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Abstract: Single-particle cryo-electron microscopy (cryo-EM) is a technique for biomolecular structure 

reconstruction from vitrified samples containing many copies of a biomolecular complex (known as single 

particles) at random unknown 3D orientations and positions. Cryo-EM allows reconstructing multiple 

conformations of the complexes from images of the same sample, which usually requires many rounds of 2D and 

3D classifications to disentangle and interpret the combined conformational, orientational, and translational 

heterogeneity. The elucidation of different conformations is the key to understand molecular mechanisms behind 

the biological functions of the complexes and the key to novel drug discovery. Continuous conformational 

heterogeneity, due to gradual conformational transitions giving raise to many intermediate conformational states 

of the complexes, is both an obstacle for high-resolution 3D reconstruction of the conformational states and an 

opportunity to obtain information about multiple coexisting conformational states at once. HEMNMA method, 

specifically developed for analyzing continuous conformational heterogeneity in cryo-EM, determines the 

conformation, orientation, and position of the complex in each single particle image by image analysis using 

normal modes (the motion directions simulated for a given atomic structure or EM map), which in turn allows 

determining the full conformational space of the complex but at the price of high computational cost. In this article, 

we present a new method, referred to as DeepHEMNMA, which speeds up HEMNMA by combining it with a 

residual neural network (ResNet) based deep learning approach. The performance of DeepHEMNMA is shown 

using synthetic and experimental single particle images. 

 

INTRODUCTION  

Deep Mind's AlphaFold2 predicts 3D structures of proteins from their 1D amino-acid sequences and produces 3D 

models of similar quality as those that can be obtained with experimental methods, but it is limited to prediction 

of small static structures (Jumper et al., 2021). Therefore, the structure and dynamics of challenging, large (multi-

subunit) and flexible complexes is still studied by experimental methods, such as cryogenic electron microscopy 

(cryo-EM) single particle analysis (SPA).  
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Cryo-EM SPA can be used to collect data of different coexisting conformational states of purified complexes. 

Different zones of the sample containing many copies of the same complex (referred to as particles) in random 

and unknown orientations are imaged in the cryogenic electron microscope without tilting the sample. Individual 

particle images are then extracted from the collected parallel electron-beam projection images. Advanced image 

processing algorithms and software are then needed to solve the heterogeneity of the particle orientations (three 

Euler angles), positions (shifts in x and y directions in the image plane), and conformations in the obtained set of 

single particle images, in order to calculate 3D reconstructions of the different coexisting conformational states 

(Jonić, 2017). During the data collection in the microscope, the low electron dose used to minimize the radiation 

damage of the sample yields highly noisy images, which complicates the task of disentangling the conformational, 

orientational, and translational heterogeneity. 

 

Continuous conformational changes of biomolecular complexes (gradual transitions with uncountable 

intermediate conformational states) yield a particularly challenging type of heterogeneity for image processing 

algorithms (Jonić, 2017; Sorzano et al., 2019), in contrast to discrete conformational changes (e.g., two-state 

heterogeneity due to ligand binding and unbinding). The current cryo-EM SPA research is still mainly based on 

using biochemical procedures to make samples as conformationally homogeneous as possible and on using 

discrete-classification-based image processing methods, both of which facilitate obtaining 3D reconstructions at 

high resolution (Svidritskiy et al., 2014; Bai et al., 2015; Zhou et al., 2015; Abeyrathne et al., 2016; Banerjee et 

al., 2016; Hofmann et al., 2019; Nakane et al., 2020; Kato et al., 2021). These methods are better suited to discrete 

conformational changes and usually based on image classification into a beforehand arbitrarily chosen number of 

classes (Penczek et al., 2006; Scheres et al., 2007; Scheres, 2012; Lyumkis et al., 2013). They usually result in a 

small number of classes related to different conformational states, where similar classes are combined to yield 3D 

reconstructions of higher resolutions, whereas other classes are ignored, among which the classes related to no-

particle images (“junk” particles). 
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However, the huge conformational heterogeneity due to continuous conformational changes of complexes should 

not be regarded only as an obstacle to high-resolution 3D reconstruction, but also as a unique opportunity to 

describe multiple coexisting conformations at once, even at lower resolutions. Indeed, unconstraining the 

flexibility of complexes biochemically and obtaining a low-dimensional representation of the full conformational 

space (containing all conformational states present in the sample) are prerequisites for getting information about 

the mechanisms of action of the complexes in health and disease, with or without different ligands involving 

continuous conformational transitions (Dashti et al., 2020).    

 

The last decade was marked by an active research in methods to pave the way for a full exploration of larger 

degrees of continuous conformational heterogeneity (Dashti et al., 2014; Jin et al., 2014; Tagare et al., 2015; 

Haselbach et al., 2018; Dashti et al., 2020; Harastani et al., 2020; Lederman et al., 2020; Moscovich et al., 2020; 

Giraldo-Barreto et al., 2021; Punjani and Fleet, 2021). These methods aim at determining the full conformational 

distribution (also called conformational space, landscape, or manifold), based on which the images with similar 

conformations could be assembled in 3D reconstructions and, optionally, a displacement of a 3D model can be 

animated in this space without calculating 3D reconstructions (Jin et al., 2014; Harastani et al., 2020). 

 

The problem of determining the particle conformation, orientation, and shift from images is an ill-posed inverse 

problem because the number of unknowns to be determined (the conformation, orientation, and shift for each 

particle image) is larger than the number of input data (the number of particle images), which combined with a 

low signal-to-noise ratio (SNR) of cryo-EM images makes the problem very challenging. The problem becomes 

well-posed by considering a low-dimensional representation of the conformational distribution, like a finite 

number of distinct conformations when assuming discrete conformational variability (Scheres, 2012; Lyumkis et 

al., 2013; Punjani et al., 2017)) or a small number of flexible motions when assuming continuous conformational 

variability (Dashti et al., 2014; Jin et al., 2014; Dashti et al., 2020; Harastani et al., 2020; Punjani and Fleet, 2021). 

Very recently, deep learning (DL) approaches started to attract attention regarding the problem of continuous 

conformational variability (Gupta et al., 2020; Chen and Ludtke, 2021; Rosenbaum et al., 2021; Zhong et al., 
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2021a). If DL models could be trained to interpret particles images in terms of the corresponding continuously 

changing conformations, orientations, and shifts (without the orientation and shift predetermination by 

conventional image alignment based on a finite number of distinct conformations), this would not only boost but 

revolutionize cryo-EM research, considering a tremendous speed of the inference using trained DL models.  

 

Currently, to the best of our knowledge, only two journal publications of DL approaches for combined 

conformational, orientational, and shift heterogeneity include a validation with experimental cryo-EM images 

(CryoDRGN (Zhong et al., 2021a) and e2gmm (Chen and Ludtke, 2021)). These two DL approaches interpret the 

conformational heterogeneity in single particle images assuming known Euler angles and shifts of the particles. 

These rigid-body parameters are determined prior to DL, by classical cryo-EM classification and refinement 

methods. However, the angles and shifts obtained by discretizing the continuous conformational heterogeneity 

into a small number of average conformational states are likely inaccurate and the mentioned DL methods do not 

include any refinement schemes to refine these initial angles and shifts. The most recent version of CryoDRGN, 

CryoDRGN2 (Zhong et al., 2021b), makes use of a multi-scale exhaustive search of orientations and translations 

over a discretized 5D parameter space (by increasing the resolution of the search grid over multiple scales), which 

is a more efficient version of the parameter search than the branch and bound algorithm used in an earlier version 

of CryoDRGN known as CryoDRGN-BNB (Zhong et al., 2020). The orientation and translation determination in 

CryoDRGN2 is done prior to DL of the volume or interleaved with it. The alternating between the pose 

determination and the volume updates is expected to refine the poses, which in turn should improve the volume 

learning. However, as the neural network training objective changes during the course of training because of 

alternating between the pose search and the volume learning, the method suffers from the problem of vanishing 

gradients (Zhong et al., 2021b). A different group of DL methods consider conformational homogeneity and train 

the network to learn orientations and translations, in the context of obtaining a preliminary 3D model from cryo-

EM images (Miolane et al., 2020; Levy et al., 2022). 
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In the context of continuous conformational heterogeneity, the angles, shifts, and conformations should ideally be 

determined simultaneously and refined iteratively (Jonić, 2017), which is the case of our previously developed 

method, HEMNMA (Jin et al., 2014; Harastani et al., 2020). In HEMNMA, image analysis is integrated with the 

analysis of the motion directions simulated by the so-called normal mode analysis (NMA) (Tirion, 1996; Tama 

and Sanejouand, 2001; Suhre and Sanejouand, 2004; Skjaerven et al., 2009; Bahar et al., 2010; Nogales-Cadenas 

et al., 2013; Jonić and Sorzano, 2016; López-Blanco and Chacón, 2016) of a given atomic structure or a given 3D 

EM map (if no atomic-coordinate structure of the complex is available but a 3D reconstruction from cryo-EM 

images can be obtained), through the determination of the motion amplitudes along these directions for each single 

particle image independently of other images. The provided atomic structure or EM map facilitate the simultaneous 

determination of the particle angles, shifts, and conformations from noisy cryo-EM images by HEMNMA. The 

atomic structure or EM map used to obtain the normal modes (the simulated motion directions) is often referred 

to as the reference. It represents an initial conformation that is iteratively elastically deformed, oriented, and shifted 

for each particle image, until it matches the conformation, orientation, and shift of the particle in this image. The 

parameters of the conformational model, determined by HEMNMA for each particle image, are the amplitudes of 

the normal modes. The conformational parameters obtained by HEMNMA for all particle images are then shown 

in a common low-dimensional space, which allows 3D reconstructions from interactively grouped images with 

similar particle conformations and animated displacements of the reference in this space without 3D 

reconstruction.  

