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Summary

� Haberlea rhodopensis is a resurrection plant that can tolerate extreme and prolonged peri-

ods of desiccation with a rapid restoration of physiological function upon rehydration. Special-

ized mechanisms are required to minimize cellular damage during desiccation and to maintain

integrity for rapid recovery following rehydration.
� In this study we used respiratory activity measurements, electron microscopy, transcript,

protein and blue native-PAGE analysis to investigate mitochondrial activity and biogenesis in

fresh, desiccated and rehydrated detached H. rhodopensis leaves.
� We demonstrate that unlike photosynthesis, mitochondrial respiration was almost immedi-

ately activated to levels of fresh tissue upon rehydration. The abundance of transcripts and

proteins involved in mitochondrial respiration and biogenesis were at comparable levels in

fresh, desiccated and rehydrated tissues. Blue native-PAGE analysis revealed fully assembled

and equally abundant OXPHOS complexes in mitochondria isolated from fresh, desiccated

and rehydrated detached leaves. We observed a high abundance of alternative respiratory

components which correlates with the observed high uncoupled respiration capacity in desic-

cated tissue.
� Our study reveals that during desiccation of vascular H. rhodopensis tissue, mitochondrial

composition is conserved and maintained at a functional state allowing for an almost immedi-

ate activation to full capacity upon rehydration. Mitochondria-specific mechanisms were acti-

vated during desiccation which probably play a role in maintaining tolerance.

Introduction

Droughts have devastating impacts on crop production and food
security. In this respect, developing crops with increased drought
tolerance is a major focus for plant breeders and researchers. Whilst
most plants can withstand mild drought for short periods of time,
loss of water content below 40% results in extensive damage and
ultimately death (H€ofler & Rottenburg, 1941). A small group of
plants (< 0.2% of the total flora) termed ‘resurrection plants’ are
unique in that they can survive long periods of time desiccated with
water content < 10% and recover within hours upon hydration
(Oliver et al., 2005, 2020). Whilst desiccation tolerance is observed
in ferns, mosses, pollen and orthodox seeds, desiccation tolerance
within angiosperm vegetative tissues is a rare phenomenon (Gaff &
Oliver, 2013). Consequently, resurrection plants are valuable mod-
els to study the molecular mechanisms involved in desiccation tol-
erance and a comprehensive knowledge of the fundamental

mechanisms involved is crucial. The Balkan endemic Haberlea
rhodopensis can survive unusually long periods of desiccation for
≤ 2 yr and resume normal growth within hours of hydration
(Gechev et al., 2013).

Several studies have investigated the physiological, cellular and
molecular mechanisms involved in establishing desiccation toler-
ance. Specialized mechanisms minimize damage and maintain cel-
lular integrity during desiccation and rapidly mobilize cellular
function and repair mechanisms upon rehydration (Oliver
et al., 2020). Among the core protective mechanisms are the accu-
mulation of late embryogenesis abundant (LEA) proteins, small
heat shock proteins (sHSPs) and early light-induced protein
(ELIP) (reviewed by Gechev et al., 2021), and osmolytes such as
proline (Forlani et al., 2019), proposed to protect proteins from
dehydration and aggregation. Sucrose and oligosaccharides accu-
mulate and act as osmoprotectants to stabilize membranes
(Martinelli, 2008; Djilianov et al., 2011; Moyankova et al., 2014).
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Nonenzymatic and enzymatic antioxidant systems also are acti-
vated to establish desiccation tolerance. Located within the
energy-producing organelles, mitochondria and chloroplasts,
antioxidant molecules such as glutathione, ascorbate, tocopherols
and polyphenols have been observed to increase during desicca-
tion (Djilianov et al., 2011; Moyankova et al., 2014; Georgieva
et al., 2017). Scavengers such as superoxide dismutase, ascorbate
peroxidase, catalase and glutathione reductase also accumulate
during desiccation (Gechev et al., 2013), probably to prevent
reactive oxygen species (ROS) damage.

The specific role of chloroplasts (and photosynthesis) has been
determined during the desiccation of several resurrecting species
(Koonjul et al., 2000; Dinakar et al., 2012; Mladenov et al., 2015;
Georgieva et al., 2020; Nadal et al., 2021). Inhibition of photosyn-
thesis is a central response, observed in both desiccation-tolerant and
desiccation-sensitive plants affected by drought (Challabathula
et al., 2018). Desiccation of sensitive plants leads to irreparable dam-
age of the photosynthetic membranes, however, in desiccation-
tolerant resurrecting plants, the photosynthetic apparatus is deacti-
vated during desiccation, followed by complete recovery upon rehy-
dration. Two mechanisms have been described for this process; (i)
poikilochlorophyllous plants degrade chlorophyll (Chl) and the
photosynthetic apparatus in a regulated manner requiring de novo
synthesis during rehydration (Tuba et al., 1998) whilst (ii) homoio-
chlorophyllous plants preserve Chl and thylakoid membranes and
instead initiate active protection mechanisms. The homoiochloro-
phyllous H. rhodopesis maintains chloroplast morphology, preserving
the integrity of the thylakoid membrane, photosystems I (PSI) and II
(PSII) and a high Chl content during desiccation, and initiate protec-
tive mechanisms during desiccation to prevent damage and maintain
the integrity of the photosynthetic apparatus (Georgieva et al., 2020).
Molecular responses protecting photosynthetic machinery include
the upregulation of genes encoding early light-inducible proteins
(ELIP), LEA, antioxidant enzymes and cell-wall modification
enzymes (Gechev et al., 2013; Liu et al., 2018).

Plant mitochondria play an essential role in energy production,
are a major nexus of carbon and nitrogen metabolism, and play crit-
ical roles linked to photosynthesis and in responses to oxidative and
environmental stresses. Unlike photosynthesis, mitochondrial func-
tion during desiccation has not been well-studied in resurrection
plants. Tuba et al. (1997) reported that mitochondrial respiration
rates correlated to tissue water content in Xerophyta humilis (Tuba
et al., 1997). Likewise, respiration rates declined only after drying to
40% relative water content (RWC) in the homoiochlorophyllous
species Craterostigma wilmsii and Myrothamnus flabellifolius, whilst
in the poikilochlorophyllous monocot Xerophyta humilis, respiration
rates declined when RWC decreased to 20% and ceased in all three
species at ≤ 10% (Farrant, 2000). Recently, a comprehensive tran-
scriptomic, proteomic and metabolic study on Craterostigma plan-
tagineum has provided some insight into the role of mitochondria
in desiccation tolerance (Xu et al., 2021). RNA-Seq analysis data
showed a high abundance of transcripts encoding mitochondrial
protein import components TIM17 and TIM23, suggesting an
upregulation of mitochondrial biogenesis during desiccation, in
addition to an accumulation of tricarboxylic acid cycle (TCA) inter-
mediates and oxidative phosphorylation (OXPHOS) machinery

(Xu et al., 2021). These findings suggest mitochondrial biogenesis
and activity may be maintained during desiccation, to minimize
ROS damage and provide an energy advantage upon rehydration.

