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A Superquantile Approach to Federated Learning with Heterogeneous Devices

We present a federated learning framework that allows one to handle heterogeneous client devices that may not conform to the population data distribution. The proposed approach hinges upon a parameterized superquantile-based objective, where the parameter ranges over levels of conformity. We introduce a stochastic optimization algorithm compatible with secure aggregation, which interleaves device filtering steps with federated averaging steps. We conclude with numerical experiments with neural networks on computer vision and natural language processing data.

I. INTRODUCTION

In federated learning [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF][START_REF] Kairouz | Advances and Open Problems in Federated Learning[END_REF], a number of client devices with privacy-sensitive data collaboratively learn a machine learning model under the orchestration of a central server, while keeping their data decentralized. This is achieved by pushing the computation to the devices while the server coordinates with the devices for aggregation of model updates. Federated learning has found myriad applications such as smartphone apps [START_REF] Yang | Applied Federated Learning: Improving Google Keyboard Query Suggestions[END_REF][START_REF] Hard | Federated Learning for Mobile Keyboard Prediction[END_REF] and healthcare [START_REF] Huang | Patient Clustering Improves Efficiency of Federated Machine Learning to Predict Mortality and Hospital stay time using Distributed Electronic Medical Records[END_REF].

A key feature of federated learning is statistical heterogeneity, i.e., client data distributions are not identical. Each user has unique characteristics which are reflected in the data they generate. These characteristics are influenced by personal, cultural, and geographical factors. For instance, the varied use of language contributes to data heterogeneity in a next word prediction task.

Vanilla federated learning [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF], aims to minimize the prediction loss of a given model on average over a population of devices available for training. While this approach works for users with local data distribution close to the average distribution, it is liable to fail on individuals who do not conform to the population, leading to poor user experience. The goal of this work is to present a framework to improve the experience of these diversely non-conforming users without sacrificing the good experience of conforming users.

In this paper, we introduce the ∆-FL framework, summarized in Fig. 1, to handle heterogeneity of client data distributions. The framework relies on a superquantile-based objective parameterized by the conformity level, which is a scalar summary of how closely a device conforms to the population. To optimize the ∆-FL objective, we present an algorithm which interleaves device filtering with federated optimization steps. We discuss its special features compared to the standard FedAvg and to recent algorithms [START_REF] Mohri | Agnostic Federated Learning[END_REF]- [START_REF] Li | Fair Resource Allocation in Federated Learning[END_REF] about heterogeneity in federated learning. We analyze our algorithm in the convex setting and establish bounds on total communication cost.

We demonstrate the breadth of our framework with numerical experiments using convolutional and recurrent neural networks on tasks including image classification, and sentiment analysis based on public datasets. The simulations demonstrate superior performance of ∆-FL over state-of-the-art baselines on the upper quantiles of the error on test devices, while being competitive on the mean error.

Outline. Section II describes the setting and precisely defines conformity. Section III discusses the ∆-FL framework, the training objective, and the related approaches. Section IV gives an optimization algorithm for the ∆-FL objective and analyzes its convergence. Section V presents numerical experiments of the proposed method. Full proofs and additional details can be found in [START_REF] Laguel | A Superquantile Approach to Federated Learning with Heterogeneous Devices[END_REF]. The code and the scripts to reproduce numerical results are publicly available at https://github.com/krishnap25/ simplicial-fl.

II. PROBLEM SETTING

We introduce the notion of conformity in federated learning to measure how conforming are test devices from the population of train devices.

Train Devices and Trend Distribution. Consider N clients devices with respective probability distribution q k and weights α k > 0. We assume N k=1 α k = 1 and that the data on device k are distributed i.i.d. according to q k . The loss of a device with distribution q is F (w; q) := E ξ∼q [f (w; ξ)], where f (w; ξ) is the loss on the input-output pair ξ under model w ∈ R d . The loss on k th training device is then F k (w) := F (w; q k ).

The standard federated learning objective is the weighted average of the local losses of the training devices:

min w∈R d N k=1 α k F k (w) + λ 2 w 2 2 , (1) 
with a regularization parameter λ. We define the trend distribution as p α = n i=1 α k q k , the intrinsic distribution on which standard federated learning models are trained. Indeed, (1) exactly minimizes F (w; p α ) + (λ/2) w 2 2 . Our approach will consider test distribution that depart from the trend distribution. 

