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Motivations

The Scale-Aware Sea Ice Project

The sea ice cover in the Marginal Ice Zone (MIZ) is thin and fragmented into individual plates called floes. It is vulnerable and sensitive to melting and to external forcings. Our is to improve the representation of the MIZ in large-scale, continuum sea ice models through a better understanding of its mechanical and dynamical behavior. Using FloeDyn, a realistic discrete model of the MIZ, and available observations, we study the behavior of an aggregate of ice floes at small scales to develop physically-sound sub-gridscale parameterizations destined to these continuum models.

Reological transition in sea ice

FloeDyn, a discrete C++ model of ice floe dynamics Developped by [START_REF] Rabatel | Modélisation dynamique d'un assemblage de floes rigides[END_REF] and [START_REF] Rabatel | Dynamics of an assembly of rigid ice floes[END_REF]: manages collisions between floes without interpenetration generates large assemblies of floes with realistic shapes and floe size distributions takes into account the atmosphere and ocean drags

An ice floe assenbly in FloeDyn Mathematical theory of fracture

Fracture propagation : state of the art

In the classical brittle fracture model of [START_REF] Griffith | Vi. the phenomena of rupture and flow in solids[END_REF], the fracture propagation problem is solved by assigning an energy to the fracture. The fracture extends if it allows reaching a lower energy state. [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] have reformulated this approach as a variational problem which allows considering fractures with a low regularity.

The surface energy:

The elastic energy of the fractured material, for a given fracture, σ, and a given displacement, u, is given by

E el (u, σ) = Ω\σ W (x , e(u)) with e(u) = 1 2 ∇u + ∇u T
with W , the energy density function. In practical case studies, displacement is known only in the subdomain of

∂ d Ω ⊂ ∂Ω as a Dirichlet condition u| ∂Ω D = u D . "
Admissible" displacements are given by

A σ = u ∈ H 1 (Ω\σ, R 2 )|u = U D sur ∂Ω D \σ
and the associated elastic energy for a given fracture σ is therefore given by [START_REF] Bourdin | The variational approach to fracture[END_REF] have shown that the infimum is reached if σ is smooth enough.

E el (σ) = inf u∈A σ E el (u, σ) B.
The energy associed to a fracture σ is given by

E frac (σ) = σ k(x )dH N-1
with dH N-1 , the Hausdorff dimension and N, the dimension. The total energy of the material for a given fracture σ is then :

E tot (σ) = E el (σ) + E frac (σ) = min u∈A σ E el (u, σ) + σ k(x )dH N-1
Fracture propagation criteria: After some simplification to this framework, the fracture propagates to σ * (t) such that

E tot (t, σ * (t)) = min σ(t)∈Γ E tot (σ(t))
With Γ the admissible fracture path.

Fracturation of ice floes : our mathematical problem

Our questions in the context of ice floes are : "where and how is the fracture initiated ?" ⇒ consider an infinitesimal crack that can extend from the border to the interior. "does the floe break?" ⇒ consider a simple fracture path that separates the floe in two parts. Following the Francfort and Marigo model, a floe is broken by fracture σ * if

E tot (σ * ) < E initial tot
Fracture due to a collision with another floe or with an obstacle.

Using the Francfort and Marigo theory, we need to determine the Dirichlet condition to calculate the fracture initiation.

Model ice floe as a mass-spring network : Balasoiu (2020) have shown that a mass-spring network can approximate an elastic material. Determination of the Dirichlet condition during a collision using the mass-spring network : current Phd thesis of Dang Toai Phan.

Fracture due to waves : preview of a 1D test-case

For a given wave field, η, the displacement, w , at each position, x , of the floe, Ω f , is given by:

YI∂ 4 x w = -ρg(w + η) on Ω f ∂ 3 x w = ∂ 2
x w = 0 on ∂Ω f with, ρ, the water density, g, the gravity and Y , I parameters depending on the ice mechanical strength and thickness.

The elastic energy of a floe is given by:

E el = Ω f (λ + 2µ)|∂ 2
x w | 2 dx . with λ and µ the Lame coefficients.

Following the Franckfort & Marigot formulation : a floe is fractured by the wave if FloeDyn manage efficiently the collisions between floes ⇒ calculation of fracture must be as efficient as possible : Calculate the energy with Enriched finite elements XFEM, which have been developped by [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF], [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF] to calculate crack growth : Each floe mesh being fixed, the fracture path does not depend on the mesh No need to remesh when searching for a fracture. Smart decision making : use a neurone network and learning method A fracture independant of the mesh : the extended finite element method (XFEM) An extension of the classical finite elements especially invented to model fractures without changing the mesh : it allows considering discontinuous functions on the domain.

E tot (σ * ) < E el such that E tot (σ * ) = min σ∈I σ E el ,1 (σ) + E el ,2 (σ) + k with, I σ ⊂ Ω f ,
u h = i∈N u i Φ i (x ) + j∈N c c j Φ j (x )(H σ (ν) -H σ (ν j )) +   k∈T Φ k (x )   2 l =0 b l k (F l (x ) -F l (x k )    
with N the set of nodes in the mesh, ϕ i the classical shape functions and u i the associated degree of freedom. N c nodes which see the crack face but not the crack tip (blue bullets), ν is the signed distance with the crack, H the Heaviside function such that H(ν) = 1 if ν > 0 and H(ν) = -1 else, c i the corresponding degree of freedom.

T is the node which see the crack tip (red bullets), F l the enrichment function and the associated degree of freedom b l k . These terms are modelling crack tips.

XFEM version from [START_REF] Mohammadi | Extended Finite Element Method[END_REF] guarantee the interpolation u h (x i ) = u i .

• • • • • • • • σ A triangular finite element mesh • x 1 • x 2 • x 3 σ ν Φ 2 (x )(H σ (ν) -H σ (ν 2 ))
Φ 1 (x )(H σ (ν) -H σ (ν 1 ))

An example of P 1 extended finite element in 1D

  the close set of admissible fractures and E el ,j (σ) j=1,2 the elastic energy of the two floes created by the fracturing σ. Simulations forced with monochromatic waves allow the extraction of a floe size distribution (FSD). Floes formed from the breakup of a 500m floe Resulting FSD Current work using more realistic waves : multi-phase and multi-amplitude (spectral definition) wave propagation and attenuation affected by ice floe Numerical modelling of a fracture Numerical implementation in FloeDyn