 

However, HEMNMA is highly computationally demanding. The use of larger sets of normal modes and particle 

images requires longer processing times. To speed up HEMNMA data processing, we have developed a method 

that combines HEMNMA with supervised regression-task DL based on a convolutional neural network (CNN). 

The new method is referred to as DeepHEMNMA and is based on ResNet 34 CNN (He et al., 2016). In 

DeepHEMNMA, the network is trained to learn the relationships between a small set of particle images and the 

corresponding conformational and pose parameters of the particles (normal-mode amplitudes, orientations, and 

shifts) calculated by analyzing these images with HEMNMA prior to network training. Then, the trained network 
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can be employed to predict (infer) the unknown conformational and pose parameters of the particles from a large 

set of particle images that were not used for the training.  

 

In a short conference article (Hamitouche and Jonić, 2021), we presented a network (and showed its performance 

using synthetic data) to learn and predict the conformational parameters (normal-mode amplitudes), which allows 

animations of the reference in the obtained conformational space but not 3D reconstructions. In the meantime, we 

have extended this neural network approach to learn and predict the pose parameters as well (3 Euler angles and 

2 shifts), which allows calculating 3D reconstructions in the predicted conformational space, using the predicted 

orientations and shifts for the groups of images with similar conformations interactively selected in this space. 

 

In the present article, we describe DeepHEMNMA for learning and predicting all three types of the unknown 

parameters (conformational, orientational, and shift parameters) and show its performance using synthetic and 

experimental single particle cryo-EM data.  

 

METHODS 

DeepHEMNMA workflow is shown in Figure 1 and has three stages. It uses an input set of images split into two 

subsets (indicated as Image set 1 and Image set 2 in Figure 1) and an input atomic structure or EM map (the 

reference for HEMNMA rigid-body and elastic alignment). In the first stage, HEMNMA is used to estimate the 

conformational (normal-mode amplitudes), orientational, and translational parameters for the images in Image set 

1, through an iterative normal-mode-based elastic and rigid-body 3D-to-2D alignment of the reference with each 

single-particle image. In the second stage, the neural network is trained using Image set 1 (referred to as training 

set from now on) and the parameters estimated by HEMNMA for this set of images; then, the trained network is 

used to predict the parameters for the images in Image set 2 (referred to as test set from now on). The third stage 

consists of projecting the predicted conformational parameters onto a low-dimensional space and exploring this 

space, using a HEMNMA module. In this low-dimensional space, which could be considered as an essential 

conformational space, close points correspond to images with similar conformations and distant points to images 
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with different conformations. The exploration of this space includes (1) generating animations of the displacement 

of the reference along the data distribution directions and (2) interactive grouping of images with similar 

conformations and calculating 3D reconstructions from these groups. In DeepHEMNMA, the parameters predicted 

by the network and those estimated by HEMNMA can optionally be combined into a single conformational space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Flowchart of DeepHEMNMA combining HEMNMA and deep neural network methods. It uses an input atomic 
structure or EM map (reference) and an input set of images split into two subsets indicated as Image set 1 (referred to as 
training set) and Image set 2 (referred to as test set). 
 

The deep neural network in DeepHEMNMA is a ResNet CNN feature extractor followed by a Multilayer 

Perceptron (MLP) block. The ResNet feature extractor consists of a ResNet 34 architecture (a 34-layer network) 

that extracts general relevant features from single-particle images. The MLP block predicts the conformational, 

orientational, and shift parameters based on the features extracted by ResNet.  

 

In the remaining part of this section, we present the different steps of DeepHEMNMA in more detail. 

 

          



Hamitouche, I., Jonic, S                 doi: 10.3389/fmolb.2022.965645 
 

9 
 

Stage 1: HEMNMA estimation of the conformational and rigid-body parameters from the training images 

(Image set 1) 

HEMNMA combines cryo-EM image analysis and NMA of the reference. It simultaneously estimates the 

conformational parameters (normal-mode amplitudes) and rigid-body parameters (orientations and translations) 

of the particle in each particle image. If the reference is an EM map, this EM map must be converted into a 

collection of 3D Gaussian functions, referred to as pseudoatoms (Jonić and Sorzano, 2016), before NMA can be 

performed.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Graphical summary of HEMNMA steps. (a) Input EM map or atomic structure (the reference) and input single 
particle images. (b) Normal mode analysis of the reference and selection of normal modes (vectors). (c) Elastic and rigid-
body alignment of each single particle image with the reference using the selected normal modes. (d) Mapping of single 
particle images onto a low-dimensional (here, 2D) conformational space in which the reference can be animated (denser 
regions are marked with a darker red color; close points correspond to images with similar conformations and distant points 
to images with different conformations). (e) 3D reconstructions from the densest areas in the low-dimensional conformational 
space shown by squares in (d). 
 

Figure 2 presents all steps of HEMNMA, which include NMA of the reference, iterative elastic and rigid-body 

3D-to-2D alignment of the reference with particle images to estimate the conformational and rigid-body 

parameters of the particle in each image, projection of the estimated conformational parameters onto a low-

dimensional conformational space, and analysis of the estimated conformational space in terms of animations of 

the reference and 3D reconstructions in the densest regions in this space.  
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We next briefly recall the theory of NMA and the iterative elastic and rigid-body 3D-to-2D alignment of 

HEMNMA, which are mandatory steps at Stage 1 of DeepHEMNMA. The projection of images onto a low-

dimensional conformational space and the analysis of this space, which were originally developed for HEMNMA 

and are now also used in DeepHEMNMA, will be recalled at Stage 3 of DeepHEMNMA.  

 

Normal Mode Analysis (NMA): NMA is based on the so-called elastic network model (ENM) of the molecular 

system (Tirion, 1996), which is a simple and fast method to calculate vibrational modes and has been successfully 

used to predict biologically relevant motions (Ma, 2005; Tama and Charles L. Brooks, 2006; Skjaerven et al., 

2009; Bahar et al., 2010; López-Blanco and Chacón, 2016). Normal modes are the vectors along which the system 

is displaced and are calculated using a harmonic approximation of the potential energy function of the system 

around a given, reference conformation. The reference conformation can be represented with atoms or with 

pseudoatoms (3D Gaussian functions with which an EM map, reconstructed from single particle images, can be 

represented (Jonić and Sorzano, 2016)). In the ENM, close atoms or pseudoatoms are connected with elastic 

springs (the interaction radius is a parameter that determines the size of the region beyond which the atom is not 

connected with other atoms and do not interact with them) (Tirion, 1996). Normal modes are calculated by 

diagonalizing the Hessian matrix (the matrix of the second derivatives of the potential energy function) (Tirion, 

1996), which can be made faster in case of atomic structures by splitting the structure into blocks of consecutive 

residues (RTB blocks) that are only allowed to rotate and translate (Tama et al., 2000). Normal modes and their 

squared frequencies are eigenvectors and eigenvalues of the Hessian matrix, respectively. Lower-frequency 

normal modes describe more collective motions (displacing most of the atoms or pseudoatoms together, 

synergistically), whereas higher-frequency normal modes describe more localized movements of atoms. Several 

studies have shown that low-frequency normal modes correspond to functionally relevant biomolecular motions 

and that conformational transitions can be globally well described using a few low-frequency modes (Ma, 2005; 

Tama and Charles L. Brooks, 2006; Skjaerven et al., 2009; Bahar et al., 2010; López-Blanco and Chacón, 2016). 

Therefore, only a few low-frequency normal modes are usually selected for further analyses. The six lowest-

frequency normal modes are not used, as related to rigid-body motions. 
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The elements of a normal-mode vector provide information on the direction of the displacement of each atom or 

pseudoatom with this normal mode (in HEMNMA, this displacement is in angstroms, Å, which are the standard 

atomic-coordinate units). The total number of normal modes and the length of each vector are equal to 3 times the 

number of atoms or pseudoatoms (the total number of the atomic or pseudoatomic coordinates). Atoms or 

pseudoatoms are displaced, to form a new conformation (model), using a linear combination of normal modes. 

Normal-mode amplitudes are the coefficients of the linear combination and indicate the contributions of the 

different normal modes to the global displacement (in HEMNMA, the normal-mode amplitudes have no physical 

units). NMA allows calculating normal modes (vectors of the displacement), but not the normal-mode amplitudes 

(amplitudes of the displacement along the vectors). The normal-mode amplitudes can be determined by fitting the 

conformational model with the experimental data, through numerical optimization of the coefficients of the linear 

combination of normal modes used for modeling, as described next.  

  

Iterative elastic and rigid-body 3D-to-2D alignment: In this step, HEMNMA iteratively maximizes a measure 

of similarity between a given particle image and the 2D projection of the reference conformation being elastically 

modified (using normal modes), rotated, and shifted, until the best elastic and rigid-body alignment is achieved 

between the image and the projection. It results in a quasi-simultaneous determination of the conformation (the 

coefficients of the linear combination of normal modes used for the conformational model, i.e., normal-mode 

amplitudes), orientation (three Euler angles), and position (two in-plane shifts) of the particle in each particle 

image. The HEMNMA-estimated parameters (normal-mode amplitudes, three Euler angles, and two in-plane 

shifts) are then used to train the neural network at Stage 2 of DeepHEMNMA. 

