
HAL Id: hal-03750975
https://hal.science/hal-03750975v1

Submitted on 16 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Twin-width I: tractable FO model checking
Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, Rémi Watrigant

To cite this version:
Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, Rémi Watrigant. Twin-width I: tractable FO
model checking. Journal of the ACM (JACM), 2022, 69 (1), pp.1-46. �10.1145/3486655�. �hal-
03750975�

https://hal.science/hal-03750975v1
https://hal.archives-ouvertes.fr

Twin-width I: tractable FO model checking
Édouard Bonnet
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
edouard.bonnet@ens-lyon.fr

Eun Jung Kim
Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France
eun-jung.kim@dauphine.fr

Stéphan Thomassé
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
stephan.thomasse@ens-lyon.fr

Rémi Watrigant
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
remi.watrigant@univ-lyon1.fr

Abstract
Inspired by a width invariant defined on permutations by Guillemot and Marx [SODA ’14], we
introduce the notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded
rank-width graphs, map graphs, Kt-free unit d-dimensional ball graphs, posets with antichains
of bounded size, and proper subclasses of dimension-2 posets all have bounded twin-width. On
all these classes (except map graphs without geometric embedding) we show how to compute in
polynomial time a sequence of d-contractions, witness that the twin-width is at most d. We show
that FO model checking, that is deciding if a given first-order formula φ evaluates to true for a given
binary structure G on a domain D, is FPT in |φ| on classes of bounded twin-width, provided the
witness is given. More precisely, being given a d-contraction sequence for G, our algorithm runs
in time f(d, |φ|) · |D| where f is a computable but non-elementary function. We also prove that
bounded twin-width is preserved under FO interpretations and transductions (allowing operations
such as squaring or complementing a graph). This unifies and significantly extends the knowledge
on fixed-parameter tractability of FO model checking on non-monotone classes, such as the FPT
algorithm on bounded-width posets by Gajarský et al. [FOCS ’15].

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases Twin-width, FO model checking, fixed-parameter tractability

1 Introduction

Measuring how complex a class of structures is often depends on the context. Complexity
can be related to algorithms (are computations easier on the class?), counting (how many
structures exist per slice of the class?), size (can structures be encoded in a compact way?),
decomposition (can structures be built with easy operations?), and so on. The most successful
and central complexity invariants like treewidth and VC-dimension tick many of these boxes
and, as such, stand as cornerstone notions in both discrete mathematics and computer
science.

In 2014, Guillemot and Marx [30] solved a long-standing question by showing that
detecting a fixed pattern in some input permutation can be done in linear time. This result
came as a surprise: Many researchers thought the problem was W[1]-hard since all known
techniques had failed so far. In their paper, Guillemot and Marx observed that their proof
introduces a parameter and a dynamic programming scheme of a new kind and wondered
whether a graph-theoretic generalization of their permutation parameter could exist.

https://orcid.org/0000-0002-1653-5822
mailto:edouard.bonnet@ens-lyon.fr
https://orcid.org/0000-0002-6824-0516
mailto:eun-jung.kim@dauphine.fr
mailto:stephan.thomasse@ens-lyon.fr
https://orcid.org/0000-0002-6243-5910
mailto:remi.watrigant@univ-lyon1.fr

2 Twin-width I: tractable FO model checking

The starting point of our paper is to answer that question positively, by generalizing their
width parameter to graphs and even matrices. This new notion, dubbed twin-width, proves
remarkably well connected to other areas of computer science, logic, and combinatorics. We
will show that graphs of bounded twin-width define a very natural class with respect to
computational complexity (FO model checking is linear), to model theory (they are stable
under first-order interpretations), to enumerative combinatorics (they form small classes [5]),
and to decomposition methods (as a generalization of both proper minor-closed and bounded
rank-width/clique-width classes).

1.1 A dynamic generalization of cographs
When it comes to graph decompositions, arguably one of the simplest graph classes is the
class of cographs. Starting from a single vertex, cographs can be built by iterating disjoint
unions and complete sums. Another way to decompose cographs is to observe that they
always contain twins, that is two vertices u and v with the same neighborhood outside {u, v}
(hence contracting u, v is equivalent to deleting u). Cographs are then exactly graphs which
can be contracted to a single vertex by iterating contractions of twins. Generalizing the
decomposition by allowing more complex bipartitions provides the celebrated notions of
clique-width and rank-width, which extends treewidth to dense graphs. However, bounded
rank-width do not capture simple graphs such as unit interval graphs which have a simple
linear structure, and allow polynomial-time algorithms for various problems. Also, bounded
rank-width does not capture large 2-dimensional grids, on which we know how to design
FPT algorithms.

The goal of this paper is to propose a width parameter which is not only bounded on
d-dimensional grids, proper minor-closed classes and bounded rank-width graphs, but also
provides a very versatile and simple scheme which can be applied to many structures, for
instance, patterns of permutations, hypergraphs, and posets. The idea is very simple: a
graph has bounded twin-width if it can be iteratively contracted to a singleton, where each
contracted pair consists of near-twins (two vertices whose neighborhoods differ only on a
bounded number of elements). The crucial ingredient to add to this simplified picture is to
keep track of the errors with another type of edges, that we call red edges, and to require
that the degree in red edges remains bounded by a threshold, say d.

In a nutshell (a more formal definition will be given in Section 3), we consider a sequence
of graphs Gn, Gn−1, . . . , G2, G1, where Gn is the original graph G, G1 is the one-vertex
graph, Gi has i vertices, and Gi−1 is obtained from Gi by performing a single contraction of
two (non-necessarily adjacent) vertices. For every vertex u ∈ V (Gi), let us denote by u(G)
the vertices of G which have been contracted to u along the sequence Gn, . . . , Gi. A pair of
disjoint sets of vertices is homogeneous if, between these sets, there are either all possible
edges or no edge at all. The red edges mentioned previously consist of all pairs uv of vertices
of Gi such that u(G) and v(G) are not homogeneous in G. If the red degree of every Gi is at
most d, then Gn, Gn−1, . . . , G2, G1 is called a sequence of d-contractions, or d-sequence. The
twin-width of G is the minimum d for which there exists a sequence of d-contractions. Hence,
graphs of twin-width 0 are exactly the cographs (since a red edge never appears along the
sequence when contracting twins). See Figure 1 for an illustration of a 2-sequence.

1.2 How to compute the contraction sequences?
Given an arbitrary graph or binary structure, it seems tremendously hard to compute a
good –let alone, optimum– contraction sequence. Fortunately on classes with bounded

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 3

a

b

c

d

e

f

g

a

b

c

d

ge

f

ef

b

c

gef

a dad

c

g

ad

b efbef

c

adg

bef

adg

bcef
abcdefg

Figure 1 A 2-sequence of contractions to a single vertex shows that the original graph has
twin-width at most 2.

twin-width, for which this endeavor is algorithmically useful (in light of Theorem 1), we can
often exploit structural properties of the class to achieve our goal. In Section 4 we present a
simple polynomial-time algorithm outputting a (2k+1 − 1)-contraction sequence on graphs of
boolean-width at most k (see Theorem 3) and a linear-time algorithm for a 3d-contraction
sequence of (subgraphs of) the d-dimensional grid of side-length n (see Theorem 4). The
bottleneck for the former algorithm would lie in finding the boolean-width decomposition in
the first place. The latter result enables to find in polynomial time (3d

√
de)dk-contraction

sequences for unit d-dimensional ball graphs with clique number k, provided the geometric
representation is given.

For other classes, such as planar graphs, directly finding the sequence proves challenging.
Therefore we design in Section 5 a framework that reduces this task to finding an ordering σ
–later called mixed-free order– of the n vertices such that the adjacency matrix A written
compliantly to σ is simple. Here by “simple” we mean that A cannot be divided into a
large number of blocks of consecutive rows and columns, such that no cell of the division is
vertical (repetition of the same row subvector) or horizontal (repetition of the same column
subvector). An important local object to handle this type of division is the notion of corner,
namely a consecutive 2-by-2 submatrix which is neither horizontal nor vertical. The principal
ingredient to show that simple matrices have bounded twin-width is the use of a theorem
by Marcus and Tardos [34] which states that n× n 0,1-matrices with at least cn 1 entries
(for a large enough constant c) admit large divisions with at least one 1 entry in each cell.
This result is at the core of Guillemot and Marx’s algorithm [30] to solve Permutation
Pattern in linear FPT time. As we now apply the Marcus-Tardos theorem to the corners
(and not the 1 entries), we bring this engine to the dense setting. Indeed the matrix can be
packed with 1 entries, and yet we learn something non-trivial from the number of corners.

By the Marcus-Tardos theorem the number of corners cannot be too large, otherwise
the matrix would not be simple. From this fact, we are eventually able to find two rows or
two columns with sufficiently small Hamming distance. Therefore they can be contracted.
Admittedly some technicalities are involved to preserve the simplicity of the matrix throughout
the contraction process. So we adopt a two-step algorithm: In the first step, we build a

4 Twin-width I: tractable FO model checking

binary structure G
of bounded twin-width
binary structure G

of bounded twin-width t-mixed-free order
d-contraction sequence
G = Gn, . . . , G1 = K1

d-contraction sequence
G = Gn, . . . , G1 = K1

Section 6
nO(1)

Theorem 10
nO(1)

Section 4
nO(1)

reduced morphism-tree
MT ′`(G) of size h(`)

reduced morphism-tree
MT ′`(G) of size h(`)

Query G |= φ

for any prenex φ of depth `
Query G |= φ

for any prenex φ of depth `

Theorem 25
O`,d(n)

Lemma 24
O`(1)

Figure 2 The overall workflow. Two paths are possible to get a d-contraction sequence from a
bounded twin-width structure G. Either a direct polytime algorithm as for bounded boolean-width,
or via a domain-ordering yielding a t-mixed free matrix followed by Theorem 10 which converts
it into a d-contraction sequence. From there, a tree of constant size (function of ` only) can be
computed in linear FPT time. This tree captures the evaluation of all prenex sentences φ on `

variables for G. Queries “G |= φ” can then be answered in constant time.

sequence of partition coarsenings over the matrix, and in the second step, we extract the actual
sequence of contractions. The overall algorithm taking A (or σ) as input, and outputting the
contraction sequence, takes polynomial time in n. It can be implemented in quadratic time,
or even faster if instead of the raw matrix, we get a list of pointers to corners of A.

We shall now find mixed-free orders. Section 6 is devoted to this task for three different
classes. Dealing with permutations avoiding a fixed pattern (equivalently, a proper subclass
of posets of dimension 2), the order is easy to find: it is imposed. For posets of bounded width
(that is, maximum size of an antichain or minimum size of a chain partition), a mixed-free
order is attained by putting the chains in increasing order, one after the other. Finally for
Kt-minor free graphs, a Hamiltonian path would provide a good order. As we cannot always
expect to find a Hamiltonian path, we simulate it by a specific Lex-DFS. The top part of
Figure 2 provides a visual summary of this section.

1.3 How general are classes of bounded twin-width?
As announced in the previous section, we will show that proper minor-closed classes have
bounded twin-width. As far as we know, all classes of polynomial expansion may also have
bounded twin-width. However on the one hand, as we will show in an upcoming paper [5],
cubic graphs have unbounded twin-width, whereas on the other hand, cliques have twin-
width 0. Thus bounded twin-width is incomparable with bounded degree, bounded expansion,
and nowhere denseness. Examples of graphs for which it is easy to show unbounded twin-width
include line graphs of bipartite complete graphs (also known as rook graphs), high-degree
graphs with girth at least 5, and Erdős-Rényi random graphs drawn from G(n, 1/2). Indeed
in all three cases, the first contraction would already create a vertex with large red degree,
since no pair of near-twins exists.

Nowhere dense classes are stable, that is, no arbitrarily-long total order can be first-
order interpreted from graphs of this class. In particular, unit interval graphs are not FO
interpretations (even FO transductions, where in addition copying the structure and coloring
it with a constant number of unary relations is allowed) of nowhere dense graphs. Thus even
any class of first-order transductions of nowhere dense graphs, called structurally nowhere
dense, is incomparable with bounded twin-width graphs. There have been recent efforts

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 5

aiming to eventually show that FO model checking is fixed-parameter tractable on any
structurally nowhere dense class. Gajarský et al. [24] introduce near-uniform classes based
on a so-called near-k-twin relation, and the equivalent near-covered classes. They show that
FO model checking admits an FPT algorithm on near-covered classes, and that these classes
correspond to FO interpretations (even transductions) of bounded-degree graph classes. Let
us observe that the near-k-twin relation, as well as the related neighborhood diversity [33],
can be thought as a static version of our twin-width. Gajarský et al. [27] gave the first step
towards an FPT algorithm on classes with structurally bounded expansion by characterizing
them via low shrub-depth decompositions. A second step was realized by Gajarský and
Kreutzer who presented a direct FPT algorithm computing shrub-depth decompositions [26].

Despite cubic graphs having unbounded twin-width, some particular classes with bounded
degree, such as subgraphs of d-dimensional grids, have bounded twin-width. More surprisingly,
some classes of expanders, will be shown to have bounded twin-width [5]. This showcases
the ubiquity of bounded twin-width, and the wide scope of Theorem 1. As we will generalize
twin-width to matrices, in order to handle permutations, posets, and digraphs, we can
potentially define a twin-width notion on hypergraphs, groups, and lattices. Furthermore we
will see next that FO transductions preserve bounded twin-width.

As we saw, bounded twin-width proves to be quite rich. The main algorithmic application
presented in this paper is the design of a linear-time FPT algorithm for FO model checking
on binary structures with bounded twin-width, provided a sequence of d-contractions is
given.

1.4 FO model checking
A natural algorithmic question given a graph class C (i.e., a set of graphs closed under
isomorphism) is whether or not deciding first-order formulas ϕ on graphs G ∈ C can be
done in time whose superpolynomial blow-up is a function of |ϕ| and C only. A line of
works spanning two decades settled this question for monotone (that is, closed under taking
subgraphs) graph classes. It was shown that one can decide first-order (FO) formulas in
fixed-parameter time (FPT) in the formula size on bounded-degree graphs [38], planar graphs,
and more generally, graphs with locally bounded treewidth [20], H-minor free graphs [18],
locally H-minor free graphs [14], classes with (locally) bounded expansion [15], and finally
nowhere dense classes [29]. The latter result generalizes all previous ones, since nowhere
dense graphs contain all the aforementioned classes. Let us observe that the dependency on
|V (G)| of the FPT model checking algorithm on classes with bounded expansion is linear
[15], while it is almost linear (i.e., |V (G)|1+ε for every ε > 0) for nowhere dense classes [29].
In sharp contrast, if a monotone class C is not nowhere dense then FO model checking on
C is AW[∗]-complete [32], hence highly unlikely to be FPT. Thus the result of Grohe et
al. [29] gives a final answer in the case of monotone classes. We refer the reader interested
in structural and algorithmic properties of nowhere dense classes to Nestril and Ossona de
Mendez’s book [35].

Since then, the focus has shifted to the complexity of model checking on (dense) non-
monotone graph classes. Our main result is that FO model checking is FPT on classes with
bounded twin-width. More precisely, we show that:

I Theorem 1. Given an n-vertex (di)graph G, a sequence of d-contractions G = Gn, Gn−1,

. . . , G1 = K1, and a first-order sentence ϕ, we can decide G |= ϕ in time f(|ϕ|, d) · n for
some computable, yet non-elementary, function f .

This unifies and extends known FPT algorithms for

6 Twin-width I: tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

bounded
degree

sparse
classes

bounded twin-width

bounded
rank-width

cographs

posets of
bounded
width

L-interval

unit interval

pattern
avoiding
permuta-
tions

map
graphs

dense
classes

Figure 3 Hasse diagram of classes on which FO model checking is FPT, with the newcomer
twin-width. The dash-dotted edge means that polynomial expansion may well be included in
bounded twin-width. Bounded twin-width and nowhere dense classes roughly subsume all the
current knowledge on the fixed-parameter tractability of FO model checking. Do they admit a
natural common superclass still admitting an FPT algorithm for FO model checking?

H-minor free graphs [18],
posets of bounded width (i.e., size of the largest antichain) [23],
permutations avoiding a fixed pattern [30]1 and hereditary (that is, closed under taking
induced subgraphs) proper subclasses of permutation graphs,
graphs of bounded rank-width or bounded clique-width [13],2

since we will establish that these classes have bounded twin-width, and that, on them, a
sequence of d-contractions can be found efficiently. By transitivity, this also generalizes the
FPT algorithm for L-interval graphs [28], and may shed a new unified light on geometric
graph classes for which FO model checking is FPT [31]. In that direction we show that a
large class of geometric intersection graphs with bounded clique number, including Kt-free
unit d-dimensional ball graphs, admits such an algorithm. We also show that map graphs
have bounded twin-width but we only provide a d-contraction sequence when the input comes
with a planar embedding of the map. FO model checking was proven FPT on map graphs
even when no geometric embedding is provided [16]. See Figure 3 for the Hasse diagram of
classes with a fixed-parameter tractable FO model checking.

Permutation patterns can be represented as posets of dimension 2. Any proper hereditary
subclass of posets of dimension 2 contains all permutations avoiding a fixed pattern. In
turn, posets can be encoded by directed graphs (or digraphs), with an arc from u to v if u is
smaller than v. Thus we formulated Theorem 1 with graphs and digraphs, to cover all the
classes of bounded twin-width listed after the theorem (in particular, permutations excluding
a fixed pattern). Twin-width and the applicability of Theorem 1 is actually broader: one
may replace “an n-vertex (di)graph G” by “a binary structure G on a domain of size n” in
the statement of the theorem, where a binary structure is a finite set of binary relations.

1 Guillemot and Marx show that Permutation Pattern (not FO model checking in general) is FPT
when the host permutation avoids a pattern, then a win-win argument proper to Permutation Pattern
allows them to achieve an FPT algorithm for the class of all permutations.

2 for this class, even deciding MSO1 is FPT, which is something that we do not capture.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 7

Roadmap for the proof of Theorem 1.

Instead of deciding “G |= ϕ” for a specific sentence ϕ, we build in FPT time a tree which
contains enough information to answer all the queries of the form “is φ true on G?,” for
every prenex sentence φ on ` variables. A prenex sentence φ starts with a quantification
(existential and universal) over the ` variables, followed, in the case of graphs, by a Boolean
combination φ′(x1, . . . , x`) of atoms of the form x = y (interpreted as: vertex x is vertex y)
and E(x, y) (interpreted as: there is an edge between x and y). A simple but important
insight is that once Existential and Universal players have chosen the assignment v1, . . . , v`,
the truth of φ′(v1, . . . , v`) only depends on the induced subgraph G[{v1, . . . , v`}] and the
pattern of equality classes of the tuple (v1, . . . , v`). Indeed the latter pair carries the truth
value of each possible atom.

Imagine now the complete tree of all the possible “moves” assigning vertex vi to variable
xi. Let us call it the game tree for now (later it will be called morphism-tree). This tree
has arity |V (G)| and depth `. Thus it is too large to explicitly compute. However, up to
labeling its different levels with ∃ and ∀, it contains what is needed to evaluate any `-variable
prenex formula on G. It actually contains way too much information. Assume, for instance,
that two of its leaves v`, v′` with the same parent node define the same induced subgraph
G[{v1, . . . , v`−1, v`}] ∼= G[{v1, . . . , v`−1, v

′
`}] and the same pattern of equality classes. Then it

is safe to delete the “move v′`” from the possibilities of whichever player shall play at level `.
Indeed “move v`” is perfectly equivalent: As it sets to true the same list of atoms, it will
satisfy exactly the same formulas φ′, irrelevant of the nature of the quantifier preceding x`.
This notion of equivalent sibling nodes can be generalized to any level of the game tree. If one
iteratively deletes equivalent moves (and their subtrees) while possible, it can be observed
that the resulting tree is of size bounded by ` only. We call reduct such a tree.

Now the contraction sequence comes in. Actually, more convenient here than the suc-
cessive trigraphs G = Gn, Gn−1, . . . , G1, we consider the corresponding partition sequence:
Pn,Pn−1, . . . ,P1, where Pi is the partition {u(G) | u ∈ V (Gi)} of V (G). Recall that u(G)
denotes the set of vertices of G contracted into the single vertex u ∈ V (Gi). Recall also
that two parts of Pi are homogeneous if they are fully adjacent or fully non-adjacent in
G. Let GPi

be the graph whose vertices are the parts of Pi, and edges link every pair of
non-homogeneous parts. This graph is actually made of the red edges of trigraph Gi. We
extend game trees and their reducts to partitioned graphs (G,Pi), where equivalent moves
have to further respect the partition. More specifically we are interested in reducts of local
game trees, i.e., game trees where all the moves are played in the close neighborhood of a
fixed vertex of GPi

, or equivalently a fixed part of Pi.
By dynamic programming, we will maintain for i going from n down to 1, every game

tree local to part P ∈ Pi. Pn is a partition into singletons {v} (for each v ∈ V (G)), so the
local game tree is easy to determine, and is naturally a reduct. Indeed all the variables can
only be instantiated to v, hence a simple tree of out-degree 1. P1 is the trivial partition
{V (G)}. So the reduct of its local game tree coincides with the reduct of the (global) game
tree, which is exactly what we are looking for.