Here we investigated mitochondrial activity during the dehy-
dration and subsequent rehydration of detached H. rhodopensis
leaves with an emphasis on the role of mitochondria in desicca-
tion tolerance. We found that mitochondrial respiration is estab-
lished almost immediately upon rehydration and before the
reactivation of photosynthesis. Transcript and protein abundance
of proteins involved in mitochondrial biogenesis are high in des-
iccated leaves and remain constant during rehydration, along
with fully assembled oxidative phosphorylation machinery. Fur-
thermore, the alternative respiratory components and mitochon-
drial stress-responsive components were observed to be most
abundant in desiccated tissues suggesting that specific mitochon-
drial mechanisms play a role in maintaining organelle integrity
during desiccation and allow for rapid activation of function.

Materials and Methods

Plant material and growth conditions

Haberlea rhodopensis Friv. plants were propagated in vitro (Djilianov
et al., 2005) and then transferred to soil. The plants were grown for
1 yr at a temperature of 24°C, 16 h : 8 h, light : dark photoperiod
of 40 lmolm�2 s�1 and 40–60% relative humidity. For desicca-
tion, fully developed young leaves were detached, weighed (100%:
initial FW, IFW) and air-dried for 3, 6, 12, 24, 36, 48, 60 and
72 h until 15% of the IFW was achieved. Rehydration was carried
out on a wet filter paper for 3, 6, 12, 24, 36, 48, 60 and 72 h at
room temperature. Weight during desiccation and recovery was
determined as a percentage of the leaf weight relative to the IFW.

Oxygen consumption measurements

Oxygen (O2) consumption measurements on leaf tissue were
conducted in the dark and at 21°C at 1-min intervals using a Q2
oxygen sensor (Astec-Global) with minor modifications (O’Leary
et al., 2017). Leaf tissue (c. 20 mg desiccated or 50 mg fresh or
rehydrated) was placed in a sealed 5-ml capacity tubes and par-
tially submerged in 400 ll of water. The slope of O2 consump-
tion was calculated according to Scafaro et al. (2017) between 0.5
and 20 h after the start of the run. The experiment was repeated
three times with ≥ 12 replicates for each treatment. Samples also
were analyzed with the addition of HCN, 40 ll of 0.1 M KCN
added to 150 ll of 1 M KOH in a 200-ll tube, that was placed
inside the sealed 5-ml tube to generate gaseous HCN.

Chlorophyll fluorescence-related parameters

Chlorophyll fluorescence was measured using the MAXI-Imaging
PAM fluorometer system (Heinz Walz, Effeltrich, Germany;
Barbagallo et al., 2003). Leaves were treated and dark-adapted for
20min and their fluorescence was determined during 800ms
exposure to a saturating pulse, having a photon flux density (PFD)
of 4800 lmol m�2 s�1. From the variable and maximal
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fluorescence, the maximum quantum efficiency of PSII was calcu-
lated as FV/FM in three different areas of interest (AOI) of each leaf
(technical replicates) and at least three leaves (biological replicates)
for each treatment were used for the analysis. An ANOVA analysis
was performed including an honestly significant difference (HSD)
Tukey–Kramer’s post hoc test and those with P-values < 0.05 were
consider statistically significantly different. Immediately after FV/
FM determination, from the same AOI, leaves, and number of
replicates, the chloroplast electron transport rate (ETR) parameter
was determined. Twenty measurements were used to describe the
light curve for ETR, from 0 to 1076 photosynthetic active radia-
tion (PAR, lmol quanta m�2 s�1), with a 20-s gap between mea-
surements. The ETR of technical replicates were combined to get
the leaf ETR, and the ETR of different leaves for the same treat-
ment were plotted to get the treatment ETR trend. A loess regres-
sion was adjusted to each curve with a 95% confidence interval
using the R package GGPLOT2.

Pearson correlation analysis

Pearson correlation analysis were performed between FV/FM and
percentage of rehydration to determine if there is a positive and
significant correlation. Therefore, the average of FV/FM and per-
centage of rehydration for each treatment were plotted as scatter
plot in R and a Pearson correlation test was performed to deter-
mine the Pearson correlation coefficient, P-value and its biologi-
cal significance. This was done using the whole dataset and by
separating the data into two sets, as two phases seem to be present
based on the scatter plot profile.

Transmission electron microscopy

Leaves were processed according to Flori et al. (2018). Samples
were infiltrated with ethanol/Epon resin mixture and embedded in
Epon. Ultrathin sections (50–70 nm) were prepared with a dia-
mond knife on a PowerTome ultramicrotome and collected on
200-lm nickel grids. Ultrathin sections were examined on a Philips
CM120 transmission electron microscope operating at 80 kV.

Mitochondrial isolation

Mitochondria were isolated from fresh, desiccated and 72-h rehy-
drated H. rhodopensis leaves using a modified method initially
described for rice embryos (Howell et al., 2006). Briefly, about
0.4 g desiccated and 2 g of fresh or rehydrated leaf tissue were
homogenized using pre-chilled mortar and pestle in 100-ml mito-
chondrial grinding media (0.3M sucrose, 50mM tetrasodium
pyrophosphate, 2 mM EDTA, 0.5% (w/v) PVP-40, 0.5% BSA,
20mM cysteine, pH = 7.5). The cell debris and chloroplasts were
pelleted by centrifugation at 2500 g for 5 min. The supernatant,
containing mitochondria, was centrifuged at 17 500 g for 20min,
the pellet was resuspended in wash buffer (0.3M sucrose, 10mM
TES, pH 7.5), and layered over a PercollTM step gradient consisting
of 3 ml 40% PercollTM, 3 ml 25% PercollTM, 3 ml 15% PercollTM in
wash buffer, centrifuged at 34 000 g for 30min, 4°C without
brakes. The mitochondrial band visible at the 25–40% PercollTM

interface was removed, and washed in 50-ml wash buffer, and cen-
trifuged at 22 000 g for 15min at 4°C.

