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5998 Alcalá Park, San Diego, CA 92110, USA
jacobitz@sandiego.edu

Kai Schneider
Institut de Mathématiques de Marseille (I2M), Aix-Marseille Université, CNRS
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ABSTRACT
The alignment properties of different vector-valued flow

quantities, including the Lagrangian, Eulerian, and convective
accelerations in homogeneous turbulent shear flow, are quan-
tified through the introduction of scale-dependent geometrical
statistics. The vector fields are decomposed into an orthogo-
nal wavelet series and the angles of the scale-wise contribu-
tions of different vector-valued flow quantities can be deter-
mined. This approach allows us to revisit the random Taylor
hypothesis by examining the cancellation properties of Eule-
rian and convective accelerations at different flow scales. The
results for homogeneous turbulent shear flow, computed by di-
rect numerical simulation, show that Taylor’s hypothesis holds
at small scales of the flow as reflected by the anti-alignment of
the Eulerian acceleration and the convective term. Such anti-
alignment, however, is not observed at the largest scales of the
turbulent motion, indicating that Taylor’s hypothesis does not
generally hold for homogeneous turbulent shear flow.

INTRODUCTION
Taylor’s frozen-flow hypothesis (Taylor, 1938) supposes

that small-scale eddies in turbulent flows move downstream
at a constant speed with little distortion. Temporal and spa-
tial fluctuations in turbulent flows can thus be related, and, for
example, temporal spectra in experimental measurements can
be converted into spatial spectra. Hot-wire measurements in
turbulent flows often implicitly assume its validity. Theoreti-
cally, it is also of utmost importance to understand convection
in turbulent flow and the related temporal to spatial intermit-
tency. Moreover, both play an important role in two-point clo-
sure turbulence models for space-time correlations in Eulerian
and Lagrangian reference frames (He et al., 2017). However,
Taylor’s hypothesis has many limitations, such as the require-
ments of weak shear rates and low turbulence intensities. Dis-
cussions on its validity have a long history and are still subject
to some controversy in the recent literature (e.g., Moin, 2009;
Del Alamo & Jiménez, 2009).

Motivated by the random Taylor hypothesis or sweeping
decorrelation hypothesis, stating that ‘small eddies in turbu-
lent flow being swept past a stationary Eulerian observer,’ (cf.

Tennekes, 1975) acceleration fluctuations and their different
contributions have been studied in Pinsky et al. (2000) and
Tsinober et al. (2001) for isotropic turbulence. Their work is
based on the prediction of Tennekes (1975), which states that
the Lagrangian acceleration must be small, justified by consid-
ering Eulerian and Lagrangian time scales.

Homogeneous turbulent shear flow has been investigated
as a prototypical example of turbulence due to the importance
of shear production in the geophysical environment and in
many engineering applications. In homogeneous flows, the
statistical properties of turbulence do not change in the spatial
directions (x,y, and z), but they evolve in time t. While this
simplification has been used extensively as the basis of numer-
ical simulations, homogeneous turbulent shear flow was first
studied experimentally. Rose (1966) and Champagne et al.
(1970) are credited with the first experimental studies of ho-
mogeneous turbulent shear flow. Rohr et al. (1988) estab-
lished that the eventual evolution of homogeneous turbulent
shear flow follows an exponential growth law. Using direct nu-
merical simulations, Jacobitz et al. (1997) confirmed the expo-
nential evolution and also investigated the impact of buoyancy
forces on the flow. This prototypical flow has been studied
extensively including the effects of buoyancy and rotation as
well as using a variety of statistical methods (e.g., Salhi et al.,
2014).

Motivated by our recent work in Jacobitz & Schneider
(2021), in which we studied the Lagrangian and Eulerian ac-
celeration properties of fluid particles in homogeneous turbu-
lence with uniform shear and uniform stable stratification, we
generalize this approach here to investigate scale dependent
geometrical statistics. A wavelet-based scale-dependent de-
composition of the Lagrangian and Eulerian accelerations is
performed and the alignment properties are analyzed at dif-
ferent scales of the turbulent motion (e.g., Farge & Schneider,
2015). The aim of this work is to address the applicability of
Taylor’s hypothesis at small scales in homogeneous turbulent
shear flow.

