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Abstract: Cancelable biometric schemes aim at generating secure biometric templates by combining user specific tokens,
such as password, stored secret or salt, along with biometric data. This type of transformation is constructed as
a composition of a biometric transformation with a feature extraction algorithm. The security requirements of
cancelable biometric schemes concern the irreversibility, unlinkability and revocability of templates, without
losing in accuracy of comparison. While several schemes were recently attacked regarding these requirements,
full reversibility of such a composition in order to produce colliding biometric characteristics, and specifically
presentation attacks, were never demonstrated to the best of our knowledge. In this paper, we formalize these
attacks for a traditional cancelable scheme with the help of integer linear programming (ILP) and quadratically
constrained quadratic programming (QCQP). Solving these optimization problems allows an adversary to
slightly alter its fingerprint image in order to impersonate any individual. Moreover, in an even more severe
scenario, it is possible to simultaneously impersonate several individuals.

1 Introduction

Biometric authentication is more and more used in
daily life and are commonly integrated on many smart
objects and devices, e.g., computer, smartphone, USB
drive, passport. Since biometrics is more conve-
nient and quicker to use, and biometric characteris-
tics cannot be lost or forgotten, biometric authentica-
tion solutions are in general preferred over their pass-
word or physical token counterparts. Despite their
many advantages, biometric solutions are not exempt
from vulnerabilities. As biometric-based technolo-
gies are deployed at a larger scale, centralized bio-
metric databases and devices become natural targets
in cyber attacks. These cyber attacks have the po-
tential to be harmful on the long term if they lead to
the theft of biometric data. Therfore, a biometric data
may actually be vulnerable to impersonation attacks
and privacy leakage.

Several criteria essential to biometric authen-
tication systems have been identified in ISO/IEC
24745 (ISO, 2011) and ISO/IEC 30136 (ISO, 2018):
Irreversibility, unlinkability, revocability and perfor-
mance preservation of templates.

• Irreversibility prevents from finding the original
person’s biometric data from the protected tem-

plate.
• Unlinkability prevents cross-matching attacks or,

in other words, the linkability between two digital
identities, i.e., two biometric templates.

• Revocability requires the scheme to be able to
generate new protected templates in case of com-
promission of the biometric database.

• The last criteria, performance preservation, stipu-
lates that recognition accuracy of protected tem-
plates should not be degraded compared to the
original data.

Fulfilling this set of criteria is now necessary to com-
ply with the privacy principles of the GDPR.

Faced with the mentioned vulnerabilities and re-
quirements, the community has proposed primitives
dedicated to biometrics, so called biometric tem-
plate protection (BTP) schemes. Examples of such
primitives include cancelable biometrics (see (Jin
et al., 2004; Sutcu et al., 2005)), biometric cryp-
tosystems (e.g., fuzzy vault (Juels, 2006), fuzzy ex-
tractors (Dodis et al., 2004)), and hybrid biomet-
rics (Bringer et al., 2008; Jain and Nandakumar,
2012). In this paper, we focus on cancelable bio-
metrics (CB) which is an example of BTP scheme
claimed to meet the four criterias. For more de-
tails on BTP schemes, the reader is referred to two
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surveys (Nandakumar and Jain, 2015) and (Natgu-
nanathan et al., 2016). In CB, a biometric template
is computed through a process where the inputs are
biometric data (e.g., biometric image) of a user and
a user specific token (e.g., a random key, seed, salt,
or password). A CB scheme generally consists of a
sequence of processes (an extraction of features fol-
lowed by a parameterized transformation) that pro-
duces the biometric templates, and a matcher to gen-
erate a matching score between the templates. With
a CB scheme, templates can be revoked, changed,
and renewed by changing user specific tokens. Even
though user tokens in CB may be considered as se-
cret, the security of a two-factor authentication sys-
tem should not be reduced to a single factor. Crypt-
analysis of CB schemes with strong adversarial mod-
els commonly assume that the attacker knows both
the biometric template and token of the user. This as-
sumption is plausible in practice because a user token
may have low entropy (e.g., a weak password), or it
may just have been compromised by an attacker. This
stolen-key scenario is also known as the stolen-token
scenario (Teoh et al., 2008).