 

Stage 2: Deep learning of the relationships between the training images and their HEMNMA-estimated 

parameters (Image set 1) and prediction of the unknown parameters from the test images (Image set 2) 

At Stage 2, DeepHEMNMA uses a deep learning neural network, which accelerates the determination of the 

conformational and rigid-body parameters (normal-mode amplitudes, Euler angles, and in-plane shifts) for large 

sets of single particle images. This network is trained to learn the complex non-linear relationships between a 
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subset of images (Image set 1) and their conformational and rigid-body parameters estimated at Stage 1 of 

DeepHEMNMA. The same network architecture is separately trained for each of the three types of parameters 

(normal-mode amplitudes, angles, and shifts). The three trained network models are then used to predict the three 

sets of parameters for the remaining subset of images (Image set 2 unseen by the network during the training). 

 

 

 

 

 

Figure 3 DeepHEMNMA neural network step. The deep learning neural network is a combination of a ResNet 34 feature 
extractor (ResNet block) and a 4-layer multilayer perceptron (MLP block). It is trained to map each single-particle image onto 
the corresponding, HEMNMA-estimated conformational parameters (M normal-mode amplitudes), orientational parameters 
(3 Euler angles), and positional parameters (2 in-plane shifts) of the particle in the image. DeepHEMNMA converts the Euler-
angle representation of the orientation used in HEMNMA into a 4-parameter quaternion representation, which is learned by 
the neural network internally. The learned quaternion representation of the orientation is then converted back to the Euler-
angle representation for the analysis at Stage 3 of DeepHEMNMA.   
 

The neural network in DeepHEMNMA is a combination of a ResNet feature extraction block and an MLP 

estimator (predictor) block (Figure 3). Residual networks allow training of very deep CNNs, by introducing 

residual blocks (skip connections) in the network architecture (He et al., 2016). They are very effective as feature 

extractors and have shown great results in classification tasks (Tegunov and Cramer, 2019; Rappez et al., 2020). 

DeepHEMNMA uses ResNet 34 CNN architecture, which has 34 layers (He et al., 2016). In the training phase, 

ResNet 34 takes a subset of the input particle images (Image set 1) and extracts features that capture the pose 

(orientations and translations) and the motions of the biomolecular complex in the images. The extracted features 

are passed onto the MLP that maps them onto each of the three sets of parameters (normal-mode amplitudes, 

orientations, and translations). The training involves updating the weights of the whole network (ResNet and MLP 

blocks) to minimize the error of the parameter prediction by the network with respect to the parameters estimated 

by HEMNMA (mean absolute error type of loss), though Adam backpropagation stochastic optimization method 

(Kingma and Ba, 2014). The MLP takes the input flattened features maps, obtained by ResNet, and captures a 

multimodal distribution of the particle pose and motion parameters through a stack of 4 fully connected layers. 
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The first 3 layers (1000, 512, 128 nodes, respectively) have a nonlinear function (Rectified Linear Unit) applied 

to each layer, to model complex nonlinear functions. The last layer has the nodes with linear functions and their 

number is equal to the number of the output parameters. To prevent overfitting, one half of nodes in the MLP 

layers were randomly dropped out in each epoch and a weight decay of 10-5 (L2 regularization term (Krogh and 

Hertz, 1991)) was added to the gradients. In the test phase, the trained entire network model (ResNet and MLP 

blocks) predicts the pose and motion parameters of the particle from the remaining input particle images (Image 

set 2). The network is implemented using Python 3.8 and PyTorch 1.8. 

 

DeepHEMNMA uses a unit quaternion representation for the orientation in 3D space, meaning that the three Euler 

angles estimated with HEMNMA for each single-particle image are converted into the corresponding quaternion 

and these quaternions are used to train the network. Similarly, the quaternions predicted by the network are 

converted back to the Euler-angle representation, for use with methods based on the orientation representation 

with Euler angles (the majority of cryo-EM methods), as the 3D reconstruction method used at Stage 3 of 

DeepHEMNMA. Quaternions provide an extensive representation of the orientations through a four-tuple system 

and help overcome the gimbal lock drawback of the representation by Euler angles (Hu et al., 2020). A basic 

information on the quaternion system and the conversion from Euler angles to quaternions and vice versa is 

provided in Supplementary Material A. For more information, the reader is referred to the recent review (Hu et 

al., 2020). We have compared the performance of our deep learning network using the two representations and 

found that the network achieves slightly worse results with the Euler-angle representation (results provided in 

Supplementary Material B). Therefore, we decided to use the quaternion representation for our deep learning 

network. 

 

As the network is trained separately for each of the three types of parameters, the number of outputs in the final 

MLP layer is different for the three trained models (M outputs for M normal-mode amplitudes, 4 outputs for the 

quaternion representation of 3D orientation, and 2 outputs for the shifts in x and y directions in the image plane).  
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We have tested DeepHEMNMA with the ResNet architectures deeper than ResNet 34 (ResNet 50 and ResNet 101 

having 50 and 101 layers, respectively) and found that the little improvement of the results obtained with such 

deeper networks does not to justify the extra time required for their training (the results provided in 

Supplementary Material C).  

 

In this article, the neural network training was performed on a 4-GPU computing node (NVIDIA V100, 5120 

CUDA cores per GPU card) using a batch size of 2 and 400 epochs of Adam optimization method. The starting 

learning rate was  10−5.  The learning rate was gradually decreased by dividing it by 10 each 80 epochs. 

 

The conformational parameters (M normal-mode amplitudes), orientational parameters (3 Euler angles obtained 

by conversion from 4-parameter quaternions), and translational parameters (2 shifts in x and y directions in the 

image plane) predicted at Stage 2 are then analyzed at Stage 3 of DeepHEMNMA, as explained next.   

 

Stage 3: Conformational-space dimension reduction and analysis 

At Stage 3 of DeepHEMNMA, a dimensionality reduction method is first used to project the set of M normal-

mode amplitudes predicted by the neural network onto a lower-dimensional space (usually, a 2D or 3D space), 

which can then be visualized. The dimensionality reduction in DeepHEMNMA is a feature brought by HEMNMA. 

Several dimensionality reduction methods are available in HEMNMA and we usually use Principal Component 

Analysis (PCA), which is a widely used and intuitively clear dimensionality reduction method.  

 

In the lower-dimensional conformational space (Figure 4), each point represents a conformation predicted for a 

given single-particle image and close points correspond to similar conformations. For each point, the predicted 

orientation and position of the particle in the image are also available and can be used to calculate 3D 

reconstructions from groups of images with similar conformations, interactively selected in high-density regions 

of this space (no automated clustering but a user’s choice of groups). The interactive grouping of images with 

similar conformations in DeepHEMNMA is also a feature brought by HEMNMA. 
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Beside using 3D reconstructions, the conformations predicted by the neural network can also be inspected by 

visualizing movies of the motion of the reference along the data distribution directions in this space. Additionally, 

it can be noted that the dimensionality reduction and further analysis can also be performed for the conformational 

space that combines the conformations estimated by HEMNMA and those predicted by the network.  

 

 

 

 

 

 

 

 

 

Figure 4 Illustration of a lower-dimensional (here, 2D) conformational space obtained by principal component analysis of 
the conformational parameters (normal-mode amplitudes) estimated by HEMNMA or predicted by the neural network of 
DeepHEMNMA. Different points represent different particle images. Each point corresponds to the conformational 
parameters (normal-mode amplitudes) of the molecular complex in the corresponding sigle-particle image. For each point, 
the orientation and position of the molecular complex are also available (estimated by HEMNMA or predicted by the neural 
network) and can be used to calculate 3D reconstructions from interactivelly selected groups of images with similar 
conformations in the densest regions of this space (not shown in this illustration but in the experiments below).  

 

RESULTS 

To evaluate the performance of DeepHEMNMA thoroughly, we carefully designed and run several experiments 

with synthetic datasets of the chain A of adenylate kinase (AK) from the PDB database (PDB:4AKE) (Müller et 

al., 1996) and with the experimental cryo-EM dataset of yeast 80S ribosome-tRNA complexes from the EMPIAR 

database (EMPIAR:10016) (Svidritskiy et al., 2014). In this section, we describe these experiments and show their 

results. 
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Performance of DeepHEMNMA with synthetic data 

In this section, we present results obtained with synthetic single particle images affected by noise and contrast 

transfer function (CTF) of the simulated microscope, to demonstrate the entire DeepHEMNMA protocol and show 

its accuracy and speed. The dataset was obtained by randomly sampling synthetic continuous conformational 

transitions, orientations, and positions of AK. The parameters of the synthetic AK conformation, orientation, and 

position were used as the ground-truth parameters to assess the accuracy of the prediction of these parameters by 

the neural network. As the network was trained using HEMNMA-estimated parameters, the accuracy of the neural 

network prediction was also assessed with respect to the HEMNMA-estimated parameters.  