The remainder of the manuscript first presents the numer-
ical approach based on direct numerical simulations. Then,
Lagrangian and Eulerian accelerations are introduced, their
corresponding orthogonal wavelet decomposition is presented,
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Figure 1. Evolution of the normalized turbulent kinetic energy K/K0 with normalized time St (left) as well as the growth rate of the
turbulent kinetic energy γ , the normalized production rate P/(SK), and the normalized dissipation rate ε/(SK) (right).

and the scale-dependent alignment of Eulerian and convec-
tive accelerations are considered. Results illustrate our find-
ings, considering the direct numerical simulation data of tur-
bulent homogeneous shear flow, and conclusions complete the
manuscript.

NUMERICAL APPROACH
The present study is based on a direct numerical simu-

lation of homogeneous turbulent shear flow using the incom-
pressible form of the Navier-Stokes equations for the fluctu-
ating components of velocity and pressure with an imposed
constant vertical shear rate S = ∂U/∂y. The equations of
motion are transformed into a frame of reference moving
with the mean velocity (Rogallo, 1981). This transforma-
tion enables the application of periodic boundary conditions
for the fluctuating components of velocity and pressure. A
spectral collocation method is used for the spatial discretiza-
tion and the solution is advanced in time with a fourth-order
Runge–Kutta scheme. The simulations are performed using
5123 grid points. The initial conditions are taken from a sep-
arate simulation of isotropic turbulence, which was allowed to
develop for approximately one eddy turnover time. The initial
value of the Taylor-microscale Reynolds number is Reλ = 89
and SK/ε = 2 for the shear number. The corresponding values
at St = 10 are Reλ = 157 and SK/ε = 5.22. The results are
analyzed at St = 10.

SCALE-DEPENDENT STATISTICS
The Lagrangian and Eulerian accelerations aaaL = aaaE +aaaC,

where aaaC denotes the convective contribution, are defined as

aaaL =
∂uuu
∂ t

+uuu ·∇uuu and aaaE =
∂uuu
∂ t

, (1)

respectively. Both accelerations are computed as a volume av-
erage at a fixed time, which is an appropriate choice for homo-
geneous flows. The effect of shear is considered as an external
force. The pressure-gradient term is given by aaaP = ∇(p/ρ0),
where ρ0 is the ambient density.

For defining scale-dependent alignment statistics of the
above quantities, we use a three-dimensional orthogonal
vector-valued wavelet decomposition. To this end we consider
a generic vector field aaa= (a1,a2,a3) at a fixed time instant and
decompose each component aα (xxx) into an orthogonal wavelet
series,

aα (xxx) = ∑
λ

ãα

λ
ψλ (xxx), (2)

where the wavelet coefficients are given by the scalar product
ãα = 〈aα ,ψλ 〉 (e.g., Farge & Schneider, 2015). The wavelets
ψλ with the multi-index λ = ( j, iii,d) are well localized in scale
L02− j (where L0 corresponds to the size of the computational
domain), around position L0iii/2 j , and orientated in one of the
seven directions d = 1, ...,7, respectively. Reconstructing the
three components aα at scale L02− j by summing only over the
position iii and direction d indices in eq. 2 yields the vector field
aaa j at scale index j. By construction we have aaa = ∑ j aaa j, where
the aaa j are mutually orthogonal.

The scale-dependent statistical moments of the flow
fields, including scale-dependent flatness, and scale-dependent
pdfs, can thus be computed from aaa j using classical statistical
estimators. For instance, the q-th order moment of aaa j(xxx) can
be defined by,

Mq[aaa j] = 〈(aaa j)q〉, (3)

and by construction the mean value vanishes with 〈aaa j〉 =
0. The moments are thus central moments. These scale-
dependent moments are directly related to the q-th order struc-
ture functions (Schneider et al., 2004), where the increment
size is ∝ 2− j.

