END_REF], [START_REF] Brogliato | The implicit discretization of the super-twisting sliding-mode control algorithm[END_REF], [START_REF]The implicit discretization of the super-twisting sliding-mode control algorithm[END_REF]). In the framework of the discrete homogeneous differentiation, the proposed differentiator combines explicit terms with implicit one including two projectors in order to reduce the effects of chattering [START_REF] Michel | Semiimplicit euler discretization for homogeneous observer-based control: one dimensional case[END_REF]. Recent contributions include a derivation to second order system [START_REF]Semi-implicit homogeneous euler differentiator for a secondorder system: Validation on real data[END_REF], and an adaptive version regarding the rejection of the measurement noise, that has been proposed in [START_REF]A noise less-sensing semi-implicit discretization of a homogeneous differentiator: principle and application[END_REF]. A comparison of performances between classical and advanced differentiation structures has been performed in [START_REF] Mojallizadeh | Discretetime differentiators: design and comparative analysis[END_REF]- [START_REF] Michel | An experimental investigation of discretized homogeneous differentiators: pneumatic actuator case[END_REF] and highlights the fact that implicit based methods are more efficient and robust to the noise and chattering than the corresponding explicit one.

Recently, the authors presented the derivation of a cascaded version of second order semi-implicit homogeneous differentiator [START_REF]Semi-implicit homogeneous euler differentiator for a secondorder system: Validation on real data[END_REF], [START_REF] Michel | An experimental investigation of discretized homogeneous differentiators: pneumatic actuator case[END_REF], considering thus two stages of differentiators for which the homogeneous exponents can be adjusted separately, but it includes delays (toward the propagation from the first stage to the second stage) and requires more states than the system to differentiate (for example, four states are required to estimate the acceleration from the measured position of a mechanical system). To better exploit the advantages of the implicit projectors, in this work, we propose an extension to the third order semiimplicit differentiator, keeping the homogeneous properties of the differentiation and for which, the tuning of the parameters is simpler than the cascade since a single homogeneous exponent is considered. Moreover, it has the same order than the dimension of the system to differentiate. Note that additional Taylor expansion corrective terms, inspired from [START_REF] Livne | Proper discretization of homogeneous differentiators[END_REF], [START_REF] Barbot | Discrete differentiators based on sliding modes[END_REF], can be included in the differentiator to improve the precision, as well as an adaptive tuning procedure for the homogeneous exponent in order to reject the noise [START_REF]A noise less-sensing semi-implicit discretization of a homogeneous differentiator: principle and application[END_REF].

To highlight the merit of the proposed strategy, experiments are conducted within an electrical RLC circuit where the output voltage across the capacitor can be differentiated twice and compared easily with the corresponding measurements but other applications can be considered, for example in mechanics. This paper is outlined as follows. Section II describes the background of the homogeneous differentiation approach. Section III presents the main contribution and describes the third order semi-implicit homogeneous approach including iterative projectors. The differentiation approach is applied to experimental data in Section IV in which the benefits are discussed. Section V concludes the paper and suggests some future works.

II. BACKGROUND ON HOMOGENEOUS DIFFERENTIATION

Considering a signal to differentiate y, at least of class C 2 with bounded third derivative. From [START_REF] Ghanes | A new varying gain exponent based differentiator/observer: an efficient balance between linear and sliding-mode algorithms[END_REF], [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF], [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF], a continuous-time homogeneous differentiator of order three can be designed as follows:

                   ż1 = z 2 + λ 1 µ⌈e 1 ⌋ α ż2 = z 3 + λ 2 µ 2 ⌈e 1 ⌋ 2α-1 ż3 = λ 3 µ 3 ⌈e 1 ⌋ 3α-2 ŷ = z 1 (1)
where α ∈ [ 2 3 , 1] has to be fixed [START_REF] Ghanes | Arbitrary order differentiator with varying homogeneity degree[END_REF]; e 1 = y -z 1 (i.e. e 1 = 0 defines the sliding surface), including the notation

⌈•⌋ α = | • | α sgn(•).
The gain µ > 0 is chosen greater than the perturbation on the 3 rd output derivative and the gains (λ 1 , λ 2 , λ 3 ) > 0 are tuned such that e 1 , e 2 = ẏ -z 2 , and e 3 = ÿ -z 3 converge towards zero. Then, the system (1) allows to get an estimation of y, ẏ and ÿ.