Respiratory complex activity measurements

All enzymatic assays were carried out using isolated mitochondria
and performed at 25°C using a spectrophotometer (UV-1800;
Shimadzu, Kyoto, Japan) over a period of 2 min in triplicate.
Complex I, II, IV, Pyruvate decarboxylase (PDC) and malate
dehydrogenase (MD) assays were carried out as described in
Huang et al. (2015). Ubiquinol-cytochrome c reductase (Com-
plex III) activity was measured by the reduction of cytochrome c
(Luo et al., 2008). ATP synthase (Complex V) activity was mea-
sured according to Catterall & Pedersen (1971).

Oxygen consumption measurements in isolated
mitochondria

Oxygen consumption from isolated mitochondria (100 lg pro-
tein) was measured using Oxytherm Clark-type Electrodes
(Hansatech, King’s Lynn, UK) in 1 ml of air-saturated respira-
tion media (300 mM sucrose, 10 mM NaCl, 5 mM KH2PO4,
2 mM MgSO4, 0.1% (w/v) BSA, 10 mM TES. pH 7.2) at 25°C
(Jacoby et al., 2015). The respiratory chain first was activated
with 200 nM ADP whichever substrate was being used and the
rate of O2 uptake was calculated between 1.5 and 3.5 min after
adding ADP. Oxygen consumption assay for total mitochondrial
electron transport chain (ETC)-linked respiration was performed
in the presence of 1 mM nicotinamide adenine dinucleotide,
reduced (NADH) and 5 mM succinate. The capacity for electron
flux through the alternative oxidase (AOX) pathway was obtained
as the rate of O2 consumption in the presence of 1 mM cyanide
(KCN). The AOX pathway was activated by a mix of 1 mM
pyruvate and 5 mM dithiotreitol (DTT) and then inhibited with
0.1 mM n-propyl gallate (nPG). Uncoupled respiration capacity
was measured in the presence of 1 mM NADH and 5 mM succi-
nate and after permeabilization of the inner mitochondrial mem-
brane to protons, which dissipates the proton gradient by
addition of the 5 lM ionophore FCCP (carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone). Total TCA-linked respira-
tion was evaluated in the presence of mixture of cofactors (2 mM
nicotinamide adenine dinucleotide, oxidized (NAD+), 200 lM
Coenzyme A (CoA) and 12 lM thiamine pyrophosphate (TPP))
and respiratory substrates (10 mM malate and 10 mM pyruvate).

Immunoblotting

Mitochondrial and total proteins, extracted according to Wang
et al. (2006) were separated using SDS-PAGE, transferred to
PVDF and immunodetected using antibodies raised against Ara-
bidopsis thaliana (Arabidopsis) proteins; anti-NADH Dehydroge-
nase 6 (NAD6; Lamattina et al., 1993), anti-75 kDa of the
respiratory chain Complex I (PhytoAb, San Jose, CA, USA),
anti-Carbonic anhydrase-like 1 (CAL1) (PhytoAb), anti-Rieske
iron sulfur protein (RISP) (Carrie et al., 2010), anti-Cytochrome
c oxidase 2 (COX2) (Agrisera, Vasterbotten, Sweden), anti-
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NADH:ubiquinone oxidoreductase iron sulfur protein 4
(NDUFS4) and anti-Succinate Dehydrogenase subunit 1
(SDH1-1; Zhu et al., 2020), anti-beta subunit ATP synthase (b-
ATP) (Agrisera) anti-Alternative NAD(P)H Dehydrogenase 1
(NDA1; Carrie et al., 2009), anti-NAD(P)H Dehydrogenase B2
(NDB2; Soole & Smith, 2015), anti-Alternative Oxidase 1a
(AOX1a; Elthon et al., 1989), anti-METAXIN (Lister et al.,
2007), anti-Translocase Outer Membrane subunit 40 (TOM40;
Carrie et al., 2008), anti-Translocase Inner Membrane subunit
50 (TIM50; Y. Wang et al., 2012), anti-Uncoupling protein
(UCP; Considine et al., 2001), anti-Serine hydroxymethyltrans-
ferase (SHMT; Agrisera). For each immunoblot, band intensity
was measured using IMAGEJ software. A value of 1 was assigned to
band pixel density in fresh tissue and samples normalized relative
to it. Three independent biological replicates were carried out.

Blue native PAGE analysis

Blue native (BN)-PAGE analysis was carried out as described pre-
viously (Eubel et al., 2005) using 5% (w/v) digitonin and precast
4–16% Bis-Tris gels (NovexTM Life Technologies, Carlsbad, CA,
USA). Blue native-PAGE gels were transferred to PVDF and
immunodetected.

RNA isolation and transcript analysis

Total RNA was isolated using an RNA isolation Kit (Favorgen Bio-
tech Corp./Fisher Biotec, Subiaco, WA, Australia) according to the
manufacturer’s instructions. Three independent RNA preparations
were performed for each dehydration/rehydration stage (technical
triplicates) and assayed in biological replicate. Two micrograms of
RNA were converted to cDNA using the HighCapacity cDNA syn-
thesis kit (Bio-Rad) according to the manufacturer’s instructions. A
value of 1.0 was assigned to the sample with the highest cDNA
concentration and the concentrations of other samples were calcu-
lated relative to it to calculate a coefficient for normalizing the tran-
script abundance measured in a quantitative reverse transcription
PCR (qRT-PCR) reaction. qRT-PCR was carried out using the
LightCycler 480 instrument (Roche) with SYBR Green I master
kit (Roche). Primers for all transcripts were designed according
to sequences published previously (Gechev et al., 2013; Liu
et al., 2018) listed in Supporting Information Table S1.

Statistical analysis

Statistical analysis was done using single-factor ANOVA
(a = 0.05), followed by Tukey–Kramer’s post hoc test ANOVA
analysis to test the statistically different datasets.