∈ ∆ N -1 is p π := N k=1 π k q k .
Here, ∆ N -1 is the probability simplex in R N . We now define the conformity of mixture with respect to the trend distribution.

Definition 1. The conformity conf(p π ) ∈ (0, 1] of a mixture p π with weight π is defined as min k∈[N ] α k /π k . The conformity of a test device refers to the conformity of its data distribution. Given a large representative set of training devices, it is reasonable to assume that each test device can be wellapproximated by a mixture p π . Then, the conformity of a device is a scalar summary of how close it is to the population. A test device with conformity θ ≈ 1 has its local distribution close to the trend distribution. Then, a model trained with the distribution p α is expected to have a high predictive power for this test device. In contrast, a test device with θ ≈ 0 would be vastly different from the distribution p α , and the predictive power of a model trained on p α could be poor.

There is a trade-off between fitting to the population and supporting non-conforming test devices. The conformity θ presents a natural way to encapsulate this tradeoff in a scalar parameter. That is, given a conformity θ ∈ (0, 1), we choose to only support test distributions p π with conf(p π ) ≥ θ.

III. THE ∆-FL FRAMEWORK

The ∆-FL framework supplies each test device with a model appropriate to its conformity. Given a discretization {θ 1 , . . . , θ r } of (0, 1], ∆-FL maintains r models, one for each conformity level θ j , as laid down in Fig. 1. The local data is not allowed to leave a device due to privacy restrictions; hence, the conformity of a test device cannot be measured. Instead, we allow each test device to tune their conformity.

Superquantiles come into play. To train a model with a given conformity, we aim to do well on all mixtures p π with conf(p π ) ≥ θ. This leads us to the minimax objective

min w∈R d F θ (w) := max π∈P θ F (w; p π ) + λ 2 w 2 2
where

P θ := π ∈ ∆ N -1 : conf(p π ) ≥ θ .
Using duality [START_REF] Rockafellar | Optimization of Conditional Valueat-Risk[END_REF] we can show that F θ can be written as a minimum:

F θ (w) = min η∈R G θ (w, η),
where

G θ (w, η) := η+ 1 θ N k=1 α k max F k (w)-η, 0 + λ 2 w 2 2 . ( 2 
)
This reveals that F θ is a (1 -θ)-superquantile; see e.g. the overview [START_REF] Rockafellar | Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk[END_REF] and the drawing of Fig. 2. ∆-FL Objective. We now introduce the ∆-FL objective as the dual to the minimax objective, i.e., min

w∈R d ,η∈R G θ (w, η) .
In Algorithm 1, we propose to solve this problem by alternating updates of w and η. From standard results on superquantiles [START_REF] Rockafellar | Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk[END_REF], the optimal solution of partial minimization in η admits a closed form as the (1-θ)-quantile of the distribution of losses (F k (w)) 1≤k≤N with weights (α k ) 1≤k≤N . In contrast, the w-step is executed by a standard federated optimization algorithm such as FedAvg until a stopping criterion is met. Precisely, given a target suboptimality ε t > 0, we require that

E [G(w t+1 , η t ) | w t ] -min w G(w, η t ) ≤ ε t . (3) 
Note that existing works about the use of superquantiles always consider centralized settings and often use convex optimization approaches, such as interior point algorithms [START_REF] Rockafellar | Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk[END_REF]. The alternating minimization is suitable for our setting, by using a federated optimization algorithm for the w-step.

Putting the method into perspective. Let us discuss further some aspects of the ∆-FL framework and Algorithm 1. The theoretical bound on communication rounds presented in Section IV exhibits the same dependence on target

Sθ(Z) = E[Z | Z > Qθ(Z)] area = θ E[Z] Qθ(Z)
Fig. 2. For a continuous random variable Z, drawing of (1-θ)-quantile Q θ (Z) and (1-θ)-superquantile S θ (Z), defined as an expectation.

