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Abstract

To study the temperature in a gas subjected to electromagnetic radi-
ations, one may use the Radiative Transfer equations coupled with the
Navier-Stokes equations. The problem has 7 dimensions; however with
minimal simplifications it is equivalent to a small number of integro-
differential equations in 3 dimensions. We present the method and a
numerical implementation using an H-matrix compression scheme. The
result is a very fast: 50K physical points, all directions of radiation and
680 frequencies require less than 5 minutes on an Apple M1 Laptop. The
method is capable of handling variable absorptioN and scattering func-
tionS of spatial positions and frequencies.

The implementation is done using htool1, a matrix compression li-
brary interfaced with the PDE solverfreefem++. Applications to the tem-
perature in the French Chamonix valley is presented at different hours of
the day with and without snow / clouds and with a variable absorption
taken from the Gemini measurements. The result is precise enough to as-
sert temperature differences due to increased absorption in the vibrational
frequency subrange of greenhouse gasses.

Keywords Radiative transfer, climatology, clouds, Integral equation, Navier-
Stokes equation, H-matrix, Finite Element Methods.

Introduction

Heat transfer with radiative transfer are very important in astronomy, combus-
tion and climatology, to name a few. For the atmosphere the reader is sent
to [12],[9], [2], the numerically oriented book [17] and the two mathematically
oriented books [4] and [5]. Due to the considerable difference of length scales,
modelling at the level of photons is difficult to use for the earth atmosphere
in large areas. A much simpler formulation, known as the radiative transfer
equations, is based on energy conservation principles of continuum mechanics.

1https://github.com/htool-ddm/htool
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These were shown to be well posed in [15] for the Radiative Transfer system
coupled with the time dependent heat equation. Existence and uniqueness was
proved in [7] and [6] for the stationary case.
On the numerical side the problem is hard because the model has 3 space vari-
ables, two directional ones, the frequencies and time.
In 2005, K. Evans and A. Marshak wrote in chapter 4 of [12] a review of the
numerical methods available for Radiative Transfer alone. Today, judging from
[3], the situation has not changed: SHDOM (Spherical Harmonic Discrete Or-
dinate Method) and Monte-Carlo are the two most popular methods. While
reviewing the current situation for the radiative transfer equations in [1] we
implemented a finite element version of SHDOM and found that the method
was incapable, unless a huge number of degree of freedom is used, of giving
results with the accuracy needed to differentiate between small variations of the
absorption coefficient.
One may resort to approximations. In nuclear physics and astronomy, for the
numerical simulations in the 1960 a constant absorption coefficient was used,
the so called Grey Model. In climatology, the grey model cannot explain the
role of the greenhouse gasses.
The stratified approximation assumes that the surface which receives the radi-
ations is flat and the source is far. Thus only one space variable is retained.
For such cases, an integral formulation, probably due to Chandrasekhar [4],
turns out to be much more precise and also computationally much cheaper. A
fixed-point iteration scheme on this nonlinear integral formulation, known in
the radiative transfer community as “iterations on the sources” was shown to
be monotone in [14], a property which seems to have escaped earlier studies. Fi-
nally in [7],and [8] the method was extended to include the temperature equation
of the fluid and also to handle Rayleigh scattering while retaining monotonic-
ity. In [6] F. Golse observed that the integral formulation exists also in 3D. A
new existence result was proved by using this formulation and it was numeri-
cally tested. However the computing cost was O(N2), N being the number of
vertices of the triangulation of the physical domain.
The purpose of this article is to present an O(N lnN) implementation which
uses compressed H-matrices and views the computation of integrals as a matrix-
vector product in the Finite Element discrete space. Thence P.H. Tournier,
who is a co-author of the library htool for integral equations with H-matrices,
wrote the necessary modifications for Radiative Transfer, namely the handling
of mixed matrices with one vertex on the boundary and the other one inside the
domain.
The programming is a joint work of F. Hecht, O. Pironneau and P.H. Tournier,
done using the high level PDE solver freefem++ [10].
The method is tested on a 35×35 km area and the first 10km of the atmosphere
above it. The center of the domain is the city of Chamonix in the French Alps,
provided by D. Smets who has constructed high precision maps and an auto-
matic triangular mesh generator for many places in the world for the Microsoft
flight simulator. Hence this Radiative-Heat-Transfer code can be used easily for
any other terrain. Note that such a study would be a challenge for Cartesian
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meshes because some of the mountains like the Mont-Blanc are above 4000m
and some slopes are almost vertical.
The absorption coefficient is a function of space and frequencies. It could also
be a function of temperature if another fixed point loop is added. No regularity
is assumed beside positivity and boundedness. Similarly, the scattering variable
coefficient need only to be in (0,1).
Real life data are used; the scattering part is not yet implemented As shown in
[?], it is not so difficult to do, but it adds complexity to an already complex topic.
Numerically, the methods is very fast: it can handle a few hundred thousand
physical points plus all directions plus 680 frequency points on a PC (and a few
millions on a supercomputer) within minutes.
Note that the authors have no competence for climate modelling, so the re-
sults are only briefly commented: the purpose of this study is to validate the
numerical tool.