Ratha et al. (Ratha et al., 2001) were the first to
introduce CB in the case of face recognition. Since
then, several CB schemes have been proposed, includ-
ing the popular Biohashing algorithm (Jin et al., 2004)
applied on many modalities such as fingerprints, face,
and iris. CB schemes offer several advantages such
as efficient implementation, high matching accuracy,
and revocability. However, several attacks on a va-
riety of CB schemes have been proposed: attacks
against privacy by approximating feature vectors or
linking several templates of an individual, and authen-
tication attacks by elevating the false acceptance rate
(FAR). We refer the reader to (Nagar et al., 2010;
Topcu et al., 2016) for attacks on biohashing type
schemes, (Quan et al., 2008; Li and Hu, 2014) for at-
tacks using the Attack via Record Multiplicity (ARM)
technique, (Lacharme et al., 2013; Dong et al., 2019a)
for attacks using genetic algorithms, as well as attacks
using constrained programming on CB schemes built
upon ranking based hashing (Ghammam et al., 2020).

Authentication attacks using genetic algorithms
have been proposed in (Dong et al., 2019a; Rozsa
et al., 2015). Their objective is to find the right param-
eters for generating fingerprint images in order to ele-
vate FAR rates. In the case of the fingerprint modality,
strategies making use of both hill climbing attacks and
genetic algorithms have also been proposed in (Dong
et al., 2019b; Wang et al., 2021).

Contributions. In this paper, we propose re-
versibility attacks against some projection-based CB

schemes, such as the BioHashing (Jin et al., 2004).
The particularity of our attacks, as opposed to previ-
ous works, is that we reverse the complete sequence
of treatments including the feature extraction algo-
rithm. This allows us to construct impostor finger-
print images, thus enabling authentication (or presen-
tation) attacks. In our authentication attacks, an ad-
versary, who already has the knowledge of a user’s
specific token and has at least one fingerprint tem-
plate of the same user, tries to alter his own fingerprint
image such that the adversary can now use its own
altered biometrics and the stolen token to be falsely
authenticated as a legitimate user. The considered
CB schemes are built upon uniform random projec-
tion (URP) and a feature extractor such as Sobel or
Gabor filter. To perform our attacks, we use Integer
Linear Programming (ILP) as well as quadratically
constrained quadratic programming (QCQP). Con-
strained optimization with linear programs has been
previously used in the cryptanalysis of other schemes;
see (Ghammam et al., 2020; Topcu et al., 2016).

We can state our results as follows:
1) Simple authentication attacks. A complete

reversal methodology of some projection-based CB
schemes, including the BioHash algorithm, is pro-
posed. The main ideas are to solve an integer lin-
ear program and a quadratically constrained quadratic
program to reverse both the projection and the feature
extraction. The solution provided by a solver (e.g.,
Gurobi) is a fingerprint image of the attacker whose
the amount of changes is minimized. Practical reso-
lutions are provided for tiny synthetic images.

2) One fingerprint image for several imperson-
ations. The first attack is extended to produce a fin-
gerprint image that impersonates the identity of sev-
eral users. Our formalized constrained problems and
experimentations on tiny synthetic images show that
an adversary can alter its own fingerprint image to
be authenticated as any of several legitimate users.
To reach this objective, two different attacks are pro-
posed:

• The first strategy for the attacker is to collect the
pairs of (token, template) of the target users to en-
large the set of constraints of a QCQP program.
The solution sought is a single altered fingerprint
image of the attacker such that, when combined
with the distinct stolen tokens, the generated tem-
plates match exactly the stolen templates of the
respective users. Impersonating a large number
of target users under this approach imposes a due
acceptance of a larger number of changes in the
altered fingerprint image of the attacker.