The scale-dependent flatness, which measures the inter-
mittency of aaa j at scale 2− j, is defined by

Fl[aaa j] =
M4[aaa j]

(M2[aaa j])2 . (4)

For a Gaussian distribution the flatness equals three at all
scales.
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Figure 2. Joint probability distribution functions (pdfs) of the the Eulerian acceleration aaaE and the convective acceleration aaaC at
nondimensional time St = 10 for the total fields (top, left) and for the decomposed fields at scales j = 2 (top, right), j = 3 (center, left),
j = 4 (center, right), j = 6 (bottom, left), and j = 8 (bottom, right).

To understand the magnitude of the Eulerian and La-
grangian accelerations, we statistically assess, following Tsi-
nober et al. (2001), the alignment properties of aaaE , aaaC, and
its sum, corresponding to the Lagrangian acceleration aaaL =
aaaE + aaaC. When the vectors of the Eulerian acceleration aaaE
and the convective terms aaaC are anti-parallel, then the magni-
tude of the Lagrangian acceleration aaaL, is small compared to
those of the Eulerian and convective contributions, since

〈aaaL,aaaL〉= 〈aaaE +aaaC,aaaE +aaaC〉= 〈aaaE ,aaaE〉+ 〈aaaC,aaaC〉
+2cos(aaaE ,aaaC) ||aaaE || ||aaaC||. (5)

Applying the wavelet decomposition to the different acceler-
ations in eq. (2), we can study, in addition to the total, also
the scale-dependent alignment properties of the Eulerian and
convective accelerations, i.e., cos(aaa j

E ,aaa
j
C) and check its impli-

cations for the Lagrangian acceleration.
We can directly conclude that, if aaa j

E and aaa j
C are anti-

aligned and the cosine term is negative, the norm of aaa j
L be-

comes minimal. This means that for perfect anti-alignment
Taylor’s hypothesis would hold as temporal variations thus
correspond to the spatial variations. Quantifying the departure

of alignment yields a measure for how well Taylor’s approxi-
mation holds at different scales of motion, as detailed below.

RESULTS AND DISCUSSION
Flow Evolution

Fig. 1 (left) shows the evolution of the turbulent kinetic
energy K = 1/2〈uuu,uuu〉 normalized by its initial value K0. The
turbulent kinetic energy initially decays due to the isotropic
initial conditions, starts to grow at about St = 2, and eventually
grows exponentially starting at about St = 4. The evolution
equation for K can be written in the following nondimensional
form:

γ =
1

SK
dK
dt

=
P

SK
− ε

SK
(6)

Here, γ is the growth rate of the turbulent kinetic energy,
P/(SK) its normalized production rate, and ε/(SK) the nor-
malized dissipation rate. The evolution of γ , P/(SK), and
−ε/(SK) is shown in fig. 1 (right) and the three terms are
approximately constant for St ≥ 4. Once the normalized pro-
duction and dissipation rates have reaches constant values, re-
sulting in a constant growth rate γ , eq. 6 can be integrated to
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Table 1. Pearson correlation coefficient between the Eule-
rian acceleration aaaE and the convective acceleration aaaC as a
function of scale j and nondimensional time St or Taylor-
microscale Reynolds number Reλ .

St St = 4 St = 7 St = 10

Reλ 103.43 136.40 156.90

total -0.79688 -0.79152 -0.79612

r( j = 0) -0.20819 -0.48831 0.22471

r( j = 1) -0.01186 -0.17431 -0.23597

r( j = 2) -0.23966 -0.34748 -0.36848

r( j = 3) -0.52569 -0.55758 -0.58615

r( j = 4) -0.67770 -0.68890 -0.69352

r( j = 5) -0.75734 -0.75537 -0.75556

r( j = 6) -0.81143 -0.80741 -0.80288

r( j = 7) -0.86320 -0.86073 -0.85560

r( j = 8) -0.89679 -0.90279 -0.90486

obtain

K = K∗eγSt (7)

In the following, the flow is analyzed in the exponential growth
regime with St ≥ 4.