III. MAIN RESULTS

Let us consider now the following restriction that is to define y(t) ∈ C ω i.e. an analytic signal; the exact discretization of y is:

y(t + h) = y(t) + ∞ j=1 y (j) (t) h j j! (2) 
where y (j) (t) denotes the j th time derivative of y(t).

Assumption 1: y (1) (t), y (2) (t) and y (3) (t) are bounded for all t > 0 and there exists a known P > 0 such that |y (j) (t)| < P j 3 ∀t > 0 and j ∈ {1, 2, 3}. Note that the continuous time homogeneous differentiator (1) is not analytic, that is why only Euler discretization of ( 1) is used, the explicit one is (see [START_REF] Livne | Proper discretization of homogeneous differentiators[END_REF], [START_REF] Barbot | Discrete differentiators based on sliding modes[END_REF] for an improved and efficient version of (3)):

           z + 1 = z 1 + h (z 2 + λ 1 ⌈e 1 ⌋ α ) z + 2 = z 2 + h z 3 + λ 2 ⌈e 1 ⌋ 2 α-1 z + 3 = z 3 + h λ 3 ⌈e 1 ⌋ 3 α-2 (3) 
where e 1 = y -z 1 and for ease of reading, the notations "• = •(kh)" and "• + = •((k+1)h)" are kept in the discretetime framework, where h > 0 is the sampling period. This solution is not attractive since it suffers from chattering phenomena.

The implicit Euler discretization [START_REF] Acary | Implicit euler numerical scheme and chattering-free implementation of sliding mode systems[END_REF] of (1) is not directly applicable, this is due to the homogeneous term |e 1 | α and that is why semi-implicit Euler discretization methods are used (see [START_REF]Semi-implicit homogeneous euler differentiator for a secondorder system: Validation on real data[END_REF] for some efficient methods). The first proposed semi-implicit Euler discretization of (1) given hereafter is meanly based on the projector [START_REF] Acary | Implicit euler numerical scheme and chattering-free implementation of sliding mode systems[END_REF] and this is an extension to order three of the second order differentiator proposed in [START_REF]Semi-implicit homogeneous euler differentiator for a secondorder system: Validation on real data[END_REF]:

               z + 1 = z 1 + h z + 2 + λ 1 µ|e 1 | α N 1 z + 2 = z 2 + E + 1 h z + 3 + λ 2 µ 2 |e 1 | 2 α-1 N 2 z + 3 = z 3 + E + 1 E + 2 h λ 3 µ 3 |e 1 | 3 α-2 N 3 (4) 
where the associated projectors N q with q ∈ {1, 2, 3} and α ∈ [ 2 3 , 1[ are defined by (see [START_REF] Michel | Semiimplicit homogeneous euler differentiator for a second-ordersystem: Validation on real data[END_REF] for q ∈ {1, 2}):

N q :=      if |e 1 | q(1-α) < λ q (µh) q → N q = ⌈e1⌋ q(1-α) λq(hµ) q if |e 1 | q(1-α) ≥ λ q (µh) q → N q = sgn(e 1 ) (5) 
Moreover, E + i is defined for i = {1, 2} such as:

E + i := if |e 1 | i(1-α) < λ i (µh) i → E + i = 1 if |e 1 | i(1-α) ≥ λ i (µh) i → E + i = 0 (6)
Each line of the differentiator must be activated once the convergence of the corresponding previous line has converged and therefore each variable E + i is iteratively activated depending on the (i) th projector convergence. In particular, the activation of the third line in (4) depends simultaneously on the two previous projectors E + 1 and E + 2 in order to avoid unexpected perturbations that may destabilize the convergence. This follows the scheme of a recursive algorithm.

Comparing the differentiator (4), (including ( 5) and ( 6)) to the following implicit Euler discretization of order three:

x + 1 = x 1 + h x + 2 x + 2 = x 2 + h x + 3 (7) x + 3 = x 3 + hy (3)
where x 1 = y, x 2 = ẏ, and x 3 = ÿ, it is possible to set the following theorem:

Theorem 1: Considering the implicit Euler discretization of third order integrator [START_REF] Brogliato | Globally stable implicit euler timediscretization of a nonlinear single-input sliding-mode control system[END_REF] and the differentiator (4), under the assumption 1, there exist µ and λ q (q ∈ {1, 2, 3}) such as the differentiator errors e 1 = x 1 -z 1 , e 2 = x 2 -z 2 and e 3 = x 3 -z 3 are respectively smaller or equal to h 3 P , h 2 P and hP .