• The second proposed strategy does not require the
knowledge of the tokens and consists in generat-



ing a template which is an average (barycentric)
template of the target users. Then, the attacker
formalizes a set of constraints using this template
and her token. She solves it to find a fingerprint
image as close as possible to her own. If the target
templates lie in a ball of radius two times the deci-
sion threshold (in the template space), her altered
fingerprint image enables an authentication attack
for multiple users. In other words, her altered im-
age is a “master print” for these target users.

Outline. Some background information and the ad-
versarial models are presented in Section 2. Section 3
provides our simple authentication attacks. Section 4
introduces an attack not relying on the knowledge of
the passwords. Then, in Section 5, it is shown how to
impersonate several users with different passwords.
Finally, experimental evaluations and future works
are discussed in Section 6 and Section 7 respectively.

2 Background

Cancelable biometric schemes generate secure bio-
metric templates by combining user specific tokens
such as password with his biometric data such as fin-
gerprint. The goal is to create templates meeting the
four aforementioned criteria, i.e., irreversible, unlink-
able, and revocable templates, with high accuracy of
comparison. Biometric templates in CB schemes are
constructed in two steps: (i) Feature extraction: A
feature vector is derived from a biometric image; (ii)
Transformation: A user specific token is used to trans-
form the user’s feature vector to a template.

In the following, we let (MI ,DI), (MF ,DF) and
(MT ,DT ) be three metric spaces, where MI , MF and
MT represent the fingerprint image space, the feature
space and the template space, respectively; and DI ,
DF and DT are the respective distance functions. Note
that DI and DF are instantiated with the Euclidean dis-
tance, while DT is instantiated with the Hamming dis-
tance.

2.1 Feature Extraction with Sobel
Filtering

Let U be the set of users of the biometric system. We
identify a user with its biometric characteristic, and
define a function BC (·) that takes a biometric charac-
teristic usr ∈U as input, and outputs a digital repre-
sentation of biometric data I; for instance, the scan
image of a fingerprint. Note that for two different
computations of I = BC (usr) and I′ = BC (usr) (e.g.,

at different times, or different devices), we may have
I 6= I′ due to the inherent noise in the measurement of
biometric data.
Definition 2.1. A biometric feature extraction scheme
is a pair of deterministic polynomial time algorithms
Π := (E,V ), where:

• E is the feature extractor of the system, that takes
biometric data I as input, and returns a feature
vector F ∈MF .

• V is the verifier of the system, that takes two fea-
ture vectors F = E(I), F ′ = E(I′), and a threshold
τ as input, and returns True if D(F,F ′) ≤ τ, and
returns False if D(F,F ′)> τ.

Sobel Filter. An example of feature extraction is the
Sobel filtering (Vincent and Folorunso, 2009). Sobel
Filter is usually used for edge detection. The result-
ing image is obtained by computing two convolutions
given by the following matrices:

G1 =

1 0 −1
2 0 −2
1 0 −1

 and G2 =

 1 2 1
0 0 0
−1 −2 −1

 .

We denote by ∗ the operator of convolution and
by I the matrix of the image in shades of gray. Note
that pixels at the edges of the image are ignored and
their values are set to 0 in the corresponding matrix
I. The horizontal and vertical gradients, Gx and Gy,
are computed as follows Gx = G1 ∗ I and Gy = G2 ∗ I
with ∗ the sign of convolution 2.2 from (Stockman
and Shapiro, 2001). Then, the matrix of the output
image S is computed as ‖Gx +Gy‖2 where ‖·‖2 de-
notes the Euclidean norm. However, the norm does
not apply in the usual way. In fact, in this case it ap-
plies coordinate by coordinate. For example, the first
coordinate of S is S1,1 = 2

√
G2

x1,1
+G2

y1,1
.

Definition 2.2 (Convolution ∗). The general expres-
sion of a matrix convolution is

x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn

∗


y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn


=

m−1

∑
i=0

n−1

∑
j=0

x(m−i)(n− j)y(1+i)(1+ j)

Figure 1 shows an example of fingerprint input
with its corresponding output by the filter.