Say that, to go from Pi+1 to Pi, we fuse two sets X ′i, X ′′i into Xi. We shall now update
the reducts of the local game trees in (G,Pi). For the parts that are far enough from Xi,
the local game trees (and their reducts) are unchanged. Thus no update is needed. This is
because these parts are too far to “interact” with Xi via non-homogeneous pairs of parts.

We therefore focus on the parts P that are close to Xi in GPi
. We first combine, by a

shuffle operation, a bounded (by a function of the depth ` and the twin-width d) number of
reducts of game trees that are local to parts P ′ sufficiently close to P . We then strategically

8 Twin-width I: tractable FO model checking

prune redundant nodes, and delete further equivalent nodes. The aggregation of the two
former steps is dubbed pruned shuffle and is the central operation of our algorithm. To
finally obtain the desired updated reduct, we project the pruned shuffle on the nodes that are
inherently rooted at P . To be formalized the latter requires to introduce an auxiliary graph,
called tuple graph, and a notion of local root. These objects are instrumental in handling
overlap or redundant information.

A crucial aspect of the algorithm relies on the following fact, reminiscent of the Feferman-
Vaught theorem [17]. If two connected subsets, say, X and Y of GPi+1 are united in GPi

, the
reducts of games trees local to a part of X ∪ Y are simply obtained by interleaving (actually
shuffling) the reducts of game trees local to parts of X with reducts of game trees local to
parts of Y . Indeed pairs of parts in (X,Y) are by construction homogeneous to each other,
so the precise choices of vertices within these parts is immaterial. We finally observe that at
each step i, we are updating a bounded number of reducts of bounded size. Therefore the
overall algorithm takes linear FPT time (see bottom part of Figure 2).

We take a very combinatorial stance towards FO model checking. Formulas are quickly
converted into trees whose nodes are naturally mapped to subgraphs induced by tuples. Our
use of the bounded-degree graphs GPi

(red graphs) should remind of Gaifman’s locality
theorem [22]. And indeed, it is an exact transcription of it in combinatorial terms. Apart
from the fact that every sentence can be put in prenex normal form, our algorithm and
its presentation in Section 7 are self-contained, thereby not assuming from the reader any
knowledge in finite model theory. As a by-product of the algorithm, we will show that
bounded twin-width is preserved under FO interpretations and transductions, which makes
it a robust class as far as first-order model checking is concerned.

1.5 Organization of the paper

Section 2 gives the necessary graph-theoretic and logic background. In Section 3 we formally
introduce contraction sequences and the twin-width of a graph. In Section 4 we get familiar
with these new notions. In particular we show with direct arguments that bounded rank-
width graphs, d-dimensional grids, and unit d-dimensional ball graphs with bounded clique
number, have bounded twin-width. In Section 5 we extend twin-width to matrices and show
a grid-minor-like theorem, which informally states that a graph has large twin-width if and
only if all its vertex orderings yield an adjacency matrix with a complex large submatrix.
This turns out to be a useful characterization for the next section. In Section 6 we show
how, thanks to this characterization, we can compute a witness of bounded twin-width, for
permutations avoiding a fixed pattern, comparability graphs with bounded independence
number (equivalently, bounded-width posets), and Kt-minor free graphs. In Section 7 we
present a linear-time FPT algorithm for FO model checking on graphs given with a witness
of bounded twin-width. In Section 8 we show that FO interpretations (even transductions)
of classes of bounded twin-width still have bounded twin-width. Finally in Section 9 we list
a handful of promising questions left for future work.

2 Preliminaries

We denote by [i, j] the set of integers {i, i+ 1, . . . , j− 1, j}, and by [i] the set of integers [1, i].
If X is a set of sets, we denote by ∪X the union of them.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 9

2.1 Graph definitions and notations

All our graphs are undirected and simple (no multiple edge nor self-loop). We denote by
V (G), respectively E(G), the set of vertices, respectively of edges, of the graph G. For
S ⊆ V (G), we denote the open neighborhood (or simply neighborhood) of S by NG(S), i.e.,
the set of neighbors of S deprived of S, and the closed neighborhood of S by NG[S], i.e.,
the set NG(S) ∪ S. For singletons, we simplify NG({v}) into NG(v), and NG[{v}] into
NG[v]. We denote by G[S] the subgraph of G induced by S, and G− S := G[V (G) \ S]. For
A,B ⊆ V (G), E(A,B) denotes the set of edges in E(G) with one endpoint in A and the
other one in B. Two distinct vertices u, v such that N(u) = N(v) are called false twins, and
true twins if N [u] = N [v]. In particular, true twins are adjacent. Two vertices are twins if
they are false twins or true twins. If G is an n-vertex graph and σ is a total ordering of
V (G), say, v1, . . . , vn, then Aσ(G) denotes the adjacency matrix of G in the order σ. Thus
the entry in the i-th row and j-th column is a 1 if vivj ∈ E(G) and a 0 otherwise.

The length of a path in an unweighted graph is simply the number of edges of the path.
For two vertices u, v ∈ V (G), we denote by dG(u, v), the distance between u and v in G, that
is the length of the shortest path between u and v. The diameter of a graph is the longest
distance between a pair of its vertices. In all the above notations with a subscript, we omit
it whenever the graph is implicit from the context.

An edge contraction of two adjacent vertices u, v consists of merging u and v into a single
vertex adjacent to N({u, v}) (and deleting u and v). A graph H is a minor of a graph G if
H can be obtained from G by a sequence of vertex and edge deletions, and edge contractions.
A graph G is said H-minor free if H is not a minor of G. Importantly we will overload
the term “contraction”. In this paper, we call contraction the same as an edge contraction
without the requirement that the two vertices u and v are adjacent. This is sometimes called
an identification, but we stick to the shorter contraction since we will use that word often.
In the very rare cases in which we actually mean the classical (edge) contraction, the context
will lift the ambiguity. We will also somewhat overload the term “minor”. Indeed, in Section 5
we introduce the notions of “d-grid minor” and “d-mixed minor” on matrices. They are only
loosely related to (classical) graph minors, and it will always be clear which notion is meant.

2.2 First-order logic, model checking, FO interpretations/transductions

For our purposes, we define first-order logic without function symbols. A finite relational
signature is a set τ of relation (or predicate) symbols given with their arity {R1

a1
, . . . , Rhah

};
that is, relation Riai

has arity ai. A first-order formula φ ∈ FO(τ) over τ is any string
generated from letter ψ by the grammar:

ψ → ∃xψ, ∀xψ, ψ ∨ ψ, ψ ∧ ψ, ¬ψ, (ψ), R1
a1

(x, . . . , x), . . . , Rhah
(x, . . . , x), x = x, and

x→ x1, x2, . . . an infinite set of fresh variable labels.

For the sake of simplicity, we will further impose that the same label cannot be reused
for two different variables. A variable xi is then said quantified if it appears next to a
quantifier (∀xi or ∃xi), and free otherwise. We usually denote by φ(xf1 , . . . , xfh

) a formula
whose free variables are precisely xf1 , . . . , xfh

. A formula without quantified variables is said
quantifier-free. A sentence is a formula without free variables. With our simplification that
the same label is not used for two distinct variables, when a formula φ contains a subformula
Qxiφ

′ (with Q ∈ {∃,∀}), all the occurrences of xi in φ lie in φ′.

10 Twin-width I: tractable FO model checking

Model checking.

A first-order (FO) formula is purely syntactical. An interpretation, model, or structure M of
the FO language FO(τ) specifies a domain of discourse D for the variables, and a relation
M(Riai

) = Ri ⊆ Dai for each symbol Riai
. M is sometimes called a τ -structure. M is a

binary structure if τ has only relation symbols of arity 2. It is said finite if the domain D
is finite. A sentence φ interpreted byM is true, denoted byM |= φ, if it evaluates to true
with the usual semantics for quantified Boolean logic, the equality, and Riai

(d1, . . . , dai
) is

true if and only if (d1, . . . , dai) ∈M(Riai
). For a fixed interpretation, a formula φ with free

variables xf1 , . . . , xfh
is satisfiable if ∃xf1 · · · ∃xfh

φ is true.
In the FO model checking problem, given a first-order sentence φ ∈ FO(τ) and a finite

modelM of FO(τ), one has to decide whetherM |= φ holds. The input size is |φ|+ |M|,
the number of bits necessary to encode the sentence φ and the modelM. The brute-force
algorithm decidesM |= φ in time |M||φ|, by building the tree of all possible assignments.
We will consider φ to be fixed or rather small compared to |M|. Therefore we wish to find
an FPT algorithm for FO model checking parameterized by |φ|, that is, running in time
f(|φ|)|M|O(1), or even better f(|φ|)|D|.

FO(τ) Model Checking Parameter: |φ|
Input: A τ -structureM and a sentence φ of FO(τ).
Question: DoesM |= φ hold?
We restrict ourselves to FO model checking on finite binary structures, for which twin-

width will be eventually defined. For the most part, we will consider FO model check-
ing on graphs (and we may omit the signature τ). Let us give a simple example. Let
τ = {E2} be a signature with a single binary relation. Finite models of the language
FO(τ) correspond to finite directed graphs with possible self-loops. Let φ be the sentence
∃x1∃x2 · · · ∃xk

∧
i<j ¬(xi = xj) ∧

∧
i6=j ¬E(xi, xj). Let G be a τ -structure or graph. G |= φ

holds if and if G has an independent set of size k. This particular problem parameterized
by |φ| (or equivalently k) is W[1]-hard on general graphs. However it may admit an FPT
algorithm when G belongs to a specific class of graphs, as in the case, for instance, of planar
graphs or bounded-degree graphs.

FO interpretations and transductions.

An FO interpretation of a τ -structureM is a τ -structureM′ such that for every relation
R of M′, R(a1, . . . , ah) is true if and only if M |= φR(a1, . . . , ah) for a fixed formula
φR(x1, . . . , xh) ∈ FO(τ). Informally every relation ofM′ can be characterized by a formula
evaluated onM.

Again we shall give some example on graphs since it is our main focus. Let G be a
simple undirected graph (in particular, E(x, y) holds whenever E(y, x) holds). Then the
FO (φ-)interpretation Iφ(G) is a graph H with vertex set V (G) and uv ∈ E(H) if and only
if G |= φ(x, y) ∧ φ(y, x). If for instance φ(x, y) is the formula ¬E(x, y), then Iφ(G) is the
complement of G. If instead φ(x, y) is E(x, y) ∨ ∃z (E(x, z) ∧ E(z, y)), then Iφ(G) is the
square of G. The FO (φ-)interpretation of a class C of graphs is the set of all graphs that
are φ-interpretations of graphs in C, namely Iφ(C) := {H | H = Iφ(G), G ∈ C}. It is not
very satisfactory that Iφ(C) is not hereditary. We will therefore either close Iφ(C) by taking
induced subgraphs, or use the more general notion of FO transductions (see for instance [3]).

An FO transduction is an enhanced FO interpretation. We give a simplified definition for
undirected graphs, but the same definition generalizes to general (binary) structures. First
a basic FO transduction is slightly more general than an FO interpretation. It is a triple

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 11

(δ, ν, η), with 0, 1, and, 2 free variables respectively, which maps every graph G such that
G |= δ to the graph ({v | G |= ν(v)}, {uv | G |= ν(u) ∧ ν(v) ∧ η(u, v)}). Before we apply
the basic FO transduction, we allow two operations: an expansion and a copy operation.
An h-expansion maps a graph G to the set of all the structures obtained by augmenting
G with h unary relations U1, . . . , Uh. A γ-copy operation maps a graph G to the disjoint
union of γ copies of G, say, G1, . . . , Gγ , where V (Gj) = {(v, j) | v ∈ V (G)}. Moreover, it
adds γ unary relations C1, . . . , Cγ , and a binary relation ∼, where Ci(v) holds whenever
v ∈ V (Gi) and (u, i) ∼ (v, j) holds when u = v. Informally the unary relations indicate in
which copy a vertex is, while the binary relation ∼ links the copies of a same vertex.

Now, the (φ, γ, h)-transduction Tφ,γ,h(G) of a graph G is the set τ ◦γop ◦hop(G) where hop
is the h-expansion, γop is the γ-copy operation, and τ = (δ, ν, η) is a basic FO transduction.
Note that the formulas ν and η may depend on the edge relation of G as well as all the
added unary relations and the binary relation ∼. Similarly to FO interpretations of classes,
we define Tφ,γ,h(C) := {H | H ∈ Tφ,γ,h(G), G ∈ C}.

As we will see in Section 8, a worthwhile property of twin-width is that every FO
interpretation/transduction of a bounded twin-width class has bounded twin-width itself.

3 Sequence of contractions and twin-width

We say that two vertices u and v are twins if they have the same neighborhood outside
{u, v}. A natural operation is to contract (or identify) them and try to iterate the process.
If this algorithm leads to a single vertex, the graph was initially a cograph. Many intractable
problems become easy on cographs. It is thus tempting to try and extend this tractability
to larger classes. One such example is the class of graphs with bounded clique-width (or
equivalently bounded rank-width) for which any problem expressible in MSO1 logic can
be solved in polynomial-time [13]. A perhaps more direct generalization (than defining
clique-width) would be to allow contractions of near twins, but the cumulative effect of the
errors3 stands as a barrier to algorithm design.

An illuminating example is provided by a bipartite graph G, with bipartition (A,B),
such that for every subset X of A there is a vertex b ∈ B with neighborhood X in A. Surely
G is complex enough so that we should not entertain any hope of solving a problem like,
say, k-Dominating Set significantly faster on any class containing G than on general
graphs. For one thing, graphs like G contain all the bipartite graphs as induced subgraphs.
Nonetheless G can be contracted to a single vertex by iterating contractions of vertices whose
neighborhoods differ on only one vertex. Indeed, consider a ∈ A and contract all pairs of
vertices of B differing exactly at a. Applying this process for every a ∈ A, we end up by
contracting the whole set B, and we can eventually contract A.

Thus the admissibility of a contraction sequence should not solely be based on the current
neighborhoods. The key idea is to keep track of the past errors in the contraction history
and always require all the vertices to be involved in only a limited number of mistakes. Say
the errors are carried by the edges, and an erroneous edge is recorded as red. Note that in
the previous contraction sequence of G, after contracting all pairs of vertices of B differing
at a, all the edges incident to a are red, and vertex a witnesses the non-admissibility of the
sequence. Let us now get more formal.

3 By error we informally refer to the elements in the (non-empty) symmetric difference in the neighborhoods
of the contracted vertices.

12 Twin-width I: tractable FO model checking

It appears, from the previous paragraphs, that the appropriate structure to define twin-
width is a graph in which some edges are colored red. A trigraph is a triple G = (V,E,R)
where E and R are two disjoint sets of edges on V : the (usual) edges and the red edges.
An informal interpretation of a red edge uv ∈ R is that some errors have been made while
handling G and the existence of an edge between u and v, or lack thereof, is uncertain.
A trigraph (V,E,R) such that (V,R) has maximum degree at most d is a d-trigraph. We
observe that any graph (V,E) may be interpreted as the trigraph (V,E, ∅).

Given a trigraph G = (V,E,R) and two vertices u, v in V , we define the trigraph
G/u, v = (V ′, E′, R′) obtained by contracting4 u, v into a new vertex w as the trigraph on
vertex set V ′ = (V \ {u, v}) ∪ {w} such that G − {u, v} = (G/u, v) − {w} and with the
following edges incident to w:

wx ∈ E′ if and only if ux ∈ E and vx ∈ E,
wx /∈ E′ ∪R′ if and only if ux /∈ E ∪R and vx /∈ E ∪R, and
wx ∈ R′ otherwise.
In other words, when contracting two vertices u, v, red edges stay red, and red edges are

created for every vertex x which is not joined to u and v at the same time. We say that
G/u, v is a contraction of G. If both G and G/u, v are d-trigraphs, G/u, v is a d-contraction.
We may denote by V (G) the vertex set, E(G) the set of black edges, and R(G) the set of red
edges, of the trigraph G.

A (tri)graph G on n vertices is d-collapsible if there exists a sequence of d-contractions
which contracts G to a single vertex. More precisely, there is a d-sequence of d-trigraphs
G = Gn, Gn−1, . . . , G2, G1 such that Gi−1 is a contraction of Gi (hence G1 is the singleton
graph). See Figure 1 for an example of a sequence of 2-contractions of a 7-vertex graph. The
minimum d for which G is d-collapsible is the twin-width of G, denoted by tww(G).

If v is a vertex of Gi and j > i, then v(Gj) denotes the subset of vertices of Gj eventually
contracted into v in Gi. Two disjoint vertex subsets A,B of a trigraph are said homogeneous if
there is no red edge between A and B, and there are not both an edge and a non-edge between
A and B. In other words, A and B are fully linked by black edges or there is no (black or
red) edge between them. Observe that in any contraction sequence G = Gn, . . . , Gi, . . . , G1,
there is a red edge between u and v in Gi if and only if u(G) and v(G) are not homogeneous.
We may sometimes (abusively) identify a vertex v ∈ Gi with the subset of vertices of G
contracted to form v.

One can check that cographs have twin-width 0 (the class of graphs with twin-width 0
actually coincides with cographs), paths of length at least three have twin-width 1, red paths
have twin-width at most 2, and trees have twin-width 2. Indeed, they are not 1-collapsible, as
exemplified by the 1-subdivision of K1,3, and they admit the following 2-sequence. Choose an
arbitrary root and contract two leaves with the same neighbor, or, if not applicable, contract
the highest leaf with its neighbor. We observe that in this 2-sequence, every Gi only contains
red edges which are adjacent to leaves. In particular, red edges are either isolated or are
contained in a path of length two.

The definition of twin-width readily generalizes to directed graphs, where we create a red
edge whenever the contracted vertices u, v are not linked to x in the same way. This way we
may speak of the twin-width of a directed graph or of a partial order. One could also wish
to define twin-width on graphs “colored” by a constant number of unary relations. To have
a unifying framework, we will later work with matrices (Section 5). Before that, we present
in the next section some basic results about twin-width of graphs.

4 Or identifying. Let us insist that u and v do not have to be adjacent.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 13

4 First properties and examples of classes with bounded twin-width

Let us get familiar with contraction sequences and twin-width through simple operations:
complementing the graph, taking induced subgraphs, and adding apices.

4.1 Complementation, induced subgraphs, and adding apices
The complement of a trigraph G is the trigraph G obtained by keeping all its red edges
while making edges its non-edges, and non-edges its edges. Thus if G = (V,E,R), then
G = (V,

(
V
2
)
\ (E ∪ R), R), and it holds that G = G. Twin-width is invariant under

complementation. One can observe that any sequence of d-contractions for G is also a
sequence of d-contractions for G. Indeed there is a red edge between two vertices u, v in a
trigraph obtained along the sequence if and only if u(G) and v(G) are homogeneous if and
only if u(G) and v(G) are homogeneous.

We can extend the notion of induced subgraphs to trigraphs in a natural way. A trigraph
H is an induced subgraph of a trigraph G if V (H) ⊆ V (G), E(H) = E(G) ∩

(
H
2
)
, and

R(H) = R(G) ∩
(
H
2
)
. The twin-width of an induced subgraph H of a trigraph G is at most

the twin-width of G. Indeed the sequence of contractions for G can be projected to H by
just ignoring contractions involving vertices outside V (H). Then the red degree of trigraphs
in the contraction sequence of H is at most the red degree of the corresponding trigraphs in
the contraction sequence of G.

We now show that adding a vertex linked by black edges to an arbitrary subset of the
vertices essentially at most doubles the twin-width.

I Theorem 2. Let G′ be a trigraph obtained from a trigraph G by adding one vertex v and
linking it with black edges to an arbitrary subset X ⊆ V (G). Then tww(G′) 6 2(tww(G) + 1).

Proof. Let d = tww(G) and let G = Gn, . . . , G1 be a sequence of d-contractions. We want to
build a good sequence of contractions for G′. The rules are that, while there are more than
three vertices in the trigraph, we never contract two vertices u and u′ such that u(G) ⊆ X
and u′(G) ⊆ V (G) \X, neither do we contract v with another vertex. In words, until the
very end, we do not touch v, and we do only contractions internal to X or to V (G) \X.

We start with G′. For i ranging from n down to 2, let us denote by ui, u′i the d-contraction
performed from Gi to Gi−1. With our imposed rules, instead of having one set ui(G) of
contracted vertices, we have two: Ui,X := ui(G)∩X and Ui,X := ui(G)\X. Similarly we can
define the (potentially empty) U ′i,X and U ′

i,X
based on u′i(G). Any of these sets, if non-empty,

corresponds to a currently contracted vertex, that we denote with the same label. In the
current trigraph obtained from G′, we contract Ui,X and U ′i,X if they both exist. Next we
contract Ui,X and U ′

i,X
(again if they both exist). This preserves our announced invariant,

and terminates with a 3-vertex trigraph made of v, all the vertices of X contracted in a single
vertex, all the vertices of V (G) \X contracted in a single vertex. Observe that a 3-vertex
trigraph is 2-collapsible and 2 6 2(tww(G) + 1).