Methods used to assess the neural-network prediction (inference) accuracy: The accuracy of the parameters 

predicted (inferred) by the neural network from images (normal-mode amplitudes, angles, and shifts) was assessed 

with respect to the ground-truth and HEMNMA-estimated parameters. The metrics to assess the accuracy of the 

inferred normal-mode amplitudes and shifts was the mean absolute error. The metrics to assess the accuracy of the 

inferred Euler angles was the average angular distance between the rotated coordinate-system axes (the inferred 

Euler angles mean the angles obtained by conversion from the inferred quaternions). As a complementary metrics 

to assess the accuracy of the inferred parameters, we used the root mean squared deviation (RMSD) between the 

atomic coordinates of AK displaced with the inferred and ground-truth parameters. More precisely, for each 

synthetic particle image, we calculated the RMSD between the AK atomic coordinates displaced with the inferred 

and ground-truth parameters using, for the displacement, one type of parameters at a time (normal-mode amplitude, 

angles, or shift). Then, we averaged the RMSDs over all images, for each parameter type separately. Additionally, 

we assessed the inference accuracy using 3D reconstructions from the groups of images with similar inferred 

conformations (the groups selected from different dense areas of the low-dimensional conformational space 

obtained by PCA of the inferred normal-mode amplitudes). We assessed the quality of each of these 3D 

reconstructions using Fourier Shell Correlation (FSC) with respect to the map simulated from the atomic model 

of conformation corresponding to the centroid of the image group used for 3D reconstruction. 
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Data synthesis: To synthesize the data for the experiment shown in this section, we followed the steps in the 

flowchart presented in Figure 5. The synthetic conformations were obtained by modifying the atomic AK structure 

using a linear combination of modes 7-9 (three lowest-frequency non-rigid normal modes), which is an arbitrary 

choice of normal modes made for this experiment. The linear combination of modes 7-9 was determined by their 

amplitudes 𝑞𝑞7- 𝑞𝑞9, respectively, which were randomly sampled from an arbitrary synthetic continuous 

conformational transition, as follows: 

 

𝑞𝑞7(𝑟𝑟) = −200 ∙ 𝑟𝑟,   𝑞𝑞8(𝑟𝑟) = 200 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠  (𝜋𝜋 ∙ 𝑟𝑟) , 𝑞𝑞9(𝑟𝑟) = 200 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠  (𝜋𝜋 ∙ 𝑟𝑟), (1) 

where 𝑟𝑟 is a random variable, uniformly distributed between 0 and 1. It should be noted that the hypothetical 

ground-truth trajectory here, randomly sampled, has a helical shape that facilitates a qualitative (visual) inspection 

of the inference accuracy in the synthetic-data experiments shown in this article. Indeed, a quick visual inspection 

of the spread of the inferred points around the hypothetical ground-truth trajectory can be an additional indicator 

of the inference accuracy, beside the quantitative assessment by evaluating the parameter inference errors and 3D 

reconstructions.  

 

The obtained conformations were then converted into density maps (Peng et al., 1996) (map size 256 × 256 × 256 

voxels; voxel size: 0.325 Å × 0.325 Å × 0.325 Å). These maps were rotated and shifted using random angles and 

shifts (random uniform distribution) and, then, projected onto the image plane of size of 256 × 256 pixels (pixel 

size: 0.325 Å × 0.325 Å). The total number of synthesized images was 70, 000. It can be noted that the synthesized 

data are such that the conformation in each particle image can be unique (a different conformation can be present 

in each different image). The rotation followed the ZYZ angular convention, with the first and third rotation angles 

(around z-axis) between 0° and 360° and the second rotation angle (around y-axis) between 0° and 180°. The shifts 

were between -5 and +5 pixels in x and y directions. Finally, noise and CTF were applied to each synthesized 

image. Noise was applied before and after the CTF (a part of the noise was modulated by the CTF and the other 

not), as explained elsewhere (Sorzano et al., 2007). In the experiment shown in this section, the SNR was 0.1 and 

the CTF was simulated for a 200 kV microscope with a spherical aberration of 2 mm and a defocus of -0.5 µm. 
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Additional experiments, regarding the influence of the number of images, noise, CTF, in-plane rotations, in-plane 

shifts, and image size, are shown in Supplementary Material D, E, and G. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Flowchart of image synthesis for evaluating the performance of DeepHEMNMA. See the text for the details on the 
synthesis of random normal-mode amplitudes, angles, and shifts. 

 

Experiment and results: The synthesized set of images was split into a training set of 20,000 images (Image set 1 

in Figure 1) and a test set of 50,000 images (Image set 2 in Figure 1). Before running HEMNMA, the images 

were CTF-phase corrected (phase flip), as it would be done with experimental cryo-EM images. The CTF-phase 

flipped images were then downscaled to the size of 128 × 128 pixels (pixel size: 0.65 Å × 0.65 Å). The image size 

reduction was preceded by an antialiasing low-pass filtering, as usually done before image downscaling (in this 

case, the low-pass cutoff was 1.3 Å). Image size reduction not only speeds up processing, but also reduces noise 

in images, which generally yields better results, as also observed in our experiments (Supplementary Material E 

compares the conformational prediction of the network trained using the original and downscaled images).  
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HEMNMA was used to estimate the normal-mode amplitudes, angles, and shifts for the training set of images 

(20,000 images). The images whose HEMNMA-estimated normal-mode amplitudes were far away from the 

majority were removed using the Mahalanobis distance measure (Mahalanobis, 1936). The Mahalanobis distance 

threshold of 3.2 was applied to the normal-mode amplitudes, which resulted in keeping 18,055 images for further 

processing. The network was trained using 14,055 images (from the kept 18,055 images). From the remaining 

4,000 images, we used 2,000 images for tuning the network’s hyperparameters (the step referred to as validation 

in neural network terminology). The remaining 2,000 images were used for quickly testing and comparing the 

finally trained models and this set of images will here be referred to as small test set. The test set of 50,000 images 

was used to test the finally selected trained model and will here be referred to as large test set. In this section, we 

show the results of both tests (with 2,000 and 50,000 images). 

   

Table 1 shows the distance (mean and standard deviation) of each inferred parameter with respect to its ground-

truth and HEMNMA-estimated values, obtained using the small test set (2,000 images), and also includes the 

distance between the HEMNMA-estimated and ground-truth values for the same test set. The distance between 

the inferred and ground-truth values of each parameter, expressed in RMSD terms, is shown in Table 2. For the 

metrics used, please recall Methods used to assess the neural-network prediction (inference) accuracy paragraph 

in this section. An overlap between the inferred, ground-truth, and HEMNMA-estimated normal-mode amplitudes 

obtained using the small test set is provided in Figure 6, which shows that the inferred normal-mode amplitudes 

follow the ground-truth continuous conformational transition globally well. The distances between the inferred 

and ground-truth values of parameters obtained using the large test set (50,000 images) and these distances 

expressed in RMSD terms are shown in Table 3 and Table 4, respectively. These tables show the same range of 

the parameter inference errors for the small and large test datasets, which indicates that the network model has 

successfully generalized during the training. 

 

Figure 7 shows a 2D conformational space obtained by PCA of the inferred normal-mode amplitudes. In this 

space, it is possible to calculate 3D reconstructions either from the reduced-size images (128 × 128 pixels), which 
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were used for training and inference, or from the original-size images (256 × 256 pixels). Here, we demonstrate 

the reconstructions from the original-size images (using the inferred shifts, after their multiplication by 2, and the 

inferred angles). Ten 3D reconstructions were calculated from the images in the corresponding ten dense regions 

of the 2D PCA space. In Figure 7, each reconstructed map is overlapped with the atomic model that corresponds 

to the centroid of the region used for the reconstruction. Figure 7 also shows the number of images used for the 

reconstruction and the 0.5-FSC resolution of the reconstructed map with respect to the map simulated from the 

corresponding centroid atomic model. The resolution is in the range 3-4 Å (the average resolution according to the 

0.143 and 0.5 FSC thresholds is 3.2 Å and 3.8 Å, respectively; for FSC curves, see Supplementary Material F).  

 
Table 1 Mean and standard deviation (Std) of the distance between inferred, ground-truth, and HEMNMA-estimated values 
of parameters (normal-mode amplitudes, angles, and shifts) for a small test set of 2,000 synthetic images (the data used for 
quick tests at the training step).  
 

 

 

 

 

 

 
 
Table 2 Mean and standard deviation (Std) of the distance between inferred and ground-truth parameters from Table 1 (for a 
small test set of 2,000 synthetic images), but expressed in RMSD terms. 

Parameter distance 

Normal-mode amplitudes Angles 

[°] 

Shifts X 

[Å] 

Shifts Y 

[Å] Mean 

over 

modes 

7-9 

Mode 7 Mode 8 Mode 9 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Inferred vs. Ground-truth 7.5 5.4 6.5 8.2 9.2 8.9 10.5 2.5 3.3 0.2 0.1 0.2 0.1 

Inferred vs. HEMNMA 6.9 5.4 6.7 7.3 9.0 7.9 9.6 1.9 3.4 0.2 0.1 0.2 0.1 

HEMNMA vs. Ground-truth 6.6 5.7 8.4 6.2 7.2 7.8 7.2 1.0 0.9 0.2 0.2 0.2 0.2 

RMSD 

 

 Normal-mode  

amplitudes 

[Å] 

Angles 

[Å] 

Shifts 

[Å] 

Mean Std Mean Std Mean Std 

Inferred vs. Ground-truth  0.4 0.2 0.9 1.0 0.3 0.2 
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Figure 6 Overlap between inferred, ground-truth, and HEMNMA-
estimated values of conformational parameters (normal-mode 
amplitudes) for a small test set of 2,000 synthetic images. Each 
point corresponds to an image and a molecular conformation inside 
it. Close points correspond to similar conformations and vice versa. 
For 2D scatter plots of the normal-mode amplitudes, see 
Supplementary Figure 2. See also Tables 1-2. 
 