In this work, we heavily rely on the variational expression of the superquantile as the minimum of G θ over η in [START_REF] Kairouz | Advances and Open Problems in Federated Learning[END_REF]; see [START_REF] Rockafellar | Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk[END_REF].

accuracy ε as the base federated optimization algorithm, e.g., FedAvg. We also corroborate this observation with numerical experiments in Section V. (d) Tuning Conformity. If using a single global value of conformity for all test users, one should account for all implications of this choice. This depends on the distributions of users. Committing blindly to a single conformity level could fail to balance supporting nonconforming users with fitting the population. On the other hand, measuring the conformity of users requires transfer of user data, a violation of privacy. As such, decisions impacting fairness and privacy are questions of policy rather than of mathematics. Both ∆-FL and [START_REF] Li | Fair Resource Allocation in Federated Learning[END_REF] circumvent this issue by training a family of models for different conformity levels, and allows a test user to tune their conformity.

Related Work on Heterogeneity. Past works have aimed to tackle heterogeneity in federated learning by modifying the objective. AFL [START_REF] Mohri | Agnostic Federated Learning[END_REF] uses a minimax objective that is effective only with coarse groups of devices; this requires domain knowledge. We note that ∆-FL interpolates between AFL (θ → 0) and standard federated learning (θ → 1). Like ∆-FL, the method q-FFL [8] also interpolates between these two extremes but in an different way: it raises losses to the power 1 + q, thus penalizing large losses more, while ∆-FL minimizes the average of the largest losses (see Fig. 2). q-FFL also maintains multiple global models for different parameters q. However, q does not admit a natural interpretation and its range could be unbounded. In contrast, ∆-FL's conformity parameter θ ∈ (0, 1) is the conformity level, which has a clear meaning. We provide an experimental comparison of these methods with respect to the client heterogeneity in Section V.

Other works minimize the standard federated learning objective, but aim to improve convergence in the presence of heterogeneity by correcting for potential client drift. Examples include FedProx [START_REF] Li | Federated Optimization in Heterogeneous Networks[END_REF] and Scaffold [START_REF] Karimireddy | Scaffold: Stochastic controlled averaging for federated learning[END_REF]. Such algorithms could thus be combined with our framework to reduce the cost of each w-step but that goes beyond the scope of this paper.

IV. CONVERGENCE ANALYSIS

We now analyze Algorithm 1 in the convex setting. We assume at each F k is convex (which is the case for instance for linear models and convex losses). This yields that G θ is Algorithm 1 Alternating Minimization for ∆-FL 

Input: Function G : R d × R → R, w 0 ∈ R d ,
G θ,ν (w, η) := η + 1 θ N k=1 α k h ν F k (w) -η + λ 2 w 2 , F θ,ν (w) := min η∈R G θ,ν (w, η),
where h ν (ρ) = min u max{u, 0} + (u -ρ) 2 /(2ν) is the socalled Moreau envelope of max{• , 0}, It provides a smooth and tractable uniform approximation [START_REF] Beck | Smoothing and First Order Methods: A Unified Framework[END_REF]. Our working function is convex and smooth, as formalized in the next lemma.

Lemma 2. If F k is convex, B-Lipshitz and L-smooth, then G θ,ν is jointly convex in (w, η) over R d × R and we have that w → ∇ w G θ,ν (w, η) is L w -Lipschitz for all η ∈ R where L w := λ + (L + B 2 /ν)/θ, and, η → ∂ ∂η G θ,ν (w, η) is L η - Lipschitz for all w ∈ R d where L η := (νθ) -1 .
In the next proposition, we use this lemma to establish an upper bound of the outer-loop complexity of Algorithm 1. Proposition 3. Under the assumptions of Lemma 2, denote the condition number of G θ,ν (•, η) by κ = 1 + (L + B 2 /ν)/(θλ). Consider Algorithm 1 with inputs G θ,ν and stopping criterion (3) with ε t = ε 0 e -t/κ for some ε 0 > 0. Then,

E [F θ,ν (w t )] -F θ,ν ≤ t e -t/κ F θ,ν (w 0 ) -F θ,ν + 2ε 0 ,
where appears the minimum value F θ,ν = min F θ,ν .