2.2 Generation of Templates with URP

Definition 2.3. Let K be the token (seed) space, rep-
resenting the set of tokens to be assigned to users. A



Figure 1: Left: Fingerprint image. Right: Resulting image
after Sobel filter.

cancelable biometric scheme is a pair of deterministic
polynomial time algorithms Ξ := (T ,V ), where:

• T is the transformation of the system, that takes
a feature vector F ∈MF and the token parameter
P as input, and returns a biometric template T =
T (P,F) ∈MT .

• V is the verifier of the system, that takes two bio-
metric templates T = T (P,F), T ′ = T (P′,F ′),
and a threshold τT as input; and returns True if
DT (T,T ′)≤ τT , and returns False if DT (T,T ′)>
τT .

The attacked CB instantiation, described in Al-
gorithm 1, is based on a uniform random projection
(URP). Such a projection serves as an embedding of a
high-dimensional space into a space of much lower
dimension while preserving approximately the dis-
tances between all pairs of points. This type of di-
mensionality reduction is characterized by the John-
son–Lindenstrauss lemma 2.1 (Johnson, 1984). Al-
gorithm 1 assumes the second factor, i.e., the token, is
a password and output a Biometric Compressed Vec-
tor (BCV).
Lemme 2.1 (Johnson-Lindenstrauss). Given 0 < ε <
1, a set X of m point in RN , and a number n >

8
(

ln(m)

ε2

)
, there is a linear map f : RN 7→ Rn such

that for all u,v ∈ X :

(1− ε) ||u− v|| ≤ || f (u)− f (v)|| ≤ (1+ ε) ||u− v||

Remark 2.2.1. Biohashing instantiation (Jin et al.,
2004) is based on the same type of projection, ex-
cept that an additional step of orthonormalization of
the family V by Gram-Schmidt is performed. This
skipped step affects neither the recognition accuracy
nor the feasibility of the attacks. However, their run-
ning times are reduced. Indeed, experiments over
FVC-2002-DB1 using the URP-Sobel scheme yield a
decision threshold at 225 for an EER equal to 0.29%.
However, in the case of Biohashing, the same exper-
iments yield a decision threshold at 224 for an EER
equal to 0.27%. Therefore, the recognition accuracy
results are pretty similar whether or not orthonormal-
ization is performed.

Algorithm 1 [URP-SOBEL]
Inputs : biometric data I; token parameter P
Output : T = (t1, . . . , tm)
T is a BCV (Biometric Compressed Vector)

1: Apply Sobel filter on I to produce an n-sized fea-
ture vector: F = ( f1, . . . , fn).

2: Generate with the token P a family V of m pseu-
dorandom vectors V1, . . . ,Vm of size n according
to a uniform law U([−0.5,0.5]).

3: Arrange the family V as a matrix M of size n×m.
4: Compute T as the matrix-vector product F×M.
5: for ti in T do
6: if ti < 0 then ti = 0 else ti = 1
7: end for
8: return T

2.3 Attack Models and Objectives

We perform an authentication attack and, we are able
to get access to this system in the name of the targeted
person.

To perform this attack some information are
needed:

• The password of our target.
• The original biohash of the target.
• Knowledge over the attacked system:

– How to get the matrix from the password.
– The value of the quantization that was used to

create the BCV.
We show that anybody can perform a simple au-

thentication attack or a one fingerprint image for sev-
eral impersonations attack by building a template
preimage if he knows the above information.

The informal definitions of (Ghammam et al.,
2020) are tailored for the rest of the paper. Let I ∈MI
be a fingerprint image, and let T = Ξ.T (P,E(I)) ∈
MT be the template generated from I and the se-
cret parameter P. In our authentication attack, an
adversary is given T , P, and a threshold value τT ,
and the adversary tries to find a fingerprint image
I∗ ∈ MI such that for T ∗ = Ξ.T (P,E(x∗)), T ∗ is
exactly the same as T , or T ∗ is close to T with
respect to the distance function over MT and the
threshold value τT . In this case, we say that I∗ is
a τT -nearby-template preimage (or simply a nearby-
template preimage, when τB is clear from the context)
of the template T .