We shall finally justify that in the sequence of contractions built for G′, all the trigraphs
have red degree at most 2(tww(G) + 1). Before we simulate the contraction ui, u

′
i, each

contracted vertex u(G) ∩X (resp. u(G) \X) of G′ has red degree at most 2d+ 1. Indeed
u(G) ∩X (resp. u(G) \X) can only have red edges to vertices w(G) ∩X and w(G) \X such
that w is a red neighbor of u, and to u(G) \X (resp. u(G) ∩X). After we contract (if they
exist) Ui,X and U ′i,X , the newly created vertex, say U , has red degree at most 2d+ 2. The
+2 accounts for Ui,X and U ′

i,X
. The red degree of Ui,X and U ′

i,X
is at most 2d+ 1, where

the +1 accounts for U . All the other vertices have their red degree bounded by 2d+ 1. After

14 Twin-width I: tractable FO model checking

we also contract (if they exist) Ui,X and U ′
i,X

, all the vertices have degree at most 2d+ 1.
Overall the red degree never exceeds 2d+ 2 = 2(tww(G) + 1). J

The previous result implies that bounded twin-width is preserved by adding a constant
number of apices. In Section 6 we will show a far-reaching generalization of this fact:
H-minor free graphs have bounded twin-width. We will not have to resort to the graph
structure theorem. Now if we have a second look at the proof of Theorem 2, we showed
that twin-width does not arbitrarily increase when we add one or a constant number of
unary relations (in Section 5 we will formally define twin-width for graphs colored by unary
relations, and even for arbitrary matrices on a constant-size alphabet). Again we will see in
Section 8 a considerable generalization of that fact and of the conservation of twin-width by
complementation: bounded twin-width classes are closed by first-order transductions.

As cliques have bounded twin-width (more precisely twin-width 0), bounded twin-width is
not preserved under (non-induced) subgraphs and minors. Indeed the class of all graphs has
unbounded twin-width. To see that, consider L the line graph of the biclique Kn,n (with
the edge set of Kn,n as vertex set, and edges between every pair of incident edges in Kn,n).
Every pair of vertices in L has at least 2(n − 1) private neighbors (at least n − 1 private
neighbors for each vertex), hence its twin-width is at least 2(n− 1).

4.2 Bounded rank-width/clique-width, and d-dimensional grids
We now show that bounded rank-width graphs and d-dimensional grids (with or without diag-
onals) have bounded twin-width. We transfer the twin-width boundedness of d-dimensional
grids with diagonals to unit d-dimensional ball graphs with bounded clique number.

A natural inquiry is to compare twin-width with the width measures designed for dense
graphs: rank-width rw, clique-width cw, module-width modw, and boolean-width boolw.
It is known that, for any graph G, boolw(G) 6 modw(G) 6 cw(G) 6 2rw(G)+1 − 1 (see for
instance Chapter 4 of Vatshelle’s PhD thesis [39]). It is thus sufficient to show that graphs
with bounded boolean-width have bounded twin-width, to establish that bounded twin-width
classes capture all these parameters.

Crucially twin-width does not capture bounded mim-width graphs (the actual definition
of mim-width is not important here, and thus omitted). This is but a fortunate fact, since
the main result of the paper is an FPT algorithm for FO model checking on any bounded
twin-width classes. Indeed, interval graphs have mim-width 1 [2] and do not admit an FPT
algorithm for FO model checking (see for instance [28]).

We briefly recall the definition of boolean-width. The boolean-width of a partition (A,B)
of the vertex set of a graph is the base-2 logarithm of the number of different neighborhoods
in B of subsets of vertices of A (or equivalently, of different neighborhoods in A of subset
of vertices of B). A decomposition tree of a graph G is a binary tree5 T whose leaves are
in one-to-one correspondence with V (G). Each edge e of T naturally maps to a partition
Pe = (Ae, Be) of V (G), where the two connected components of T − e contain the leaves
labeled by Ae and Be, respectively. The boolean-width of a decomposition tree T is the
maximum boolean-width of Pe taken among every edge e of T . Finally, the boolean-width of
a graph G, denoted by boolw(G), is the minimum boolean-width of T taken among every
decomposition tree T .

5 All internal nodes have degree 3, except the root which has degree 2. Equivalently all internal nodes
have exactly two children.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 15

I Theorem 3. Every graph with boolean-width k has twin-width at most 2k+1 − 1.

Proof. Let G be graph and let T be a decomposition tree of G with boolean-width k :=
boolw(G). We assume that G has at least 2k + 1 vertices, otherwise the twin-width is
immediately bounded by 2k. Starting from the root r of T , we find a rooted subtree of T
with at least 2k + 1 and at most 2k+1 leaves. If the current subtree has more than 2k+1

leaves, we move to the child node with the larger subtree. That way we guarantee that the
new subtree has at least 2k + 1 leaves. We stop when we reach a subtree T ′ with at most
2k+1 leaves, and let e be the last edge that we followed in the process of finding T ′ (the one
whose removal disconnects T ′ from the rest of T).

By definition, the boolean-width of the partition Pe = (Ae, Be) is at most k, which
upperbounds the number of different neighborhoods of Ae in Be by 2k. In particular, among
the 2k+1 leaves of T ′, corresponding to, say, Ae, two vertices u, v have the same neighborhood
in Be. We contract u and v in G (and obtain the graph G/u, v). The only red edges in
G/u, v are within Ae, so the red degree is bounded by 2k+1 − 1. We update T by removing
the leaf labeled by v, and smoothing its parent node which became a degree-2 vertex (to
keep a binary tree). We denote by T/u, v the obtained binary decomposition tree of G/u, v.

What we described so far yielded the first contraction. We start over with trigraph
G/u, v and decomposition tree T/u, v to find the second contraction. We iterate this process
until the current trigraph is a singleton. We claim that the built sequence of contractions
only contains trigraphs with red degree at most 2k+1 − 1. The crucial invariant is that our
contractions never create a red component of size more than 2k+1. Hence the red degree
remains bounded by 2k+1 − 1. J

The d-dimensional n-grid is the graph with vertex set [n]d with an edge between two
vertices (x1, . . . , xd) and (y1, . . . , yd) if and only if

∑d
i=1 |xi − yi| = 1. Equivalently the

d-dimensional n-grid is the Cartesian product of d paths on n vertices, hence we write it P dn .
Thus the 1-dimensional n-grid is the path on n vertices Pn, while the 2-dimensional n-grid is
the usual (planar) n× n-grid. While all the width parameters presented so far (including
mim-width) are unbounded on the n × n-grid, twin-width remains constant even on the
d-dimensional n-grid, for any fixed d.

I Theorem 4. For every positive integers d and n, the d-dimensional n-grid has twin-width
at most 3d.

Proof. Let Rdn the trigraph with vertex set V (P dn), red edges E(P dn), and no black edge. We
will prove, by induction on d, that Rdn has twin-width at most 3d. The base case (d = 1)
holds since, as observed in Section 3, the twin-width of a red path is at most 2. As all
the edges will be red (no black edge can appear), we allow ourselves the following abuse of
language. For this proof only, by edge (resp. degree) we mean red edge (resp. red degree). We
now assume that d > 1.

We see Rdn as the Cartesian product of Rd−1
n and R1

n = Rn. In other words, V (Rdn)
can be partitioned into n sets V1, . . . , Vn, where each Vi = {vi1, . . . vind−1} induces a trigraph
isomorphic to Rd−1

n , and there is an edge between vij and vi+1
j for all i ∈ [n− 1], j ∈ [nd−1].

By induction hypothesis, there is a sequence of 3(d− 1)-contractions of P d−1
n . The idea is

to follow this sequence in each Vi “in parallel”, i.e., performing the first contraction in V1,
then in V2, up to Vn, then the second contraction in V1, then in V2, up to Vn, and so on. By
doing so, the following invariants are maintained:

when performing a contraction in V1, the newly created vertex has degree at most 3d− 3
in V1, and 2 in V2 (and 0 elsewhere), so 3d− 1 in total.

16 Twin-width I: tractable FO model checking

when performing a contraction in Vi, i ∈ {2, . . . , n− 1}, the created vertex has degree
at most 3d− 3 in Vi, 1 in Vi−1 (since the same pair has been contracted in Vi−1 at the
previous step) and 2 in Vi+1 (and 0 elsewhere), so 3d in total.
when performing a contraction in Vn, the created vertex has degree at most 3d− 3 in Vn,
and at most one in Vn−1 (and 0 elsewhere), so 3d− 2 in total.

Furthermore every vertex not involved in the current contraction has degree at most 3d−2:
Its degree within its own Vi is 3d−3 (by induction hypothesis) and it has exactly one neighbor
in Vi−1 (if this set exists) and exactly one neighbor in Vi+1 (if this set exists). When this
process terminates, each Vi has been contracted into a single vertex. Hence the current
trigraph is the red path Rn, which admits a sequence of 2-contractions. J

As we even showed that the twin-width of the red graph Rdn is at most 3d, it implies that
the twin-width of any subgraph of the d-dimensional n-grid is bounded by 3d.

The d-dimensional n-grid with diagonals is the graph on [n]d with an edge between two
distinct vertices (x1, . . . , xd) and (y1, . . . , yd) if and only if maxdi=1 |xi − yi| 6 1. We denote
this graph by Kn,d and by, Krn,d the trigraph ([n]d, ∅, E(Kn,d)) with only red edges. By
the arguments of Theorem 4, one can see that every subgraph of Kn,d (even of Krn,d) has
twin-width bounded by a function of d (observe that Kr

n,d has red degree at most 3d).

I Lemma 5. Every subgraph of Krn,d has twin-width at most 2(3d − 1).

This fact permits to bound the twin-width of unit d-dimensional ball graphs with bounded
clique number; actually even their subgraphs.

I Theorem 6. Every subgraph H of a unit d-dimensional ball graph G with clique number k
has twin-width at most d′ := (3d

√
de)dk. Furthermore if G comes with a geometric repres-

entation (i.e., coordinates for each vertex of G in a possible model), then a d′-contraction
sequence of H can be found in polynomial time.

Proof. The result is immediate for k = 1, so we assume that k > 2. We even show the result
when all the edges of H are in fact red edges, by exhibiting a sequence of contractions which
keeps the (red) degree below d′. We draw a geometric regular d-dimensional fine grid on
top of the geometric representation of G. The spacing of the grid is 2/

√
d so that a largest

diagonal of each hypercubic cell has length exactly 2. Hence the unit balls centered within a
given cell form a clique. In particular, each cell contains at most k centers. We also consider
the coarser tesselation where a supercell is a hypercube made of d

√
ded (smaller) cells. Hence

a supercell contains at most d
√
dedk centers.

We contract the vertices of each supercell into a single vertex. This can be done in any
order of the supercells, and in any order of the vertices within each supercell. Observe that,
throughout this process, the (red) degree does not exceed (3d

√
de)dk.

After these d′-contractions, the graph that we obtain is a subgraph of Krn,d. Hence it
admits a 2(3d − 1)-sequence by Lemma 5. We conclude since 2(3d − 1) 6 (3d

√
de)dk. J

Of course the constructive result of Theorem 6 can be proved in greater generality. It would
work with any collection of objects where the ratio between the smallest (taken over the
objects) radius of a largest enclosed ball and the largest radius of a smallest enclosing ball
is bounded, as well as the clique number. In [5] we will see that unit disk graphs (with no
restriction on the clique number), as well as interval graphs and Kt-free unit segment graphs,
have unbounded twin-width.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 17

5 The grid theorem for twin-width

In this section, we will deal with matrices instead of graphs. Our matrices have their entries
on a finite alphabet with a special additional value r (for red) representing errors made along
the computations. This is the analog of the red edges of the previous section.

5.1 Twin-width of matrices, digraphs, and binary structures
The red number of a matrix is the maximum number of red entries taken over all rows and
all columns. Given an n×m matrix M and two columns Ci and Cj , the contraction of
Ci and Cj is obtained by deleting Cj and replacing every entry mk,i of Ci by r whenever
mk,i 6= mk,j . The same contraction operation is defined for rows. A matrix M has twin-width
at most k if one can perform a sequence of contractions starting from M and ending in some
1× 1 matrix in such a way that all matrices occurring in the process have red number at
most k. Note that when M has twin-width at most k, one can reorder its rows and columns
in such a way that every contraction will identify consecutive rows or columns. The reordered
matrix is then called k-twin-ordered. The symmetric twin-width of an n × n matrix M is
defined similarly, except that the contraction of rows i and j (resp. columns i and j) is
immediately followed by the contraction of columns i and j (resp. rows i and j), and the
new red number is only computed after the two contractions are performed.

We can now extend the twin-width to digraphs, which in particular capture posets.
Unsurprisingly the twin-width of a digraph is defined as the symmetric twin-width of its
adjacency matrix; only we write the adjacency matrix in a specific way. Say, the vertices
are labeled v1, . . . , vn. If there is an arc vivj (but no arc vjvi), we place a 1 entry in the
i-th row j-column of the matrix and a -1 entry in the j-th row i-th column. If there are
two arcs vivj and vjvi, we place a 2 entry in both the i-th row j-column and j-th row i-th
column. If there is no arc vivj nor vjvi, we place a 0 entry in both the i-th row j-column
and j-th row i-th column. We then further extend twin-width to a binary structure S with
binary relations E1, . . . , Eh. When building the adjacency matrix, the entry at vi, vj is now
(e1, . . . , eh) where ep ∈ {−1, 0, 1, 2} is chosen accordingly to the encoding of the “digraph
Ep”. Again the twin-width of a binary structure is the symmetric twin-width of the so-built
adjacency matrix.

We call augmented binary structure a binary structure augmented by a constant number
of unary relations. The twin-width is extended to augmented binary structures by seeing
unary relations as hard constraints. More concretely, contractions between two vertices u
and v are only allowed if they are in the exact same unary relations. Formally, in a binary
structure G augmented by unary relations U1, . . . , Uh, the contraction of u and v is only
possible when for every j ∈ [h], G |= Uj(u)⇔ G |= Uj(v). When this happens, the contracted
vertex z inherits the unary relations containing u (or equivalently v).

Contrary to the contraction sequence of a binary structure (without unary relations),
we cannot expect the contraction sequence to end on a single vertex. Instead a sequence
now ends when no pair of vertices are included in the same unary relations. When this
eventually happens, the number of vertices is nevertheless bounded by the constant 2h. We
could continue the contraction sequence arbitrarily, but, anticipating our use of augmented
binary structures in Section 8, it is preferable to stop the sequence there.

By a straightforward generalization of the proof of Theorem 2, one can see that adding
h unary relations can at most multiply the twin-width by 2h.

I Lemma 7. The twin-width of a binary structure G augmented by h unary relations is at
most 2h · tww(G).

18 Twin-width I: tractable FO model checking

Given a total order σ on the domain of a binary structure G, we denote by Aσ(G) the
adjacency matrix encoded accordingly to the previous paragraph and following the order σ.
Denoting M := Aσ(G) = (mij = (eij1 , . . . , e

ij
h))i,j , the matrix M satisfies the important

following property, mixing symmetry and skew-symmetry. If eijp ∈ {0, 2} then eijp = ejip ,
and if eijp ∈ {−1, 1} then eijp = −ejip . We call this property mixed-symmetry and M is said
mixed-symmetric. This will be useful to find symmetric sequences of contractions.

5.2 Partition coarsening, contraction sequence, and error value

Here we present an equivalent way of seeing the twin-width with a successive coarsening of a
partition, instead of explicitly performing the contractions with deletion.

A partition P of a set S refines a partition P ′ of S if every part of P is contained in a part
of P ′. Conversely we say that P ′ is a coarsening of P , or contains P . When every part of P ′
contains at most k parts of P , we say that P k-refines P ′. Given a partition P and two distinct
parts P, P ′ of P, the contraction of P and P ′ yields the partition P \ {P, P ′} ∪ {P ∪ P ′}.

Given an n×m matrix M , a row-partition (resp. column-partition) is a partition of the
rows (resp. columns) of M . A (k, `)-partition (or simply partition) of a matrix M is a pair
(R = {R1, . . . , Rk}, C = {C1, . . . , C`}) where R is a row-partition and C is a column-partition.
A contraction of a partition (R, C) of a matrix M is obtained by performing one contraction
in R or in C.

We distinguish two extreme partitions of an n×m matrix M : the finest partition where
(R, C) have size n and m, respectively, and the coarsest partition where they both have size
one. The finest partition is sometimes called the partition of singletons, since all its parts are
singletons, and the coarsest partition is sometimes called the trivial partition. A contraction
sequence of an n×m matrix M is a sequence of partitions (R1, C1), . . . , (Rn+m−1, Cn+m−1)
where

(R1, C1) is the finest partition,
(Rn+m−1, Cn+m−1) is the coarsest partition, and
for every i ∈ [n+m− 2], (Ri+1, Ci+1) is a contraction of (Ri, Ci).

Given a subset R of rows and a subset C of columns in a matrix M , the zone R ∩ C
denotes the submatrix of all entries of M at the intersection between a row of R and a
column of C. A zone of a partition pair (R, C) = ({R1, . . . , Rk}, {C1, . . . , C`}) is any Ri ∩Cj
for i ∈ [k] and j ∈ [`]. A zone is constant if all its entries are identical. The error value of Ri
is the number of non constant zones among all zones in {Ri ∩ C1, . . . , Ri ∩ C`}. We adopt a
similar definition for the error value of Cj . The error value of (R, C) is the maximum error
value taken over all Ri and Cj .

We can now restate the definition of twin-width of a matrix M as the minimum t for
which there exists a contraction sequence of M consisting of partitions with error value at
most t. The following easy technical lemma will be used later to upper bound twin-width.

I Lemma 8. If (R1, C1), . . . , (Rs, Cs) is a sequence of partitions of a matrix M such that:
(R1, C1) is the finest partition,
(Rs, Cs) is the coarsest partition,
Ri r-refines Ri+1 and Ci r-refines Ci+1, and
all (Ri, Ci) have error value at most t,

then the twin-width of M is at most rt.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 19

Proof. We extend the sequence (Ri, Ci) into a contraction sequence by performing in any
order the contractions to go from every pair (Ri, Ci) to the next pair (Ri+1, Ci+1). A worst-
case argument gives that the error value cannot exceed rt. Indeed, assume that a partition
(R, C) contains (Ri, Ci) and refines (Ri+1, Ci+1) and that R is a part of R. Every part of C
is contained in a part of Ci+1 and every part of Ci+1 contains at most r parts of C. Moreover,
at most t parts of Ci+1 form non-constant zones with R. Therefore, at most rt parts of C
form non-constant zones with R. J

5.3 Matrix division and the Marcus-Tardos theorem
In a contraction sequence of a matrix M , one can always reorder the rows and the columns
of M in such a way that all parts of all partitions in the contraction sequence consist of
consecutive rows or consecutive columns. To mark this distinction, a row-division is a
row-partition where every part consists of consecutive rows; with the analogous definition for
column-division. A (k, `)-division (or simply division) of a matrix M is a pair (R, C) of a
row-division and a column-division with respectively k and ` parts. A fusion of a division is
obtained by contraction of two consecutive parts of R or of C. Fusions are just contractions
preserving divisions. A division sequence is a contraction sequence in which all partitions are
divisions.

We now turn to the fundamental tool which is basically only applied once but is the
cornerstone of twin-width. Given a 0, 1-matrix M = (mi,j), a t-grid minor in M is a
(t, t)-division (R, C) of M in which every zone contains a 1 (see left of Figure 4). We say that
a matrix is t-grid free if it does not have a t-grid minor. A celebrated result by Marcus and
Tardos [34] (henceforth the Marcus-Tardos theorem) asserts that every 0, 1-matrix with large
enough linear density has a t-grid minor. Precisely:

I Theorem 9 ([34]). For every integer t, there is some ct such that every n×m 0, 1-matrix
M with at least ct max(n,m) entries 1 has a t-grid minor.

Marcus and Tardos established this theorem with ct = 2t4
(
t2

t

)
. Fox [19] subsequently

improved the bound to 3t28t. He also showed that ct has to be superpolynomial in t (at least
2Ω(t1/4)). Then Cibulka and Kynčl [12] decreased ct further down to 8/3(t+ 1)224t.

Matrices with enough 1 entries are complex in the sense that they contain large t-grids
minors. However here the role of 1 is special compared to 0, and this result is only interesting
for sparse matrices. We would like to extend this notion of complexity to the dense case, that
is to say for all matrices. In the Marcus-Tardos theorem zones are not simple if they contain
a 1, that is, if they have rank at least 1. A natural definition would consist of substituting
“rank at least 1” by “rank at least 2” in the definition of a t-grid minor. Since we mostly
deal with 0, 1-matrices, and exclusively with discrete objects, we adopt a more combinatorial
approach.

5.4 Mixed minor and the grid theorem for twin-width
A matrix M = (mi,j) is vertical (resp. horizontal) if mi,j = mi+1,j (resp. mi,j = mi,j+1)
for all i, j. Observe that a matrix which is both vertical and horizontal is constant. We say
that M is mixed if it is neither vertical nor horizontal. A t-mixed minor in M is a division
(R, C) = ({R1, . . . , Rt}, {C1, . . . , Ct}) such that every zone Ri ∩ Cj is mixed (see right of
Figure 4). A matrix without t-mixed minor is t-mixed free. For instance, the n× n matrix
with all entries equal to 1 is 1-mixed free but admits an n-grid minor.