1 The Mathematical Problem

To find the temperature T in an incompressible fluid exposed to electromagnetic
radiations, it is necessary to solve the Navier-Stokes equations coupled with the
Radiative Transfer equations. It is a system of partial differential equations
formulated in terms of the fluid velocity u, its pressure p, its density ρ, and
temperature T ; all are functions of time t and position x in the physical domain
Ω. It involves also the light intensity field Iν(x, t,ω, t) for each frequency ν in
each direction ω:

Given Iν , T,u, ρ at t = 0, find Iν , T,u, ρ, s.t. {x,ω, t, ν} ∈ Ω × S2 × (0, T̄ ) ×R+,

1

c
∂tIν +ω ⋅∇Iν + ρκ̃a [Iν −

1

4π
∫
S2
pν(ω,ω

′
)Iν(ω

′
)dω′]

= ρκ̃(1 − a)[Bν(T ) − Iν],

ρ(∂tT + u ⋅ ∇T ) −∇ ⋅ (ρκT∇T ) +A∇ ⋅ ∫
∞

0

1

4π
∫
S2
Iν(ω)ωdωdν = 0

∂tu + u ⋅ ∇u −
µF
ρ

∆u +
1

ρ
∇p = g(T ), ∇ ⋅ u = 0, ∂tρ +∇ ⋅ (ρu) = 0,

(1)

where A = 4π/cP , cP is the specific heat of the medium at constant pressure,

S2 is the unit sphere, ∇,∆ are with respect to x, Bν(T ) =
2h̵ν3

c2[e
h̵ν
kT − 1]

, is the

Planck function, h̵, c, k are the Planck constant, the speed of light in the medium
and the Boltzmann constant. The above holds only if cP is constant in Ω, which
is the case in moderate size domains.

1.1 Adimensionalization

Recall that c = 2.99 ⋅ 109m ⋅ s−1, h̵ = 6.63 ⋅ 10−34J.s, k = 1.38 ⋅ 10−23J ⋅K−1,

κT = 2 ⋅10−5m2
⋅s−1, cP = 1.1 J.s ⋅(g.K)

−1, ρ ∼ ρ̄ ∶= 1.3g ⋅m−3, in air at 20oC.
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The frequencies of interest are in the order of ν0 = 1014s−1, so we define B0 =
2h̵ν3

0

c2
, T0 =

h̵ν0

k
and work with Iν/B0, T /T0 and ν/ν0. Then (1) holds with these

new unknowns with Bν(T ) = ν3
/(e

ν
T − 1), cP = 1 and

B0 = 1.47 J ⋅m−2 T0 = 4789K,
A

ρ̄
=

4πB0ν0

cP ρ̄T0
= 2.70 ⋅ 1011 m ⋅ s−1. (2)

Notation 1 If ρ̄ is a reference density for the gas, κ ∶= ρ̄κ̃ is the percentage of
light absorbed per unit length. It has the dimension m−1, thence, the notation

κ(x, ν) ∶= ρ(x)κ̃ν(x).

Later we may assume at times that κ̃ν(x) is independent of x or is the sum of
products of x-functions with ν-functions.

The scattering albedo is a ∈ (0,1) and 1
4π
pν(ω,ω

′) is the “probability” that a
ray in direction ω′ scatters in direction ω. Both κ and a are functions of ν.
We further assume that ν ↦ κ and ν ↦ a are continuous positive functions,
satisfying, for some positive constants aM and κm < κM :

0 ≤ κm ≤ κ ≤ κM , 0 ≤ a ≤ aM < 1 , ∀ν > 0 .

The viscosity of air µF is 18 ⋅ 10−6Pa.s; g(T ), the Boussinesq term, is a vector
valued function of the temperature T .

We require Ω to be an open bounded subset of R3 with C1 boundary. We
denote by n(x) the outward unit normal to Γ ∶= ∂Ω at x.
Boundary conditions are needed, for example, initial values for Iν , T,u, ρ, u
given on Γ and ρ given at x ∈ Γ where u ⋅ n < 0 and

Iν(x,ω)=Qν(x,ω) , ω ⋅ n < 0 ,
∂T

∂n
∣
Γ
= 0 .

1.1.1 Sunlight

When Qν(x,ω) is due to sunlight, of power Q0 coming from the direction ωs,
then the surface which receives the light re-emits it with (Lambertian reflexion),

Qν(x,ω) = Qν(x) ⋅ [ω ⋅ n(x)]− with Qν(x) ∶= Q
0
[ωs ⋅ n(x)]+Bν(Ts),

the Planck function with the Sun’s temperature Ts.

1.2 Simplifications

The angular average radiative intensity plays an important role in this article:

Jν(x, t) =
1

4π
∫
S2
Iν(ω)dω.
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Averaging the first equation in (1) and neglecting the time dependent term
because c >> 1, gives :

∇ ⋅ ∫

∞

0
∫
S2
Iν(ω)ωdωdν = 4π∫

∞

0
ρκ̃(1 − a) (Bν(T ) − Jν)dν , (3)

which, in turn, leads to a simpler form ( see (4)) for the second equation in (1).