A strategy for the adversary which have stolen the
secret parameter P is to alter her fingerprint image IA
such that P along with her extracted feature vector FA
enable the generation of the exact template T . This
motivates the notion of template fingerprint preimage
defined below.



Definition 2.4 (Template fingerprint preimage).
Let I ∈ MI be a fingerprint image, and T =
Ξ.T (P,Π.E(I)) ∈ MT a template for some secret
parameter P. A template preimage of T with re-
spect to P is a fingerprint image I∗ such that T =
Ξ.T (P,Π.E(I∗)).

Another authentication attack consists in generat-
ing a fingerprint image that yields the exact templates
of two distinct users with their corresponding stolen
tokens. More formally, we have the following defini-
tion:

Definition 2.5 (Two-template fingerprint
preimage). Let I1 and I2 ∈ MI be two fin-
gerprint images of distinct users, and two
templates T1 = Ξ.T (P1,Π.E(I1)) ∈ MT and
T2 = Ξ.T (P2,Π.E(I2)) ∈ MT for distinct secret
parameters P1 and P2. A two-template preimage of
the pair (T1,T2) with respect to the pair (P1,P2) is a
fingerprint image I∗ such that T1 = Ξ.T (P1,Π.E(I∗))
and T2 = Ξ.T (P2,Π.E(I∗)).

To capture the case of multi-collisions, this last
definition can be generalized to a notion of a n-
template fingerprint preimage.

Definition 2.6 (n-template fingerprint preimage). Let
I1, . . . , In ∈ MI be n fingerprint images of distinct
users, and n templates Ti = Ξ.T (Pi,Π.E(Ii)) ∈ MT
for distinct secret parameters Pi ∀i ∈ {0, . . . ,n}. A
n-template preimage of (I1, . . . , In) with respect to
(P1, . . . ,Pn) is a fingerprint image I∗ such that:

∀i ∈ {0, . . . ,n},Ti = Ξ.T (Pi,Π.E(I∗)).

3 Simple Authentication Attack

3.1 Overview

There are two ways of performing this attack. The
first one includes two steps described in Section 3.1.1.
First, given an attacker feature vector, we seek the
slightest modification of it such that its transforma-
tion by Ξ yields exactly the template of the victim.
Then, using the filter constraints of the convolution,
we seek the slightest variation of the attacker’s im-
age such that the filtering of this variation produces
exactly the modified feature vector. The second ap-
proach described in Section 3.1.2 consists in generat-
ing all constraints at once and directly generating the
modified attacker’s image.

3.1.1 First Approach

The attack takes as input the following parameters:

Target’s templatePassword

Initialize the linear
system to obtain a good

output for the filter

Random attacker
filtered image

Modified filtered image

Initialize quadratic
system to find a preim-

age of our modified
output of the filter

Return an image
for authentication

DB

Random attacker
original image

Set objective

Solve

Solve

Set objective

Figure 2: Principle of the attack’s first approach.

• The target’s password (Pt ).
• The target’s template (Tt ).
• The attacker’s image (IA).

This attack computes and uses following informa-
tion:

1. Attacker’s feature (FA).

2. Modified attacker’s feature (F ′A).

The output is a modified attacker’s image X which
matches the target template.

First, the attacker uses IA to compute FA using fil-
ter. Then, with Pt and Tt , the attacker modifies im-
age’s feature to match the target template F ′A. As
described in Section 3.2.1, it is done by solving an
under-constraint linear system and seeking the nearest
modified feature which matches the target template.
After that, using F ′A and IA, the attacker modifies its
image to match the modified feature. As described
in Section 3.2.2, it is done by solving an under-
constraint quadratic system and seeking the nearest
modified image which matches the feature.

Figure 2 gives an overview of this first method
step by step, where inputs are in circles and different
steps in boxes.

3.1.2 Second Approach

The attack takes as input the same parameters (Pt , Tt
and IA). The output is a modified attacker’s image X
which matches the target template.