 

 

 

 

 

 

 
Table 3 Mean and standard deviation (Std) of the distance between inferred and ground-truth values of parameters (normal-
mode amplitudes, angles, and shifts) for a large test set of 50,000 synthetic images (the data used to test the generalization of 
the finally trained network on a large set of images). 
 

 

 

 

 

 

 
Table 4 Mean and standard deviation (Std) of the distance between inferred and ground-truth parameters from Table 3 (for a 
large test set of 50,000 synthetic images), but expressed in RMSD terms. 

Parameter distance 

Normal-mode amplitudes Angles 

[°] 

Shifts X 

[Å] 

Shifts Y 

[Å] Mean 

over 

modes 

7-9 

Mode 7 Mode 8 Mode 9 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Inferred vs. Ground-truth 7.8 6.6 8.7 9.5 10.6 7.3 9.9 2.6 3.4 0.2 0.2 0.2 0.2 

RMSD 

 Normal-mode  

amplitudes 

[Å] 

Angles 

[Å] 

Shifts 

[Å] 

Mean Std Mean Std Mean Std 

Inferred vs. Ground-truth  0.4 0.2 0.9 1.2 0.3  0.2 
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Figure 7 Low-dimensional (here, 2D) conformational space obtained by principal component analysis of the inferred 
conformational parameters (normal-mode amplitudes) for a large test set of 50,000 synthetic images, together with ten 3D 
reconstructions from ten different dense regions of this space supperposed with the corresponding atomic models (centroids 
of the regions). The network training and inference of normal-mode amplitudes, angles, shifts were done using images of size 
128 × 128 pixels (for the inferrence accuracy, see Tables 3-4) and the reconstructions were obtained from images of size 256 
× 256 pixels. The number of images used for each reconstruction and the 0.5-FSC resolution of the reconstructed map are 
also shown (the FSC curves are provided in Supplementary Material F). Each point in the conformational space corresponds 
to an image and a molecular conformation inside it. Close points correspond to similar conformations and vice versa. 
 

We have additionally calculated the resolutions of the maps reconstructed from the same-size subgroups of the ten 

groups of images (899 images in each subgroup, which is the number of images in the smallest of the ten groups), 

using the inferred, ground-truth, and HEMNMA-estimated angles and shifts, where the resolution was calculated 

with respect to the map simulated from the corresponding ground-truth centroid atomic model (obtained using 

ground-truth normal-mode amplitudes). The 0.5-FSC resolution of the 10 reconstructed subgroup maps is in the 

range 3.7-4.4 Å for the inferred parameters, 3.6-3.7 Å for the ground-truth parameters, and 3.7-4.4 Å for 

HEMNMA-estimated parameters. The 0.143-FSC resolution of the 10 reconstructed subgroup maps is in the range 
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3.1-3.3 Å for the inferred parameters, 3.0-3.1 Å for the ground-truth parameters, and 3.0-3.3 Å for HEMNMA-

estimated parameters. 

 

Speed assessment: DeepHEMNMA is faster than HEMNMA alone and it is even faster for larger datasets. The 

wall-clock times of HEMNMA, network training, and network inference are provided in Supplementary 

Material G (Supplementary Tables 5-7, respectively) for two image sizes (256 × 256 and 128 × 128 pixels) and 

3 normal modes (the number of normal modes used in the experiment with synthetic data in this article). 

HEMNMA was run on 160 INTEL 2.6 GHz CPU cores. The neural network was run on 4 GPU cards at the training 

step and on 1 GPU card at the inference step (NVIDIA V100 with 5120 CUDA cores per card). The estimated 

total number of computing hours needed by DeepHEMNMA for obtaining normal-mode amplitudes, angles, and 

shifts for 1 million synthetic AK images of size 128 × 128 pixels with 3 normal modes is around 44 times smaller 

compared to HEMNMA. Indeed, HEMNMA alone would require 64,000 CPU hours, whereas DeepHEMNMA 

would require 1,232 CPU hours and 233 GPU hours (Supplementary Material G). 

 

Performance of DeepHEMNMA with experimental data 

In this subsection, we show the results of DeepHEMNMA using cryo-EM data of yeast 80S ribosome-tRNA 

complexes available in EMPIAR database under the accession code EMPIAR-10016 (Svidritskiy et al., 2014). 

 

Dataset: The dataset consists of a stack of single particle images of size 360 × 360 pixels and pixel size of 1.05 Å 

(normalized so that the average of the image is zero and the standard deviation is 10) and 5 metadata files 

containing the orientation and translation parameters for 5 image classes obtained in (Svidritskiy et al., 2014) 

using FREALIGN (Lyumkis et al., 2013). Two of these metadata files, with the parameters of 23,726 and 22,369 

images, were used in (Svidritskiy et al., 2014) to reconstruct two cryo-EM maps, accessible in EMDB database 

with the codes EMD-5976 (rotated conformation with 1 tRNA at resolution of 6.2 Å) and EMD-5977 (nonrotated 

conformation with 2 tRNA at resolution of 6.3 Å), respectively.  
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Data preprocessing and data splitting for neural network: After inspecting all 5 classes obtained in (Svidritskiy 

et al., 2014) (quality and number of images in each class as well as 3D reconstruction reproduced for each class), 

we decided to run DeepHEMNMA only on images used for reconstructing EMD-5976 and EMD-5977 (46,095 

images in total). The other 3 classes seemed less “clean” (many images seem to contain different objects than 

ribosomes) and the number of images in these classes was much smaller. Before running DeepHEMNMA, images 

were CTF-phase flipped and downscaled to the size of 128 × 128 pixels (pixel size: 2.95 Å). Our preliminary tests 

with this experimental cryo-EM dataset have shown large angular prediction errors (with respect to HEMNMA 

estimation) for the network trained using 20,000 images (recall that this is the number of images used to train the 

network with synthetic data). Therefore, we decided to split the set of 46,095 images as follows: (1) 32,000 images 

for training; (2) 2,000 images for validation (adjusting hyperparameters of the network); (3) 12,095 images for 

testing (large test set), out of which 2,000 images for quickly testing and comparing the trained models (small test 

set). Images from both FREALIGN classes were uniformly distributed in each of these image subsets.  

 

Reference model  and normal mode analysis: The reference model used by HEMNMA to calculate normal modes 

and to analyze images with these normal modes was a coarse-grain model of the nonrotated conformation, which 

was made by keeping only Cα and P atoms from the atomic model available in the PDB database under the code 

PDB:3j78 (the atomic model derived from EMD-5977 map in (Svidritskiy et al., 2014)). The coarse-grain model 

had 17,082 atoms (Cα and P). Its normal modes were calculated using RTB block size of 20 residues and the 

interaction radius of 20 Å. 

 

Selection of normal modes for image analysis with HEMNMA: Regarding the selection of normal modes, an 

option was to only select the mode that describes the rotation between the large and small subunits of the ribosome, 

which is often informative enough to separate different ribosome states, as shown in our previous work (Jin et al., 

2014). However, we decided to include more normal modes to demonstrate, using this experimental dataset, the 

performance of our deep neural network learning and prediction of a larger number of normal-mode amplitudes. 

Therefore, in this work, we selected normal modes by analyzing the motion field between the conformations 
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obtained in (Svidritskiy et al., 2014) with FREALIGN. More precisely, we performed flexible fitting of the coarse-

grain reference model (obtained from PDB:3j78) into EMD-5976 map, using 7 lowest-frequency non-rigid-body 

normal modes (modes 7-13), by employing our normal-mode-based 3D-to-3D flexible fitting approach of 

HEMNMA-3D (Harastani et al., 2021). The 7 obtained normal-mode amplitudes indicate that all 7 modes 

contribute to the motion between the two conformations. From this set of modes, we selected 4 modes with the 

highest contribution (modes 7-9 and 11), among which the mode describing the rotation between the ribosome 

subunits.  

 

DeepHEMNMA data analysis: HEMNMA was run to analyze images with the 4 selected normal modes, to obtain 

the conformations (normal-mode amplitudes), Euler angles, and shifts corresponding to these images, which were 

then used for the network training. The trained network was used to predict (infer) the normal-mode amplitudes, 

Euler angles, and shifts for the test images. The inferred normal-mode amplitudes were analyzed by PCA and 3D 

reconstructions were calculated from groups of images in this space using their inferred Euler angles and shifts.  

 

The 2D PCA space obtained for the set of 12,095 test images (Supplementary Figure 4) was split along the first 

principal axis into two groups of images, one with 4,741 images and the other with 4,219 images (Supplementary 

Material H). The two 3D reconstructions obtained from these two groups (Figure 8A-D) indicate two different 

average conformations, with an additional mass in one reconstruction where the additional tRNA is expected (the 

region indicated by a red ellipse in Figure 8A) and without this additional mass in the other reconstruction (Figure 

8B). The reconstructions obtained using FREALIGN metadata files from EMPIAR-10016 (Svidritskiy et al., 2014) 

(Figure 8I-L) show similarity with those obtained with DeepHEMNMA (Figure 8A-D and Figure 8M-P). Note 

however that the two reconstructions from FREALIGN metadata files were obtained using 22,369 and 23,726 

images (related to EMD-5977 and EMD-5976 maps, respectively). 