Table 2. Scale-dependent flatness of the Lagrangian acceler-
ation FlaL as a function of scale j and nondimensional time St
or Taylor-microscale Reynolds number Reλ .

St St = 4 St = 7 St = 10

Reλ 103.43 136.40 156.90

total 13.47 20.77 27.81

Fl( j = 0) 3.77 6.35 6.72

Fl( j = 1) 3.26 3.63 3.75

Fl( j = 2) 4.30 4.55 4.63

Fl( j = 3) 4.79 5.38 5.93

Fl( j = 4) 5.91 6.29 7.25

Fl( j = 5) 8.17 10.35 12.44

Fl( j = 6) 16.55 25.42 30.54

Fl( j = 7) 45.81 107.90 111.72

Fl( j = 8) 82.07 298.47 327.36

Table 3. Scale-dependent flatness of the Eulerian accelera-
tion FlaE as a function of scale j and nondimensional time St
or Taylor-microscale Reynolds number Reλ .

St St = 4 St = 7 St = 10

Reλ 103.43 136.40 156.90

total 10.10 11.96 14.41

Fl( j = 0) 3.71 5.51 5.22

Fl( j = 1) 3.54 3.47 4.09

Fl( j = 2) 4.35 4.36 4.72

Fl( j = 3) 4.70 5.43 5.53

Fl( j = 4) 5.86 6.01 6.55

Fl( j = 5) 7.30 7.70 8.22

Fl( j = 6) 9.69 11.35 12.45

Fl( j = 7) 16.63 22.57 25.92

Fl( j = 8) 32.88 47.88 56.43

Scale-Dependent Statistics
Fig. 2 show the joint probability distribution functions

(pdfs) of the Eulerian acceleration aaaE and the convective ac-
celeration aaaC as a function of scale j at nondimensional time
St = 10. While the joint pdf of the total fields (top, left) shows
some negative correlation, the joint pdfs clearly become more
and more negatively correlated as the scale j increases and the
scale of the motion decreases.

Table 1 shows the Pearson correlation coefficient r be-
tween the Eulerian acceleration aaaE and the convective accel-
eration aaaC as a function of scale j and nondimensional time
St. For all times, a negative value of r =−0.8 is found for the
total fields. For a given time St, the value of r decreases with
increasing scale index j or decreasing scale of the turbulent
motion. For the smaller scales of the turbulent motion with
scale index j ≤ 4, the results obtained for r at different times
St remain approximately the same. For the larger scales of the
turbulent motion with scale indices 1≤ j ≤ 3, the results for r
decrease with time St and a stronger anti-alignment is observed
for later times. Only the results for j = 0 show a different
trend, but only few wavelet modes contribute to this value for
r. Table 1 also shows the Taylor-microscale Reynolds number
corresponding to the different times in the flows evolution with
later times corresponding to higher Reynolds numbers due to
the exponential evolution of the flow.

Tables 2 and 3 show the flatness values for the La-
grangian and Eulerian accelerations, respectively. Both the
values for the total accelerations and for their scale dependence
are shown. The results are presented at three nondimensional
times St = 4, St = 7, and St = 10, corresponding to three dif-
ferent Reynolds numbers Reλ = 103.43, Reλ = 136.40, and
Reλ = 156.90. Except for the flatness values at the largest
scale of motion ( j = 0), the flatness values increase with de-
creasing scale of motion (or increasing j). For a given scale,
the flatness values of both accelerations increase with increas-
ing nondimensional time St and increasing Reynolds number
Reλ . While the flatness values of the total Lagragian accel-
eration is always larger than that of the corresponding total
Eulerian acceleration, this result does not hold at all scales for
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Figure 3. Probability distribution functions (pdfs) of the cosine of the angle between the Eulerian acceleration and the advection term
(top, left), Lagrangian acceleration and the advection term (top, right), Lagrangian and Eulerian accelerations (center, left), Lagrangian
acceleration and the pressure-gradient term (center, right), Eulerian acceleration and the pressure-gradient term (bottom, left), as well
as the advection term and the pressure gradient term (bottom, right) at time St = 10. Note that the pdfs are shown for the total flow
fields (dashed lines), and the flow fields at the scales j = 2 (large scale), 4, 6 and 8 (small scale).

motion. For the larger scales of the motion (0 ≤ j ≤ 4), the
flatness values of the two accelerations are similar. For the
smaller scales of the motion (5 ≤ j ≤ 8), the flatness values
of the Lagrangian acceleration are in some cases substantially
larger than the corresponding values for the Eulerian accelera-

tion.