Proof. For each iteration t, denote ψ t (w) := G θ,ν (w, η t ), and let w t = w t -∇ψ t (w t )/L w . Lemma 2 ensures that ψ t is L w -smooth and λ-strongly convex which in turn yields [START_REF] Lan | First-order and Stochastic Optimization Methods for Machine Learning[END_REF]:

ψ t (w t ) -ψ t ( w t ) ≥ 1 2L w ∇ψ t (w t ) 2 (smoothness) ψ t (w t ) -min ψ t ≤ 1 2λ ∇ψ t (w t ) 2 (strong convexity).
Let F t denote the σ-algebra generated by w t . Putting these together with the stopping criterion (3), we get

E[ψ t (w t+1 )|F t ] ≤ min ψ t + ε t ≤ ψ t ( w t ) + ε t ≤ ψ t (w t ) -κ -1 ψ t (w t ) -min ψ t + ε t .
Using now the three following facts F θ,ν (w t+1 ) ≤ ψ t (w t+1 ) , F θ,ν (w t ) = ψ t (w t ) , and min w F θ,ν (w) ≤ min ψ t , we get,

E [F θ,ν (w t+1 )|F t ] ≤ F θ,ν (w t ) -κ -1 F θ,ν (w t ) -min F θ,ν + ε t .
Rearranging this and taking an expectation over F t yields

E [F θ,ν (w t+1 )] -min F θ,ν ≤ (1 -κ -1 ) E [F θ,ν (w t )] -min F θ,ν + ε t ≤ exp(-κ -1 ) E [F θ,ν (w t )] -min F θ,ν + ε t .
Using the shorthand ∆ t := E [F θ,ν (w t )] -min F θ,ν and unrolling the above inequality gives

∆ t+1 ≤ exp - t + 1 κ ∆ 0 + t τ =0 exp - t -τ κ ε τ ≤ t exp - t κ (∆ 0 + 2ε 0 ) ,
which completes the proof.

Next, we bound the total communication rounds (where a round refers to a secure aggregation of model updates) required by Algorithm 1, taking into account the cost of solving each w-step. We state the result with the w-step solved by FedAvg with full device participation (a.k.a. local SGD). The proof uses a result on communication rounds of FedAvg from [START_REF] Koloskova | A Unified Theory of Decentralized SGD with Changing Topology and Local Updates[END_REF]. 

ŵ such that E[F θ,ν ( ŵ)] -F θ,ν ≤ ε is at most O σ 2 κ 2 ∆ 0 N λτ ε + σ 2 κ 3 ∆ 0 λ 2 τ ε + D 2 κ 4 ∆ 0 λε + κ 2 ,
where ∆ 0 = (F θ,ν (w 0 ) -F θ,ν )/ε 0 + 1, and big O(•) includes constants and polylog factors.

Proof. For simplicity, C denotes some universal constant which may change from one line to the next. Let ∆ 0 := ∆ 0 + 2ε 0 = F θ,ν (w 0 ) -F θ,ν + 2ε 0 . We use the fact that for ε ≤ 2∆ 0 /3, t ≥ κ log 2κ∆ 0 ε + κ log log 2κ∆ 0 ε implies ε ≥ t exp (-t/κ) ∆ 0 . Thus, using Proposition 3, the number of outer iterations t * to get

E [F θ,ν (w t * )] -F θ,ν ≤ ε is t * = κ log 2κ∆ 0 ε + κ log log 2κ∆ 0 ε .
From [15, Theorem 2], the number n t of communication rounds to obtain w t+1 satisfying the stopping criterion (3) is

n t ≤ C   α ∞ σ 2 λτ ε t + σ 2 λ 2 τ ε t + κD 2 λε t + κ log κτ ∆ t ε t   with ∆ t = F θ,ν (w t ) -F θ,ν ≥ G θ,ν (w t , η t ) -min G θ,ν (•, η t ).
The total number of communication rounds is then

T = t * -1 t=0 n t ≤ C σ 2 N λτ ε 0 t * -1 t=0 exp(t/κ) +   σ 2 λ 2 τ ε 0 + κD 2 λε 0   t * -1 t=0 exp t/(2κ) + κt * log κτ ∆ max ε 0 + t * -1 t=0 t .
For the first term, we use exp(κ -1 ) ≥ 1 + κ -1 to get,

t * -1 t=0 exp(t/κ) ≤ 2κ 2 ∆ 0 ε log 2κ∆ 0 ε .
We similarly treat the second term to get

t -1 t=0 exp(t/(2κ)) ≤ C κ 3 ε ∆ 0 log 2κ∆ 0 ε .
The last two terms can be bounded by simply plugging in t * . Putting these terms together completes the proof.