A sketch of proof is given hereafter.

Considering the error dynamics:

e + 1 = e 1 + h e + 2 -λ 1 µ|e 1 | α N 1 e + 2 = e 2 + E + 1 h e + 3 -λ 2 µ 2 |e 1 | 2 α-1 N 2 e + 3 = e 3 + E + 1 E + 2 h y (3)+ -λ 3 µ 3 |e 1 | 3 α-2 N 3 . (8) 
Step 1 Under the assumption 1, it is possible to choose µ ≫ P 1 3 , and after some iterations, the condition

|e 1 | 1-α ≤ hλ 1 µ implies E + 1 =
1 and e + 1 = he + 2 , because hλ 1 µN 1 is exactly equal to e 1 , see [START_REF]Semi-implicit homogeneous euler differentiator for a secondorder system: Validation on real data[END_REF] for more details.

Step 2 When E 1 = 1 then e + 1 = he + 2 , and as

µ 2 ≫ P 2 3
again under assumption 1, after some iterations, the condition

|e 1 | 2(1-α) ≤ λ 2 (µh) 2 is verified, which gives E 2 = 1 and |e 2 | 2(1-α) ≤ λ 2 µ 2 h 2α , this implies that e 2 is equal to λ 2 µ 2 |e 1 | 2(α-1
) N 2 and so e + 2 = he + 3 .

Step 3 Finally, for E 1 = 1 and E 2 = 1, as µ 3 ≫ P and under assumption 1, after some iterations The previous theorem gives the error between the state of the integrator [START_REF] Brogliato | Globally stable implicit euler timediscretization of a nonlinear single-input sliding-mode control system[END_REF] and the state of the differentiator (4). Nevertheless, the integrator ( 4) is only an approximation in O(h 2 ). It is why hereafter and based on [START_REF] Livne | Proper discretization of homogeneous differentiators[END_REF], [START_REF] Barbot | Discrete differentiators based on sliding modes[END_REF], some corrective terms are added to take into account that the signal to differentiate is analytical and consequently, an exact explicit solution 1 of 3rd order integrator can be used.

|e 1 | 3(1-α) ≤ λ 3 µ 3 h 3 which gives |e 3 | 3(1-α) ≤ λ 3 µ 3 h 6α
x

+ 1 = x 1 + h x 2 + h 2 2! x 3 + h 3 3! ... y x + 2 = x 2 + h x 3 + h 2 2! ... y (9) 
x

+ 3 = x 3 + h ... y 
Then, the exact implicit solution of ( 9) of 3rd order integrator, assuming that ... y = ... y + , is obtained as follow considering e.g. in

x + 2 = x 2 + h x 3 + h 2 2!
... y substituting x 3 by x + 3 , and ... y + = ... y this gives:

x + 2 = x 2 + h (x 3 + h ... y + ) - h 2 2! ... y +
Finally 2 , recursively, we obtain:

x + 1 = x 1 + h x + 2 - h 2 2! x + 3 + 7 h 3 3! ... y + x + 2 = x 2 + h x + 3 - h 2 2! ... y + (10) 
x

+ 3 = x 3 + h ... y +
From the exact implicit solution [START_REF]The implicit discretization of the super-twisting sliding-mode control algorithm[END_REF], the corrective term -E + 2 h 1 2 z + 3 has been added in (4); and the semi-implicit differentiator of order three including the corrective term (in bold) reads:

                 z + 1 = z 1 + h z + 2 -E + 2 h 1 2 z + 3 +λ 1 µ|e 1 | α N 1 z + 2 = z 2 + E + 1 h z + 3 + λ 2 µ 2 |e 1 | 2 α-1 N 2 z + 3 = z 3 + E + 1 E + 2 h λ 3 µ 3 |e 1 | 3 α-2 N 3 (11) 
Remark that the correcting term -E + 2 h 1 2 z + 3 is different from the one computed in [START_REF] Barbot | Discrete differentiators based on sliding modes[END_REF]. First, this is due to the fact that in the studied case, the implicit discretization is considered instead of the explicit one.

Secondly, the term E + 2 has been added in order to inject the corrective term only when z 3 is closed to its switching surface. As usual, all terms in ... y are not taken into account in the differentiator [START_REF] Michel | Semiimplicit euler discretization for homogeneous observer-based control: one dimensional case[END_REF] because they represent unknown perturbations. 1 under the assumption that ... y is constant during the sampling period. 2 The term in h 3 in x + 1 is obtained as follow. In ( 9) , all the coefficients of corrective terms in h 2 are equal to -h 2 2! and the coefficient X of the corrective term in h 3 is obtained from

-h 3 2! -h 3 2! + X = h 3 3! .