Results

Desiccated Haberlea rhodopensis leaves exhibit high
respiration rates upon hydration

Haberlea rhodopensis can survive long periods of desiccation and
resume normal growth within hours of re-watering. To

investigate cellular activity during the desiccation and subsequent
rehydration of detached H. rhodopensis leaves, a dehydration and
rehydration series was carried out over a 72 h period (Fig. 1a).
Fresh leaves lost 85% of their IFW within a period of 60 h retain-
ing the remaining 15%, with leaves shrivelling and curling
throughout the time course (Figs 1a i, S1a i). Upon hydration,
the dry and shrivelled leaves were observed to expand in size and
weight, and exhibited reduced leaf curling with the weight recov-
ery increasing from 15% to c. 90% relative to the IFW, over 72 h
hydration (Figs 1a ii, S1a ii). To determine if mitochondrial
activity was restored upon rehydration, O2 consumption rates
were measured using a fluorophore-based oxygen sensor at min-
ute intervals with tissues partially submerged in water. The O2

consumption rates were measured over a 20-h time period and
compared to that of fresh detached H. rhodopensis leaves
(Fig. 1b i). Averaged O2 consumption rates were observed to be
steady ranging from 0.04 to 0.07 lmol s�1 g FW�1 over the
time-course for both desiccated and fresh leaf samples (Fig. 1b i).
In addition, O2 consumption rates of 72-h rehydrated leaves also
were measured and compared to fresh detached leaves over a 20-
h time period (Fig. 1b ii) and found to be comparable to fresh tis-
sue, indicating that mitochondrial respiration was rapidly acti-
vated in desiccated tissue and rates were comparable to that of
fresh and 72-h rehydrated leaves.

Haberlea rhodopensis is known to contain several metabolites
that accumulate during desiccation which could potentially react
with oxygen and affect the O2 consumption rates. To test for
this, KCN, an inhibitor of OXPHOS Complex IV was added to
the reaction tube. The presence of KCN reduced O2 consump-
tion by c. 90%� 1 (Fig. S1b i–ii) indicating that any O2 con-
sumption rates measured were largely due to mitochondrial
respiration. To determine the O2 consumption rates of nonhy-
drated desiccated tissue, dark O2 consumption rates also were
measured as above, but in vials without the presence of water,
and no O2 consumption was identified (Fig. S1b iii).

Photosynthetic performance is restored upon rehydration

In order to investigate if photosynthetic performance was recov-
ered during the rehydration time-course and whether it correlated
with the percentage of weight recovery, we tested the maximum
quantum yield of PSII (FV/FM) in fresh, desiccated and rehy-
drated for 3-, 6-, 12-, 24-, 36-, 48-, 60- and 72-h leaves. We
observed that FV/FM was reduced to zero in desiccated tissue but
increased substantially by 3 h post-rehydration (corresponding to
20% of the IFW), followed by a steady increase until 24 h post-
rehydration (80% IFW) when values reached those obtained in
fresh leaves (Figs 1c i, S2a). The FV/FM positively correlated with
the percentage of recovery and water uptake, respectively, in a
biphasic manner – at earlier stages of rehydration the FV/FM
increased faster, whereas, after 60% of recovery, corresponding to
24 h post-hydration, the changes in FV/FM were less noticeable
(Fig. 1c ii). Chloroplast ETR were reduced dramatically in desic-
cated leaves and a continued improvement was observed from 6 h
post-rehydration (30% IFW) to 48 h post-rehydration (75%
IFW) where the ETR was equivalent to that observed in fresh
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Fig. 1 Dehydration and rehydration of detached Haberlea rhodopensis leaves. (a) Stages of desiccation and rehydration, fresh leaf air-dried for 6–72 h (i)
and rehydrated from 0 fully desiccated to 72 h post-hydration (ii). (b) Oxygen consumption rates per gram of tissue (n = 12) from desiccated and fresh tis-
sues (i) and from 72-h rehydrated and fresh tissues (ii). (c) Photosynthetic performance of fresh, desiccated and rehydrated leaves. (i) Maximum quantum
yield of photosystem II (FV/FM) in fresh, desiccated and rehydrated leaves. Each dot represents the FV/FM of an independent biological replicate (including
outliers), whiskers represent the minimum and maximum values, the horizontal line represents the median and the lower and upper boxes represent the
25th and 75th percentiles, respectively. Different letters indicate statistically significant differences in a honestly significant difference Tukey–Kramer’s post
hoc test, P < 0.05, n ≥ 3. (ii) Pearson correlation analysis between FV/FM and recovery (%). The overall correlation includes all of the points in the graph
(Supporting Information Fig. S2a). Instead, two phases were represented as a linear regression. In all the cases the correlation test is significant. The grey
area indicates a 95% confidence interval (CI) for the linear regression. (d) Chloroplast electron transport rates (ETR) for fresh, desiccated and rehydrated
leaves. The grey area indicates a 95% CI for the regression applied (LOESS). No overlap between grey areas indicates statistically significant differences
(Fig. S2b).
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leaves (Figs 1d, S1a, S2b). Maximum ETR was reached following
48 h of rehydration, reaching levels of fresh tissue at 72 h suggest-
ing that the photoprotective mechanisms were not fully recovered
until 72 h and thus they cannot cope with high light intensity re-
sulting in a premature decrease (PAR equivalent to
250 lmol quanta m�2 s�1) in ETR compared to fresh leaves
(Figs 1d, S2b).

Mitochondrial and chloroplast morphology in desiccated
leaf tissue

Morphological examination of H. rhodopensis mesophyll mito-
chondria and chloroplasts from fresh, desiccated and 72-h rehy-
drated tissue was performed using TEM. Both organelles appear
to retain integrity during desiccation (Fig. 2a,b). In desiccated
leaves, mitochondria appeared smaller but with high electron
density and defined cristae structures like that observed in fresh
tissue (Fig. 2a,b). In desiccated tissue, the chloroplasts appeared
less electron-dense with fewer thylakoid structures and stacked
grana compared to those observed in fresh tissue (Fig. 2b). Both
organelles appeared completely recovered after 72 h of hydration
(Fig. 2c).