1.2.1 Isotropic Scattering

Assume isotropic scattering: pν(ω,ω
′) ≡ 1. Let us neglect the variations of ρ

in the diffusion term of the temperature equation. Let us neglect 1
c
∂tI because

c is very large and let us assume that the Boussinesq term is small. Then the
Navier-Stokes equations are decoupled and can be solved before hand. Then in
the Radiative transfer and temperature equations ρ, u are given. So (1) becomes
the following system for Iν , Jν , T :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω ⋅ ∇Iν + ρκ̃Iν = ρκ̃(1 − a)Bν(T ) + ρκ̃aJν , Jν ∶=
1

4π ∫S2
Iνdω ,

∂tT + u ⋅ ∇T −∇ ⋅ (κT∇T ) = A∫
∞

0
κ̃(1 − a)(Jν −Bν(T ))dν ,

Iν(x,ω)=Qν(x,ω) , ω ⋅ n < 0 , x ∈ ∂Ω ,
∂T

∂n
∣
∂Ω

= 0 , T ∣
t=0

= T0 .

(4)

1.2.2 Small Thermal Diffusion and Convection

When the convective velocity and κT are small compared to A, the tempera-
ture equation reaches a stationary states and simplifies to an integral relation
between J and Bν(T ) and the system becomes:

ω ⋅ ∇Iν + ρκ̃Iν = ρκ̃(1 − a)Bν(T ) + ρκ̃aJν , Jν ∶=
1

4π ∫S2
Iνdω , (5)

∫

∞

0
ρκ̃(1 − a)(Jν −Bν(T ))dν = 0 , (6)

Iν(x,ω) = Qν(x,ω) on Σ ∶= {(x,ω) ∈ Γ × S2
∶ ω(x) ⋅ n(x) < 0} . (7)

The system is 6 dimensional in [x = [x, y, z],ω = [ω1, ω2, ω3 ∶ ∣ω∣ = 1], ν].

1.2.3 The stratified case

When Ω is thin in a direction Ox and the physical data depend mostly on x,
the equations becomes almost one dimensional in x. The domain Ω is locally
(0,H)×R2. Assuming that sunlight at x = +∞ crosses the atmosphere unaffected
the equations reduce to

µ∂xIν + ρκ̃Iν = ρκ̃(1 − a)Bν(T ) + ρκ̃aJν , Jν ∶=
1
2 ∫

1

0
Iνdµ

∫

∞

0
ρκ̃(1 − a)(Jν −Bν(T ))dν = 0 ,

Iν(0, µ) = Qν(x, µ), µ < 0, Iν(H,µ) = 0, µ > 0.

(8)
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with Γ the plane x = 0, Qν = Q
0Bν(Ts)µ, µ ∶= cosα and α the angle of the ray

ω with Ox.

2 The Method of Characteristics

Let us derive a closed form solution of (5) by computing the long time solution
of

∂τI(x, τ) +ω∇xI(x, τ) + κ(x)I(x, τ) = S(x). (9)

While it plays no part, notice that τ = t/c. Let K(x,ω, τ) = ∫
τ

0 κ(x + ωs)ds.
Then

d

dτ
(I(x +ωτ, τ)eK(x,ω,τ)) = eK(x,ω,τ)

[∂τI +ω∇xI + κ(x)I]∣x+ωτ,ω,τ

Consequently

I(x +ωτ, τ)eK(x,ω,τ)
= I(x,0) + ∫

τ

0
eK(x,ω,s)S(x +ωs)ds.

Denote x′ = x +ωτ ; the above is also

I(x′, τ)eK(x′−ωτ,ω,τ)
= I(x′ −ωτ,0) + ∫

τ

0
eK(x′−ωτ,ω,s)S(x +ωs)ds.

Denote by τx′,ω the value of τ which brings x′ −ωτ to the boundary:

x′ −ωτx′,ω ∈ Σ, and denote xΣ(x′,ω) ∶= x′ −ωτx′,ω.

Then the long time solution of (9) is

I(x′) = I(xΣ(x′,ω))e−K(xΣ(x′,ω),ω,τ)

+ ∫

τx′,ω

0
eK(x′−ωs,ω,s)−K(xΣ(x′,ω),ω,τx′,ω)S(x′ −ω(τx′,ω − s))ds.

It can also be written as:

I(x,ω) = I(xΣ(x,ω))e− ∫
τx,ω
0 κ(x−ωs)ds

+ ∫

τx,ω

0
e− ∫

s
0 κ(x−ωs

′)ds′S(x −ωs)ds

= I(xΣ(x,ω))e
− ∫[x,xΣ]

κ
+ ∫[x,xΣ]

e− ∫[x,x′] κS(x′)dx′ .

(10)
Averaging in ω and using (7), and knowing that the solid angle integral of
f(x−ωs)dω is the surface integral on Γ of f(x′ −x) ⋅n(x′)∣x′ −x∣−3dΓ(x′) leads
to :

Jν(x) ∶=
1

4π
∫
S2
I(x,ω)dω =

1

4π
∫
S2
I(xΣ(x,ω))e− ∫

τx,ω
0 κ(x−ωs)dsdω

+
1

4π
∫
S2
∫

τx,ω

0
e− ∫

s
0 κ(x−ωs

′)ds′S(x −ωs)dsdω

= SEν (x) +J [S](x).