 

Furthermore, we found that the additional mass in the map reconstructed using inferred parameters (Figure 8A) 

could be better resolved if more images were used for this 3D reconstruction. We illustrate this by using a larger 
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set of 22,095 images that was obtained by combining (1) 12,095 images with inferred parameters and (2) 10,000 

images with HEMNMA-estimated parameters (from 32,000 images used for network training). The 2D PCA space 

for this set of 22,095 images (Supplementary Figure 5) was split along the first principal axis into two groups of 

images, one with 7,870 images and the other with 6,682 images (Supplementary Material H). The 3D 

reconstructions from the latter two groups of images (Figure 8E-H) are similar to those obtained from the images 

with inferred parameters (Figure 8A-D) but some details are better resolved in Figure 8E-H, such as the additional 

mass related to tRNA (region marked by red in Figure 8E), which is directly linked to the use of more images for 

the reconstructions in Figure 8E-H. 

 

The need to use more images for 3D reconstruction in order to better resolve the tRNA could be explained by a 

larger conformational heterogeneity of the dataset. In Figure 9, we show more extensively the conformational 

variability using 3D reconstructions from a larger number of groups of images selected along the first principal 

axis of the 2D PCA space of the 12,095 images used for the inference. The PCA space was split quasi-uniformly 

in the way to get at least 900 images per group. One can note a variable degree of rotation between the small and 

large subunits as well as the presence and absence of the additional tRNA over the seven maps reconstructed from 

1018, 1148, 1461, 1816, 1771, 975, and 949 images (Figure 9).  

 

This experiment shows that DeepHEMNMA can be useful for extensive analyses of conformational variability of 

biomolecular complexes, where large sets of experimental single particle images can be obtained. At least 30,000 

particle images would be required for the neural network training. To take full advantage of the power of the 

trained network, one should aim at analyzing millions of single particle images. The analysis of such large datasets 

is not practical with conventional methods, whereas it has a low computational cost with trained neural networks. 
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Figure 8 Two average conformations of yeast 80S ribosome-tRNA complexes obtained by 3D reconstruction from EMPIAR-
10016 cryo-EM images, with and without additional mass in the region marked with a red ellipse, using DeepHEMNMA and 
using the original FREALIGN classification parameters from EMPIAR-10016 dataset. A-B Same view of two reconstructions 
obtained from the conformational space based on 12,095 images with inferred parameters (Supplementary Figure 4), from 
which groups of 4,741 and 4,219 images were used for the reconstructions. C-D Two views of the superposed reconstructions 
from A and B. E-F Same view of two reconstructions obtained from the conformational space based on 12,095 images with 
inferred parameters and 10,000 images with HEMNMA-estimated parameters (Supplementary Figure 5), from which groups 
of 7,870 and 6,682 images were used for the reconstructions. G-H Two views of the superposed reconstructions from E and 
F. I-J Same view of two reconstructions obtained using FREALIGN parameters for 22,369 and 23,726 images resulting in 
EMD-5977 and EMD-5976 maps, respectively. K-L Two views of the superposed reconstructions from I and J. M-N 
Superposition of the reconstructions obtained from images with inferred parameters and those obtained using FREALIGN 
parameters (M: overlap between the reconstructions shown in A and I; N: overlap between the reconstructions shown in B 
and J). O-P Different view of the superposed volumes shown in M-N, respectively. The red ellipse shown in panels A, E, I, 
M indicates the region with the additional mass (corresponding to the additional tRNA), with respect to the same region in 
panels B, F, J, N, respectively. All surfaces are shown in solid color except for the yellow surface in M that is shown 
transparent for a better visualization of the additional mass (red ellipse).  
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Figure 9 Two-dimensional conformational space of yeast 80S ribosome-tRNA complexes from the EMPIAR-10016 cryo-
EM images, obtained by principal component analysis of normal-mode amplitudes inferred from 12,095 images (top, left), 
with 7 average conformations obtained by 3D reconstruction (bottom) from groups of images selected along the first principal 
axis, and an overlap of the maps reconstructed from the first (gray), fourth (violet), and seventh (orange) groups (top, right). 
The far left and far right images (blue) were not used for the reconstructions and the remaining part of the conformational 
space was split quasi-uniformly in the way to get at least 900 images per group. The reconstructions were obtained from 1018, 
1148, 1461, 1816, 1771, 975, and 949 images (bottom, from left to right). The color of the reconstructed map (bottom) 
corresponds to the color of the group of points in the conformational space (top). The blue ellipse overlapped with the 
reconstructed maps indicates the region where the additional mass, corresponding to the additional tRNA, is present or absent. 
 

DISCUSSION AND CONCLUSION  

This article introduces DeepHEMNMA, a hybrid method using HEMNMA image analysis (based on normal mode 

analysis) and a deep ResNet-based neural network to study continuous conformational variability of biomolecular 

complexes from single particle cryo-EM images. The purpose of the neural network is to accelerate HEMNMA-

based continuous conformational landscape determination from cryo-EM images. DeepHEMNMA determines the 

conformational parameters (normal-mode amplitudes) and rigid-body parameters (three Euler angles and two in-

plane shifts) of the biomolecular complex in each single particle images. To this goal, HEMNMA is first used to 

estimate these parameters from a subset of images. Then, the neural network is trained to learn the relationships 

between this subset of images and its HEMNMA-estimated parameters. The network is a ResNet 34 feature 

extractor followed by a multilayer layer perceptron. The trained network is then used to predict the parameters 

from the remaining images (unseen during the training). Finally, the conformational landscape is obtained by 

mapping the inferred normal-mode amplitudes onto a lower-dimensional space, which allows 3D reconstructions 
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using the inferred angles and shifts. Also, this space allows animations of a model displacement and identification 

of possible hidden conformations. 

 

We described this new approach and showed its performance with synthetic and experimental data. Using a 

synthetic dataset and a publicly available experimental dataset, we demonstrated a good generalization capability 

of the network (no overfitting against the training data), meaning that the trained network is able to accurately 

predict the conformation, orientation, and position of the molecule in the images that were not used for the training. 

 

DeepHEMNMA has a general purpose and could be useful in analyzing conformational variability of various 

molecular complexes, as is the case for HEMNMA on which it is based. HEMNMA has been demonstrated on 

complexes of various sizes and architectures (Jin et al., 2014). It is thus expected that DeepHEMNMA performs 

like HEMNMA on the same complex.  However, it should be noted that the network should be trained for each 

different molecular complex because each different complex will require a separate normal mode analysis, which 

depends on the shape of the complex.  

 

We trained the network separately for normal-mode amplitudes, orientations, and shifts. This training strategy has 

the advantage that the number of images used for training can be adjusted for the different types of parameters. 

Indeed, with experimental data, we observed that learning of orientations requires around twice more images than 

learning of shifts or normal-mode amplitudes. However, in the future, we will add an option to our open-source 

DeepHEMNMA software to allow a combined training for all three types of parameters, which is expected to be 

faster than the separate training for each parameter type, for the same size of the training dataset.  

 

DeepHEMNMA is a standalone method that can be used independently of other conformational variability 

methods (such as those of cryoSPARC, RELION, or Scipion) if a 3D model of one conformation of the complex 

can be provided (e.g., an atomic model from PDB database or a cryo-EM map from EMDB database). 

DeepHEMNMA does not use the particle pose information to learn the conformations (i.e., the normal-mode 
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amplitudes, which together with normal modes describe the conformation). In DeepHEMNMA, the poses are only 

used for calculating 3D reconstructions from the groups of images selected based on similar conformations in the 

conformational space but not for obtaining this conformational space. The poses in DeepHEMNMA are obtained 

by prediction. Alternatively, after predicting the conformations, the poses could be determined by classical rigid-

body 2D-to-3D alignment of the images with the density volumes simulated from the predicted conformations. 

This option could be useful in some cases, such as small number of images, and will be provided in the future. 

DeepHEMNMA was developed for analyzing large sets of images where pose prediction is more suitable. If the 

images are processed with other software before using DeepHEMNMA (e.g., cryoSPARC, RELION, Scipion, 

etc.), the poses determined by this software could be used instead, but their accuracy may be lower than the 

accuracy of the poses predicted by DeepHEMNMA or those determined by the rigid-body 2D-to-3D alignment of 

the images with the density volumes from DeepHEMNMA predicted conformations. This option may be provided 

in the future for the users willing to test it. 

 

In this article, we reported the times required for the neural network training from scratch (without pre-training). 

Retraining a pre-trained model can help sometimes. However, when the datasets vary significantly in terms of 

conformational heterogeneity, SNR and CTF, and in particular with experimental data, we noticed that retraining 

a pre-trained model may take approximately the same time to converge as the training from scratch. 