These observations are consistent with previous work by
Yoshimatsu et al. (2009) considering homogeneous isotropic
turbulence at a Reynolds number Reλ = 732. It was observed
that the flatness values of the Lagrangian and Eulerian accel-
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erations ‘increase with scale for the turbulent flow, but the
flatness of the Lagrangian acceleration is one order of magni-
tude larger than the flatness of the Eulerian acceleration, which
shows the extreme intermittency of the former.’ In a compar-
ison to random fields with phase randomization, it was found
that ‘the flatness remains almost constant, around 5 for the La-
grangian acceleration and around 6 for the Eulerian accelera-
tion, which confirms that the latter yields a Laplace distribu-
tion whose flatness is 6. This proves that the random fields
are non intermittent, as no scale dependence can be observed,
even if their pdfs of acceleration are strongly non-Gaussian.’

Fig. 3 shows the pdf of the cosine of the angle be-
tween different vector-valued quantities for the total and scale-
dependent fields for j = 2,4,6, and 8 (from large to small
scales). The following observations can be made. The Eu-
lerian and convective accelerations have the tendency of be-
ing strongly anti-aligned, reflected in a peak at −1 in the pdf
of cos(aaaE ,aaac) (top, left). The peak is more strongly pro-
nounced at small scales, and weak or no alignment is found
at large scales. The reason for this observation is that the ad-
vection term is essentially a small scale quantity. This finding
supports that Taylor’s hypothesis holds at small scales in ho-
mogeneous turbulent shear flow. In contrast, for the pdf of
cos(aaaL,aaaC) (top, right), we observe a slight probability for
alignment, which becomes weaker at small scales. Conse-
quently, the Langrangian and Eulerian accelerations are some-
what aligned (center, left), corresponding to a peak at +1 in
the pdf of cos(aaaL,aaaE). This behavior becomes stronger for
large scales. The reason is again that the convective term is a
small scale quantity and thus supports Taylor’s hypothesis.

In the pdf for cos(aaaL,aaap) we find likewise strong
anti-alignment, which is most pronounced at intermediate
scales and weakens at the largest and smallest scales (cen-
ter, right). The alignment of the Lagrangian acceleration
and the pressure-gradient confirms the results in Jacobitz &
Schneider (2021) that the pressure-gradient is the dominant
term contributing to the Lagrangian acceleration. The pdf of
cos(aaaE ,aaaP) shows some anti-alignment, which is stronger at
large scales, and no alignment is observed at small scales (bot-
tom, left). A similar weak anti-alignment behavior is found for
the pdf of cos(aC,ap) (bottom, right).

CONCLUSIONS
We performed direct numerical simulation in order to re-

visit Taylor’s hypothesis in homogeneous turbulent shear flow.
We found strong anti-correlation of the Eulerian acceleration
with the convective acceleration based on the joint PDF and
the Pearson correlation coefficient. The scale dependence of
the results was studied using an orthogonal wavelet decompo-
sition. We observed that the anti-correlation of the Eulerian
acceleration and the convective acceleration is strongest for
the smallest scales of the turbulent motion. We also consid-
ered the PDF of the cosine of the angle between the Eulerian
acceleration and the convective acceleration. The PDF shows
again strong anti-alignment of the terms, indicating a cancella-
tion between the two accelerations, which is again strongest at
small scales. However, this result does not hold for the largest
scales of the motion. Hence, the results confirm that Taylor’s
hypothesis holds at small scales and not at large scales of the
turbulent motion, which is in agreement with Lin (1953), who
wrote that ‘there is no general extension of Taylor’s hypothesis
to the case of shear flow.’
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