The main idea is to merge both steps described



Target’s templatePassword

Initialize the
quadratic system

Random
attacker image

Return an image
for authenticationDB

Set objective

Solve

Figure 3: Principle of the attack’s second approach.

in Section 3.1.1. A unique constrained quadratic sys-
tem is solved to find the nearest modified image which
matches the template (see Figure 3).

3.2 Program Formulation for the
Two-Phase Approach

As explained, we proceed in two steps.

3.2.1 Getting a Correct Output for the Filter

For this part, we assume that we are after the filter.
We see how to inverse the filter later.

We want to reverse target’s template by using the
password. To do that, let X = (x0, . . . ,xn), M the pro-
jection matrix derivated from target’s password and f
the quantization function which takes XM to create a
binary template.

We know the projection matrix and the image we
need to get for the target client. Thus, one can seek to
calculate a pre-image of the projected vector by solv-
ing a system under constraints.

Remark 3.2.1. This attack works for many projec-
tions system such as Biohash.

Let us write it more formally. Let T = (t1, . . . , tm)
the biometric template, n the size of BCV and

M =

a1,1 . . . a0,n
...

. . .
...

am,0 . . . am,n

 .
Let K1 be all indices where the template is equal

to 0 and K2 all other indices. So, we seek a solution
to the following system:

XMi < 0,∀i ∈K1

XMi ≥ 0,∀ j ∈K2

xi ∈ R+,∀i ∈ (K1∪K2)

(1)

With Mi the i-th column of M. We seek to mini-
mize the distance between F and FA. By doing so, the

attacker can be authenticated by modifying the small-
est number of information of his own biometric fea-
ture vector.

This part of the attack solves the following prob-
lem. By taking FA = (o1, . . . ,on) the attacker’s bio-
metric feature, M the projection matrix we have:

• Minimize: ‖X−FA‖2

• Under the following constraints:
XMi < 0,∀i ∈K1

XMi ≥ 0,∀ j ∈K2

xi ∈ R+,∀i ∈ (K1∪K2)

(2)

With Mi the i-th column of M.

3.2.2 Get a Preimage to Avoid Filter Effect

The filter leads to a loss of information. But we can
write a quadratic system to create a collision and get
a correct preimage. Let the image matrix be

I =

 o0,0 . . . o0,width-1
...

. . .
...

olength-1,0 . . . olength-1,width-1


Applying the filter to that formal matrix yields a

new matrix D which has quadratic components. But,
we know that D must be equal to FA. Thus, we can
solve a quadratic system with (length×width) equa-
tions and (length×width) variable to find a preimage.

Let IA = (oi, j) denote the attacker’s original im-
age, FA = (ai, j) its modified feature, I′ = (x′i, j) the
modified original image and X = (xi, j) its augmented
form. We consider the augmented form as the original
matrix where zeroes are added all around the matrix
to compute the convolution without overflowing.

In the case of Sobel filter, we solve the following
problem:

• Minimize: ∑
i, j
(oi, j− xi, j)

2

• Subject to the following constraints:

αi, j = x(i−1, j−1)+2x(i, j−1)+ x(i+1, j−1)

− x(i−1, j+1)−2x(i, j+1)− x(i+1, j+1)

βi, j = x(i−1, j−1)+2x(i−1, j)+ x(i−1, j+1)

− x(i+1, j−1)−2x(i+1, j)− x(i+1, j+1)

a2
i, j = α2

i, j +β2
i, j,∀(i, j)

xi, j = 0 if i = 0 or i = length+1
xi, j = 0 if j = 0 or j = width+1
xi, j ∈ J0,255K ,∀(i, j)

(3)

Using the notations of Section 2.1, we obtain:



• Minimize: ‖X− IA‖2

• Under the following constraints:{
(FA)

2 =
[
(G1 ∗X)2 +(G2 ∗X)2

]
xi, j ∈ J0,255K ,∀(i, j)

(4)

3.3 Formulation as a Single Program

Yet another method is to merge both systems to create
a new quadratic system. In this case, we avoid some
problems such as having an intermediate feature vec-
tor which is not in the range of the filter function.