 

We tested different batch sizes for training (2, 8, 10, 16, 64, and 128) and obtained the best trade-off between 

processing time and accuracy with the batch size of 2. In particular, training with the batch size of 2 helped to 

avoid overfitting, together with other types of regularization (dropout and L2 regularization). Starting from 10−5, 

the learning rate was divided by 10 each 80 epochs. After the third division, i.e., after epoch #240, we found that 

the network still learns while slowly stabilizing the kernels and MLP weights. The training and validation loss 

curves for the synthetic data experiment shown here are provided in Supplementary Material I. 
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For running HEMNMA, the smallest recommended image size is 128 × 128 pixels. A reason for this is that 

HEMNMA uses a 2-level multiresolution data pyramid that includes further data downsampling (processing on 

the 64 × 64 pixel level first and then refining on the 128 × 128 pixel level). Another reason is that we recommend 

using HEMNMA with a rigid-body 3D-to-2D image alignment in wavelet domain (for robustness to noise) and 

the implemented wavelet transform requires the image size that is a power of 2. This was explained in the earlier 

publications of HEMNMA. We have not performed systematic tests of the neural network training with images 

smaller than 128 × 128 pixels.     

 

As in the case of HEMNMA, DeepHEMNMA software will be publicly available (upon the article publication) as 

part of ContinuousFlex (Harastani et al., 2020) plugin (https://github.com/scipion-em/scipion-em-continuousflex) 

for Scipion V3 (de la Rosa-Trevín et al., 2016), including graphical user interface giving the user the opportunity 

to easily use DeepHEMNMA on hybrid CPU-GPU architectures. 
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A. Conversion between Euler angles and unit quaternions 
 
A quaternion q is a 4-element vector that is defined as a hypercomplex number composed of a real part and three 
imaginary parts 𝐪𝐪 =  𝑞𝑞0  +  𝑞𝑞1𝐢𝐢 +  𝑞𝑞3 𝐣𝐣 +  𝑞𝑞4𝐤𝐤, where the standard orthonormal basis for 𝑅𝑅3 is given by three unit 
vectors i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).  

The Euler angle rotation that follows ZYZ convention (rotating about the z-axis first, then about the y-axis, and finally 
about the z-axis) can be converted into the following unit quaternion rotation: 

𝑞𝑞𝜙𝜙𝜙𝜙𝜙𝜙 =  𝑞𝑞𝜙𝜙 ⨂ 𝑞𝑞𝜙𝜙⨂ 𝑞𝑞𝜙𝜙, 

where  

𝑞𝑞𝜙𝜙 =  

⎝

⎜
⎛cos𝜙𝜙2

0
0

sin𝜙𝜙2⎠

⎟
⎞

, 𝑞𝑞𝜙𝜙 =  

⎝

⎛
cos𝜃𝜃2
0

sin𝜃𝜃2
0 ⎠

⎞ , 𝑞𝑞𝜙𝜙 =  

⎝

⎜
⎛cos𝜓𝜓2

0
0

sin𝜓𝜓2⎠

⎟
⎞

, 

leading to the following quaternion: 

𝑞𝑞𝜙𝜙𝜙𝜙𝜙𝜙 =  

⎝

⎜
⎜
⎜
⎜
⎜
⎛ cos𝜃𝜃2 cos𝜓𝜓 + 𝜙𝜙

2
− sin𝜃𝜃2 sin𝜓𝜓 − 𝜙𝜙

2
sin𝜃𝜃2 cos𝜓𝜓 −𝜙𝜙

2
cos𝜃𝜃2 sin𝜓𝜓 + 𝜙𝜙

2 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

. 
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Similarly, a 3 × 3 rotation matrix can be converted into the unit quaternion and the unit quaternion can be converted to a 
3 × 3 rotation matrix, which makes the basis for converting quaternions back to Euler angles [49]. 

B. Comparison of the use of Euler angles and quaternions for the neural network training 

Supplementary Table 1 shows the accuracy of the angular inference for the network trained using Euler angles or using 
quaternions. The results shown for the network using quaternions are also shown in the main text (Table 1). It can be 
noted that the angular errors are larger when using Euler angles than when using quaternions.  

 

 

 

 

 
Supplementary Table 1 Mean and standard deviation (Std) of the distance between the inferred, ground-truth, and HEMNMA-
estimated angles using a small test set of 2,000 images, after training with Euler angles or with quaternions using 14,055 images 
(image size: 128 × 128 pixels). The results for the use of quaternions are those shown in Table 1. 
 

C. Comparison of the network performance for different ResNet depths 

Supplementary Table 2 compares the network performance for 3 different ResNet depths: 34 layers (ResNet 34), 50 
layers (ResNet 50), and 101 layers (ResNet 101). This table shows that the best tradeoff between the speed and the 
accuracy is obtained using ResNet 34. Indeed, deeper feature extractors improve only slightly the results at the cost of 
much longer training times needed to train larger numbers of parameters.  

 

 
Supplementary Table 2 Comparison of ResNets of 3 different depths (34, 50, and 101 layers) regarding the training speed, the 
number of the trainable network parameters, and the accuracy of the normal-mode amplitude inference (with respect to the ground-
truth amplitudes), using a small test set of 2,000 images, after training with 14,055 images (image size: 128 × 128 pixels). The results 
of the use of ResNet 34 (the first row) are those shown in Table 1. 
 

D. Influence of number of images, noise, CTF, in-plane rotations, and in-plane shifts on 
conformational learning and prediction 

Supplementary Table 3 shows results of tests of the network sensitivity to the number of images used for training, 
noise, CTF, and in-plane rotations and shifts, when training the network to learn the conformational parameters (normal-
mode amplitudes). In these tests, we trained the network with ground-truth values of parameters, to evaluate the accuracy 

Angular distance 
Training with Euler angles 

[°] 
Training with quaternions 

[°] 
Mean Std Mean Std 

Inferred vs. Ground-truth 3.3 4.0 2.5 3.3 
Inferred vs. HEMNMA 2.8 4.0 1.9 3.4 
HEMNMA vs. Ground-truth 1.0 0.9 1.0 0.9 

ResNet depth 
(number of 

layers) 

Distance between inferred and ground-truth  
normal-mode amplitudes 

Approximate number of trainable 
network parameters (×106) 

Training 
speed  

[hours] 
Mean 
over 

modes 
7-9 

Mode 7 Mode 8 Mode 9 

Mean Std Mean Std Mean Std 

34 7.5 5.4 6.5 8.2  9.2 8.9 10.5 24 19 
50 7.3 5.1 6.3 8.1 9.0 8.8 10.2 26 22 

101 7.2 5.0 6.2 8.0 8.9 8.7 10.1 47 42 
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of the network independently of HEMNMA (instead of training the network with HEMNMA-estimated parameters, 
which is done in the main text).  

The images used in the tests shown in this section were synthesized using a similar procedure to the one described in the 
main text. They had uniformly-distributed random projection directions (as described in the main text). The in-plane 
rotations and shifts were zero in one case and uniformly randomly distributed in the other case (in the range described in 
the main text). The noise and the CTF were not applied in one case and applied in the other case (as described in the 
main text, using SNR=0.1 and -0.5 µm defocus). For these tests, we used a set of 10,000 images (size 256 × 256 pixels) 
and the same set after data augmentation to 20,000 images. The data augmentation was performed using the standard 
machine learning approach of making image copies by randomly rotating and shifting images from the original set. Each 
image from the set of 10,000 images was in-plane rotated using a random angle and in-plane shifted using random shifts 
in the range [-7,7] pixels (note that this shift range is slightly larger than the shift range used to synthesize the original 
images). In both cases, without and with data augmentation, we used 2,000 images for validation and 2,000 images for 
inference. The training was performed using the remaining 6,000 images from the set without data augmentation or using 
the remaining 16,000 images from the set with data augmentation. The images were not downscaled for the tests 
performed in this section. 

Supplementary Table 3 shows that the inference error is lower for the network trained with 16,000 images than for the 
network trained with 6,000 images. However, the decrease in the inference error was not enough significant with the 
network trained with 30,000 images, considering the large computational cost of the training (not shown here), and we 
decided to perform all other experiments with synthetic AK data using 20,000 images at most.  

Similar results to those shown in Supplementary Table 3 were obtained using images with the CTF defocus of -1 µm 
(and SNR=0.1) and slightly better results were obtained using images with SNR=0.3 (for both -0.5 µm and -1 µm defocus 
values). Examples of synthesized images with two SNR values and two defocus values are shown in Supplementary 
Figure 1, indicating that images with SNR=0.1 and the defocus of -0.5 µm have lower contrast and less CTF-induced 
oscillations near the particle edges, meaning that they hold higher-resolution structural information. In this article, we 
show results using images with SNR=0.1 and -0.5 µm defocus. 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 3 Accuracy of normal-mode amplitudes inferred for 2,000 synthetic images (size: 256 × 256 pixels) with and 
without in-plane rotations, shifts, noise (SNR=0.1), and CTF (defocus -0.5 µm), after the network training with ground-truth normal-
mode amplitudes (to evaluate the accuracy of the network independently of HEMNMA). The gray rows denote that the training 
dataset was obtained by data augmentation. 