20 Twin-width I: tractable FO model checking

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Figure 4 To the left a 4-grid minor: every zone contains at least one 1. To the right a 3-mixed
minor on the same matrix: no zone is horizontal or vertical.

The main result of this section is that t-mixed free matrices are exactly matrices with
bounded twin-width, modulo reordering the rows and columns. More precisely:

I Theorem 10 (grid minor theorem for twin-width). Let α be the alphabet size for the matrix
entries, and ct := 8/3(t+ 1)224t.

Every t-twin-ordered matrix is 2t+ 2-mixed free.
Every t-mixed free matrix has twin-width at most 4ctα4ct+2 = 22O(t) .

A contraction sequence is a fairly complicated object. It can be seen as a sequence of
coarser and coarser partitions of the vertices, or as a sequence of pairs of vertices. The second
bullet of Theorem 10 simplifies the task of bounding the twin-width of a graph. One only
needs to find an ordering of the vertex set such that the adjacency matrix written down with
that order has no t-mixed minor. A typical use to bound the twin-width of a class C:
(1) find a good vertex-ordering process based on properties of C,
(2) assume that the adjacency matrix in this order has a t-mixed minor,
(3) use this t-mixed minor to derive a contradiction to the membership to C, and
(4) conclude with Theorem 10.
Section 6 presents more and more elaborate instances of this framework and Table 1 reports
the orders and the bounds for different classes.

A sanity check of Theorem 10 is given by random 0,1-matrices. They have large grid
minors for any reordering of the rows and columns, and indeed, random bipartite graphs
have unbounded twin-width.

5.5 Corners
The proof of Theorem 10 will crucially rely on the notion of corner. Given a matrix
M = (mi,j), a corner is any 2-by-2 mixed submatrix of the form (mi,j ,mi+1,j ,mi,j+1,

mi+1,j+1). Corners will play the same role as the 1 entries in the Marcus-Tardos theorem, as
they localize the property of being mixed:

I Lemma 11. A matrix is mixed if and only if it contains a corner.

Proof. A corner is certainly a witness of being mixed. Conversely let us assume that a matrix
M has no corner. Either M is constant and we are done: M is not mixed. Or, without loss
of generality, there are in M two distinct entries mi,j 6= mi+1,j . To avoid a corner, both
entries mi,j+1 and mi,j−1 are equal to mi,j . Similarly, both entries mi+1,j+1 and mi+1,j−1
are equal to mi+1,j . Therefore the whole i-th row is constant as well as the i+ 1-st row. This
forces the rows of index i− 1 and i+ 2 to be constant, and propagates to the whole matrix
which is then horizontal. Observe that if the two distinct adjacent entries would initially be
mi,j 6= mi,j+1, then the same arguments would show that the matrix is vertical. J

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 21

1
0
1
0
1
1
1

0
1
1
1
0
0
1

1
1
0
0
1
1
1

0
1
0
0
0
0
0

1
0
1
1
0
0
0

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

R1

R2

R3

R4

C1 C2 C3 C4

1
0
1
0
1
1
1

0
1
1
1
0
0
1

1
1
0
0
1
1
1

0
1
0
0
0
0
0

1
0
1
1
0
0
0

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

R1

R4

R2 ∪R3

C1 C2 C3 C4

Figure 5 To the left, the mixed value of C2 on {R1, R2, R3, R4} is 3: one mixed zone and two
mixed cuts (all three in red, with a corner in each, highlighted by red dashed squares). To the right,
the mixed value of C2 on {R1, R2 ∪R3, R4} is still 3. In general, the mixed value of a Cj ∈ C cannot
increase after the fusion of Ri, Ri+1 ∈ R since the only way for a new mixed zone to be created is
that a mixed cut disappears, while new mixed cuts cannot be created. On the contrary, the number
of mixed zones in C2 can increase as it went from 1 to 2.

5.6 Mixed zones, cuts, and values

Let R = {R1, . . . , Rk} be a row-division of a matrix M and let C be a set of consecutive
columns. We call mixed zone of C on R any zone Ri ∩ C which is a mixed matrix. We call
mixed cut of C on R any index i ∈ [k − 1] for which the 2-by-|C| zone defined by the last
row of Ri, the first row of Ri+1, and C is a mixed matrix. Now the mixed value of C on R
is the sum of the number of mixed cuts and the number of mixed zones. See Figure 5 for an
illustration, and for why we use the mixed value instead of the mere number of mixed zones.
Analogously we define the mixed value of a set R of consecutive rows on a column-division C.

I Lemma 12. The contraction of two consecutive parts of R does not increase the mixed
value of C on R.

Proof. Assume that R = {R1, . . . , Rk} and R′ is obtained by contraction of Ri and Ri+1.
We just have to show that if Ri ∩C, Ri+1 ∩C are not mixed zones and i is not a mixed cut,
then (Ri ∪ Ri+1) ∩ C is not a mixed zone. Indeed, if (Ri ∪ Ri+1) ∩ C is a mixed zone, it
contains a corner which must be in Ri ∩ C, or in Ri+1 ∩ C, or otherwise sits in the mixed
cut i. J

The mixed value of a division (R, C) = ({R1, . . . , Rk}, {C1, . . . , C`}) is the maximum
mixed value of Ri on C, and of Cj on R, taken over all Ri ∈ R and Cj ∈ C. Observe that
the finest division has mixed value 0 and the coarsest division has mixed value at most 1.

5.7 Finding a division sequence with bounded mixed value

Leveraging the Marcus-Tardos theorem, we are ready to compute, for any t-mixed free matrix,
a division sequence with bounded mixed value. This division sequence is not necessarily
yet a contraction sequence with bounded error value (indeed a non-constant horizontal or
vertical zone counts for 0 in the mixed value but for 1 in the error value). But this division
sequence will serve as a crucial frame to find the eventual contraction sequence.

I Lemma 13. Every t-mixed free matrix M has a division sequence in which all divisions
have mixed value at most 2ct (where ct is the one of Theorem 9).

22 Twin-width I: tractable FO model checking

Proof. We start with the finest division of M and greedily perform fusions as long as
we can keep mixed value at most 2ct. Assume that we have reached a division (R, C) =
({R1, . . . , Rk}, {C1, . . . , C`}), in which, without loss of generality, k > `. Assume also, for
the sake of contradiction, that each fusion R2i−1, R2i for i = 1, . . . , bk/2c leads to a mixed
value exceeding 2ct. By Lemma 12, the mixed value of Cj on R does not increase when
performing a row-fusion. Thus, if the fusion of R2i−1 and R2i is not possible, this is because
the mixed value of R′i = R2i−1 ∪R2i on C is more than 2ct. Therefore the number of mixed
cuts or zones of each R′i (for i = 1, . . . , bk/2c) on C is greater than 2ct; hence R′i contains
more than 2ct corners in mixed zones and mixed cuts. Now we refine C in two possible ways:
either C′ = {C1 ∪ C2, C3 ∪ C4, . . . } or C′′ = {C1, C2 ∪ C3, C4 ∪ C5, . . . }. Observe that each
mixed cut of R′i on C′ (resp. C′′) corresponds to a mixed zone of R′i on C′′ (resp. C′). Let
R′ = {R′1, . . . , R′bk/2c} and consider the two divisions (R′, C′) and (R′, C′′). Thus, in total,
the zones contained in these two divisions contain at least bk/2c · 2ct corners. So one of these
subdivisions contains at least bk/2cct zones with a corner, hence bk/2cct mixed zones. By
applying the Marcus-Tardos theorem (Theorem 9) to the smaller auxiliary matrix with a 1 if
the zone is mixed and a 0 otherwise, one can find a t-mixed minor in M . J

5.8 Finding a contraction sequence with bounded error value
We are now equipped to prove the main result of this section, which is the second item of
Theorem 10. The division sequence with small mixed value, provided by Lemma 13, will
guide the construction of a contraction sequence (not necessarily a division sequence) of
bounded error value. This two-layered mechanism is also present in the proof of Guillemot
and Marx, albeit in a simpler form since they have it tailored for sparse matrices, and
importantly they start from a permutation matrix.

Proof of Theorem 10. We first show that every t-twin-ordered matrix M is 2t+ 2-mixed
free. Let (R, C) = ({R1, . . . , R2t+2}, {C1, . . . , C2t+2}) be a division of an n ×m matrix M
and assume for contradiction that all its zones are mixed. Since M is t-twin-ordered, there is
a division sequence (R1, C1), . . . , (Rn+m−1, Cn+m−1) in which all divisions have error value
at most t. Let us consider the first index s such that some Ri is contained in a part of Rs
or some Cj is contained in a part of Cs. Assume without loss of generality that R ∈ Rs
contains Ri. Since a zone Ri ∩ Cj in M is mixed for each Cj in C, it is not vertical, and
therefore for each j ∈ [2t+ 2] there exists a choice C ′j in Cs which intersects Cj such that
R ∩ C ′j is not constant. Observe that we cannot have C ′j = C ′j+2 since this would mean that
C ′j contains Cj+1, a contradiction to the choice of s. In particular the error value of R in Cs
is at least (2t+ 2)/2 > t, a contradiction.

We now show that every n×m matrixM which does not contain a t-mixed minor has twin-
width at most 4ctα4ct+2, where ct is as defined in Theorem 9, and α is the alphabet size for the
entries ofM . By Lemma 13, there exists a division sequence (R1, C1), . . . , (Rn+m−1, Cn+m−1)
with mixed value at most t′ := 2ct. We now refine each division (Rs, Cs) = ({R1, . . . , Ra},
{C1, . . . , Cb}), into a partition (R′s, C′s) of M (which is not necessarily a division). We
consider Ri ∈ Rs and we say that a subset J of consecutive indices of {1, . . . , b} is good if
Ri ∩∪j∈JCj is not mixed. Now, observe that if j ∈ [b− 1] is not a mixed cut, and if Ri ∩Cj
and Ri ∩ Cj+1 are both non-mixed zones, then Ri ∩ (Cj ∪ Cj+1) is a non-mixed zone. Since
the mixed value of Ri on Cs is at most t′, one can find at most t′ + 1 good subsets J1, . . . , Jr
covering all the non-mixed zones of Ri (each good subset spans all indices between two mixed
zones/cuts). We observe that a zone Zc := Ri ∩ ∪j∈JcCj is either vertical or horizontal.
When Zc is vertical, all rows of Ri are identical on indices in Jc. When Zc is horizontal,

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 23

there are at most α possible rows of Ri restricted to the indices in Jc where α is the size
of the alphabet. In particular, there are at most αr 6 αt

′+1 different rows in Ri, when we
restrict them to {1, . . . , b} \ {j | Ri ∩Cj is mixed}. We then partition Ri into these different
types of rows and proceed in the same way for all parts in Rs and in Cs to obtain a partition
(R′s, C′s) of M .

We show that the error value of (R′s, C′s) does not exceed t′αt′+1. Suppose that a zone
R ∩ C where R ∈ R′s and C ∈ C′s is not constant. We denote by Ri ∈ Rs and Cj ∈ Cs
the parts such that R ⊆ Ri and C ⊆ Cj . Note that the zone Ri ∩ Cj must be mixed, since
otherwise, it has been divided into constant zones in (R′s, C′s). In particular, the total
number of such Cj is at most t′. Since Cj has been partitioned at most αt′+1 times, the
total number of zones R ∩ C is at most t′αt′+1.

Let us show that the partition (R′s, C′s) refines (R′s+1, C′s+1). Take for instance R ∈ R′s
and denote by Ri ∈ Rs the part such that R ⊆ Ri. Now the rows in R have been selected in
Ri as they coincide on all zones R ∩ C where C ∈ C′s and Ri ∩ C is not mixed. Since the
zones of (Rs+1, Cs+1) contain the zones of (Rs, Cs), the selection at stage s+ 1 is based on
potentially less Cj such that Ri ∪Cj is not mixed (in case of a column fusion) or potentially
more rows to choose R from (in case of a row fusion with Ri). In both cases, R has to appear
in some part of R′s+1. We established that (R′s, C′s) refines (R′s+1, C′s+1). Moreover, since
(R′s, C′s) αt′+1-refines (Rs, Cs) which in turn 2-refines (Rs+1, Cs+1), we have that (R′s, C′s)
2αt′+1-refines (Rs+1, Cs+1). As (R′s+1, C′s+1) refines (Rs+1, Cs+1), (R′s, C′s) 2αt′+1-refines
(R′s+1, C′s+1).

Finally, we apply Lemma 8 to the sequence (R′s, C′s) and conclude that the twin-width
of M is at most 2αt′+1 · t′αt′+1 = 2t′α2(t′+1) = 4ctα4ct+2. J

The second item of Theorem 10 has the following consequence, which reduces the task
of bounding the twin-width of G and finding a contraction sequence to merely exhibiting a
mixed free order, that is a domain-ordering σ such that the matrix Aσ(G) is t-mixed free for
a bounded t.

I Theorem 14. Let G be a (di)graph or even a binary structure. If there is an ordering
σ : v1, . . . , vn of V (G) such that Aσ(G) is k-mixed free, then tww(G) = 22O(k) .

Proof. We shall just revisit the proof of Theorem 10 and check that, starting from a mixed-
symmetric matrix M := Aσ(G), we can design a symmetric contraction sequence. As
M = (mij)i,j is mixed-symmetric, it holds that mij = mi′j′ ⇔ mji = mj′i′ . In particular the
symmetric Z ′ about the diagonal of an off-diagonal zone Z is mixed if and only if Z ′ is mixed.
More precisely, Z ′ is horizontal (resp. vertical) if and only if Z is vertical (resp. horizontal).

The division sequence with bounded mixed value, greedily built in Lemma 13, can be
then made symmetric. Say the first fusion merges the i-th and i+ 1-st rows, and let us call
R this new row-part. We perform the symmetric fusion of the i-th and i + 1-st columns,
and denote by C the obtained column-part. After that operation, no mixed value among
the row-parts has increased. In particular the mixed value of R has not increased, and this
new mixed value equals the mixed value of C. Therefore the symmetric fusion was indeed
possible. We iterate this process and follow the rest of the proof of Lemma 13 to obtain a
symmetric division sequence.

The refinement of the division sequence into a sequence of partitions of bounded error
value, in the second step of the proof of Theorem 10, is now symmetric since the division is
symmetric and M is mixed-symmetric (so two columns are equal on a set of zones if and
only if the symmetric rows are equal on the symmetric set of zones). Finally the contraction
sequence is provided by Lemma 8. In this lemma, we observed that the contractions going

24 Twin-width I: tractable FO model checking

from the (symmetric) (Ri, Ci) to the (symmetric) (Ri+1, Ci+1) can be done in any order. Thus
we can perform a symmetric sequence of contractions. Overall we constructed a symmetric
contraction sequence with error value 22O(k) . Hence the twin-width of G is bounded by that
quantity. This can be interpreted as a contraction sequence of the vertices of G (or domain
elements) with bounded red degree. J

We observe that the proof of Theorem 14 is constructive. It yields an algorithm which, given
a k-mixed free n× n matrix M , outputs a 22O(k)-sequence of M in O(n2)-time.

6 Classes with bounded twin-width

In this section we show that some classical classes of graphs and matrices have bounded
twin-width. Let us start with the origin of twin-width, which is the method proposed by
Guillemot and Marx [30] to understand permutation matrices avoiding a certain pattern.

6.1 Pattern-avoiding permutations
We associate to a permutation σ over [n] the n× n matrix Mσ = (mij)i,j where miσ(i) = 1
and all the other entries are set to 0. A permutation σ is a pattern of a permutation τ if Mσ

is a submatrix of Mτ . A central open question was the design of an algorithm deciding if a
pattern σ appears in a permutation τ in time f(|σ|) · |τ |O(1). The brilliant idea of Guillemot
and Marx, reminiscent of treewidth and grid minors, is to observe that permutations avoiding
a pattern σ can be iteratively decomposed (or collapsed), and that the decomposition gives
rise to a dynamic-programming scheme. This lead them to a linear-time f(|σ|) · |τ | algorithm
for permutation pattern recognition. In Sections 3 and 5 we generalized their decomposition
to graphs and arbitrary (dense) matrices, and leveraged the Marcus-Tardos theorem, also in
the dense setting. Section 5 would in principle readily apply here: If a permutation matrix
Mτ does not contain a fixed pattern of size k, then it is certainly k-mixed free since otherwise
the k-mixed minor would contain any pattern of size k. Hence by Theorem 10, Mτ has
bounded twin-width.

However, to be able to use our framework and derive that FO model checking is FPT in
the class of permutations avoiding a given pattern, we need to transform Mτ into a different
matrix. Namely, we consider the directed graph Dτ whose vertex set is the union of two
total orders, respectively the natural increasing orders on {1, . . . , n} and on {1′, . . . , n′},
where we add double arcs between i and τ(i)′. The adjacency matrix A(Dτ) of Dτ where the
vertices are ordered 1, . . . , n, 1′, . . . , n′ (recall the encoding mentioned in Section 5.1) consists
of four blocks. Two of them are Mτ and its transpose, and the two others (encoding the
total orders) both consist of a lower triangle of 1, including the diagonal, completed by an
upper triangle of -1. If Mτ is k-mixed free, the matrix A(Dτ) is 2k-mixed free, and thus has
bounded twin-width. Note also that every first-order formula expressible in the permutation
τ (where we can test equality and 6) is expressible in the structure Dτ . In Section 7 we will
show that FO model checking is FPT for Dτ , as we can efficiently compute a sequence of
d-partitions. Therefore FO model checking is also FPT in the class of permutations avoiding
some fixed pattern σ.

As an illustrating example, let us consider the following artificial problem. Let ` be a
positive integer, and σ, σ′ be two fixed permutations. Given an input permutation τ , we ask
if τ contains the pattern σ′ or every pattern of τ of size ` is contained in σ. There is an
f(`, |σ|, |σ′|) · |τ |2 algorithm to solve this problem (actually the dependency in |τ | could be
made linear in this particular case). We first compute an upper bound on the twin-width of

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 25

the matrix Mτ associated to τ (as defined previously). Either Mτ has a |σ′|-mixed minor
(and we can answer positively: σ′ appears in τ), or Dτ has bounded twin-width. One of
these two outcomes can be reached in time O(|τ |2) by the previous section (even O(|τ |)). We
now assume that Dτ has bounded twin-width. Then we observe that the property “every
pattern of τ of size ` is contained in σ” is expressible by a first-order formula of size g(`, |σ|).
By Section 7 that property can be tested in time f(`, |σ|, |σ′|) · |τ |.

Given a permutation τ , we can form the permutation graph Gτ on vertex set [n] where ij
is an edge when i < j and τ(i) > τ(j). Note that Gτ can be first-order interpreted from the
digraph Dτ (defined as above) and the partition of V (Dτ) into {1, . . . , n} and {1′, . . . , n′}.
In Section 8 we will show that any FO interpretation of a graph G by a formula φ(x, y) has
twin-width bounded by a function of φ and tww(G). This implies the following:

I Lemma 15. FO model checking is FPT on every hereditary proper subclass of permutation
graphs.

Proof. By assumption, there is a permutation graph Gσ which is not an induced subgraph
of any graph Gτ in the class. We thus obtain that Dτ has bounded twin-width, as Mτ does
not contain the pattern Mσ. Therefore Gτ itself has bounded twin-width, and a sequence of
contractions can be efficiently found (by following the constructive proof of Section 5). We
conclude by invoking Section 7. J

A similar argument works for partial orders of (Dushnik-Miller) dimension 2, i.e., inter-
sections of two total orders defined on the same set. We obtain:

I Lemma 16. FO model checking is FPT on every proper subclass of partial orders of
dimension 2.

6.2 Posets of bounded width
The versatility of the grid minor theorem for twin-width is also illustrated with posets. Let
P = (X,6) be a poset of width k, that is, its maximum antichain has size k. For xi, xj ∈ X,
xi < xj denotes that xi 6 xj and xi 6= xj . We claim that the twin-width of P is bounded
by a function of k. By Dilworth’s theorem, P can be partitioned into k total orders (or
chains) T1, . . . , Tk. Now one can enumerate the vertices precisely in this order, say σ, that is,
increasingly with respect to T1, then increasingly with respect to T2, and so on. We rename
the elements of X so that in the order σ, they read x1, x2, . . . , xn, with n := |X|. Let us
write the adjacency matrix A = (aij) := Aσ(P) of P : aij = 1 if xi 6 xj , aij = −1 if xj < xi,
and aij = 0 otherwise. Recall that this is consistent with how we defined the adjacency
matrix for the more general digraphs in Section 5. We assume for contradiction that A has a
3k-mixed minor.

By the pigeon-hole principle, there is a submatrix of A indexed by two chains, Ti for
the row indices and Tj for the column indices, which has a 3-mixed minor, realized by the
(3, 3)-division (R1, R2, R3), (C1, C2, C3). The zone R2 ∩ C2 is mixed, so it contains a -1 or
a 1. If it is a -1, then by transitivity the zone R3 ∩ C1 is entirely -1, a contradiction to its
being mixed. A similar contradiction holds when there is a 1 entry in R2 ∩C2: zone R1 ∩C3
is entirely 1. See Figure 6 for an illustration. Hence, by Theorem 10, the twin-width of A
(and the twin-width of P seen as a directed graph) is bounded by 4ck · 44ck+2 = 22O(k) .