Setting ν = θε/2 we get that T is bounded by

O 1 N τ θ 2 (λε) 3 + 1 ε 2 √ θ 3 λ 5 τ + 1 θ 2 (λε) 5/2 .

V. NUMERICAL EXPERIMENTS

We now experimentally check the performance of ∆-FL. The experiments were implemented in Python using automatic differentiation provided by PyTorch, while the data was preprocessed using LEAF [START_REF] Caldas | LEAF: A benchmark for federated settings[END_REF].

A. Numerical Setting

We optimize ∆-FL with a variant of Algorithm 1 with an iteration budget. In particular, we reduce each w-step to FedAvg with a single communication round with a fixed budget of local gradient descent on selected devices The resulting algorithm is given in Algorithm 2. Datasets, Tasks and Models. We consider two learning tasks. (a) Character Recognition: We use the EMNIST dataset [START_REF] Cohen | EMNIST: an extension of MNIST to handwritten letters[END_REF],

where the input x is a 28 × 28 grayscale image of a handwritten character and the output y is its label (0-9, a-z, A-Z). Each device is a writer of the character x.

The weight α k assigned to author k is the number of characters written by this author. We use a convolutional neural network architecture (ConvNet). (b) Sentiment Analysis: We use the Sent140 dataset [START_REF] Go | Twitter Sentiment Classification using Distant Supervision[END_REF] where the input x is a tweet and the output y = ±1 is its sentiment. Each device is a distinct Twitter user. The weight α k assigned to user k is the number of tweets publised by this user. The neural network model is a LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF] built on the GloVe embeddings. We refer to the latter as "RNN". We trained on half the devices and tested on the rest, where each training device k is weighted by its number of datapoints.

Algorithm 2 ∆-FL with a fixed budget Input: N devices {(q k , α k )} k∈[N ] , number of local updates n local , learning rate sequence (γ t ), devices per round m, initial iterate w 0 , conformity level θ ∈ (0, 1) Server executes:

1: for t = 1, 2, • • • do 2: Sample devices S t ∼ Unif([N ]) m 3: Broadcast w t to each device k ∈ S t 4:
Each k ∈ S t computes F k (w t ) and sends to server 5:

η t ← Quantile 1 -θ, F k (w t ), α k ) k∈St 6: Filter out S t = {k ∈ S t : F k (w t ) ≥ η t } 7:
for each device k ∈ S t in parallel do 8:

w k,t ← LocalUpdate(k, w t ) 9: w t+1 ← SecureAggregate {(w k,t , α k )} k∈S t 10: function LocalUpdate(k, w)
Run on device k 11:

for i = 1, . . . , n local do 12:
Update w ← w -γ t ∇f (w; ξ i ) using ξ i ∼ q k return w

We use the logistic loss for training and misclassification error for evaluation. Each experiment is repeated 5 times with a different sampling of train and test devices.

Methods. We compare ∆-FL with the standard objective (1) optimized using FedAvg, FedProx [START_REF] Li | Federated Optimization in Heterogeneous Networks[END_REF] (which shows more stable convergence than FedAvg), and FedAvg-Sub, which is FedAvg with as many devices per round as ∆-FL for the best conformity level. We also compare ∆-FL with other heterogeneity-sensitive objectives, namely q-FFL [START_REF] Li | Fair Resource Allocation in Federated Learning[END_REF], AFL [START_REF] Mohri | Agnostic Federated Learning[END_REF].

Metrics. We track the loss F k of each training device and the misclassification error on each test device. We summarize these distributions with their mean and the 90 th percentile, where the latter measures performance on devices with low conformity.

Hyperparameters. We run FedAvg until convergence and fix the corresponding number of iterations as the budget for all other algorithms. We tuned a learning rate schedule using grid search to find the best terminal loss averaged over training devices for FedAvg. The same iteration budget and learning rate schedule were used for all other methods including ∆-FL. Each method, except FedAvg-Sub, selected 100 devices per round for training. For all methods, local SGD is run on selected devices for 1 epoch. We run q-FFL for q ∈ {10 -3 , 10 -2 , . . . , 10} and report q with the smallest 90 th percentile of misclassification error on test devices. We use q-FFL with q = 10 as a proxy for AFL, as it was found to converge faster with similar performance across devices [START_REF] Li | Fair Resource Allocation in Federated Learning[END_REF].