Mitochondrial components are preserved in an active state
during desiccation

In order to further investigate mitochondrial activity in fresh,
desiccated and rehydrated H. rhodopensis tissue and compare it
with the activity in fresh tissue, mitochondria were isolated using
a modified PercollTM density gradient method. This method
involved immediate cellular homogenization of tissue upon com-
ing in contact with grinding buffer, allowing for the isolation of
sufficient mitochondria for biochemical and physiological analy-
ses. SDS-PAGE analysis and Coomassie staining of isolated mito-
chondria from fresh, desiccated and rehydrated tissue displayed
comparable protein banding patterns (Fig. S3a). To confirm that

the isolated fraction contained enriched mitochondrial proteins,
an immunoblot was carried out using an antibody raised against
the mitochondrial Translocase of the Inner Membrane 50
(TIM50). Immunodetection was carried out using total protein
extract and mitochondrial fraction indicating that the mitochon-
drial isolation fraction was enriched for mitochondrial proteins
(Fig. S3b).

Oxidative phosphorylation consists of four complexes on the
inner membrane (complexes I, II, III, IV) whereby electron flow
coupled to proton translocation drives ATP synthesis via ATP
synthase. To investigate OXPHOS integrity, assembly, abun-
dance and activity, we carried out a series of experiments, includ-
ing BN-PAGE, enzyme activity assays and O2 consumption
measurements in isolated mitochondria from fresh, desiccated
and 72-h rehydrated tissue. To determine the assembly and
abundance of OXPHOS complexes, mitochondria were resolved
on BN-PAGE and immunodetected with various antibodies
against complexes I, II, III, IV and ATP synthase (Fig. 3). The
well-characterized OXPHOS complexes from Arabidopsis were
resolved alongside (Senkler et al., 2017; Fig. 3a). Immunodetec-
tion with antibodies specific for individual subunits of complexes
I–V confirms comparable complex abundance and resolution in
mitochondria isolated from fresh, desiccated and rehydrated tis-
sues (Fig. 3b–f). Complex I resolved at c. 1000 kDa, Complex II
at c. 200 kDa (with an additional band observed at c. 400 kDa),
Complex III at c. 500 kDa, and Complex IV at c. 300 kDa from
fresh, desiccated and rehydrated mitochondria (Fig. 3b–e). Anti-
bodies raised against the b-subunit of ATP synthase detected a
band of c. 600 kDa (Fig. 3f). Therefore, it could be concluded
that all OXPHOS complexes were present at similar abundances
in mitochondria isolated from fresh, desiccated and rehydrated
tissue. Furthermore, the OXPHOS complexes resolved at similar
sizes from mitochondria isolated from fresh, desiccated and post-
hydrated tissue suggesting that they were fully assembled.

Enzyme activity assays for individual OXPHOS complexes I,
II, III, IV and ATP synthase exhibited no substantial differences
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Fig. 2 Organelle ultrastructure in fresh,
desiccated and rehydrated Haberlea

rhodopensis transmission electron
micrographs of detached fresh (a),
desiccated (b) and 72-h rehydrated (c) leaf
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in mitochondria isolated from fresh, desiccated and rehydrated
tissues (Fig. 4a i–v). Activity measurements for the TCA cycle
enzymes malate dehydrogenase (MDH) and pyruvate dehydroge-
nase (PDH) likewise exhibited no difference in mitochondria iso-
lated from fresh, desiccated and rehydrated tissues (Fig. 4a vi,vii).

In addition to individual mitochondrial respiratory complexes,
we assessed the biological properties of isolated mitochondria
from desiccated tissue in comparison with fresh and 72-h rehy-
drated one by measuring O2 consumption with Clark-type elec-
trode (Figs 4b, S4). The substrate combination of NADH and
succinate delivers reductant directly to the ETC at Complex II
and external NAD(P) dehydrogenases and bypasses soluble
enzymes of the TCA cycle, assessing the maximal activity of the
ETC and respiration rate after adding ADP (Fig. S4a,b). ETC-
linked respiration rates in fresh tissue were comparable to those
of rehydrated tissue, whereas the rates of O2 consumption of
mitochondria, isolated from desiccated leaves was two-fold lower
(Figs 4b, S4a,b). The potential contribution of AOX pathway
was determined by activating it with DTT in the presence of
pyruvate after inhibiting the ETC with KCN. The capacity for
electron flux through the cyanide insensitive pathways was 2.5-
fold higher in desiccated tissue compared to fresh ones (Figs 4b,
S4a); however, these activities could not be attributed exclusively
to AOX because they were not fully inhibited by nPG, an AOX
inhibitor, indicating the presence of additional uncoupling com-
ponents (Fig. S4a ii). The AOX capacity after 72 h of hydration
was still higher by 1.5-fold compared to mitochondria, isolated
from fresh leaves, suggesting that it takes longer than 72 h to
completely restore the pre-desiccation levels (Figs 4b, S4a iii). In
addition to the AOX pathway, we measured the total uncoupled
O2 consumption capacity (that includes AOX) by addition of the
ionophore FCCP, which permeabilizes the inner membranes to
protons, dissipating the proton gradient. After FCCP addition,
O2 consumption is no longer coupled to ATP synthesis. Mito-
chondria isolated from desiccated and rehydrated tissue exhibit

about 25% increase in uncoupled capacity compared to mito-
chondria from fresh leaves (Figs 4, S4b). TCA cycle activity in
the presence of substrates malate and pyruvate and NAD+ in iso-
lated mitochondria from fresh, desiccated and rehydrated tissue
was comparable (Figs 4b, S4c).

Transcript and protein analysis indicates high levels of
factors involved in mitochondrial biogenesis in desiccated
tissue

In order to further investigate mitochondrial activity and biogen-
esis in fresh, desiccated and rehydrated tissue, the transcript
abundance of individual components involved in mitochondrial
activity, biogenesis and redox regulation was investigated (Fig. 5).
qRT-PCR analysis of the genes encoding the Complex I subunit
75 kDa displayed relatively constant levels of transcript during
desiccation and rehydration (Fig. 5a). Likewise, the additional
Complex I component, NDUFS4, the mitochondria-encoded
NAD6, and the plant-specific carbonic anhydrase-like (CAL)
domain subunit 1, CAL1, showed equal transcript abundance at
all time points (Fig. 5a). Analysis of SDH subunits showed core
subunits SDH1 and SDH5 remained stable during desiccation
and rehydration (Fig. 5b). Interestingly the SDH subunit
SDH2.1 decreased during dehydration, followed by an increase
during hydration, reaching pre-desiccation levels at 72 h. In con-
trast to its homolog, SDH2.3 showed a sharp increase during
dehydration, peaking in fully desiccated leaves, exceeding the
transcript abundance of the fresh leaves > 160-fold, 6 h post-
rehydration SDH2.3 transcript levels dropped substantially, fol-
lowed by a steady decline (Fig. 5c). Transcripts for subunits of
Complex III (RISP), Complex IV cytochrome c oxidase (COX2)
and ATP synthase (b-ATP synthase) showed steady expression
levels during dehydration/rehydration (Fig. 5d). Analysis of vari-
ous mitochondrial protein import components showed stable
expression of the inner membrane translocases TIM23, TIM50
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Fig. 3 Mitochondrial oxidative phosphorylation (OXPHOS) complexes are fully assembled and abundant in desiccated and rehydrated Haberlea