IV. EXPERIMENTAL APPLICATION A. Experimental setup

Previous work of the authors [START_REF]Semi-implicit homogeneous euler differentiator for a secondorder system: Validation on real data[END_REF], [START_REF] Michel | An experimental investigation of discretized homogeneous differentiators: pneumatic actuator case[END_REF] considered some homogeneous differentiation algorithms that have been compared in the framework of velocity/acceleration estimation regarding the position of a pneumatic actuator, and the estimation of the current in the case of an electronics RC low pass circuit.

In this study, the objective is to differentiate the output of a RLC series circuit (see Fig. 1 Firstly, the voltage v R = R i is measured across the terminals of the resistor R, and constitutes the reference differentiated signal vC since

vC = 1 RC v R , (12) 
then, the voltage v L = L di/dt is measured across the terminals of the inductance L and constitutes the reference twice differentiated signal vC since

vC = 1 LC v L . (13) 
The proposed differentiator allows avoiding the use of a current sensor given that i = C vC and an extra voltage sensor given that v L = L di/dt.

B. Attenuation noise projectors

In this experiment, the measured signal y m is noisy i.e. y m = y + η where η is a measurement noise and then, the output variable e 1 becomes e 1m = y m -z 1 . Consequently, a modified projector including a new parameter θ is introduced in order to mitigate the influence of noise on the sliding surface. Roughly speaking, on the sliding surface, for θ equals to zero, finite-time convergence is ensured and when θ is different from zero, the convergence is only asymptotic but the differentiator is less sensitive to noise. This is due to the fact that the influence of noise on the sliding surface is multiplied by (1 -θ); thus, this improves the behavior of the differentiator in regard to the measurement noise. To take into account the measurement noise, instead of being on the "sliding" domain (i.e.

|e 1m | (1-α) < λ 1 µh), e + 1m = y + m -z + 1
converges in one step to he + 2 for which the convergence is now only exponential and realized as follows:

               z + 1 = z 1 + h z + 2 + λ 1 µ|e 1m | α N θ1 z + 2 = z 2 + E + θ1 h z + 3 + λ 2 µ 2 |e 1m | 2 α-1 N θ2 z + 3 = z 3 + E + θ1 E + θ2 h λ 3 µ 3 |e 1m | 3 α-2 N θ3 (14) 
with

N θq :=                     
(1 -θ q )|e 1m | q(1-α) < λ q (µh) q

→ N θq =

(1-θq)⌈e1m⌋ q(1-α) λq(hµ) q

(1 -θ q )|e 1m | q(1-α) ≥ λ q (µh) q

→ N θq = sgn(e 1m )

where q = {1, 2, 3} and E θi is defined only for i = {1, 2}

E θi := (1 -θ i ) |e 1m | i(1-α) < λ i (µh) i → E θi = 1 (1 -θ i ) |e 1m | i(1-α) ≥ λ i (µh) i → E θi = 0 (16) 

C. Results

To operate the differentiator, the measured sampling period h m = 4 µs has been increased in the sequel to the sampling period h d = 103 h m = 4 ms to avoid dealing with huge numbers due to the second derivative of the sine function, that is of the order (2πf ) 2 ≈ 10 6 . This "normalization" allows an easier tuning of the parameters. For the seek of simplicity, after the normalization, the time derivative of v C becomes v ′ C and is called "velocity". In the same way, the second time derivative of v C becomes v ′′ C and is noted "acceleration".

The µ parameter is chosen according to the magnitude of the third derivative of the sine function such as µ 3 ≫ (2πf ) 3 . The λ i parameters are chosen such as the linear part is stable and typically λ 1 = λ 2 = 3 and λ 3 = 1. The homogeneous exponent α is chosen between the coefficient of Levant's differentiator and the linear solution i.e. α = 0.81. The θ i parameters are chosen to allow a good filtering of the noise i.e. 0.5 < θ i < 1 and can been refined thanks to an optimization procedure to improve the SSE performance index 3 [START_REF] Porcelli | Bfo, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables[END_REF]: the parameters θ i are set such as: θ 1 = 0.8980, θ 2 = 0.9979, and θ 3 = 0.9999.