Number of images 
for training 

In-plane 
rotation 

In-plane 
Shift Noise CTF 

Distance between inferred and ground-truth  
normal-mode amplitudes 

Mean over 
modes 

7-9 

Mode 7 Mode 8 Mode 9 

Mean Std Mean Std Mean Std 

6,000 No No No No 2.3 1.5 2.1 3.1 4.5 2.3 2.9 
6,000 No No Yes Yes 5.8 3.6 4.9 7.3 10.7 6.5 9.1 
16,000 No No Yes Yes 4.3 2.7 3.5 5.3 7.9 5.0 6.9 
6,000 No Yes No No 4.8 3.0 4.5 6.1 10.1 5.3 8.6 
6,000 No Yes Yes Yes 7.9 4.9 6.7 9.8 14.7 9.1 13.3 
6,000 Yes No No No 16.9 10.3 15.4 19.5 29.6 20.7 33.4 
6,000 Yes No Yes Yes 19.6 12.0 17.6 22.3 31.9 24.5 39.0 
6,000 Yes Yes No No 23.5 14.7 21.1 24.4 34.0 31.4 49.1 
16,000 Yes Yes No No 11.3 7.0 13.7 12.3 23.8 14.7 32.5 
6,000 Yes Yes Yes Yes 27.6 17.1 23.6 29.1 39.4 36.5 54.5 
16,000 Yes Yes Yes Yes 15.3 9.5 16.6 16.7 27.8 19.8 38.7 
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Supplementary Figure 1 Examples 
of noisy and CTF-affected images of 
Adenylate Kinase chain A (same 
view) synthesized with the SNR of 
0.3 (a) and 0.1 (b) and with the CTF 
defocus of -0.5 µm (bottom left in (a) 
and (b)) and -1 µm (bottom right in 
(a) and (b)). Images without noise 
(top left in (a) and (b)) and without 
CTF (top right in (a) and (b)) are also 
shown. 
 

 

 

E. Influence of image size on conformational learning and prediction 

Supplementary Table 4 and Supplementary Figure 2 show accuracy of the inference of normal-mode amplitudes 
using the network trained with 14,055 synthetic images of 256 × 256 pixels and with these images downscaled to 128 × 
128 pixels. The results obtained with the downscaled images are also shown in Table 1 and Figure 6 in the main text.  

Supplementary Table 4 Influence of image size on the 
accuracy of conformational learning and inference. The 
inference was done using 2,000 synthetic images with 
the network trained with 14,055 images. The results for 
the size of 128 × 128 pixels (second row) are also shown 
in Table 1. 
 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2 Overlap between the inferred (red), ground-truth (black), and HEMNMA-estimated normal-mode 
amplitudes (blue) obtained using images of the size of 256 × 256 pixels (top row) and 128 × 128 pixels (bottom row). The results for 
the size of 128 × 128 pixels (bottom row) are also shown in Figure 6 but as a 3D scatter plot. Each point corresponds to an image 
and a molecular conformation inside it. Close points correspond to similar conformations and vice versa. See also Supplementary 
Table 4. 

Image size 

Distance between inferred and ground-truth  
normal-mode amplitudes 

Mean over 
modes 

7-9 

Mode 7 Mode 8 Mode 9 

Mean Std Mean Std Mean Std 

256 × 256 pixels 20.2 12.6 16.8 20.9 27.4 27.1 36.8 
128 × 128 pixels 7.5 5.4 6.5 8.2 9.2 8.9 10.5 
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F. FSC curves of the reconstructions in the inferred conformational space from synthetic images 

Supplementary Figure 3 shows FSC curves of ten 3D reconstructions from 10 regions of the conformational space 
shown in Figure 7. Each FSC was obtained with respect to the map simulated from the atomic model that is the centroid 
of the corersponding region used for the reconstruction. The reconstructed maps were neither filtered not masked before 
calculating the FSC curves. The maps and the number of images used for each reconstruction are shown in Figure 7. 
The intersections of the FSC curves with FSC=0.5 and FSC=0.143 indicate the map resolutions of 3.6-4 Å and 3.1-3.2 
Å, respectivelly (Supplementary Figure 3). 

 
Supplementary Figure 3 FSC curves of ten 3D reconstructions 
from the corresponding ten regions of the conformational space 
shown in Figure 7, with respect to the maps simulated from the 
atomic-model centroids of the regions used for the 
reconstruction. The intersections of the FSC curves with 
FSC=0.5 and FSC=0.143 are also shown. 
 

 

 

 

 

  
G. Processing times of HEMNMA, network training, and network inference for synthetic images using 

three normal modes 
 
Supplementary Tables 5-7 show the wall-clock times needed for HEMNMA estimation, network training, and network 
inference using the synthetic data and 3 normal modes in the experiment shown in the main text. Note that the times in 
these tables are those of using one CPU core or one GPU card and should be multiplied by the number of CPU cores or 
GPU cards, respectively. Also, note that the time of HEMNMA is the time needed to estimate all parameters (normal-
mode amplitudes, angles, and shifts), whereas the time of the network is the time needed for one type of parameters 
(normal-mode amplitudes, angles, or shifts) and should be multiplied by 3 for the 3 types of parameters. 
 

HEMNMA 1 image 20,000 images 106 images 
256 × 256 pixels 8 min 15.6 h 800 h 
128 × 128 pixels 4 min 7.7 h 400 h 

 
Supplementary Table 5 Wall-clock times needed for HEMNMA estimation of all parameters (normal-mode amplitudes, angles, 
and shifts). White and gray cells mean measured and estimated times, respectively. HEMNMA was run on 160 INTEL 2.6 GHz CPU 
cores. The indicated time (for one CPU core) should be multiplied by 160 to obtain the total number of computing hours. 
 

Training 6,000 images 14,000 images 50,000 images 
256 × 256 pixels 15 h 28 h 75 h 
128 × 128 pixels 11 h 19 h 55 h 

 
Supplementary Table 6 Wall-clock times needed for training the network to learn one type of parameters at a time (normal-mode 
amplitudes, angles, or shifts). White and gray cells mean measured and estimated times, respectively. The training was run on 4 
NVIDIA V100 GPU cards. The indicated time (for using one GPU card) should be multiplied by 4 to get the total number of 
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computing hours needed for one type of parameters, and the obtained time should be multiplied by 3 to get the total number of 
computing hours needed for all 3 types of parameters.  
 

Inference 2 images 2,000 images 50,000 images 106 images 
256 × 256 pixels 36 ms 0.3 min 7.5 min 2.5 h 
128 × 128 pixels 6 ms 0.2 min 5 min 1.7 h 

 
Supplementary Table 7 Wall-clock times needed for the trained network to infer one type of parameters at a time (normal-mode 
amplitudes, angles, or shifts). White and gray cells mean measured and estimated times, respectively. The inference was run on one 
NVIDIA V100 GPU card. The indicated time should be multiplied by 3 to get the total number of computing hours needed for all 3 
types of parameters.  
 

H. Conformational space of experimental cryo-EM data of yeast 80S ribosome-tRNA complexes 
(EMPIAR-10016) 

Supplementary Figure 4 shows the 2D conformational space obtained for the EMPIAR-10016 dataset, by PCA of the 
normal-mode amplitudes inferred from 12,095 images. It also shows two selected groups of images in this space, which 
were used for the 3D reconstructions shown in Figure 8A (4,741 images) and Figure 8B (4,219 images). The groups of 
images were selected automatically using logical operators on the coordinates of the two principal axes, which excludes 
some points that are far away from the majority and some points that are in the middle of the point cloud (the region with 
the coordinates [-100,100] on the principal axis 1 is excluded to get a clearer difference between the two 3D 
reconstructions from the selected groups of images). Such image grouping was done to demonstrate the reconstruction 
of two different average conformations of the ribosome from this space and to compare these reconstructions with those 
obtained based on the EMPIAR-10016 FREALIGN classification (Figure 8). 

Supplementary Figure 5 shows the 2D conformational space obtained by PCA of a combined set of normal-mode 
amplitudes inferred from 12,095 images and normal-mode amplitudes estimated by HEMNMA from 10,000 images (the 
total number of images: 22,095 images). It also shows two selected groups of images in this space, which were used for 
the 3D reconstructions shown in Figure 8E (7,870 images) and Figure 8F (6,682 images). The merging of the inferred 
and HEMNMA-estimated normal-mode amplitudes was done to show the improvement of the 3D reconstructions with 
an increase in the number of images (in particular in the region where the additional tRNA is expected, Figure 8E).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 4 Two-dimensional conformational space for the EMPIAR-10016 dataset (cryo-EM single particle images 
of yeast 80S ribosome-tRNA complexes) obtained by principal component analysis of normal-mode amplitudes inferred from 12,095 
images, with panels A and B showing two selected groups of images (yellow) used for the 3D reconstructions shown in Figure 8A 
(4,741 images) and Figure 8B (4,219 images), respectively. The groups of images were selected automatically using logical operators 
on the coordinates of the two principal axes (principal axis 1: [-900, -100] in A and [100, 900] in B; principal axis 2: [-900, 900] in 
A and B). 
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Supplementary Figure 5 Two-dimensional conformational space for the EMPIAR-10016 dataset (cryo-EM single particle images 
of yeast 80S ribosome-tRNA complexes) obtained by principal component analysis of a combination of normal-mode amplitudes 
inferred from 12,095 images and HEMNMA-estimated from 10,000 images (the total of 22,095 images represented in this space), 
with panels A and B showing two selected groups of images (yellow) used for the 3D reconstructions shown in Figure 8E (7,870 
images) and Figure 8F (6,682 images), respectively. The groups of images were selected automatically using logical operators on 
the coordinates of the two principal axes (principal axis 1: [-1100, -100] in A and [100, 1100] in B; principal axis 2: [-900, 900] in 
A and B). 
 
I. Training and validation loss curves 

Supplementary Figure 6 shows the training and validation loss curves for the synthetic data experiment shown in the 
main text. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 6 Training (orange) and validation (blue) loss curves for the synthetic data experiment shown in the main 
text. Top: the entire curves. Bottom: loss below 0.1. 
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