B. Experimental Results

Performances across Iterations. Fig. 3 compares the convergence of Algorithm 1 with FedAvg, measured in terms of the number of communication rounds. We see that ∆-FL converges on par with FedAvg, while using the same hyperparameters such as learning rate in the w-step of Algorithm 1. We noticed also that tuning the communication budget for the w-step of Algorithm 1 (set to 1 for the rest of the experiments as in Algorithm 2) allows minor improvements in the terminal error.

Still, the rate of convergence is the same. Performances and comparisons. Table I records the mean and 90 th percentile of the misclassification error on the test devices. We find that ∆-FL improves the 90 th percentile test error in three out of four dataset-model pairs, and is within one standard deviation of the best error in the other last one. A 3.3% absolute (12% relative) improvement on EMNIST is most striking. Indeed, ∆-FL accounts for test users who do not conform to the population. ∆-FL is competitive with the other methods on the mean error, and, perhaps surprisingly, attains the smallest mean error in two cases. In Sent140-RNN, ∆-FL with θ = 0.1 displays unstable behavior. This could be due to the objective being unsuitable (AFL does poorly too) coupled with η-step filtering out too many devices. Nevertheless, ∆-FL is competitive for multiple values of θ.

Performance Across Devices. Fig. 4 and 5 visualize distribution of error on test devices, respectively as a histogram and a scatter plot against the number of datapoints. We find that ∆-FL exhibits thinner upper and lower tails of the error in general and a lower variance of the distribution. Regarding Fig. 5, we observe that improvement over the worst cases is achieved regardless of the local data size of the devices. Indeed, the device filtering step operates a sorting of the loss of the devices which does not prevent small devices from being selected. In contrast, FedAvg, by averaging with respect to the weights of the devices, is likely to give more importance to the updates of devices with larger local data size. Secondly, ∆-FL appears to reduce the variance of the loss on the train devices. Lastly, note that amongst test devices with a small number of data points (e.g., < 200 for EMNIST or < 100 for Sent140), ∆-FL reduces the variance of the misclassification error.

VI. CONCLUSION AND PERSPECTIVES

We presented ∆-FL, a federated learning framework that can handle heterogeneous client devices that do not conform to the population. We provided an optimization algorithm, proved its rate of convergence and demonstrated numerically that ∆-FL boosts performance on non-conforming devices. An interesting venue for future work is the exploration of settings where new training users arrive in an online fashion and the trend distribution is revealed incrementally over time. It is also interesting to consider other divergence to measure the conformity between a test distribution p π and the trend distribution p α , for instance, the χ 2 -divergence 1/(2N ) N k=1 (π k /α k -1) 2 or the 1 norm π -α 1 .

  (a) Device Filtering. Algorithm 1 can be viewed as interleaving device filtering (where devices with F k (w) < η are filtered out) with federated optimization steps. If a device is filtered out, it means that the model fits well the data on that device. (b) Computation Cost. The computation cost for each communication round of the w-step of Algorithm 1 is the same as that of the base federated optimization algorithm used. The η-step requires a pass over the local data on each device. (c) Communication Cost. The total communication cost is dominated by the communication of model parameters.

Proposition 4 .

 4 Consider the setting of Proposition 3 with α k ≡ 1/N . Consider using local SGD with τ local steps per communication round to solve w-step of Algorithm 1. Suppose that stochastic gradients (w.r.t. w) of h ν (F k (w) -η) have a bounded variance σ 2 k , with σ 2 = k α k σ 2 k . Let D bound the diversity of F k ; see [15, Assumption 3.b] for the definition. Then the total rounds T of communication to obtain a point
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  Fig. 1. Schematic summary of the ∆-FL framework. Left: The server maintains multiple models w θ j , one for each level of conformity θj. Middle: During training, selected devices participate in training each model w θ j . Individual updates are securely aggregated to update the server model. Right: Each test user is allowed to select their level of conformity θ, and are served the corresponding model w θ .
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