(11)
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with the notations, z− ∶= −min(z,0) and

SEν (x) ∶==
1

4π
∫

Γ
Qν(x,

x′ − x

∣x′ − x∣
)
[(x′ − x) ⋅ n(x′)]−

∣x′ − x∣3
e− ∫[x,x′] κdΓ(x′)

J [S](x) ∶=
1

4π
∫

Ω
S(x′)

e− ∫[x,x′] κ

∣x′ − x∣2
dx′.

(12)

where n(x′) is the outer normal at x′ ∈ ∂Ω. The last line is true only if Ω is
convex but it can be used in the general case with the following definition of Ω̃
and κ̄.

xi

x′′
x′

Figure 1: Consider Ω, the domain between the 2 spheres. The segment [xi,x′]
participates to the radiative intensity in xi. However when the segment [xi,x′′]
crosses the inner sphere, the light scattered from x′′ does not contribute to the
light intensity in xi.

Proposition 1 Let Ω̄ ⊃ Ω be a convex extension of Ω. Let κ̄ be an extension of
κ in Ω̄ such that

κ̄(x) = κ(vx), x ∈ Ω, κ̄(x) = +∞, x ∈ Ω̄/Ω.

Then

∫
S2
∫

τx,ω

0
e− ∫

s
0 κ(x−ωs

′)ds′S(x −ωs)dsdω = ∫
Ω̄
S(x′)

e− ∫[x,x′] κ̄

∣x − x′∣2
dx′.

Proof : If Ω is convex then {x−ωs ∶ s ∈ (0, τx,ω),ω ∈ S2} = Ω. Refering to figure
1, if Ω is not convex, then the part in Ω̄/Ω of the integral on the right is zero
because x′ ∈ Ω̄/Ω implies that a portion of the integral in the exponential will
be on [x′′,x′], for some x′′ ∈ Ω̄/Ω. This portion will contribute to the integral
with κ̄ = +∞ and e−∞ = 0. ◻

2.0.1 The Stratified Grey Case

The following will be helpful to assert the precision of the general algorithm 2.1
below.
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Recall the Stefan-Blotzmann relation: ∫
∞

0 Bν(T ) = σT 4 with σ = π4/15, the
Stefan constant. If κ̃ν is constant (grey case), then (8) integrated in ν yields an
equation for Ī = ∫

∞
0 Iνdν:

µ∂xĪ + ρκ̃Ī = ρκ̃σT
4
(x) , σT 4

(x) =
1

2
∫

1

−1
Ī(x,µ)dµ, x ∈ (0,H) (13)

with boundary conditions Ī(0, µ)∣µ>0 = µQ
0σT 4

s and Ī(H,µ)∣µ<0 = 0.
Even though one can find directly a solution in integral form, when ρκ̃ is constant
the above framework yields

S̄E(x) =
Q0σT 4

s

4π
∫
R2

(
cos2 θ

x
)

2

e−
κx

cosθ dΓ(y, z) =
Q0σT 4

s

2
E3(κx) (14)

where E3 is the third exponential integral. Similarly (see [8])

J [S](x) = κ∫
H

0
S(x′)E1(κ[x

′
− x∣)dx′. (15)

This approximation can be extended to the case κ function of x by a change of
coordinate x→ τ with κ ∂

∂τ
= ∂
∂x

.

2.1 Algorithm

System (4) can be solved by the following iterative scheme.

1. Start from T 0 ≡ 0 and J0
ν = S

E
ν , given by (12)

2. FOR n = 0,1, . . . ,N − 1

(a) Knowing Tn(x, t) and Jν
n
(x, t), compute by (11)

Jν
n+1

= SEν +J [aJnν + (1 − a)Bν(T
n
)], ν ∈ (0,∞), x ∈ Ω, t < T.

(b) Define Tn+1 the solution of the semilinear drift-diffusion equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρcV (∂tT
n+1

+ u ⋅ ∇xT
n+1

) −∇x ⋅ (ρcPκT∇xT
n+1

)

+ B(Tn+1
) = 4π∫

∞

0
κ(1 − a)Jn+1

ν dν ,

Tn+1∣
t=0

= T0 ,
∂Tn+1

∂n
∣
∂Ω

= 0 , x ∈ Ω , t > 0 ,

where ρ and u are given by the Navier-Stokes equations and

B(T ) ∶= 4π∫
∞

0
κ(1 − a)Bν(min(T+, TM))dν .

Remark 1 When u and κT are negligeable, Step (b) becomes: find Tn+1 such
that

∫

∞

0
κ(1 − a)Bν(T

n+1
+ )dν = ∫

∞

0
κ(1 − a)Jn+1

ν dν . (16)
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This equation has a unique solution because T ↦ Bν(T ) is increasing. As for
existence, observe that the left hand-side is continuous in T+, vanishes for T+ = 0,
and tends to +∞ when T+ → +∞. For a computer solution we may use a Newton
method because the Hessian is positive and never vanishes.