Of course there was a bit of work to establish Theorem 10 inspired by the Guillemot-Marx
framework, and supported by the Marcus-Tardos theorem. There was even more work to
prove that FO model checking is FPT on bounded twin-width (di)graphs. It is nevertheless
noteworthy that once that theory is established, the proof that bounded twin-width captures

26 Twin-width I: tractable FO model checking

Tj Ti

C1

C2

C3

R1

R2

R3

C1C2 C3

Tj

R1

R2

R3
Ti

-1
-1

Tj Ti

C1

C2

C3

R1

R2

R3

C1C2 C3

Tj

R1

R2

R3
Ti 1

1

Figure 6 Left: If there is one arc from C2 to R2, then by transitivity there are all arcs from C1

to R3. On the matrix, this translates as: a -1 entry in R2 ∩C2 implies that all the entries of R3 ∩C1

are -1. Right: Similarly, a 1 entry in R2 ∩ C2 implies that all the entries of R1 ∩ C3 are 1. Hence at
least one zone among R3 ∩C1, R2 ∩C2, R1 ∩C3 is constant, a contradiction to the 3k-mixed minor.

the posets of bounded width is lightning fast. Indeed the known FPT algorithm on posets of
bounded width [23] is a strong result, itself generalizing or implying the tractability of FO
model checking on several geometric classes [28, 31], as well as algorithms for existential FO
model checking on posets of bounded width [11, 25]. We observe that posets of bounded
twin-width constitute a strict superset of posets of bounded width. Arcless posets are trivial
separating examples, which have unbounded maximum antichain and twin-width 0. A more
elaborate example would be posets whose cover digraph is a directed path on

√
n vertices in

which all vertices are substituted by an independent set of size
√
n. These posets have width√

n and twin-width 1.
We observe that while this paper was under review, Balabán and Hlinený showed a linear

upper bound O(k) in the twin-width of posets of width k [1]. Their proof does not rely on
the Marcus-Tardos theorem and gives directly a good contraction sequence.

The next example does not qualify as a “lightning fast” membership proof to bounded
twin-width. It shows however that the good vertex-ordering can be far less straightforward.

6.3 Proper minor-closed classes
A more intricate example is given by proper minor-closed classes. By definition, a proper
minor-closed class does not contain some graph H as a minor. This implies in particular
that it does not contain K|V (H)| as a minor. Thus we only need to show that Kt-minor free
graphs have bounded twin-width.

If the Kt-minor free graph G admits a Hamiltonian path, things become considerably sim-
pler. We can enumerate the vertices of G according to this path and write the corresponding
adjacency matrix A. The crucial observation is that a k-mixed minor yields a Kk/2,k/2-minor,
hence a Kk/2-minor. So A cannot have a 2t-mixed minor, and by Theorem 10, the twin-width
of G bounded (by 4c2t24c2t+2 = 2tO(t)). Unfortunately, a Hamiltonian path is not always
granted in G. A depth-first search (DFS for short) tree may emulate the path, but any DFS
will not necessarily work. Interestingly the main tool of the following theorem is a carefully
chosen Lex-DFS.

We note that a much simpler proof of the following theorem is obtained in [9] via a
directed version of twin-width (where red edges come with an orientation). However a
different result in the same paper requires the proof that we are about to give here.

I Theorem 17. We set g : t 7→ 2(24t+1+1)2, ck := 8/3(k+1)224k, and f : t 7→ 4cg(t)24cg(t)+2.
Every Kt-minor free graph have twin-width at most f(t) = 222O(t)

.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 27

Permutations avoiding σ Posets of width w Kt-minor free graphs

ordering imposed chains put one after the other ad-hoc Lex-DFS

bound 2O(|σ|) 22O(w) 222O(t)

Table 1 Choice of the ordering and bound on the twin-width for the classes tackled in Section 6.

Proof. Let G be a Kt-minor free graph, and n := |V (G)|. We wish to upperbound the
twin-width of G. We may assume that G is connected since the twin-width of a graph is
equal to the maximum twin-width of its connected components.

Definition of the appropriate Lex-DFS. Let v1 be an arbitrary vertex of G. We
perform a specific depth-first search from v1. A vertex is said discovered when it is visited
(for the first time) in the DFS. The current discovery order is a total order v1, . . . , v` among
the discovered vertices, where vi was discovered before vj whenever i < j. We may denote
that fact by vi ≺ vj , and vi 4 vj if i and j may potentially be equal. The current DFS tree
is the tree on the discovered vertices whose edges correspond to the usual parent-to-child
exploration. The active vertex is the lastly discovered vertex which still has at least one
undiscovered neighbor. Initially the active vertex is v1, and when all vertices have been
discovered, there is no longer an active vertex. Before that, since G is connected, the active
vertex is always well-defined. The (full) discovery order is the same total order when all the
vertices have been discovered.

We shall now describe how we break ties among the undiscovered neighbors of the active
vertex. Let v1, . . . , v` be the discovered vertices (with ` < n), T` be the current DFS tree,
and v be the active vertex. Let C1, . . . , Cs be the vertex sets of the connected components of
G− V (T`) intersecting NG(v). By definition of the active vertex, s > 1. For each i ∈ [s], we
interpret NG(Ci)∩V (T`) as a word w`(Ci) of {0, 1}` where, for every j ∈ [l], the j-th letter of
w`(Ci) is a 1 if and only if vj ∈ NG(Ci) ∩ V (T`). If w and w′ are two words on the alphabet
{0, 1}, we denote by w 6lex w

′ the fact that w is not greater than w′ in the lexicographic
order derived from 0 < 1. We can now define the successor of v` in the discovery order. The
new vertex v`+1 is chosen as an arbitrary vertex of Ci ∩NG(v) where w`(Cj) 6lex w`(Ci) for
every j ∈ [s]. Informally we visit first the component having the neighbors appearing first in
the current discovery order.

The Lex-DFS discovery to order the adjacency matrix M. Let v1, . . . , vn be the
eventual discovery order, and let T be the complete DFS tree. Let M be the {0, 1}n×n
matrix obtained by ordering the rows and columns of the adjacency matrix of G accordingly
to the discovery order. We set g(t) := 2h(t)2 and h(t) := 24t+1 + 2. We will show that M is
g(t)-mixed free, actually even g(t)-grid free. For the sake of contradiction, let us suppose
that M has a g(t)-grid minor defined by the consecutive sets of columns C1, C2, . . . , Cg(t)
and the consecutive sets of rows R1, R2, . . . , Rg(t).

Now our goal is to show that we can contract a non-negligible amount of the Cj and
Ri, thereby exhibiting a Kt-minor. Actually the Kt-minors will arise from Ka,b-minors with
t 6 min(a, b). We observe that either

⋃
j∈[1,g(t)/2] Cj and

⋃
i∈[g(t)/2+1,g(t)] Ri are disjoint,

or
⋃
j∈[g(t)/2+1,g(t)] Cj and

⋃
i∈[1,g(t)/2] Ri are disjoint. Without loss of generality, let us

assume that the former condition holds, and we will now try to find a Kt,t-minor between
C1, . . . , Cg(t)/2 and Rg(t)/2+1, . . . , Rg(t). To emphasize the irrelevance of the first sets being
columns and the second sets being rows, we rename C1, . . . , Cg(t)/2 by A1, . . . , Ag(t)/2, and
Rg(t)/2+1, . . . , Rg(t) by B1, . . . , Bg(t)/2.

28 Twin-width I: tractable FO model checking

Note that all the vertices of
⋃
i∈[g(t)/2] Ai are consecutive in the discovery order and

appear before the consecutive vertices
⋃
i∈[g(t)/2] Bi. Another important fact is that there

is at least one edge between every pair (Ai, Bj) (by definition of a mixed minor, or even
grid minor). Thus let ai,j ∈ Ai be an arbitrary vertex with at least one neighbor bi,j in Bj .
At this point, if we could contract each Ai and Bj , we would be immediately done. This is
possible if all these sets induce a connected subgraph. We will see that this is essentially the
case for the sets of {Ai}i∈[g(t)/2], but not necessarily for the {Bj}j∈[g(t)/2].

The {Ai}i essentially induce disjoint paths along the same branch. Let A′i be
the vertex set of the minimal subtree of T containing

⋃
j∈[g(t)/2]{ai,j}. The following lemma

only uses the definition of a DFS, and not our specific tie-breaking rules.

I Lemma 18. All the vertices ai,j, for i, j ∈ [g(t)/2], lie on a single branch of the DFS tree
with, in the discovery order, first

⋃
j∈[g(t)/2]{a1,j}, then

⋃
j∈[g(t)/2]{a2,j}, and so on, up to⋃

j∈[g(t)/2]{ag(t)/2,j}. In particular, the sets A′i induce pairwise-disjoint paths in T along the
same branch.

Proof. Assume for the sake of contradiction that ai,j and ai′,j′ , with ai,j ≺ ai′,j′ , are not in
an ancestor-descendant relationship in T . Let w be the least common ancestor of ai,j and
ai′,j′ , and Tw the current DFS tree the moment w is discovered. Hence w ≺ ai,j . We claim
that bi,j would be discovered before ai′,j′ , a contradiction. Indeed when ai,j is discovered, it
becomes the active vertex (due, for instance, to the mere existence of bi,j). By design of a
DFS, ai,j is not in the same connected component of G− Tw as ai′,j′ , but its neighbor bi,j
obviously is. So this connected component, and in particular bi,j , is fully discovered before
ai′,j′ . This proves that the sets A′i induce paths in T along the same branch.

We claim that these paths are pairwise disjoint and in the order (from root to bottom)
A′1, A

′
2, . . . , A

′
g(t)/2. This is immediate since, for every i < i′, ai,j ≺ ai′,j′ . Thus ai,j can only

be an ancestor of ai′,j′ in T . One can also observe that A′i ⊆ Ai for every i ∈ [g(t)/2]. J

Handling the {Bj}j with the enhancements {B∗j }j. Let B∗j be the vertex set of
the minimum subtree of T containing Bj . Since Bj consist of consecutive vertices in the
discovery order, B∗j = Bj] Pj where Pj is a path on a single branch of T . One can see B∗j
as an enhancement of Bj .

We show that except maybe the last A′i, namely A′g(t)/2, every set enhancement B∗j is
disjoint from every A′i.

I Lemma 19. For every j ∈ [g(t)/2], for every i ∈ [g(t)/2− 1], B∗j ∩A′i = ∅.

Proof. There is an edge between A′g(t)/2 and each Bj . Every Bj succeeds A′g(t)/2 in the
discovery order. Therefore all the vertices of

⋃
j∈[g(t)/2] Bj appear in T in the subtree of the

firstly discovered vertex, say u, of A′g(t)/2. Hence all the trees B∗j are fully contained in T [u]
the subtree of T rooted at u. We can then conclude since, by Lemma 18, all the vertices of⋃
j∈[g(t)/2−1] A

′
j are ancestors of u. J

An enhancement is connected by design. Furthermore, by Lemma 19 contracting (in the
usual minor sense) a B∗j would not affect almost all A′i. The remaining obvious issue that we
are facing is that a pair of enhancements B∗j and B∗j′ may very well overlap. Thus we turn
our attention to their intersection graph.

The intersection graph H of the enhancements. Let H be the intersection graph
whose vertices are B∗1 , . . . , B∗g(t)/2 and there is an edge between two vertices whenever the
corresponding sets intersect. As an intersection graph of subtrees in a tree, H is a chordal
graph. In particular H is a perfect graph, thus α(H)ω(H) > |V (H)| = g(t)/2. Therefore

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 29

either α(H) >
√
g(t)/2 or ω(H) >

√
g(t)/2. Moreover in polynomial-time, we can compute

an independent or a clique of size
√
g(t)/2 = h(t) = 24t+1 + 2 > t. If we get a large

independent set I in H, we can contract the edges of each B∗j corresponding to a vertex of I.
By Lemma 19 we can also contract any h(t) paths A′i which are not A′g(t)/2, and obtain a
Kh(t),h(t) (which contains a Kh(t)-minor, hence a Kt-minor). We thus assume that we get a
large clique C in H.

H has a clique C of size at least h(t). By the Helly property satisfied by the subtrees
of a tree, there is a vertex v of T (or of G) such that every B∗j ∈ C contains v. If we
potentially exclude the B∗j of C with smallest and largest index, all the other elements of C
are fully contained in T [v] the subtree of T rooted at v. Let C1, . . . , Cs be the connected
components of T [v]− {v}, ordered by the Lex-DFS discovery order. Thus v has s children
in T .

The enhancements of C essentially intersect only at v. We show that each
connected component may intersect only a very limited number of B∗j ∈ C.

I Lemma 20. For every i ∈ [s], the connected component Ci intersects at most two B∗j ∈ C.

Proof. Assume by contradiction that there is a connected component Ci intersecting
B∗j1

, B∗j2
, B∗j3

∈ C, with j1 < j2 < j3. Since Bj2 appears after Bj1 and before Bj3 in
the discovery order, Bj2 is fully contained in Ci. Hence B∗j2

is also contained in Ci and
cannot contain v, a contradiction. J

Moreover Lemma 20 shows that only two consecutive B∗j1
, B∗j2

∈ C (by consecutive, we mean
that there is no B∗j ∈ C with j1 < j < j2) may intersect the same connected component
of T [v]− {v}. Let us relabel D1, . . . , D(h(t)−1)/2, every other elements of C except the last
one (keeping the same order). Now no connected component Ci intersects two distinct sets
Dj , Dj′ . Each Dj defines an interval Ij := [`(j), r(j)] of the indices i such that Dj intersects
Ci. The sets Ij are pairwise-disjoint intervals.

Definitions of the pointers z, jb, je to iteratively build S and L. Let z1 ∈
NG(Cr(1)) be such that for every z′ ∈ NG(Cr(1)), z1 4 z′. This vertex exists by our DFS
tie-breaking rule and the fact that there is an edge between, say, a2,1 and b2,1 (recall that
this edge links A2 and B1). We initialize three pointers z, jb, je and two sets S,L as follows:
z := v1 (the starting vertex in the DFS discovery order), jb := 1, je := (h(t)− 2)/2 = 24t,
S := ∅, and L := ∅. Informally the indices jb (begin) and je (end) lowerbound and upper-
bound, respectively, the indices of the sets {Dj}j we are still working with. Every vertex
v ≺ z is simply disregarded.

The sets S and L collect vertices (all discovered before B1 in the Lex-DFS order) which
can be utilized to form a large biclique minor in two different ways. Vertices stored in S
are not adjacent to too many {Dj}j , thus they can be used to “connect” the components
of some Dj − {v} without losing too many other Dj′ . Vertices stored in L are adjacent to
very many {Dj}j , so they can directly form a biclique minor with the leftmost connected
component of the corresponding {Dj}j .

Let j1 ∈ [(h(t)− 2)/2] be the smallest index such that NG(C`(j1)) does not contain z1.
We distinguish two cases: j1 6 (h(t)− 2)/4 = 24t−1 and j1 > 24t−1. If j1 6 24t−1, we will
use z1 to connect all connected components intersecting D1: that is, C`(1), C`(1)+1, . . . , Cr(1).
In that case, we set: jb := j1 and S := S ∪ {z1}.

If instead j1 > 24t−1, we will use z1 itself as a possible vertex of a biclique minor. In that
case we set: je := j1 − 1 and L := L ∪ {z1}. Observe that in both cases the length |je − jb|
is at most halved. Hence we can repeat this process log 24t/2 = 2t times. In both cases we
replace the current z by the successor of z1 in the DFS discovery order.

30 Twin-width I: tractable FO model checking

At the second step, we let z2 ∈ NG(Cr(jb)) be such that for every z′ ∈ NG(Cr(jb)) with
z 4 z′, then z2 ≺ z′. In words, z2 is the first vertex (in the discovery order) appearing after z
with a neighbor in the last connected component Ci intersecting the current first Dj , namely
Djb

. Again this vertex exists by the DFS tie-breaking rule. We define j2 ∈ [jb, je] as the
smallest index such that NG(C`(j2)) does not contain z2. We distinguish two cases: j2 below
or above the threshold (jb + je)/2, and so on.

Building a large minor when |L| is large. After log ((h(t)− 2)/2)/2 = 2t steps,
max(|S|, |L|) > t. Indeed at each step, we increase |S|+ |L| by one unit. Also the length
|je − jb| after these steps is still not smaller than 24t/22t = 22t. If |L| > t, then we exhibit
a Kt,t-minor in G in the following way. We contract C`(j) to a single vertex, for every
j ∈ [jb, je] (recall that |je − jb| > 22t). These vertices form with the vertices of L a K22t,|L|,
thus a Kt,t-minor, and a Kt-minor.

Building a large minor when |S| is large. If instead |S| > t, then we exhibit the
following Kt,t-minor. We use each zi ∈ S, to connect the corresponding sets Dj \ {v}. We
contract {zi} ∪ Dj \ {v} to a single vertex. We then contract all the disjoint paths A′i
(recall Lemma 18) which are not A′g(t)/2 nor contain a vertex in S. This represents at least
g(t)/2− 1− 2t > t vertices. This yields a biclique Kt,t, hence G as a Kt-minor.

Concluding on the twin-width of G. The two previous paragraphs reach a contradic-
tion. Hence the adjacency matrixM is g(t)-mixed free, and even g(t)-grid free. By Theorem 10
this implies that the twin-width of G is at most 4cg(t)24cg(t)+2, where ck := 8/3(k + 1)224k,
which was the announced triple-exponential bound. J

Applied to planar graphs, which are K5-minor free, the previous theorem gives us a
constant bound on the twin-width, but that constant has billions of digits. We believe that
the correct bound should have only one digit. It is natural to ask for a more reasonable
bound in the case of planar graphs. An attempt could be to show that for a large enough
integer d, every planar d-trigraph admits a d-contraction which preserves planarity. However
Figure 7 shows that this statement does not hold.

x1

y1

x2

y2

x3

y3

Figure 7 For every integer d (here d = 4), a planar d-trigraph without any d-contraction to a
planar graph. The graph should be thought of as wrapped around a cylinder: there are edges x1x3

and y1y3, and the leftmost and rightmost vertices are actually the same vertex.

7 FO model checking

In this section, we show that deciding first-order properties in d-collapsible graphs is fixed-
parameter tractable in d and the size of the formula. We let E be a binary relation symbol.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 31

A graphG is seen as an {E}-structure with universe V (G) and binary relation E(G) (matching
the arity of E). A sentence is a formula without free variables.

A formula φ in prenex normal form, or simply prenex formula, is any sentence written as
a sequence of non-negated quantifiers followed by a quantifier-free formula:

φ = Q1x1Q2x2 . . . Q`x`φ
∗

where for each i ∈ [`], the variable xi ranges over V (G), Qi ∈ {∀,∃}, while φ∗ is a Boolean
combination in atoms of the form xi = xj and E(xi, xj). Here we call length of φ its number
of variables `. Note that this also corresponds to its quantifier depth. Every formula with
quantifier depth k can be rewritten as a prenex formula of depth Tower(k + log∗ k + 3) (see
Theorem 2.2. and inequalities (32) in [36]).

I Theorem 21. Given as input a prenex formula φ of length `, an n-vertex graph G, and a
d-sequence of G, one can decide G |= φ in time f(`, d) · n.

Our proof of Theorem 21 is not specific to a single formula. Instead we compute a tree
of size bounded by a function of `, which is sufficient to check every prenex formula φ of
length `.

7.1 morphism-trees and shuffles
All our trees are rooted and the root is denoted by ε. An internal node is a node with at least
one child. Non-internal nodes are called leaves. Given a node xi in a tree T , we call current
path of xi the unique path ε, x1, . . . , xi from ε to xi in T . We will see this current path as
the tuple (x1, . . . , xi). The current path of ε is the empty tuple, also denoted by ε. The
depth of a node x is the number of edges in the current path of x. A node x is a descendant
of y if y belongs to the current path of x. Given a tree T , we denote the parent of x by
pT (x). Two nodes with the same parent are siblings. We denote by T ∗ the set of nodes of T
distinct from its root ε, that is V (T) \ {ε}.

A bijection f between the node sets of two trees T1, T2 is an isomorphism if it commutes
with the parent relation, i.e., pT2(f(x)) = f(pT1(x)) for every node x ∈ T ∗1 . One can observe
that f−1 : V (T2) → V (T1) is then also an isomorphism. Two trees are said isomorphic if
there is an isomorphism between them. An isomorphism mapping T to itself is called an
automorphism. Given a node x in T , the subtree of x, denoted by BT (x), is the subtree of T
rooted at x and containing all descendants of x.

An i-tuple is a tuple on exactly i elements, and a 6 i-tuple is a tuple on at most i
elements. A subtuple of a tuple a is any tuple obtained by erasing some entries of a. Given a
tuple a = (ai) and a set X, the subtuple of a induced by X, denoted by a|X is the subtuple
consisting of the entries ai which belongs to X. Given two disjoint sets A and B, and two
tuples a ∈ As and b ∈ Bt, a shuffle c of a and b is any tuple of (A ∪B)s+t such that c|A = a

and c|B = b. For instance (2, 0, 3, 1, 0) is one of the ten shuffles of (0, 1, 0) and (2, 3). Given a
tuple x = (x1, . . . , xk−1, xk), the prefix of x is (x1, . . . , xk−1) if k > 1, and ε if k = 1.