rhodopensismitochondria. Blue native (BN)-PAGE analysis and immunodetection of H. rhodopensismitochondrial OXPHOS complexes isolated from fresh
(f) desiccated (d) and 72-h rehydrated (R) leaf tissue. (a) BN-PAGE analysis and Coomassie staining of Arabidopsis (a) mitochondria indicating the positions
of OXPHOS complexes. (b–f) Immunodetection of H. rhodopensismitochondria with (b) anti-75 kDa Complex I subunit, (c) anti-Succinate Dehydrogenase
subunit 1 (SDH1) Complex II subunit, (d) anti-Rieske iron sulfur protein (RISP) Complex III subunit, (e) anti-Cytochrome c oxidase (COX2) Complex IV sub-
unit and (f) anti-beta subunit ATP synthase (b-ATP). Bars indicate the positions of Arabidopsis OXPHOS complexes.
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and TIM44 across dehydration/rehydration. (Fig. 5e). The outer
membrane translocase TOM40, its partner protein TOM5 and
the outer membrane b-barrel translocaseMETAXIN showed con-
stant transcript abundance (Fig. 5e). TCA cycle enzymes MDH
and alpha subunit of pyruvate dehydrogenase (PDC-E1) exhib-
ited constant levels across dehydration/rehydration (Fig. 5f) as
the mitochondrial transcription RNA polymerase subunit C2,
RPO C2 and the mitochondrial fission 1, MF1 involved in regu-
lating mitochondrial fission (Fig. 5f).

In order to investigate the protein abundance of various com-
ponents involved in mitochondrial biogenesis, immunodetection

was carried out using isolated mitochondria from fresh, desic-
cated and 72-h post-rehydrated tissue. Analysis of the Complex I
subunits, 75 kDa, CAL1, NDUFS4 and the mitochondrial-
encoded NAD6 exhibited equal abundance in fresh, desiccated
and rehydrated tissue (Fig. 6a). Immunodetection against Com-
plex II subunit, SDH1-1, Complex III subunit RISP, Complex
IV subunit COX2 and the b-subunit of ATP synthase likewise
displayed equal protein abundance in mitochondria isolated from
fresh, desiccated and rehydrated tissue (Fig. 6b). The protein
import components TOM40 and the inner membrane TIM17/
23 translocase subunit TIM50, showed no change in abundance
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Fig. 4 Mitochondrial activities in fresh, desiccated and rehydrated Haberlea rhodopensis tissue. (a) Enzymatic activities of respiratory complexes and
tricarboxylic acid cycle (TCA) enzymes using isolated mitochondria from fresh, desiccated and 72-h rehydrated tissues. (i) Complex I, (ii) Complex II, (iii)
Complex III, (iv) Complex IV, (v) ATP synthase, (vi) malate dehydrogenase (MDC) and (vii) pyruvate dehydrogenase (PDC). Data shown are average activ-
ity per lgmg�1 protein (� SE, n = 3). (b) Oxygen consumption rates of mitochondria isolated from fresh, desiccated and 72-h rehydrated tissues. AOX,
alternative oxidase; ETC, electron transport chain-linked; TCA, tricarboxylic acid cycle-linked respiration; UC, uncoupled respiration capacity. Data shown
are average O2 consumption (nmol) per min per mg protein (� SE, n = 3). Significant differences are indicated by *; n = 3, a < 0.05, ANOVA and Tukey–
Kramer’s post hoc test.
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across fresh, desiccated and rehydrated tissues (Fig. 6c), corre-
sponding to the observed transcript profiles. As a control SHMT
indicated equal protein loading (Fig. 6c).

Desiccation tolerance involves alternative mitochondrial
respiration and stress response

Plant mitochondria also possess nonphosphorylating pathways of
electron transport termed alternative oxidase (AOX) and type II
NAD(P)H dehydrogenases located on different sides of the inner
membrane. Alternative pathways involving AOX and/or NAD
(P)H dehydrogenases operate without the translocation of pro-
tons and act as safety valves to oxidize excess reducing equivalents
and prevent feedback inhibition (Vanlerberghe, 2013) which
plays a significant role in alleviating stress and conferring toler-
ance to including drought (Giraud et al., 2008; Sweetman
et al., 2019). To investigate if similar mechanisms play a role in
desiccation tolerance, transcript and protein abundance of the
mitochondrial alternative electron transport chain was investi-
gated (Fig. 7). Haberlea rhodopensis, like most dicot plants, con-
tains two AOX gene families – AOX1 and AOX2. Transcript
analysis of AOX1a and AOX2 showed very high expression, peak-
ing within 6 h of the dehydration and maintaining relatively high
levels in desiccated tissue (Fig. 7a i) with a gradual decrease
over the hydration time-course. Analysis of the internal inner
membrane-located NADH dehydrogenase NDA1 and the

external intermembrane space facing NDB2 also showed highest
abundance at 12 h of dehydration, decreasing > 5-fold 72 h post-
hydration (Fig. 7a ii). In addition to alternative oxidation, plant
mitochondria possess plant uncoupling mitochondrial protein
(UCP) that uncouples ATP production from electron transport
(Je�zek et al., 2000; Sluse & Jarmuszkiewicz, 2002). Transcript
abundance of UCP during dehydration and rehydration show the
highest abundance of all three genes in desiccated tissue, decreas-
ing > 2-fold 72 h post-hydration (Fig. 7a iii).