3 Implementation with H-Matrices

Note that the computations of SEν and J [S] involve convolution like operators.
Indeed, with Ω convex bounded and a = 0, SE is given by (12) and

J [Sν](x) =
1

4π ∫
Ω
Sν(x

′
)κ(x′)

e− ∫[x,x′] κ

∣x − x′∣2
dx′ . (17)

The domain is discretized by the vertices {xi}N1 of a tetraedral mesh. The
integrals are computed with a quadrature rule using quadrature points inside
the tetraedras, typically 25 points when xi is near to the tetraedra of the integral
and 5 points otherwise ; J is approximated by its P 1 interpolation on the mesh:

J(x) =
N

∑
1

Jjŵ
j
(x) where ŵj is the P 1- Finite Element hat function of vertex xj .

Then Step (a) of Algorithm 2.1 becomes:

Sν,j = aJν,j + (1 − a)Bν(Tj)

Jν,i = S
E
ν,i +∑

j

Gijκ Sν,j where Gijκ =
1

4π
∫

Ω
κ

e− ∫[xi−x′] κ

∣xi − x′∣2
ŵj(x′)dx′

(18)

The matrix G can be compressed with the H-matrix method so that the mul-
tiplication G ⋅ S has complexity O(N lnN) for each ν. The method works best
when the kernel of G in the integral decays exponentially with the distance be-
tween xi and x′. The H-matrix approximation views {Gij} as a hierarchical
tree of square blocks; The blocks correspond to interaction between clusters of
points near xj and near x′. Far-field interaction blocks can be approximated by
a low rank matrix because their singular value decompositions (SVD) have fast
decaying singular values. We use partially pivoted adaptive cross-approximation
[16] to approach the first terms of the SVD of the blocks, because only r-rows
times r-columns columns are needed instead of the whole block, where r is the
rank of the approximation. The rank is a function of a user defined parameter ε
in connection with the relative Frobenius norm error. Another criteria must be
met: if R1 (resp R2) is the radius of a cluster of points centered at x1 (resp x2),
then one goes down the hierarchical tree until the corresponding block satisfies
max(R1,R2) < η∣x1 − x2∣ where η is a user defined parameter. If the en of the
tree is reached, the bloc is not compacted and it is displayed in red on figure 10.
Then, to compute the integral ∫

∞
0 κJν,idν a rectangular quadrature at points

νk is used.
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For example when a = 0,

∫

∞

0
κJν,idν ≈∑

k

SEνk,i(νk − νk−1) +∑
k

∑
j

κνkG
ij
κνk

Bνk(Tj)(νk − νk−1) (19)

The same decomposition into product of H-matrices with vectors {Qνk(x
i)}Ni=1

can be applied to compute SEνk :

SEνk,i =
N

∑
1

Sijκνk
Qνk(x

j
), Sijκ = ∫

Γ
ŵje− ∫[xi,x′] κ (

[(x′ − xi) ⋅ n(x′)]+

∣x′ − xi∣2
)

2

ds(x′)

(20)

3.1 Lebesgue Integrals

We will use the Gemini measurements to define κν (figure 2). To represent such
a function we require 683 ν-points. As it is, the numerical method requires an
H-matrix for each ν, but it is not feasible to define 2 × 683 H-matrices!

0 5 10 15 20 25 30
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0.6
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on
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t
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κν

Figure 2: Absorption κν versus wavelength (c/ν) in the range (0.1,26) read
from the Gemini data site[11]. In theH- step of the algorithm it is approximated
by 0.01 + round(10κ)/10, shown here as “approximated κν”. Right: the x-
dependency of κ, the topography and the mesh. The Mont-Blanc is in the
bottom left part and Chamonix is in the center. Colors are levels of the x
dependence of κ, 0.5(1 − x/2); the red part is the intersection of the cloud with
the mountains; the cloud is a cylinder circumscribing the red parts, centered
at Chamonix and between altitude 2000m and 8000m; it is used only in one
simulation.

Observe that the H-matrices H,HE , depend on ν directly but through κν . It
is an opportunity to reduce the number of H-matrices down to the number of
different values of κν . The the integrals with respect to ν are evaluated much
like a Lebesgue integral.
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Suppose κ takes only 2 values κ1 and κ2, then, according to (20), only 2 functions
SEν are need, SE1 , S

E
2 , and similarly for Gκ. Now (19) becomes

Hn
1 = ∑

{k∶κνk=κ1}
κ1(νk − νk−1)∑

j

Gijκ1
Bνk(T

n
j )

Hn
2 = ∑

{k∶κνk=κ2}
κ2(νk − νk−1)∑

j

Gijκ2
Bνk(T

n
j )

∫

∞

0
κJn+1

ν,i = s1κ1S
E
1 + s2κ2S

E
2 +Hn

1 +Hn
2

(21)

where sj is the measure of the ν-set where κν = κj , j = 1,2.