Given two trees T1 and T2 whose nodes are supposed disjoint, the shuffle s(T1, T2) of T1
and T2 is the tree whose nodes are shuffles of all pairs of tuples P1, P2 where P1 is a current
path in T1 and P2 is a current path in T2. The parent relation in s(T1, T2) is the prefix
relation. The `-shuffle s`(T1, T2) of T1 and T2 is the subtree of s(T1, T2) obtained by keeping
only the nodes with depth at most `.

The formal definition of shuffle is somewhat cumbersome since the current path of the node
(x1, x2, . . . , xi) is the tuple ((x1), (x1, x2), . . . , (x1, x2, . . . , xi)). Given a set V , a morphism-
tree in V is a pair (T,m) where T is a tree and m is a mapping from T ∗ to V . Given a set

32 Twin-width I: tractable FO model checking

V and an integer `, we define the (complete) `-morphism-tree MT`(V) = (TV,`,mV,`) as the
morphism-tree in V such that for every positive integer i 6 ` and every i-tuple (v1, . . . , vi)
of possibly repeated elements of V , there is a unique node xi of TV,` whose current path
(x1, . . . , xi) satisfies mV,`(xj) = vj for all j = 1, . . . , i. Informally, MT`(V) represents all the
ways of extending the empty set by iteratively adding one (possibly repeated) element of V
up to depth ` in a tree-search fashion. Note that if V has size n, the number of nodes of
MT`(V) is n` + n`−1 + . . .+ 1. The formal way of defining MT`(V) is to consider that TV,`
is the set of all tuples u = (u1, . . . , ui) of elements of V with 0 6 i 6 `, the parent relation is
the prefix relation, and the image by mV,` of a tuple (u1, . . . , ui) is ui.

Again, the formal definition of MT`(V) is cumbersome since the current path of the
node (u1, u2, . . . , ui) is the tuple ((u1), (u1, u2), . . . , (u1, u2, . . . , ui)). Hence, as an abuse of
language, we may identify a node (u1, u2, . . . , ui) to its current path. We can extend the
notion of shuffle to morphism-trees by defining (T,m) as the shuffle of (T1,m1) and (T2,m2)
where T is the shuffle of T1 and T2 (supposed again on disjoint node sets) and for every
node x = (x1, . . . , xk) of T , we let m(x) = m1(xk) if xk ∈ T ∗1 and m(x) = m2(xk) if xk ∈ T ∗2 .
Again, we define the `-shuffle by pruning the nodes with depth more than `.

I Lemma 22. Let (V1, V2) be a partition of a set V . The `-shuffle of MT`(V1) and MT`(V2)
is MT`(V).

Proof. This follows from the fact that every 6 `-tuple of V is uniquely obtained as the
shuffle of some 6 `-tuple of V1 and some 6 `-tuple of V2. J

One can extend the definition of shuffle to several trees. Given a sequence of (node
disjoint) morphism-trees (T1,m1), . . . , (Tk,mk), the nodes of the shuffle (T,m) are all tuples
which are shuffles S of current paths P1, . . . , Pk. Precisely, a tuple S is a node of (T,m) if
all its entries are non-root nodes of Ti’s, and such that each subtuple Si of S induced by
the nodes of Ti is a (possibly empty) current path of Ti. As usual the parent relation is the
prefix relation. Finally m(x1, . . . , xi) is equal to mj(xi) where xi ∈ Tj . We speak of `-shuffle
when we prune out the nodes with depth more than `. Note that MT`(V) is the `-shuffle of
MT`({v}) for all v ∈ V .

7.2 morphism-trees in graphs and reductions
We extend our previous definitions to graphs. The first step is to introduce graphs on tuples.
A tuple graph is a pair (x,G) where x is a tuple (x1, . . . , xt) and G is a graph on the vertex
set {x1, . . . , xt} (where repeated vertices are counted only once). Thus there is an edge xixj
in (x,G) if xixj is an edge of G. The main difference with graphs is that vertices can be
repeated within a tuple. In particular if x1 = x3 and there is an edge x1x2, then the edge
x2x3 is also present. Two tuple graphs (x,G) and (y,H) are isomorphic if x = (x1, . . . , xt),
y = (y1, . . . , yt) and we have both xi = xj ⇔ yi = yj , and xixj ∈ E(G)⇔ yiyj ∈ E(H), for
every i, j ∈ [t].

A morphism-tree in G is a morphism-tree (T,m) in V (G), supporting new notions based
on the edge set of G. Given a node xi of T with current path (x1, . . . , xi), the graph G induces
a tuple graph on (m(x1), . . . ,m(xi)), namely ((m(x1), . . . ,m(xi)), G[{m(x1), . . . ,m(xi)}]).
We call current graph of xi this tuple graph. Given a node xi and one of its children xi+1,
observe that the current graph of xi+1 extends the one of xi by one (possibly repeated)
vertex. Informally, a morphism-tree in G can be seen as a way of iteratively extending
induced subgraphs of G in a tree-search fashion.

Two morphism-trees (T,m) in G and (T ′,m′) in G′ are isomorphic if there exists an
isomorphism f from T to T ′ such that for every node x ∈ T ∗ and y descendant of x:

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 33

m(x) = m(y) if and only m′(f(x)) = m′(f(y)).
m(x)m(y) is an edge of G if and only m′(f(x))m′(f(y)) is an edge of G′.

In particular, the current graph of a node is isomorphic to the current graph of its image.
Again an isomorphism f from (T,m) into itself is called an automorphism. Two sibling nodes
x, x′ of a morphism-tree (T,m) are equivalent if there exists an automorphism f of (T,m)
such that f(x) = x′ and f(x′) = x. Note that if such an automorphism exists, then there
is one which is the identity function outside of BT (x) ∪BT (x′). The interpretation of x, x′
being equivalent is that the current graph H of their parent can be extended up to depth `
in G in exactly the same way starting from x or from x′.

The (complete) `-morphism-tree MT`(G) of a graph G is simply6 MT`(V (G)). Observe
that while E(G) is irrelevant for the syntactic aspect of MT`(G), the structure of G is
nonetheless important for semantic properties of MT`(G). Indeed equivalent nodes are
defined in MT`(G) but not in MT`(V (G)). Let us give a couple of examples to clarify that
point. When G is a clique, all the sibling nodes are equivalent in MT`(G). When G is a
path on the same vertex set, the depth-1 nodes of MT`(G) mapped to the first and second
vertices of the path are in general not equivalent.

Given two equivalent (sibling) nodes x, x′ of a morphism-tree (T,m) in G, the x, x′-
reduction of (T,m) is the morphism-tree obtained by deleting all descendants of x′ (including
itself). A reduction of a morphism-tree is any morphism-tree obtained by iterating a sequence
of x, x′-reductions. Finally a reduct of (T,m) is a reduction in which no further reduction
can be performed; that is, none of the pairs of siblings are equivalent.

I Lemma 23. Any reduct of an `-morphism-tree has size at most h(`) for some function h.

Proof. Assume that (T,m) is a reduct of an `-morphism-tree in a graph G. Consider a node
x`−1 of depth `− 1 in T . The maximum number of pairwise non-equivalent children x` of
x`−1 is at most 2`−1 + `− 1. Indeed there are (at most) 2`−1 non isomorphic extensions of
the current graph of x`−1 by adding the new node m(x`), and (at most) `− 1 possible ways
for m(x`) to be a repetition of a vertex among m(x1), . . . ,m(x`−1). In particular x`−1 has a
bounded number of children in the reduct (T,m), and therefore, there exist only a bounded
number of non-equivalent x`−1 which are children of some x`−2. This bottom-up induction
bounds the size of (T,m) by a tower function in `. J

Since MT`(G) represents all possible ways of iterating at most ` vertex extensions of
induced subgraphs of G (starting from the empty set), one can check any prenex formula
φ of depth at most ` on MT`(G). In the language of games, MT`(G) captures all possible
games for Player ∃ and Player ∀ to form a joint assignment of the variables x1, . . . , x`. So far
this does not constitute an efficient algorithm since the size of MT`(G) is O(n`+1). However
reductions –deletions of one of two equivalent alternatives for a player– do not change the
score of the game. Thus we want to compute reductions, or even reducts, and decide φ on
these smaller trees.

I Lemma 24. Given a reduction of MT`(G) of size s and a prenex formula on ` variables,
G |= φ can be decided in time O(s), and in time h(`) if the reduction is a reduct.

Proof. Let φ = Q1x1Q2x2 . . . Q`x`φ
∗, where φ∗ is quantifier-free. Let T be the tree of the

given reduction of MT`(G). We relabel the nodes of T in the following way. At each leaf

6 Technically, we should denote it by (MT`(V (G)), G) but we will stick to this simpler notation.

34 Twin-width I: tractable FO model checking

(v1, . . . , v`) of T , we put a 1 if φ∗(v1, . . . , v`) is true, and a 0 otherwise. For each i ∈ [0, `− 1],
at each internal node of depth i, we place a max if Qi+1 = ∃, and a min if Qi+1 = ∀. The
computed value at the root of this minimax tree is 1 if G |= φ, and 0 otherwise. Indeed this
value does not change while we perform reductions on MT`(G). The overall running time
is O(|T |). By Lemma 23, if T is a reduct then the overall running time is h(`) for some tower
function h. J

Let us now denote byMT ′`(G) any reduct ofMT`(G). It can be shown by local confluence
that MT ′`(G) is indeed unique up to isomorphism, but we do not need this fact here. Now
our strategy is to compute MT ′`(G) in linear FPT time using bounded twin-width.

We base our computation on a sequence of partitions of V (G) achieving twin-width d. Let
P = {X1, . . . , Xp} be a partition of V (G). Two distinct parts Xi, Xj of P are homogeneous if
there are between Xi and Xj either all the edges or no edges. Let GP be the graph on vertex
set P and edge set all the pairs XiXj such that Xi, Xj are distinct and not homogeneous. If
GP has maximum degree at most d, we say that P is a d-partition of G. Note that an n-vertex
graph G has twin-width at most d if it admits a sequence of d-partitions Pn,Pn−1, . . . ,P1
where Pn is the finest partition, and for every i ∈ [n − 1], the partition Pi is obtained by
merging two parts of Pi+1.

Our central result is:

I Theorem 25. A reduct MT ′`(G) can be computed in time f(`, d) · n, given as input
a sequence of d-partitions of G.

The proof will computeMT ′`(G) iteratively by combining partial morphism-trees obtained
alongside the sequence of d-partitions. We start with the finest partition Pn, where each
morphism-tree is defined on a single vertex, and we finish with the coarsest partition P1
which results in the sought MT ′`(G). We will thus need to define a morphism-tree for a
partitioned graph. Before coming to these technicalities, let us illustrate how shuffles come
into play for computing MT ′`(G). The following two lemmas are not needed for the rest
of the proof, but they provide a good warm-up for the more technical arguments involving
partitions.

The disjoint union G1 ∪G2 of two graphs G1, G2 with pairwise-disjoint vertex sets is the
graph on V (G1) ∪ V (G2) with no edges between the two graphs G1, G2. In this particular
case, reductions commute with shuffle.

I Lemma 26. Let (T1,m1) and (T2,m2) be two morphism-trees in G1 and in G2, respectively
(on disjoint vertex sets). Let (T,m) be the shuffle of (T1,m1) and (T2,m2), defined in G1∪G2.
Let (T ′1,m′1) be a reduction of (T1,m1). Then the shuffle (T ′,m′) of (T ′1,m′1) and (T2,m2) is
a reduction of (T,m).

Proof. We just need to show the lemma for single-step reductions. Indeed after we prove
that shuffling morphism-trees defined on a disjoint union commutes with a single reduction
performed in the first morphism-tree, we can iterate this process to establish that it commutes
with reductions in general. Let f be an automorphism of (T1,m1) which swaps the equivalent
nodes x, x′ and is the identity outside of the subtrees rooted at x and x′. Let (T ′1,m′1) be the
x, x′-reduction of (T1,m1). Consider the mapping g from V (T) into itself which preserves the
root ε and maps every node Z = (z1, . . . , zk) to Z ′ = (f̃(z1), . . . , f̃(zk)) where f̃(zi) = f(zi)
if zi ∈ T ∗1 and f̃(zi) = zi if zi ∈ T ∗2 .

We claim that g is an automorphism of (T,m). It is bijective since f is bijective. It
commutes with the parent relation since pT (g(Z)) = pT (g(z1, . . . , zk−1, zk)) = pT (f̃(z1), . . . ,
f̃(zk−1), f̃(zk)) = (f̃(z1), . . . , f̃(zk−1)) = g(pT (Z)). Furthermore g behaves well with

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 35

the morphism m. Indeed, for every node Z1 = (z1, . . . , zi) of T and descendant Z2 =
(z1, . . . , zi, zi+1, . . . , zk), we have:

If m(Z1) = m(Z2), we either have zi, zk ∈ T ∗1 and m1(zi) = m1(zk) and thus m1(f(zi)) =
m1(f(zk)) which implies m(g(Z1)) = m1(f(zi)) = m1(f(zk)) = m(g(Z2)). Or we have
zi, zk ∈ T2 and m2(zi) = m2(zk) which implies m(g(Z1)) = m2(zi) = m2(zk) = m(g(Z2)).
If m(Z1)m(Z2) is an edge of G1 ∪ G2 we either have zi, zk ∈ T ∗1 and m1(zi)m1(zk) is
an edge of G1, or zi, zk ∈ T2 and m2(zi)m2(zk) is an edge of G2. In the first case,
m1(f(zi))m1(f(zk)) is an edge of G1 and we conclude since m1(f(zi))m1(f(zk)) =
m(g(Z1))m(g(Z2)). In the second case, m2(zi)m2(zk) = m(g(Z1))m(g(Z2)) is an edge of
G2. Thus g maps edges to edges, and therefore non-edges to non-edges.

Finally, consider any node Z = (z1, . . . , zk) of (T,m) such that zk = x. By definition
of the shuffle and the fact that x, x′ are siblings, there is a node Z ′ = (z1, . . . zk−1, x

′) in
(T,m). By construction, we have g(Z) = Z ′ and g(Z ′) = Z and thus Z,Z ′ are equivalent in
(T,m). Therefore we can reduce all such pairs Z,Z ′ in (T,m) in order to find a reduction in
which we have deleted all nodes of (T,m) containing the entry x′, and therefore also all its
descendants in T1. This is exactly the shuffle (T ′,m′) of (T ′1,m′1) and (T2,m2). J

The previous lemma similarly holds for `-shuffles. We can now handle the disjoint union of
two graphs.

I Lemma 27. Given as input MT ′`(G) and MT ′`(H), two reducts of the graphs G and H,
one can compute a reduct MT ′`(G ∪H) in time only depending on `.

Proof. We just have to compute the `-shuffle (T,m) of MT ′`(G) and MT ′`(H), in time
depending on ` only. Indeed, by Lemma 22 the `-shuffle of MT`(G) and MT`(H) is MT`(G∪
H). Therefore, by repeated use of Lemma 26 applied to the sequence of reductions from
MT`(G) to MT ′`(G) and from MT`(H) to MT ′`(H), the morphism-tree (T,m) is a reduction
of MT`(G ∪H). Note that (T,m) is not necessarily a reduct but its size is bounded, and we
can therefore reduce it further by a brute-force algorithm to obtain a reductMT ′`(G∪H). J

We now extend our definitions to partitioned graphs. Let G be a graph and P be a
partition of V (G). A morphism-tree (T,m) in (G,P) is again a morphism-tree in V (G). The
difference with a morphism-tree in G lies in the allowed reductions. Now an automorphism f

of (T,m) in (G,P) is an automorphism of (T,m) in G which respects the partition P.
Formally, for any node x ∈ T ∗, the vertices m(x) and m(f(x)) belong to the same part of P .
Two sibling nodes x, x′ in a morphism-tree (T,m) in (G,P) are equivalent if there is an
automorphism of (T,m) in (G,P) which swaps x and x′ (and in particular, m(x) and m(x′)
are in the same part of P).

As previously, we defineMT`(G,P) for a partitioned graph (G,P) as equal toMT`(V (G)),
and we define MT ′`(G,P) as any reduct of MT`(G,P), where reductions are performed in
(G,P). Observe that MT ′`(G,P) can be very different from MT ′`(G). For instance if P is
the partition into singletons, no reduction is possible and thus MT ′`(G,P) = MT`(G,P). At
the other extreme, if P = {V (G)}, then MT ′`(G,P) is a reduct of MT`(G).

Our ultimate goal in order to use twin-width is to dynamically compute MT ′`(G,P1)
by deriving MT ′`(G,Pi) from MT ′`(G,Pi+1). This strategy cannot directly work since the
initialization requires MT ′`(G,Pn) which is equal to MT`(G,Pn) of size O(n`). Instead, we
only compute a partial information for each (G,Pi) consisting of all partial morphism-trees
MT ′`(G,Pi, X) centered around X, where X is a part of Pi. We will make this formal in
the next section. Let us highlight though that for the initialization, the graph GPn

consists

36 Twin-width I: tractable FO model checking

of isolated vertices, therefore its connected components are singletons. So the initialization
step of our dynamic computation only consists of computing MT ′`({v}) for all vertices v
in G. Since all such trees consist of a path of length ` whose non-root nodes are mapped
to v, the total size of the initialization step is linear. However, observe that the `-shuffle of
all these MT ′`({v}) gives MT ′`(G,Pn). The essence of our algorithm can be summarized as:
Maintaining a linear amount of information, enough to build7 MT ′`(G,Pi+1), and updating
this information at each step in time bounded by a function of d and ` only.

To illustrate how we can make an update, let us assume that we are given a partitioned
graph (G,Q1 ∪Q2) which can be obtained from the union of two partitioned graphs (G1,Q1)
and (G2,Q2) on disjoint sets of vertices by making every pair X ∈ Q1, Y ∈ Q2 homogeneous.
The proof of the next lemma is similar to the proof of Lemma 26.

I Lemma 28. The `-shuffle of the reducts MT ′`(G1,Q1) and MT ′`(G2,Q2) is a reduction
of MT`(G,Q1 ∪Q2).

Lemma 28 indicates how to merge two partial results into a larger one, when the partial
computed solutions behave well, i.e., are pairwise homogeneous. But we are now facing
the main problem: How to merge two partial solutions in the case of errors (red edges)
in GPi? The solution is to compute the morphism-trees of overlapping subsets of parts
of Pi. Dropping the disjointness condition comes with a cost since shuffles of morphism-trees
defined in overlapping subgraphs can create several nodes which have the same current graph.
The difficulty is then to keep at most one copy of these nodes, in order to remain in the set
of reductions of MT`(G,P) of bounded size. The solution of pruning multiple copies of the
same current graph is slightly technical, but relies on a fundamental way of decomposing a
tuple graph induced by a partitioned graph (G,P).

7.3 Pruned shuffles
Let ` > 0 be some fixed integer, G be a graph and P be a partition of V (G). Given, for i 6 `,
a tuple S = (v1, . . . , vi) of vertices of G which respectively belong to the (non-necessarily
distinct) parts (X1, X2, . . . , Xi) of P , the `-sequence graph sg`(S) on vertex set [i] is defined
as follows: there exists an edge jk, with j < k, if the distance between the part Xj and the
part Xk is at most 3`−k in the graph GP (see Figure 8 for an illustration). Recall that GP
has vertex set the parts of P, and edge set all the pairs of non-homogeneous parts; in other
words, it is the red graph of the corresponding trigraph. This is rather technical, but sg`(S)
has some nice properties.

I Lemma 29. If for a < b < c ∈ [i], ac and bc are edges of sg`(S), then ab is also an edge.

Proof. In GP , both the distances between Xa and Xc, and between Xb and Xc, are at most
3`−c. So the distance between Xa and Xb is at most 2 · 3`−c which is less than 3`−b. Hence
ab is also an edge. J

Let j ∈ [i] be the minimum index of an element of the connected component of k ∈ [i] in
sg`(S). We call Xj the local root of vk in S.

I Lemma 30. Let S = (v1, . . . , vi) and k < i. The local root Xj of vk in S is equal to the
local root of vk in the prefix S′ = (v1, . . . , vi−1). Thus by induction the local root of vk in S
is the local root of vk in (v1, . . . , vk).

7 while not explicitly computing it since it has linear size and would entail a quadratic running time

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 37

X1
X2 X3

X4

X5

X6 X7

X8
X9 X10

X11 X12

X13

X14
X15

v1

v2

v3

v4

v5

(G,P15)

1

2

3

4

5

27

9

3

1

sg5(S)

Figure 8 Left: Partitioned graph (G,P15) with the edges of GP15 in red. Right: The 5-sequence
graph of S := (v1 ∈ X8, v2 ∈ X3, v3 ∈ X8, v4 ∈ X1, v5 ∈ X9). In blue beside vertex i, the upperbound
on the distance in GP15 for j < i to be linked to i. The graph sg5(S) is connected so v1, v2, v3, v4, v5

have the same local root X8 3 v1 in S. Thus S is a connected tuple rooted at X8.