Genes known to be highly responsive during dehydration and
desiccation also were analyzed (Fig. 7a iv–vi). The cytosolic late
embryogenesis abundant 29 (LEA29) protein was observed to
gradually increase during the dehydration process reaching a
maximum in fully desiccated leaves that exceeded by 200-fold the
transcript abundance in fresh tissue, decreasing rapidly after 6 h
of hydration (Fig. 7a iv). The transcript abundance of the mito-
chondrially located superoxide dismutase (MnSOD) showed
maximum abundance in desiccated leaves (Fig. 7a v). Sucrose
synthase, a desiccation marker previously used for H. rhodopensis
(Gechev et al., 2021) was observed to increase during dehydra-
tion (c. 50-fold), decreasing to pre-desiccation levels following
hydration (Fig. 7a vi). Immunodetection of AOX, NDA1,
NDB2 and UCP on isolated mitochondria from fresh, desiccated
and 72-h rehydrated tissue showed AOX, NDA1, NDB2 and
UCP protein abundance to increase 2–4-fold in desiccated tissue,
correlating to the trends observed in transcripts (Fig. 7b).
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Discussion

In general, upon dehydration, plants undergo morphological and
metabolic changes in response to decreased water loss, photosyn-
thesis and respiration, in addition to the activation of protective
mechanisms. During severe desiccation, sensitive plants are
unable to recover whereas resurrection plants maintain cellular
integrity, thus being able to recover upon rehydration. Character-
ization of the protective mechanisms in detached H. rhodopensis
leaves during desiccation with a subsequent recovery during
hydration identified a distinct role for mitochondria during this
process. Although mitochondria in fully desiccated leaves are not
active (Fig. S1b iii), upon rehydration mitochondrial respiration
and activity is activated almost immediately (Figs 1b, 4, S4). By
contrast, photosynthetic activity and ETR were observed to pro-
gressively increase and to reach a maximum level 60–72 h post-
hydration, corresponding to 80% recovery of the IFW (Figs 1,
S1a). The results from the overall physiological measurements
were consistent with the observations from the organelle morpho-
logical analysis. Transmission electron micrographs revealed
mitochondria containing electron-dense cristae structures (albeit
smaller) in desiccated tissue, like those observed in the fresh and
rehydrated tissue. Previous studies also revealed intact mitochon-
dria with defined cristae morphology during the desiccation of
C. wilmsii,M. flabellifolius and X. humilis (Farrant, 2000).

A detailed analysis of activity, protein and transcript abun-
dance of genes encoding proteins involved in respiration, mito-
chondrial biogenesis and TCA cycle revealed that there were no
significant differences between fresh, desiccated and fully
hydrated tissue during both dehydration and rehydration pro-
cesses. Oxygen consumption in desiccated leaves was not detected
(Fig. S1b iii), but upon mitochondrial isolation, respiration rates
were already at half those of fresh tissue, suggesting that the
capacity for respiration including oxidative phosphorylation of
ADP was present in desiccated tissue (Figs 4, S4a,b). This sug-
gests that in H. rhodopensis dehydration does not cause any major
degradation of mitochondrial components and cytosolic-located

transcripts encoding mitochondrial proteins. Comparison of the
dehydration rates between H. rhodopensis and its relative, nonres-
urrecting species Deinostigma eberhardtii (Kuroki et al., 2019)
demonstrates that in H. rhodopensis dehydration is much faster,
with water content decreasing to 15% within 24 h. Furthermore,
the molecular structure of water changes during the dehydration
and rehydration process. Near-infrared spectroscopy analysis of
water during desiccation revealed permanent loss of free water
structures in D. eberhardtii whereas in H. rhodopensis the loss of
free water was accompanied by accumulation of water molecules
containing four hydrogen bonds and water dimers. This process
was fully reversible upon rehydration (Kuroki et al., 2019). At
the same time, the accumulation of LEA proteins, with low num-
ber of intramolecular hydrogen bonds that interact with water,
other proteins, or cellular components, stabilizing their structure,
may act as water replacement allowing for a preservation of tis-
sues. Desiccation tolerance of H. rhodopensis also has been linked
to high sucrose and raffinose accumulation, shown to prevent
conformational changes to proteins and membranes (M€uller
et al., 1997; Djilianov et al., 2011). Combined with the loss of
free water molecules, these dynamic changes during dehydration
allow for a rapid preservation of cellular integrity, which in turn
results in an almost immediate reactivation of mitochondrial
function at rehydration, as we have shown here.

In this study, the only difference in mitochondrial composi-
tion between fresh, desiccated and rehydrated tissues were related
to the abundance of alternative respiratory pathway components
and the alternative respiratory capacity. Both transcripts and pro-
tein abundance of alternative pathway components were higher
in desiccated tissue. The data from the transcript and protein
analyses correlate with the results from the mitochondrial func-
tional analyses. Mitochondria isolated from desiccated tissue
exhibited 2.5-fold higher AOX as well as 25% higher total
uncoupled capacities in comparison with the mitochondria from
fresh tissue (Figs 4, S4a). Mitochondrial alternative pathways
provide the respiratory system with a flexible degree of coupling
between carbon metabolism pathways, ETC activity and ATP
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turnover. A variety of studies have concluded that alternative res-
piratory pathways function in metabolic and signalling home-
ostasis, which are particularly important during adverse growth
conditions. Alternative oxidase lowers mitochondrial ROS pro-
duction by preventing over-reduction of the electron transport
chain components (Selinski et al., 2018). At the same time AOX
activity can regulate mitochondrial signalling molecules such as
superoxide and nitric oxide, providing mitochondria with a
means of retrograde signalling to influence nuclear gene expres-
sion and initiate acclimation strategies (Vanlerberghe, 2013). It is

well-documented that AOX1 is highly responsive to abiotic and
biotic stresses, as well as respiratory metabolism dysfunction
(Clifton et al., 2006), whereas AOX2 generally is not stress-
responsive and instead, is expressed in reproductive tissues and
seeds (Saish et al., 2001; Chai et al., 2010). Unexpectedly, we
found that both AOX1 and AOX2 exhibited the highest expres-
sion levels soon after the onset of desiccation keeping relatively
high levels in desiccated vegetative tissue that gradually decreased
during rehydration, suggesting a role for both AOXs in desicca-
tion tolerance. This is supported by transcriptomic profiling of
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C. plantagineum that likewise showed AOX2 abundance increas-
ing > 3-fold in desiccated tissue compared to rehydrated tissue
(Xu et al., 2021).