There are some limitations however: κ(x) must be a sum of products of x-
functions by ν- functions:

κν(x) =∑
j

ρj(x)κ
j
ν , where κjν takes only N j

k different values {κjk}k (22)

Let sjk ∶= {ν ∶ κjν = κ
j
k}.. Then

∫

∞

0
κν(x)J [S(ν,x)]dν =

1

4π
∑
i,j,l,k

ρj(x)κ
j
kκ

i
l ∫

Ω
[∫

si
k

S(ν,x′)dν]ρi(⋅)
e−κ

i
l ∫[x,x′] ρi(⋅)

∣x − x′∣2
dx′.

(23)

Hence only the H-matrices of kernel ρi(x
′)κil exp(−κil ∫[x,x′] ρi(⋅))/∣x − x′∣2 are

needed.

The same decomposition holds for SEν .

∫

∞

0
κν(x)S

E
ν (x)dν =

1
4π ∑

i,j,k,l

ρi(x)κ
i
l ∫

∂Ω
[∫

sj
k

Qνdν] e−κ
j
k ∫[x−x′] ρ(⋅) (

[(x′ − x) ⋅ n(x′)]+

∣x′ − x∣2
)

2

dΓ(x′),

which, after discretization, involves only the sum of products of H-matrices of

kernel on ∂Ω: e−κ
j
k ∫[x−x′] ρj(⋅)([(x′ − x) ⋅ n(x′)]−)

2
/∣x′ − x∣4.

3.2 Computations of Exponentials on a Background Grid

To compute e−κ
j
k ∫[x−x′] ρj(⋅) we use a quadrature rule for the integral:

∫[x−x′]
ρj(⋅) ≈

I

∑
i=0

ρj(xi)∣xi+1 − xi∣, x0 = x, xI+1 = x′.

To speed-up the computation of ρ(xi), ρ is interpolated on a fine 3D Cartesian
grid during the initialization phase of the computer program.

11



4 Validation

4.1 Computing Resources

To assert the precision and computing time we used several meshes. The grey
case corresponds to κ = 0.5(1− x/2). The Gemini case is when κν = (1− x/2)κ̃ν
with κ̃ν read from the Gemini web site. Results are on table 1 for the Chamonix
valley and on figure 6 for the flat ground case.

Table 1: Computing Times in seconds (Apple M1 8 proc)

nb vertices 4053 30855 231 796
Grey 3 19 170

Gemini 36 239 2027

The code has been ported on a supercomputer. It scales perfectly for the grey
case and takes 90” for 300K vertices. On the Gemini case the Newton iterations
are not yet parallelized but the rest takes 360”. The memory used is governed
by the compressed matrices. For the H-matrices the compression ratio is 29 for
the volumic kernel and 9 for the surfacic kernel.

Figure 3: Compressed blocks in the H-matrices, surfacic on the left, volumic
on the right. Compression is shown by colors (lighter is more compressed, red
is not compressed), numbers are the ranks of the approximations. Neighboring
blocks may not have similar ranks because they maybe correspond to vertices
far from each other in the physical space.
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4.2 Length Scale, Values for κν

The Gemini measurements for κ are used in a domain Ω = x ∈ (0,1)×(−0.2,3.32)×
(−3.35,0.16) in 10km units. The Nimbus-4 measurements [13] show that some
infra-red radiations like ν12 =

3
12
⋅1014s−1, cross the 12km thick earth atmosphere

almost unaffected, which implies that κν12 ∼ 0.
Other radiations like ν15 = 0.2 ⋅ 1014s−1 are damped by 28% (i.e. Iν15 ∣x=1 =

0.28Iν15 ∣x=0, see [13]) which implies e−1.2κν15 = 0.28, i.e. κν15 = 1.05. This is
associated with the presence of CO2 in air.
Similarly, corresponding to the presence of water in air, Iν20

is damped by 20%,
meaning that κν20 ∼ 0.3.
Therefore the Gemini data can be used without scaling. For a grey model,
κ = 0.5 corresponds to the average loss from the theoretical black body radiation
at ground level to the actual measurements in space. Surely this value is too
large in the visible range, but the correlation between the infra-red and the
visible ranges is weak.

4.3 Temperatures on a Flat Land Exposed to Sunrays

Our purpose here is to validate the results against the stratified numerical
solutions of [8]. We begin with a grey case, κ = 0.5. The domain is Ω =

(0,1×(−L,L)×(−L,L) above the Earth surface S ∶ x = 0. The radiations of the
Sun cross the atmosphere unaffected; 30% is reflected and 70% is absorbed and
then re-emitted as a black body in all directions (Lambertian reflection) with
intensity given by(24). Since the downward travel of the radiations is ignored,
the source of light is at x = 0, with

Qν(x,ω) = Q0Bν(Ts)n ⋅ω, Q0
= 2 ⋅ 10−5, Ts = 1.02, n = (1,0,0)T (24)

The results depend on the mesh size h and L. By increasing L and the number
of vertices n3, convergence to the stratified case is reached (figure 4). The
convergence rate is shown on figure 7 to be approximately h1.5. The stratified
solution is computed independently by a method sketched in Paragraph 2.0.1
and detailed in [?].
The CPU times are plotted on figure 6 for 5 meshes with N= 616, 4056, 30855,
80898, 231796 vertices respectively. It confirms the N logN growth.