Proof. From the definition, sg`(S′) is an induced subgraph of sg`(S). We just have to show
that if there exists a path P from j to k in sg`(S), then there exists also a path in sg`(S′).
Let P be a shortest path from j to k in sg`(S). If P does not go through i, we are done. If P
goes through i, by Lemma 29 the two neighbors of i in P are joined by an edge, contradicting
the minimality of P . J

Note that by the definition of sg`, if S′ is a subtuple of S, the graph sg`(S′) is a supergraph
of the induced restriction of sg`(S) to the indices of S′. Indeed, an entry vk with index k of
the tuple S which appears in S′ has an index k′ 6 k in S′. Hence if j 6 k is connected to k
in sg`(S) and vj appears in S′ with index j′, we have the edge j′k′ since 3`−k′ > 3`−k. In
particular, if S′ corresponds to a connected component of sg`(S), the sequence graph sg`(S′)
is also connected.

When the sequence graph sg`(S) is connected, we say that S is a connected tuple rooted
at X1 (see Figure 8). Given a part X of P , a morphism-tree in (G,P, X) is a morphism-tree
(T,m) in (G,P) such that every current path (x1, . . . , xi) satisfies that (m(x1), . . . ,m(xi)) is
a connected tuple rooted at X. In particular, all nodes x at depth 1 satisfy m(x) ∈ X. Given
a morphism-tree (T,m) in (G,P) and a part X of P, we denote by (T,m)X the subtree of
(T,m) which consists of the root ε and all the nodes xi of T whose current path (x1, . . . , xi)
satisfies that (m(x1), . . . ,m(xi)) is a connected tuple rooted at X. The fact that this subset
of nodes forms indeed a subtree follows from the fact that connected tuples are closed by
prefix (by Lemma 30), and hence by the parent relation. We denote by MT`(G,P, X) the
subtree MT`(G,P)X . We finally denote by MT ′`(G,P, X) any reduct of MT`(G,P, X). The
allowed reductions follow the same rules as in MT`(G,P) since the additional X does not
play any role in the automorphisms.

38 Twin-width I: tractable FO model checking

I Lemma 31. If (T,m) is a morphism-tree in (G,P) and X is part of P, then for any
reduction (T r,mr) of (T,m) in (G,P), we have that (T r,mr)X is a reduction of (T,m)X .

Proof. It suffices to consider the case of (T r,mr) being an x, x′-reduction. Let f be an
automorphism of (T,m) which swaps the equivalent nodes x, x′ and is the identity outside of
their descendants. Since f preserves P , it maps the set of nodes corresponding to connected
tuple rooted at X to itself. Hence the restriction of f to (T,m)X is an automorphism and
thus (T r,mr)X is the x, x′-reduction of (T,m)X if x, x′ ∈ (T,m)X , and is equal to (T,m)X
if x, x′ /∈ (T,m)X . J

Let X1, . . . , Xp be a set of distinct parts of P, and (T1,m1), . . . , (Tp,mp) be a set of
morphism-trees, each (Ti,mi) being in (G,P, Xi), respectively. We define the pruned shuffle
of the (Ti,mi)’s as their usual shuffle (T,m) in which some nodes are deleted or pruned. To
decide if a node (x1, . . . , xi) of T is pruned, we consider its current graph, that is the tuple
graph induced by G on the tuple of vertices (v1, . . . , vi), where each vj is m(x1, x2, . . . , xj)
for j ∈ [i]. For every j, let k be the (unique) index such that xj ∈ V (Tk). If the local root
of vj in (v1, . . . , vi) is different from Xk we say that xj is irrelevant. By extension, a node
(x1, . . . , xi) which has an irrelevant entry xj is also irrelevant. We prune off all the irrelevant
nodes of (T,m) to form the pruned shuffle. The pruned `-shuffle is defined analogously from
the `-shuffle.

A node x of Tk has local root Xk since its current path is a connected tuple rooted in Xk.
Informally speaking, we insist that every node (x1, . . . , xi) of the pruned shuffle with xi = x

still has local root Xk. Crucially the pruned shuffle commutes with reductions, and the next
lemma is the cornerstone of the whole section.

I Lemma 32. With the previous notations, if (T r1 ,mr
1) is a reduction in (G,P) of (T1,m1),

then the pruned shuffle (T r,mr) of (T r1 ,mr
1), (T2,m2), . . . , (Tp,mp) is a reduction of the

pruned shuffle (T,m) of (T1,m1), . . . , (Tp,mp).

Proof. It suffices to consider the case of (T r1 ,mr
1) being an x, x′-reduction of (T1,m1). Let f

be an automorphism of (T1,m1) which swaps the equivalent nodes x, x′ and is the identity
outside of their descendants.

Consider the mapping g from V (T) into itself which preserves the root ε and maps
every node Z = (z1, . . . , zk) to Z ′ = (f̃(z1), . . . , f̃(zk)) where f̃(zi) = f(zi) if zi ∈ T ∗1 and
f̃(zi) = zi if zi /∈ T ∗1 . We also define m̃(zi) = mj(zi) if zi ∈ T ∗j . Note that the current graph
of Z is the tuple graph induced by G on the tuple of vertices (m̃(z1), . . . , m̃(zk)).

As we have seen in the proof of Lemma 26, g is an automorphism of the tree T . Moreover
m(Z) = m̃(zk) and m(g(Z)) = m̃(f̃(zk)) belong to the same part of P since f respects the
partition P. However, g does not necessarily respect m. For instance we could have zk = x

and z1 ∈ T ∗2 , with m1(x)m2(z1) ∈ E(G) while m1(x′)m2(z1) /∈ E(G). This can happen since
X1 and X2 need not be homogeneous. However observe that in this case, X1X2 is an edge in
GP , and therefore the local root of m̃(zk) would be the same as the one of m̃(z1). But if Z is
not a pruned node, the local root of m̃(zk) must be X1, and the one of m̃(z1) is X2. So this
potential problematic node Z in fact disappears thanks to the pruning. We now formally
prove it.

Note that if a node Z = (z1, . . . , zi) is pruned, it has an entry zj ∈ T ∗k such that the local
root X of m̃(zj) in the tuple (m̃(z1), . . . , m̃(zi)) is not Xk. By construction f̃(zj) ∈ T ∗k , and
the local root of m(f̃(zj)) in the tuple (m̃(f̃(z1)), . . . , m̃(f̃(zi))) is also X. Thus the pruned
nodes of T are mapped by g to pruned nodes of T , so g is bijective on the pruned shuffle
tree (T,m). Consequently, to show that g is an automorphism of the pruned shuffle (T,m),
we just have to show that it respects edges and equalities.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 39

Consider a node Z1 = (z1, . . . , zi) of T and a descendant Z2 = (z1, . . . , zi, zi+1, . . . , zk) of
Z1, we have:

If m(Z1) = m(Z2), we have four cases:

If zi, zk ∈ T ∗1 , we have m1(zi) = m1(zk) and thus m1(f(zi)) = m1(f(zk)) which implies
m(g(Z1)) = m1(f(zi)) = m1(f(zk)) = m(g(Z2)).
If zi, zk ∈ T ∗j with j > 1, we have mj(zi) = mj(zk) which implies m(g(Z1)) = mj(zi) =
mj(zk) = m(g(Z2)).
If zi ∈ T1 and zk ∈ Tj with j > 1, we have m(g(Z2)) = m(Z2) = mj(zk) which belongs
to some part X of P. Moreover, both m(g(Z1)) and m(Z1) belong to the part Y
containing m1(zi) (and also m1(f(zi))). In particular, since m(Z1) = m(Z2), we have
X = Y . Therefore, in the `-sequence graph of (m̃(z1), . . . , m̃(zk)) we have an edge ik
since m̃(zi) = m(Z1) = m(Z2) = m̃(zk), and thus the local root of m̃(zi) and m̃(zk)
are the same. But this is a contradiction since by the fact that Z2 is not pruned, the
local root of m̃(zk) is Xj and the local root of m̃(zi) is X1.
The last case zj ∈ T1 and zi ∈ Tj is equivalent to the third.

When m(Z1)m(Z2) is an edge of G, we have four cases:

If zi, zk ∈ T1, since f respects edges, m1(f(zi))m1(f(zk)) = m(g(Z1))m(g(Z2)) is an
edge of G.
If zi, zk /∈ T1, by definition of g, we have m(g(Z1)) = m(Z1) and m(g(Z2)) = m(Z2),
and thus m(g(Z1))m(g(Z2)) is an edge of G.
If zi ∈ T1 and zk ∈ Tj with j > 1, we have m(g(Z2)) = m(Z2) = mj(zk) which belongs
to the part X of P, and both m(g(Z1)) and m(Z1) belong to the part Y containing
m1(zi). The crucial fact is that the local root of m̃(zk) in (m̃(z1), . . . , m̃(zk)) is Xj

(since Z2 is not pruned and zk ∈ Tj) and the local root of m̃(z1) is X1. Thus X,Y is
a homogeneous pair since otherwise ik would be an edge of the `-sequence graph of
(m̃(z1), . . . , m̃(zk)), and therefore m̃(zk) and m̃(z1) would have the same local root.
Therefore by homogeneity and the fact that m(Z1)m(Z2) is an edge, we have all edges
between X and Y , and in particular m(g(Z1))m(g(Z2)) is an edge of G.
The last case zj ∈ T1 and zi ∈ Tj is equivalent to the third.

Note that m(g(Z1)) = m(g(Z2)) ⇒ m(Z1) = m(Z2) since g is an automorphism and
therefore by iterating g, we can map g(Z1), g(Z2) to Z1, Z2. The same argument shows
that if m(g(Z1))m(g(Z2)) is an edge, then m(Z1)m(Z2) is also an edge.

Finally, consider any node Z = (z1, . . . , zk) of (T,m) such that zk = x. By definition
of the shuffle and the fact that x, x′ are siblings, there is a node Z ′ = (z1, . . . zk−1, x

′) in
(T,m). By construction, we have g(Z) = Z ′ and g(Z ′) = Z and thus Z,Z ′ are equivalent in
(T,m). Therefore we can reduce all such pairs Z,Z ′ in (T,m) in order to find a reduction in
which all elements of the subtree of x′ in T1 are deleted. This is exactly the pruned shuffle
(T r,mr). J

Again the previous lemma readily works with pruned `-shuffles. The pruned shuffle
operation is the crux of the construction of MT`(G,P) using only local information.

I Lemma 33. Let (G,P) be a partitioned graph. Then the pruned `-shuffle (T,m) of all
MT`(G,P, X) where X ranges over the parts of P is exactly MT`(G,P).

40 Twin-width I: tractable FO model checking

X2 X3

X4

X6 X7

X9

X11

X13

X15

X1

X10

X14

X5

X8

X12

X16

(G,P14)

Figure 9 Dynamic programming update (with the not-so-interesting ` = 1 so that the important
threshold 3` is manageably small). Right after the contraction of X8 and X12 into X16 in (G,P15), we
want to maintain the newMT ′

`(G,P14, X) for all X ∈ P14. The parts Xi which are not X16 (red) nor
blue are far enough from X16 (distance in GP14 > 3`), so that MT ′

`(G,P14, Xi) := MT`(G,P15, Xi)
does not need an update. For the red and blue parts Xi, we compute (T,m) the pruned shuffle of
MT ′(G,P15, Y) where Y runs through {blue and green parts} ∪ {X8, X12} (distance to X16 in
GP14 6 2 · 3`). We then set MT ′

`(G,P14, Xi) := reduct((T,m)Xi).

Proof. We just have to prove that every tuple S = (v1, . . . , vi) of nodes of G appears exactly
once as a node of T . Consider a subtuple S′ of S corresponding to a component of sg`(S).
Recall that sg`(S′) is connected. Moreover, if we denote by XS′ the part of P which contains
the first entry of S′, we have that S′ is a connected tuple rooted at XS′ . Thus S′ is a node of
MT`(G,P, XS′) and thus S appears in the pruned shuffle as the shuffle of all its components.
Moreover S appears exactly once in the shuffle since any entry vj in the subtuple S′ must
come from MT`(G,P, XS′), otherwise the pruning would have deleted it. J

We now state the central result of this section, directly following from Lemmas 32 and 33.

I Lemma 34. Let (G,P) be a partitioned graph. Then the pruned `-shuffle of the reducts
MT ′`(G,P, X), where X ranges over the parts of P, is a reduction of MT`(G,P).

We can now finish the proof by showing how our dynamic programming works.

I Theorem 35. Let Pi+1 and Pi be two d-partitions of a graph G where Pi is obtained by
merging the parts X1, X2 of Pi+1. Given a family of reducts MT ′`(G,Pi+1, X) for all parts
X in Pi+1, we can compute a family of reducts MT ′`(G,Pi, Y) for all parts Y in Pi in time
only depending on ` and d.

Proof. The first observation is that we only need to update a bounded number of reducts.
Indeed for every part X which is at distance more than 3` from X1 ∪X2 in the graph GPi ,
we just set MT ′`(G,Pi, X) = MT ′`(G,Pi+1, X) since connected tuples of vertices rooted at X
do not involve parts with distance more than 3` from X. Since GPi has degree at most d,
the number of parts at distance at most 3` is at most d3`+1.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 41

Let us start with a time-inefficient method to compute MT ′`(G,Pi, X) for all X ∈ Pi.
We form the pruned `-shuffle (T,m) of all MT ′`(G,Pi+1, X) where X ranges over the parts
of Pi+1. By Lemma 34, (T,m) is a reduction of MT`(G,Pi+1), hence it is also a reduction
of MT`(G,Pi) since Pi is coarser. Now for every part X in Pi, by Lemma 31, we have
that (T,m)X is a reduction of MT`(G,Pi, X). Note that (T,m)X has size bounded by a
function of ` and d since its nodes are `-shuffles of nodes of the set of at most d3`+1 trees
MT ′`(G,Pi+1, Y), where the distance of Y to X in GPi

is at most 3`. So we can construct
MT ′`(G,Pi, X) by reducing further (T,m)X by any method.

The above method is inefficient in that it involves the computation of (T,m), but this is
easily turned into an efficient method as we only need to compute the pruned `-shuffle (T ′,m′)
of all MT ′`(G,Pi+1, Y) where Y ranges over X1, X2, and any part which is at distance at
most 2 ·3` from X1∪X2 in GPi

. Indeed, any part X of Pi which is at distance at most 3` from
X1 ∪X2 satisfies that (T ′,m′)X = (T,m)X and we can therefore compute MT ′`(G,Pi, X)
for these parts X in time only depending on ` and d. See Figure 9 for an illustration. J

Finally we can prove Theorem 25.

Proof. We are given a sequence of d-partitions Pn, . . . ,P1 where Pn is the finest partition, P1
is the coarsest partition, and every Pi is obtained by a single contraction of Pi+1. We compute
MT ′`(G,Pi, X) for all i and for all parts X of Pi. We initializeMT ′`(G,Pn, {v}) := MT`({v})
for all v in V (G). By Theorem 35, we can apply dynamic programming and compute in
linear FPT time MT ′`(G,P1, V (G)) which is exactly MT ′`(G), on which any depth-` prenex
formula can be checked in time h(`), by Lemma 24. J

As a direct corollary, we get the following.

I Corollary 36. The problems k-Independent Set, k-Clique, k-Vertex Cover, k-
Dominating Set, k-Subgraph Isomorphism are solvable in time f(k, d) · n (where k is
the solution size) on d-collapsible n-vertex graphs provided the d-sequence is given.

We observe that the non-elementary dependence of the function f of Theorem 21 in the
sentence size |φ| is very likely to be necessary. Indeed Frick and Grohe [21] showed that
any FPT algorithm for FO model checking on trees (of twin-width at most 2) requires a
non-elementary dependence in the formula size, unless FPT = AW[∗]. Let us also mention
that we cannot expect polynomial kernels of size kO(1) on graphs of twin-width at most some
constant d for FO model checking of formulas of size k, actually even for k-Independent
Set. Recall that twin-width is invariant by complementation and disjoint unions. More
precisely, the complete sum8 of t graphs G1, . . . , Gt of twin-width at most d has twin-width
at most d. So the complete sum of t instances of the NP-hard problem Max Independent
Set on graphs of twin-width d is an OR-composition (that preserves the parameter k). Max
Independent Set is indeed NP-hard on graphs of twin-width d, for a sufficiently large fixed
value of d, since planar graphs have constant twin-width. Therefore a polynomial kernel
would imply the unlikely containment NP ⊆ co-NP/poly [4]. We explore polynomial kernels
on classes of bounded twin-width in more depth in [10].

This result also has interesting consequences for polynomial-time solvable problems, such
as Constant Diameter. The fact that a graph G has diameter k can be written as a
first-order formula of size function of k. Besides, in graphs with only n logO(1) n edges,
truly subquadratic algorithms deciding whether the diameter is 2 or 3 would contradict the

8 obtained from the disjoint union by adding every edge between two distinct graphs

42 Twin-width I: tractable FO model checking

Exponential-Time Hypothesis [37]. One can obtain a significant improvement on graphs
of bounded twin-width, provided the contraction sequence is either given or can be itself
computed in linear time.

I Corollary 37. Deciding if the diameter of an n-vertex graph is k can be done in time
f(k, d) · n, on d-collapsible graphs provided the d-sequence is given.

We finally observe that our FO model checking readily works for (general) binary structures
of bounded twin-width. The only notion that should be revised is the homogeneity. For a
binary structure with binary relations E1, . . . Eh, we now say that X and Y are homogeneous
if for all i ∈ [h], the existence of a pair u, v ∈ X × Y such that (u, v) ∈ Ei implies that for
every x, y ∈ X × Y , (x, y) ∈ Ei. In particular this handles the case of bounded twin-width
digraphs (and posets encoded as digraphs).

8 Stability under FO interpretations and transductions

The question we address here is how twin-width can increase when we construct a graph H
from a graph G. For instance, it is clear that twin-width is invariant when taking complement
(exchanging edges and non-edges). But for other types of constructions, such as taking the
square (joining two vertices if their distance is at most two) the answer is far less clear.
A typical question in this context consists of asking if the square of a planar graph has
bounded twin-width. To put this in a general framework, we consider interpretations of
graphs via first-order formulas. Our central result is that bounded twin-width is invariant
under first-order interpretations.

The results in this section could as well be expressed in the language of directed graphs,
or matrices, but for the sake of simplicity, we will stick to undirected graphs. Let φ(x, y) be
a prenex first-order graph formula of depth ` with two free variables x, y. More explicitly,

φ(x, y) = Q1x1Q2x2 . . . Q`x`φ
∗

where for each i ∈ [`], the variable xi ranges over V (G), Qi ∈ {∀,∃}, while φ∗ is a Boolean
combination in atoms of the form u = v and E(u, v) where u, v are chosen in {x1, . . . , x`, x, y}.

Given a graph G, the graph φ(G) has vertex set V (G) and edge set all the pairs uv for
which G |= φ(u, v) ∧ φ(v, u). It is called the interpretation of G by φ. We choose here to
make a symmetric version of the interpretation, but we can also define the directed version.
Adding the directed edge uv when G |= φ(u, v). This will not play an important role in our
argument.

By extension, given a hereditary graph class G, φ(G) is the class of all induced subgraphs
of some φ(G), for G ∈ G. Let us illustrate this notion with a striking conjecture of Gajarský
et al. [24]. A class G is universal if there exists some formula φ such that φ(G) is the class of
all graphs.

B Conjecture 38 ([24]). FO model checking is FPT on the class G if G is not universal.

A simple example of a graph class wherein FO model checking is AW[∗]-hard is provided
by interval graphs. This illustrates the previous conjecture since one can obtain every graph
as a fixed first-order interpretation of interval graphs. To draw a comparison with another
complexity measure, note that interval graphs have Vapnik-Chervonenkis dimension at most
two (i.e., the neighborhood hypergraph has VC-dimension at most two). This shows in
particular that bounded VC-dimension is not preserved under first-order interpretations.
The main result of this section, supporting that twin-width is a natural and robust notion of
complexity, is the following.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 43

I Theorem 39. Any (φ, γ, h)-transduction of a graph with twin-width at most d has twin-
width bounded by a function of |φ|, γ, h, and d.

As a direct consequence, map graphs have bounded twin-width since they can be obtained
by FO transductions of planar graphs (which have bounded twin-width). One can also
use Theorem 39 to show that k-planar graphs and bounded-degree string graphs have bounded
twin-width. We first handle the expansion and the copy operations of the transduction.

We recall that augmented binary structures are binary structures augmented by a constant
number of unary relations. The definition of twin-width for augmented binary relations is
presented in Section 5.1. We remind the reader that contraction sequences for augmented
binary structures forbid to contract two vertices not contained in the same unary relations.

I Lemma 40. For every binary structure G of twin-width at most d, and non-negative
integers γ and h, every augmented binary structure of γop ◦ hop(G) has twin-width at most
2γ+h(d+ 2γ), where hop is the h-expansion, and γop is the γ-copy operation.