Without the normalization, the µ parameter is of order 10 4 ; the normalization allows manipulating much smaller numbers, thus avoiding truncation and numerical errors. The normalization would allow to systematize the tuning of the differentiator depending on the considered application.

Figures [START_REF] Huber | Comparison between explicit and implicit discrete-time implementations of sliding-mode controllers[END_REF] and ( 4) show respectively the estimated first derivative and the second derivative of the capacitor voltage according to their measured reference regarding the explicit differentiator and Figures [START_REF] Huber | Discrete-time twisting controller without numerical chattering: analysis and experimental results with an implicit method[END_REF] and [START_REF] Wang | Experimental comparisons between implicit and explicit implementations of discrete-time sliding mode controllers: Toward input and output chattering suppression[END_REF] show respectively the estimated first derivative and the second derivative of the capacitor voltage according to their measured reference regarding the semi-implicit differentiator.

The Sum of Square Error (SSE) index of "velocity" and "acceleration" are displayed in Fig. [START_REF] Brogliato | Globally stable implicit euler timediscretization of a nonlinear single-input sliding-mode control system[END_REF] for both explicit and semi-implicit methods; the smallest the SSE index, the better the result.

Even if the "velocity" estimation seems to be similar for explicit (Fig. (3)) and semi-implicit (Fig. ( 5)) solutions, the SSE index with respect to "velocity" (Fig. ( 7)) highlights the fact that the semi-implicit solution has better performances. In the same way, with respect to the "acceleration", the semiimplicit solution (Fig. ( 6)) has better rejection to the noise than the explicit one (Fig. (4)). This is confirmed by the SSE index in Fig. [START_REF] Brogliato | Globally stable implicit euler timediscretization of a nonlinear single-input sliding-mode control system[END_REF]. Moreover, the semi-implicit solution seems to have less phase delay. 

V. CONCLUSIONS AND FUTURE WORKS

This paper deals with an homogeneous differentiator of high order in the implicit framework proposed in [START_REF] Acary | Implicit euler numerical scheme and chattering-free implementation of sliding mode systems[END_REF]. The proposed scheme considers semi-implicit homogeneous differentiators instead of classical sliding mode differentiators including three projectors. These theoretical projectors, defined in the main part, have been modified in order to reduce chattering and measurement noise effects. An experimental validation has been conducted on an electronics RLC filter for which promising performances of the differentiators have been obtained in term of estimation error and noise rejection. Future investigations include the generalization of the proposed approach to variable exponent differentiators [START_REF] Ghanes | A new varying gain exponent based differentiator/observer: an efficient balance between linear and sliding-mode algorithms[END_REF]. In addition, more investigations will be conducted with respect to recent implicit differentiation techniques. Moreover, it will be very interesting to adapt the Taylor expansion corrective term proposed in [START_REF] Livne | Proper discretization of homogeneous differentiators[END_REF] for the explicit Euler differentiator. In addition, one can also consider not only a regular sampling but also the self and event triggering case [START_REF] Barbot | Discrete differentiators based on sliding modes[END_REF], [START_REF] Qu | Fusion estimation for a class of multi-rate power systems with randomly occurring scada measurement delays[END_REF], [START_REF] Cucuzzella | Event-triggered variable structure control[END_REF].

  -3 and thus λ 3 µ 3 |e 1 | 3α-2 N 3 is exactly equal to e 3 then e + 3 = hy (3) + and as |y (3) | < P . It is possible to conclude that |e 1 | < h 3 P , |e 2 | < h 2 P and |e 3 | < hP . ■ Remark 1:

  with R = 890Ω, L = 1H and C = 1µF); the input signal being a sine function of frequency f = 160 Hz, set at the resonance of the circuit ω 0 = 1000 rad/s.

Fig. 1 .
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 2 Fig. 2. Measured v C versus time (s).
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 3 Fig. 3. Measured and estimated (normalized) v ′ C for the explicit differentiator.
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 4 Fig. 4. Measured and estimated (normalized) v ′′ C for the explicit differentiator.

Fig. 5 .

 5 Fig. 5. Measured and estimated (normalized) v ′ C for the semi-implicit differentiator.
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 6 Fig. 6. Measured and estimated (normalized) v ′′ C for the semi-implicit differentiator.
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 7 Fig. 7. Normalized SSE.

The SSE is given by SSE(•) = 1 n n l=1 • 2l with n the data size.
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