Assume that IA = (oi, j)n×m is the attacker’s origi-
nal image, I′ = (x′i, j)n×m the modified original image
and X = (xi, j)n×m its augmented form. Let K1 be all
indices where the template is equal to 0 and K2 all
other indices. Let M = (ai, j)(n∗m)×` be the projection
matrix. Let Yf lat be the flattened form of the matrix Y
where rows are concatenated in a single vector.

Thus, using the notations from the sections 3.1.1
and 3.1.2 we define the following problem for Sobel
filter:

• Minimize: ‖X− IA‖2

• Under the following constraints:
Y 2 =

[
(G1 ∗X)2 +(G2 ∗X)2

]
Yf latMi < 0,∀i ∈K1

Yf latM j ≥ 0,∀ j ∈K2

xi, j ∈ J0,255K ,∀(i, j)

(5)

Where the squaring stands for the coordinate by
coordinate squaring (i.e. Hadamard squaring) and Mi
the i-th column of M.

4 Multiple Authentications Attack

The goal of this attack is to find an image that can im-
personate several victims. The attacker computes an
image whose derived template is kind of a barycenter
of all the targeted templates This is possible only if
these templates are not too far with respect to a thresh-
old. A specificity of this attack is that the passwords
of the victims are not required.

4.1 Overview

Let µ denote the set of the victims. The attack takes
as input the following parameters:

1. The target’s templates (Tt)i∈µ.

2. The attacker’s image (IA).

Target’s templatesε

Compute the
center templateAttacker’s Password

Initialize the
quadratic system

Random
attacker image

Return an image
for authenticationDB

Set objective

Solve

Figure 4: Principle of the multiple authentications attack.

3. The attacker’s password (PA).

4. The value of ε the decision threshold.

The output is a modified attacker’s image X which
matches the modified template.

First, with respect to all the targeted templates, we
seek a template T such that they are in a ball centered
in T and of radius ε. If a center1 does not exist, a
subset of the targeted templates for which the center
exists is considered.

Then, a quadratic system and a function to mini-
mize can be built as explained in Section 4.2. Thus,
solving this problem gives us the modified image for
multiple authentications with the same password. We
present an overview of this attack in Figure 4.

4.2 Program Formulation

Let M be the projection matrix and T the template at
the center of the ball as defined in Section 4.1. As-
sume that K1 is the list of all indices where Ti is equal
to 0 and K2 is the list of the remaining indices. The
other notations are the same as in Section 3.3. The
problem can be defined like this:

• Minimize: ‖X− IA‖2

• Under the following constraints where Mk is the
k-th column of M:

Y 2 =
[
(G1 ∗X)2 +(G2 ∗X)2

]
Yf latM j < 0,∀ j ∈K1

Yf latMk ≥ 0,∀k ∈K2

xi, j ∈ J0,255K ,∀(i, j)

(6)

With Mi the i-th column of M.

1Several centers may exist and, with more than 2 tem-
plates the existence of at least one center is not ensured.
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Figure 5: Principle of the attack’s second approach.

5 Multiple Collisions Attack

In this attack, the attacker knows the templates and
passwords of the victims. Then, his goal is to use
all these information to generate one image that al-
lows her to impersonate all the victims using their
own password.

5.1 Overview

The attack takes as input the following parameters:

1. The target’s templates (Tt)i∈µ.

2. The attacker’s image (IA).

3. The target’s passwords (P)i∈µ.

The output is a modified attacker’s image X which
matches all templates for the corresponding pass-
word.

We define a quadratic system and a function to
minimize as explained in Section 5.2. Thus, solving
this problem gives us the modified image for multi-
ple authentications for each password. An overview
of this attack is depicted in Figure 5.