Proof. We first argue that the introduction of the binary relation ∼ of γop preserves bounded
twin-width. Let G = Gn, . . . , G1 = K1 be a d-sequence S of G, where Gi is obtained from
Gi+1 by contracting ui and vi into a new vertex zi. Let {(v, j) | v ∈ V (G)} be the vertex set
of the j-th copy Gj of G. Let G′ be the binary relation obtained from γop(G) by discarding
its unary relations. We suggest the following contraction sequence for G′. First we contract
(un−1, j) and (vn−1, j) for j going from 1 to γ. Basically we perform the first contraction
of S in every copy of G′. Then we contract (un−2, j) and (vn−2, j) for j going from 1 to γ
(second contraction of S). We continue similarly up to the contractions (u1, j) and (v1, j)
for j going from 1 to γ. At this point the resulting graph of G′ has only γ vertices, and we
finish the contraction sequence arbitrarily. We note that, throughout this process, the red
degree is bounded by d+ 2γ.

Now every graph H ∈ γop ◦ hop(G) can be obtained by adding γ + h unary relations to
the binary structure G′. By Lemma 7 (whose proof follows Theorem 2 without the apex), the
augmented binary structure H has a contraction sequence (respecting the unary relations)
with red degree at most 2γ+htww(G′) 6 2γ+h(d+2γ). Let us recall that this sequence mostly
follows what we described in the previous paragraph but skips the contraction of two vertices
not satisfying the same subset of unary relations. As a contraction sequence of an augmented
binary structure, it ends with at most 2γ+h vertices (since the number of unary relations is
γ + h). J

To show Theorem 39 we shall now only prove that FO interpretations preserve bounded
twin-width.

I Theorem 41. For every prenex first-order formula with two free variables φ(x, y) and
every bounded-twin-width class G of augmented binary structures, φ(G) also has bounded
twin-width.

The idea of the proof is simply that if G has twin-width d, then the sequence of d-partitions
achieving the bound can be refined in a bounded way to form an f(d)-sequence for φ(G).
Let us first make the following observation, similar to Lemma 24.

I Lemma 42. Let u, v, v′ be vertices of an augmented binary structure G. If (u, v) and
(u, v′) are equivalent nodes in MT`+2(G), then for every prenex formula φ(x, y) of depth `
we have G |= φ(u, v) if and only if G |= φ(u, v′).

44 Twin-width I: tractable FO model checking

Proof. Consider an arbitrary prenex first-order formula φ(x, y) = Q1x1Q2x2 . . . Q`x`φ
∗

where φ∗ is quantifier-free. We label each node of MT`+2(G) at depth i + 1 by ∨ if
Qi = ∃, and ∧ if Qi = ∀ for i 6 `, and label each leaf node (a, b, w1, w2, . . . , w`) by 1 if
φ∗(a, b, w1, w2, . . . , w`) holds, and 0 otherwise. Notice that for each node (a, b) ofMT`+2, one
can decide G |= φ(a, b) by evaluating the sentence expressed as the labeled subtree of MT`+2
rooted at (a, b). Now, the automorphism swapping the equivalent siblings (u, v) and (u, v′)
(and preserving the unary relations) implies G |= φ(u, v) if and only if G |= φ(u, v′). J

A consequence of Lemma 42 is that if (u, v) and (u, v′) are equivalent nodes in a reduction
(T,m) of MT`+2(G), then the same conclusion holds. And, if G has a partition P, by the
fact that reductions in (G,P) are reductions in G, we also have that if (u, v) and (u, v′)
are equivalent nodes in a reduction (T,m) of MT`+2(G,P), then G |= φ(u, v) if and only if
G |= φ(u, v′).

The central definition here is that given a partition P of G, two vertices u, u′ of G are
said (`+ 2)-indistinguishable if the nodes (u) and (u′) are equivalent siblings (of ε) in some
reduction (T,m) of MT`+2(G,P). In particular, since an automorphism of (T,m) swap
them, they belong to the same part of P . We then form the graph E`+2(G,P) on vertex set
V (G) whose edges are all the pairs uu′ of (`+ 2)-indistinguishable vertices. It can be proved
that E`+2(G,P) is an equivalent relation (i.e., a disjoint union of cliques), but we will not
need this fact. Instead we consider the partition I`+2(G,P) whose parts are the connected
components of E`+2(G,P). Note that I`+2(G,P) refines P , and that if P ′ is a coarsening of
P then I`+2(G,P ′) is also a coarsening of I`+2(G,P) since every edge of E`+2(G,P) is an
edge of E`+2(G,P ′). Crucially, I`+2(G,P) does not refine the d-partition P too much.

At first glance, it is unclear why the connected components of E`+2(G,P) can be
bounded. We use the fact that if (v) and (v′) are equivalent siblings in some reduction of
MT`+2(G,P, X), then (v), (v′) are equivalent siblings in some reduction of MT`+2(G,P)
because the reduction and the pruned shuffle commute by Lemma 32. The connected com-
ponents derived from the former relation can be easily bounded, which bounds the connected
components derived from the latter relation or equivalently the connected components of
E`+2(G,P).

I Lemma 43. When P is a d-partition and X is a part of P, the number of components of
E`+2(G,P) inside X is at most a function of d and `.

Proof. Let us consider any reduct (T,m) of MT`+2(G,P, X). Observe first that every
current graph of (T,m) consists of vertices which belong to parts Y such that the distance in
GP from X to Y is at most 3`+2. We denote this set of parts Y by P ′. In particular (T,m)
is a morphism-tree in (G′,P ′), where G′ is the induced restriction of G to the vertices of P ′.
Note that the number of parts of P ′ is bounded in terms of d and `, hence (G′,P ′) is a graph
which is partitioned into a bounded number of parts. Therefore the analogue of Lemma 23
for partitioned graphs implies that (T,m) has size bounded in d and `.

Now consider the graph H on X whose edges are all pairs v, v′ such that a (v), (v′)-
reduction is performed while reducingMT`+2(G,P, X) into (T,m). The number of connected
components of H is exactly the number of nodes of depth 1 in (T,m) (and furthermore every
component of H is a tree, but we do not use this).

Now we just have to show that every edge of H is also an edge in E`+2(G,P). This follows
from the fact that the pruned shuffle (T ′,m′) of (T,m) and allMT`+2(G,P, Y) where Y 6= X

is a reduction of MT`+2(G,P), since reduction commutes with pruned shuffle (Lemma 32).
In particular, for every edge vv′ of H, there exists a (v), (v′)-reduction among the reductions

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 45

performed to reduce MT`+2(G,P) to (T ′,m′). Thus vv′ is an edge of E`+2(G,P). Therefore
the number of components of E`+2(G,P) in X is at most the number of components of H. J

The key feature of the connected components of E`+2(G,P) is that if v, v′ are in the
same connected component Y ′, they are not distinguished by any vertex which is far from
Y ′ in GP with a prenex formula of depth `.

I Lemma 44. Let φ(x, y) be a prenex formula of depth `. Let P be a d-partition of an
augmented binary structure G and X,Y be two parts of P with pairwise distance at least
3`+2 in GP . Let X ′, Y ′ be two parts of I`+2(G,P) respectively in X and Y . Then if u ∈ X ′
and v, v′ ∈ Y ′, we have G |= φ(u, v) if and only if G |= φ(u, v′).

Proof. We just have to prove it when vv′ is an edge of E`+2(G,P) since the property will
propagate to any pair of vertices in the whole component. We can therefore assume that
there is a reduction (T,m) of MT`+2(G,P) in which (v) and (v′) are equivalent nodes.
By Lemma 31, (v) and (v′) are equivalent nodes in (T,m)Y , which is a reduction of
MT`+2(G,P, Y) since reductions preserve connected tuples rooted at Y . Now consider
the pruned (` + 2)-shuffle (T ′,m′) of (T,m)Y and all MT`+2(G,P, Z) with Z 6= Y . Note
that (T ′,m′) is a reduction of MT`+2(G,P) by Lemma 32. Moreover it contains the two
sibling nodes (u, v) and (u, v′) which are equivalent by the fact that (v), (v′) are equivalent
in (T,m)Y . Indeed, as usual, we just consider the automorphism f of (T,m)Y which swaps
(v), (v′), and extend it by identity to an automorphism g of the pruned shuffle. Finally,
(u, v) and (u, v′) are equivalent in a reduction of MT`+2(G,P), so G |= φ(u, v) if and only if
G |= φ(u, v′) by Lemma 42. J

Note that by symmetry, the previous result implies that for every u, u′ ∈ X ′ and v, v′ ∈ Y ′,
we have G |= φ(u, v) if and only if G |= φ(u′, v′). In particular, X ′, Y ′ is homogeneous in
φ(G). We can now prove Theorem 41.

Proof. We need to show that given G with twin-width d and a formula φ(x, y), the twin-
width of φ(G) is at most a function of d and `, the depth of φ. To show this, we consider a
sequence of d-partitions (Pi)i∈[n] of G. We now refine it further by considering the sequence
of partitions Ii := I`+2(G,Pi), for all i ∈ [n]. As we have seen, Ii is coarser than Ii+1, and
furthermore each part of Ii contains a bounded (in d, and `) number of parts of Ii+1. Indeed
a part of Ii is contained in a part of Pi which contains at most two parts of Pi+1, each
containing a bounded number (in d and `) of parts of Ii+1 by Lemma 43.

At last, by Lemma 44, if two parts of Ii belong respectively to two parts of Pi which are
further than 3`+2 in GPi

, then they are homogeneous in φ(G). Hence (Ii)i∈[n] is a nested
sequence of h(d, `)-partitions of G where each Ii is a bounded refinement of Ii+1, so we can
extend (Ii)i∈[n] to a h′(d, `)-sequence of φ(G), by Lemma 8. J

9 Conclusion

We have introduced the notion of twin-width. We have shown how to compute contraction
sequences on several classes with bounded twin-width, and how to then decide first-order
formulas on these classes in linear FPT time.
Computing twin-width. The most pressing open question concerns the complexity of
computing the twin-width and contraction sequences on general graphs. We do not expect
that computing exactly the twin-width is tractable. However any approximation with a ratio
only function of twin-width would be good enough. More precisely, is there a polynomial-time

46 Twin-width I: tractable FO model checking

or fixed-parameter algorithm that outputs an f(d)-contraction sequence or correctly reports
that the twin-width is at least d? We observe that such an algorithm was obtained for totally
ordered binary structures [8].

This raises the perhaps more general question of a weak dual for twin-width. For treewidth,
brambles provide an exact dual. How to certify that the twin-width is at least d? The
best we can say so far is that if for all the vertex-orderings the adjacency matrix admits a
(2d+ 2)-mixed minor, then the twin-width exceeds d. A satisfactory certificate would get rid
of the universal quantification over the orderings of the vertex set.
Full characterization of “tractable” classes. We have made some progress on getting the
full picture of which hereditary classes admit an FPT algorithm for FO model checking. Let
us call them here tractable classes. Resolving Gajarský et al.’s conjecture (see Conjecture 38)
may require in particular to tackle the task of the previous paragraph. Bounded twin-width
classes are not universal, which supports a bit more the truth of the conjecture. Currently
almost all the knowledge on tractable classes is subsumed by three algorithms: Grohe et al.’s
algorithm on nowhere dense graphs [29], Gajarský et al.’s algorithm for FO interpretations of
bounded-degree classes [24], and our algorithm on bounded twin-width classes, when provided
with O(1)-sequences. As formulated in the introduction, these results are incomparable. Is
there a “natural” class which sits above structurally nowhere dense and bounded twin-width
classes, and would unify and generalize these algorithms by being itself tractable? Is there
an algorithmically-utilizable characterization of tractable or non-universal classes?

As a complexity measure, twin-width can be investigated in various directions. We list a
brief collection of potentially fruitful lines of research.
Structured matrices. The definition of a k-mixed minor in a matrix M is a division of
rows and columns where every zone is mixed. If we use a 1,2-matrix instead of a 0,1-matrix
to code the adjacency matrix of a graph, the property of being mixed is equivalent to having
rank strictly greater than 1. Let us say that a matrix M has r-twin-width at most d, if
there is an ordering of its rows and columns such that every (d, d)-division has at least one
zone with rank at most r. This notion indeed turns out crucial in handling ordered binary
structures [8]. Let us note that, by the Marcus-Tardos theorem, a matrix with bounded
0-twin-width has only linearly many non zero entries. For adjacency matrices coded by
1 (edge) and 2 (non-edge), bounded 1-twin-width is exactly bounded twin-width of the
corresponding graph.
Expanders. Surprisingly, bounded-degree expanders can have bounded twin-width, hence
cubic graphs with bounded twin-width do not necessarily have sublinear balanced separators.
We will show that there are cubic expanders with twin-width 6 [5]. However, random cubic
graphs have unbounded twin-width. Does the dichotomy of having bounded or unbounded
twin-width tell us something meaningful on expander classes?
Small classes. In an upcoming work [5], we show that the class of graphs with twin-width
at most d is a small class, that is, the number of such graphs on the vertex set [n] is bounded
by n!f(d)n for some function f . Is the converse true? That is, for every hereditary small
class of graphs is there a constant bound on the twin-width of its members? This question is
settled by the negative using a group-theoretic construction, in a subsequent paper [7].
Polynomial expansion. Do classes with polynomial expansion have bounded twin-width?
If yes, can we efficiently compute contraction sequences on these classes? We will show that
t-subdivisions of n-cliques have bounded twin-width if and only if t = Ω(logn) [5]. This is a
first step in answering the initial question.
Bounded twin-width of finitely generated groups. Given a (countably infinite) group
Γ generated by a finite set S, we can associate its Cayley graph G, whose vertices are

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 47

the elements of Γ and edges are all pairs {x, x · s} where s ∈ S. For instance, infinite
d-dimensional grids are such Cayley graphs. As a far-reaching generalization of the case of
grids, one may conjecture that the class of all finite induced subgraphs of G has bounded
twin-width. We observe that this does not depend on the generating set S since all choices
of S are equivalent modulo first-order interpretation. Hence bounded twin-width is indeed
a group invariant [5]. However the conjecture is refuted in [7]. Thus bounded twin-width
non-trivially splits finitely generated groups. Is this dichotomy an existing one?
Additive combinatorics. To any finite subset S of non-negative integers, we can associate
a Cayley graph G by picking some (prime) number p (much) larger than the maximum of S,
and having edges xy if x− y or y − x is in S modulo p. Is the twin-width of G a relevant
complexity measure for S?
Approximation algorithms. Last but not least, we should ask more algorithmic applic-
ations from twin-width. It is noteworthy that, in all the particular classes of bounded
twin-width presented in the paper, most optimization problems admit good approxima-
tion ratios, or even exact polytime algorithms. What is the approximability status of,
say, Maximum Independent Set on graphs of twin-width at most d? In [6] a polytime
constant-approximation is presented for Minimum Dominating Set on graphs of bounded
twin-width given with an O(1)-sequence.

References
1 J. Balabán and P. Hlinený. Twin-width is linear in the poset width. CoRR, abs/2106.15337,

2021. Accepted at IPEC 2021.
2 R. Belmonte and M. Vatshelle. Graph classes with structured neighborhoods and algorithmic

applications. Theor. Comput. Sci., 511:54–65, 2013.
3 A. Blumensath and B. Courcelle. On the monadic second-order transduction hierarchy. Logical

Methods in Computer Science, 6(2), 2010.
4 H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without

polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.
5 É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width II: small classes.

In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1977–1996, 2021.

6 É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width III: Max
Independent Set, Min Dominating Set, and Coloring. In N. Bansal, E. Merelli, and J. Worrell,
editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP
2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages
35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

7 É. Bonnet, C. Geniet, R. Tessera, and S. Thomassé. Twin-width VII: groups and the small
conjecture. In preparation, 2021.

8 É. Bonnet, U. Giocanti, P. O. de Mendez, P. Simon, S. Thomassé, and S. Toruńczyk. Twin-
width IV: ordered graphs and matrices. CoRR, abs/2102.03117, 2021.

9 É. Bonnet, E. J. Kim, A. Reinald, and S. Thomassé. Twin-width VI: the lens of contraction
sequences. Accepted at SODA 2022.

10 É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé, and R. Watrigant. Twin-width and polynomial
kernels. CoRR, abs/2107.02882, 2021. Accepted at IPEC 2021.

11 S. Bova, R. Ganian, and S. Szeider. Model checking existential logic on partially ordered sets.
ACM Trans. Comput. Log., 17(2):10:1–10:35, 2016.

12 J. Cibulka and J. Kyncl. Füredi-Hajnal limits are typically subexponential. CoRR,
abs/1607.07491, 2016.

13 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on
graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.

48 Twin-width I: tractable FO model checking

14 A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In 22nd IEEE Symposium
on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings,
pages 270–279, 2007.

15 Z. Dvorák, D. Král, and R. Thomas. Testing first-order properties for subclasses of sparse
graphs. J. ACM, 60(5):36:1–36:24, 2013.

16 K. Eickmeyer and K. Kawarabayashi. FO model checking on map graphs. In Fundamentals of
Computation Theory - 21st International Symposium, FCT 2017, Bordeaux, France, September
11-13, 2017, Proceedings, pages 204–216, 2017.

17 S. Feferman and R. L. Vaught. The first order properties of products of algebraic systems.
Journal of Symbolic Logic, 32(2), 1967.

18 J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model-checking. SIAM
J. Comput., 31(1):113–145, 2001.

19 J. Fox. Stanley-Wilf limits are typically exponential. CoRR, abs/1310.8378, 2013.
20 M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable structures.

J. ACM, 48(6):1184–1206, 2001.
21 M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revisited.

Ann. Pure Appl. Log., 130(1-3):3–31, 2004.
22 H. Gaifman. On local and non-local properties. In Studies in Logic and the Foundations of

Mathematics, volume 107, pages 105–135. Elsevier, 1982.
23 J. Gajarský, P. Hlinený, D. Lokshtanov, J. Obdrzálek, S. Ordyniak, M. S. Ramanujan, and

S. Saurabh. FO model checking on posets of bounded width. In IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 963–974, 2015.

24 J. Gajarský, P. Hlinený, J. Obdrzálek, D. Lokshtanov, and M. S. Ramanujan. A new perspective
on FO model checking of dense graph classes. ACM Trans. Comput. Log., 21(4):28:1–28:23,
2020.

25 J. Gajarský, P. Hlinený, J. Obdrzálek, and S. Ordyniak. Faster existential FO model checking
on posets. Logical Methods in Computer Science, 11(4), 2015.

26 J. Gajarský and S. Kreutzer. Computing shrub-depth decompositions. In C. Paul and
M. Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science,
STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 56:1–56:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

27 J. Gajarský, S. Kreutzer, J. Nesetril, P. O. de Mendez, M. Pilipczuk, S. Siebertz, and
S. Torunczyk. First-order interpretations of bounded expansion classes. ACM Trans. Comput.
Log., 21(4):29:1–29:41, 2020.

28 R. Ganian, P. Hlinený, D. Král, J. Obdrzálek, J. Schwartz, and J. Teska. FO model checking
of interval graphs. Logical Methods in Computer Science, 11(4), 2015.

29 M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense
graphs. J. ACM, 64(3):17:1–17:32, 2017.

30 S. Guillemot and D. Marx. Finding small patterns in permutations in linear time. In Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 82–101, 2014.

31 P. Hlinený, F. Pokrývka, and B. Roy. FO model checking on geometric graphs. Comput.
Geom., 78:1–19, 2019.

32 S. Kreutzer and A. Dawar. Parameterized complexity of first-order logic. Electronic Colloquium
on Computational Complexity (ECCC), 16:131, 2009.

33 M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica, 64(1):19–37,
2012.

34 A. Marcus and G. Tardos. Excluded permutation matrices and the stanley-wilf conjecture. J.
Comb. Theory, Ser. A, 107(1):153–160, 2004.

35 J. Nesetril and P. O. de Mendez. Sparsity - Graphs, Structures, and Algorithms, volume 28 of
Algorithms and combinatorics. Springer, 2012.

É. Bonnet, E. J. Kim, S. Thomassé, R. Watrigant 49

36 O. Pikhurko and O. Verbitsky. Logical complexity of graphs: a survey. Model theoretic methods
in finite combinatorics, 558:129–179, 2011.

37 L. Roditty and V. V. Williams. Fast approximation algorithms for the diameter and radius of
sparse graphs. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 515–524, 2013.

38 D. Seese. Linear time computable problems and first-order descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996.

39 M. Vatshelle. New width parameters of graphs. 2012.

	Introduction
	A dynamic generalization of cographs
	How to compute the contraction sequences?
	How general are classes of bounded twin-width?
	FO model checking
	Organization of the paper

	Preliminaries
	Graph definitions and notations
	First-order logic, model checking, FO interpretations/transductions

	Sequence of contractions and twin-width
	First properties and examples of classes with bounded twin-width
	Complementation, induced subgraphs, and adding apices
	Bounded rank-width/clique-width, and d-dimensional grids

	The grid theorem for twin-width
	Twin-width of matrices, digraphs, and binary structures
	Partition coarsening, contraction sequence, and error value
	Matrix division and the Marcus-Tardos theorem
	Mixed minor and the grid theorem for twin-width
	Corners
	Mixed zones, cuts, and values
	Finding a division sequence with bounded mixed value
	Finding a contraction sequence with bounded error value

	Classes with bounded twin-width
	Pattern-avoiding permutations
	Posets of bounded width
	Proper minor-closed classes

	FO model checking
	morphism-trees and shuffles
	morphism-trees in graphs and reductions
	Pruned shuffles

	Stability under FO interpretations and transductions
	Conclusion