A similar exercise is done with κν = 0.5(1−x/2). Comparison with the stratified
case is possible after a change of variable in the stratified code. Results are
shown on figure 5.

4.4 The Chamonix Valley: the Grey Case

The domain is a portion of the atmosphere Ω = [h(y, z),H] × [ym, yM ][zm, zM ]

above the Earth surface S ∶ x = h(y, z). The radiations of the Sun cross the
atmosphere unaffected; 30% is reflected and 70% is absorbed and re-emitted

13
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with intensity (24), except that n is the normal of S. We can account for the
hour of the day by rotating accordingly all normals.

Qν([h(y, z), y, z]
T ,ω) = Q0(x)Bν(Ts)n ⋅ω, Ts = 1.02,

We have simulated the case Q0 = 2 ⋅ 10−5 (no snow) and the case with snow
above 2500m:

Q0(x) = 0.5 (β + (1 − β)1x<hsnow) , β = 0.3, hsnow = 0.25, x ∈ S.

It means that in case of snow the light source is 30% of what it is without snow,
the rest was reflected in the visible range before re-emission. Note that glaciers
below 2500m are ignored.
As above we begin with a κν = 0.5(1 − x/2) which takes into account the rar-
efaction of air. The mesh is shown on figure 8.
Temperatures and radiations are computed in the morning and evening when the
sun is at ±45o from the vertical and inclined towards the South by 200. Results
are shown on figure 8. On all such figures the altitude has been multiplied by
2 to enhance the graphics. It can be seen that the temperature is high on the
slopes exposed to the Sun. It is seen also that the temperature is much cooler
where there is snow. Temperatures are clearly too low on high mountains and
perhaps too hot also on sunlit slopes. Still it is reasonable for a grey model. The
Mont-Blanc is on the top left. Recall that points near the border of the domain
receive only half the light because of clipping, so it is unrealistically cooler near
the border.
To check convergence we compared a lower solution with a higher one. To
generate a lower solution initial reduced temperature in the algorithm was set to
0.01. To generate an upper solution, T 0 was set to 0.12. Instead of 7 iterations,
15 were needed to reduce ∣Tn+1 − Tn∣ below 10−11. Then, no visible difference
could be seen between the two results.

4.4.1 Influence of the snow

The snow is very important for the temperature distribution at the ground level.
When there is no snow temperatures at the ground level in the Chamonix region
at noon is 2oC hotter in the valley and very much hotter in the mountain, above
zero (figure 9).

4.4.2 Clouds

Let the cloud be a cylinder centered in the middle of the domain, between
x = 2000m and x = 8000m. There, κν(x) is multiplied by 1.5:

κν = 0.5(1 − 0.5x)(1 + 0.51[x ∈ (0.2,0.8) ∶ (y − 1.5)2
+ (z + 1.5)2

< 0.5]);
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Figure 8: All 3 computations are with κν = 0.5(1 − x/2) and a clear sky (no
cloud). Top: Reduced temperatures at noon in a vertical cut of the domain (the
mesh has 36K vertices). Middle: Ground level temperatures in the morning:
the Sun is at 45o from vertical in (x,y) plane and −200 in the (x,z) plane. (Est
is the lower side of the square, South is the left side). Bottom :Temperatures
in the evening ((sun at −45o from vertical in (x,y) plane and −200 in the (x,z)
plane; West is the upper side of the square). Both meshes have 360K vertices.
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Figure 9: Influence of the snow and the mesh: Ground temperatures at noon
without snow. It is 2oC hotter in the valley and very much hotter in the
mountain, naturally. On top, the mesh has 36K vertices, and below, it has ten
times more vertices. the two pictures differ mostly near the border of the domain
where the computations are wrong anyway because the points receive only one
half of the sunshine other points receive (and one fourth at the corners).
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Figure 10: Ground temperature in the Chamonix region at noon without (top)
and with (bottom) the cloud. It is hotter in the cloud but colder in the valley.
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On Figure 10 ground temperatures are shown with and without the cloud in a
zoom region with the finer mesh. It is hotter on the mountain inside the cloud
but colder in the valley.
Figure 12 shows the temperature functions of altitude with and without the
cloud (with snow) with variable density of air.

4.5 The Chamonix Valley in the Non-Grey Case

As in [8] ν ↦ κν is read from the Gemini measurements web site.
To be sure that ∫

∞
0 Bν(T ) = σT 4 with a good precision it is necessary to extend

κ̃ν for ν ∈ (0.01,0.3; we set it to be equal to the last available Gemini point.
Then, as shown on Figure 2, ν ↦ κ̃ν is approximated by the nearest step function
that takes only 10 values: round(10κ)/10.
As explained above, by this trick we need to compute only 2 × 10 H-matrices,
even though ν-integrals are computed with 683 quadrature points.
Temperatures at noon with snow and no cloud were computed with the Gemini
data of figure 2. Results are shown on the top picture of figure 11.
Then these data were modified in the range ν ∈ (c/18, c/14) where κν is set to
1. It simulates grossly the effect of CO2 which renders the atmosphere opaque
in these frequencies. The results are displayed on the middle picture of figure
of 11 and on figures 12 and 13. Note that the temperatures are colder.
A similar exercise is made but with κν set to 1 in the range ν ∈ (c/3, c/1.5) to
simulate an effect in the direction of CH4. Results are in the bottom picture of
figure 11 and also on figures 12 and 13. Note that the temperatures are hotter.
Hence blocking an infrared subrange can either make the day hotter or colder,
depending on the position of the subrange, which in these numerical experiments
we have childishly called CO2 and CH4. The same observation was made in [8].
On figure 13 the radiation intensities are shown versus wavelength (c/ν) above
Chamonix at altitude 3000m.
Note that the computing time is roughly ten time the one with a constant κ
because we use a Lebesgue discretization with ten levels.