5.2 Program Formulation

Let Mi be the projection matrix for the i-th user. As-
sume that (K1)i is the list of all indices where (Tt)i is
equal to 0 and (K2)i all other indices. The other nota-
tions are the same as in Section 3.3. The problem can
be defined like this:

• Minimize: ‖X− IA‖2

• Under the following constraints where (Mi) j is the
j-th column of Mi:

Y 2 =
[
(G1 ∗X)2 +(G2 ∗X)2

]
Yf lat(Mi) j < 0,∀i ∈ µ,∀ j ∈ (K1)i

Yf lat(Mi)k ≥ 0,∀i ∈ µ,∀k ∈ (K2)i

xi, j ∈ J0,255K ,∀(i, j)

(7)

As matrices Mi are fully random, the probability
of them forming an indexed family of linearly de-
pendent vectors is negligible, thus making the system
solvable. Assume that L(V1, . . . ,Vk) is the event that
(V1, . . . ,Vk) is an indexed family of linearly indepen-
dent vectors, with n the size of vector and η the num-
ber of precision bits for our numbers. It can be shown
that

P(L(V1, . . . ,Vk)) =
∏

k
i=2 2η(n−i+1)−1

∏
k
i=2 2η(n−i+1)

.

Since this probability is near 1, the usurpation of⌊ n
w

⌋
persons with w the size of the template is a likely

event.

Remark 5.2.1. A variant of this attack could be
achieved without the users’ passwords. The attacker
just has to replace the passwords of the victims by dis-
tinct random strings. Thus, she obtains an image that
allows her to impersonate several people. She merely
chooses one victim by using its corresponding string.
However, it may be possible that its string lead to an
infeasible model and so another must be chosen.

6 Reversibility Attack Evaluation

We evaluate the impact of our authentication at-
tack with the second approach (3.1.2) through our
Python implementation. The Gurobi Python inter-
face (Gurobi 9.1.2) is used to solve the non-convex
quadratically constrained programs, on a computer
running on Debian 11, with an EPYC 7F72 dual pro-
cessor (48 cores) and 256GB of RAM. The focus is
only done on the results of this attack because its prac-
ticality implies the practicality of the others.

We have launched resolutions of the constrained
programs 50 times, each with a time limit of 150 sec-
onds. Table 1 reports the running times for the differ-
ent settings along with the amount of changes done
in the attacker fingerprint, by means of the Euclidian
distance.

In Table 1, we remark that with a 4×4-pixel im-
age and a 50-bit template, the hard cap of 150 sec-
onds starts to be insufficient to solve the system and
optimize the criterion. However, the experiments are
encouraging given that we face an NP-hard prob-
lem (Sahni, 1974). By setting the hard cap to 500 sec-
onds, we are able to solve the system with a 10×10-
pixel image and a better ratio amount of changes over
image size.



Image Size Template Size Mean Distance Mean Time (s)
2×2 58 0.04
2×3 65 27.92
3×3 20 71 120.18
4×3 95 135.56
4×4 152 140.83
2×2 81 1.58
2×3 83 77.24
3×3 30 76 129.36
4×3 102 138.0
4×4 153 143.18
2×2 119 0.12
2×3 102 33.1
3×3 40 121 144.0
4×3 133 146.81
4×4 168 146.60
2×2 99 0.14
2×3 117 32.76
3×3 50 133 150.0
4×3 144 146.67
4×4 177 150.0

Table 1: Summary of the experiments.

7 Concluding Remarks

In this paper, we present several authentication attacks
on a popular CB scheme consisting in a composition
of a kernel-based filter with a projection-based trans-
formation, in the stolen token scenario. Their par-
ticularity is to completely reverse a CB scheme. to
impersonate any or several users. To the best of our
knowledge, this is the first time that attacks are con-
ducted on a complete chain of treatments, including a
non-linear filter. The proposed methodology is to for-
malize the attacks as constrained optimization prob-
lems. As long as the attacker has access to one or
several templates with the corresponding passwords,
our attacks can be performed. In addition, we present
two ways for the attacker to impersonate several le-
gitimate persons Some attacks proposed do not need
any token from the clients. Our practical experiments
show that the modification of the attacker’s image is
minimal over small images. The next step is to per-
form these attacks on larger images and look for the
limit of the number of people that can be imperson-
ated at the same time. Future work will be focused on
finding optimizations and relaxations of the systems
to ensure the scaling of our attacks.
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