In addition to AOX, plant mitochondria contain several type II
NAD(P)H dehydrogenases which also are involved in uncoupling
electron transfer from ATP synthesis. Together with AOX, type II
NAD(P)H dehydrogenases are upregulated following mitochon-
drial stress to help minimize ROS production and prevent
feedback inhibition of metabolism (Clifton et al., 2006; Vanler-
berghe, 2013). Likewise, we observed maximum transcript
abundance of NAD(P)H dehydrogenases shortly after water
depravation which decreased during rehydration (Fig. 7). Over-
expression of NDB2 alongside AOX increased Arabidopsis toler-
ance to drought stress (Sweetman et al., 2019) supporting the role
of mitochondrial NAD(P)H dehydrogenases in being induced
upon water limitation. In Arabidopsis the negative impact of severe
salinity stress on photosynthetic capacity did not differ between
wild-type and a double mutant aox1a::aox1d while the stress was
ongoing, but only during recovery with plants with inhibited
AOX1 activity not being able to recover (Oh et al., 2022).

Mitochondrial UCP proteins are inner membrane-located car-
rier proteins that pump protons across the inner membrane to
uncouple electron transport from ATP synthesis. Uncoupling
mitochondrial protein proteins have been shown to play a role
during plant stress, suppressing mitochondrial ROS forma-
tion (Barreto et al., 2020). Interestingly, drought tolerance (and
reduced ROS concentrations) could be achieved by the over-
expression of Arabidopsis UCP1 in tobacco (Begcy et al., 2011).
It was found that mitochondrial UCP displayed its highest tran-
script and protein abundance in desiccated tissue, suggesting that
these proteins also may play a role in maintaining desiccation tol-
erance. Evidently H. rhodopensis activates numerous mitochon-
drial protective and stress responsive mechanisms to protect
mitochondria from oxidative damage and to preserve respiration
mechanisms under desiccation.

Acquisition of vegetative desiccation tolerance via seed
desiccation mechanisms

Studies of resurrecting plants reveal that the mechanisms and
pathways required for vegetative desiccation tolerance, overlap
with mechanisms utilized by seeds (Costa et al., 2017; Lyall &
Gechev, 2020). It is proposed that seed desiccation tolerance
originated from ancestral vegetative desiccation tolerance found
in early land plants (Oliver et al., 2005), and that angiosperm res-
urrection plants acquired their tolerance by re-activating innate
seed desiccation tolerance mechanisms in their vegetative tissues
(Farrant & Moore, 2011; Costa et al., 2017). With respect to
desiccation tolerance, transcriptome studies in Solanum lycoper-
sicum,Medicago truncatula and Arabidopsis reveal genes encoding
mitochondrial proteins such as LEA and HSP, as well as
ABA-responsive and antioxidant components associated with des-
iccation tolerance (Barbagallo et al., 2003; Terrasson et al., 2013;
Gonzalez-Morales et al., 2016). This is consistent with similar
mechanisms and pathways thought to confer desiccation toler-
ance in seeds and resurrection plants (Stupnikova et al., 2006;

Macherel et al., 2007; Georgieva et al., 2017; Kijak & Rata-
jczak, 2020; Stavrinides et al., 2020).

Mitochondria play an essential role during seed development,
maturation and germination, yet there are significant differences
in desiccation tolerance between tissue and seed mitochondria.
During seed desiccation, mitochondria undergo a co-ordinated
shut down of metabolic functions (Stavrinides et al., 2020). In
dry seeds, mitochondria often termed promitochondria are pre-
sent, but poorly differentiated and contain few cristae structures
(Logan et al., 2001; Howell et al., 2006; W. G. Wang et al.,
2012). Although bioenergetic reactivation of promitochondria,
determined by presence of a membrane potential, is immediate
upon rehydration (Paszkiewicz et al., 2017), mitochondrial bio-
genesis is activated progressively, displaying a steady increase of
transcripts and proteins involved in transcription, translation,
protein import and respiration upon imbibition (Narsai et al.,
2011; Law et al., 2012, 2014). By contrast, we found that mito-
chondrial ultrastructure in desiccated H. rhodopensis was well-
preserved with intact cristae structures. Upon re-hydration, mito-
chondrial respiration and activity were activated immediately
reaching maximum levels within 30 min, comparable to those
observed in fresh leaves. Furthermore, the abundance of various
mitochondrial respiratory chain and protein import components
were present at high levels in desiccated tissue and OXPHOS
complexes were fully assembled, suggesting that during
H. rhodopensis desiccation mitochondrial function is not accom-
panied by a decrease in capacity that needs to be re-established
on re-hydration.

Interestingly, the two homologues of SDH2 displayed oppos-
ing expression profiles during desiccation and rehydration com-
pared to all other OXPHOS subunits tested. SDH2.1 exhibited a
decrease during dehydration, followed by steady increase during
the rehydration whilst SDH2.3 abundance increased during des-
iccation followed by a sharp decrease (> 120-fold) within 6 h of
rehydration. This suggests that the preferred homologue during
desiccation is SDH2.3 which may play a protective role during
desiccation. Likewise, in Arabidopsis, SDH2 is encoded by three
homologues, SDH2.1 and SDH2.2, primarily expressed in vege-
tative tissues, and SDH2.3 only expressed in seeds (Elorza
et al., 2004, 2006). It has been shown that SDH2.3 is the most
abundant protein in dry seed mitochondria declining during ger-
mination to be subsequently replaced by SDH2-1/2 (Restovic
et al., 2017; Heidorn-Czarna et al., 2018). This suggests that
SDH2.3 may play a unique role in seed desiccation tolerance,
perhaps by providing Complex II with increased structural stabil-
ity during the dry state (Macherel et al., 2007) a mechanism
probably re-purposed in H. rhodopensis.

Here, we investigated the role of mitochondria during desicca-
tion and rehydration of H. rhodopensis detached leaves. We found
that the mitochondrial ultrastructure, activity, transcript and pro-
tein abundances were preserved in desiccated tissue and main-
tained during rehydration. This supports the conclusion that
mitochondria from H. rhodopensis vegetative leaves are conserved
in a functional state during desiccation, allowing for rapid activa-
tion upon rehydration. We identified mitochondria-specific
mechanisms such as the induction of high alternative respiratory
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pathways, probably a protective mechanism correlating with
rapid recovery following rehydration.
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