4.6 Effect of Thermal Diffusion and Wind Velocity

4.6.1 Wind velocity

Convective winds due to temperature differences and modelled by a Boussinesq
approximation seem out of simulation reach in areas of several kilometers. On
the other hand high atmosphere winds u0 ∼ 360km/h are numerically tractable
if we assume that the effective viscosity is dominated by turbulence, leading to
a Reynolds number around 500. Thus the stationary Navier-Stokes equations
with fixed varying density are solved in Ω for the scaled velocity u/u0 and
pressure:

u ⋅ ∇u +∇p − ν∆u = 0, ∇ ⋅ u = 0, u(H,y, z) = [0,1,0]T − (25)
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Figure 11: Ground temperatures at noon with snow (no cloud) with κ given by
the Gemini data. Below, same situation, but the κν from the Gemini data is
put to 1 − x/2 in the range ν ∈ (c/18, c/14) to simulate the absorption by CO2.
Bottom: same but with κν = 1 − x/2, ν ∈ (c/3, c/1.5) to simulate the absorption
by CH4. The color map is the same for all 3. Bluer is colder, browner is hotter.
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and Neumann conditions on the remaining boundaries −ν∂nu + pn = 0.
A Newton method is applied to linearize the system and the Taylor-Hood Finite
Element method is used for discretization. The linear systems are solved in
parallel with the MUMPS library. Less than a dozen iterations are sufficient for
convergence in some 600 sec on the M1 (see figure 14)

4.6.2 Simulation of the Temperature Equation

Recall that we have neglected the variations of ρ in the diffusion term:

u ⋅ ∇T − κT∆T = A∫
∞

0
κν(Jν −Bν(T ))dν in Ω,

∂T

∂n
∣∂Ω = 0.

In the computations, the unit length is L=10km. So κT = 2 ⋅ 10−11[L]2/s and
A
ρ̄
= 2.70 ⋅ 107[L]/s. In these units u0 = 0.01[L]/s. Let us divide by u0:

u ⋅ ∇T − κ̃T∆T = Ã∫
∞

0
ρ̄κν(Jν −Bν(T ))dν in Ω,

∂T

∂n
∣∂Ω = 0,

where u is the solution of (25), κ̃T = 2 ⋅ 10−9, Ã = 5.4 ⋅ 109, ρ̄κν ∼ 0.5.
Evidently if T ∗ + δT is the solution where T ∗ is the solution with u = 0 and
κ̃T = 0, then δT will be very small. This allows for linearization:

u ⋅ ∇δT − κ̃T∆δT + δT Ã∫
∞

0
ρ̄κνB

′
ν(T

∗
)dν = κ̃T∆δT ∗ .
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Figure 14: Solution of the Navier-Stokes eqs at Re=500. Top: u1, Bottom: u2

The PDE is numerically out of reach with the physical values of the parameter.
Yet to validate the concept and indicate the trend of the effect of wind and
heat diffusion, we have solved it with κ̃T = 2 ⋅ 10−3, ρ̄κν = (1 − x/2)/2 and
Ã ∶= A′ = 5.4 ⋅ 102. Notice that if κν does not depend on ν, A′

∫
∞

0 ρ̄κνB
′
ν(T

∗) =

4σT ∗3ρ̄κ ∼ 1.55. The results are shown on figures 15, 16.

5 Conclusion

The numerical study validates the claim that heat transfer with radiation can be
solved numerically in minutes in 3D on a laptop with O(100K) mesh nodes and
a fine resolution of the discontinuities of the absorption parameter in space and
frequencies. On a massively parallel supercomputer with O(1M) mesh nodes it
can be handled in minutes too.
The method is based on an integral formula for the radiation intensity averaged
on the unit sphere of directions. The problem is reduced to an integral equation
coupled with the temperature equation with radiation as source. An iterative
scheme can be used which is mathematically shown to be convergent and mono-
tone. The numerical errors can be estimated from the difference between the
lower and the upper solutions.
A drastic numerical speed-up is obtained when the convolutions in the integrals
are replaced by vector products with compressed H-matrices. Furthermore a
small number of matrices are needed only when the integrals are computed as
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Lebesgue integrals.
The method was tested on a portion of the atmosphere around the city of
Chamonix where high mountains require a full 3D unstructured mesh. The code
is precise enough to assert the differenecs due to changes in κν is a subrange
of frequenceies. All results seem physically reasonable but we make no climate
claim based on the numerical results. Yet we hope to have convinced some to
try the code.
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