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Decision Problems in a Logic for Reasoning about
Reconfigurable Distributed Systems

Marius Bozga1, Lucas Bueri1, and Radu Iosif1

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000, France

Abstract. We consider a logic used to describe sets of configurations of dis-
tributed systems, whose network topologies can be changed at runtime, by recon-
figuration programs. The logic uses inductive definitions to describe networks
with an unbounded number of components and interactions, written using a mul-
tiplicative conjunction, reminiscent of Bunched Implications [38] and Separation
Logic [40]. We study the complexity of the satisfiability and entailment problems
for the configuration logic under consideration. Additionally, we consider robust-
ness properties, such as tightness (are all interactions entirely connected to com-
ponents?) and degree boundedness (is every component involved in a bounded
number of interactions?), the latter being an ingredient for decidability of entail-
ments.

1 Introduction

Distributed systems are increasingly used as critical parts of the infrastructure of our
digital society, as in e.g., datacenters, e-banking and social networking. In order to
address maintenance (e.g., replacement of faulty and obsolete network nodes by new
ones) and data traffic issues (e.g., managing the traffic inside a datacenter [36]), the
distributed systems community has recently put massive effort in designing algorithms
for reconfigurable systems, whose network topologies change at runtime [25]. However,
dynamic reconfiguration is an important souce of bugs that may result in e.g., denial of
services or even data corruption1.

This paper contributes to a logical framework that addresses the timely problems of
formal modeling and verification of reconfigurable distributed systems. The basic build-
ing blocks of this framework are (i) a Hoare-style program proof calculus [1] used to
write formal proofs of correctness of reconfiguration programs, and (ii) an invariant syn-
thesis method [6] that proves the safety (i.e., absence of reachable error configurations)
of the configurations defined by the assertions that annotate a reconfiguration program.
These methods are combined to prove that an initially correct distributed system cannot
reach an error state, following the execution of a given reconfiguration sequence.

The assertions of the proof calculus are written in a logic that defines infinite sets
of configurations, consisting of components (i.e., processes running on different nodes
of the network) connected by interactions (i.e., multi-party channels alongside which
messages between components are transfered). Systems that share the same architec-
tural style (e.g., pipeline, ring, star, tree, etc.) and differ by the number of components

1 https://status.cloud.google.com/incident/appengine/19007
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and interactions are described using inductively defined predicates. Such configurations
can be modified either by (a) adding or removing components and interactions (recon-
figuration), or (b) changing the local states of components, by firing interactions.

The assertion logic views components and interactions as resources, that can be
created or deleted, in the spirit of resource logics à la Bunched Implications [38], or
Separation Logic [40]. The main advantage of using resource logics is their support for
local reasoning [12]: reconfiguration actions are specified by pre- and postconditions
mentioning only the resources involved, while framing out the rest of the configuration.

The price to pay for this expressive power is the difficulty of automating the reason-
ing in these logics. This paper makes several contributions in the direction of proof au-
tomation, by studying the complexity of the satisfiability and entailment problems, for
the configuration logic under consideration. Additionally, we study the complexity of
two robustness properties [28], namely tightness (are all interactions entirely connected
to components?) and degree boundedness (is every component involved in a bounded
number of interactions?). In particular, the latter problem is used as a prerequisite for
defining a fragment with a decidable entailment problem.

1.1 Motivating Example

The logic studied in this paper is motivated by the need for an assertion language
that supports reasoning about dynamic reconfigurations in a distributed system. For
instance, consider a distributed system consisting of a finite (but unknown) number of
components (processes) placed in a ring, executing the same finite-state program and
communicating via interactions that connect the out port of a component to the in port
of its right neighbour, in a round-robin fashion, as in Fig. 1 (a). The behavior of a com-
ponent is a machine with two states, T and H, denoting whether the component has a
token (T) or not (H). A component ci without a token may receive one, by executing a
transition H

in−→ T, simultaneously with its left neighbour c j, that executes the transition
transition T

out−→ H. Then, we say that the interaction (c j,out,ci, in) has fired, moving a
token one position to the right in the ring. Note that there can be more than one token,
moving independently in the system, as long as no token overtakes another token.

The token ring system is formally specified by the following inductive rules:

ringh,t(x)←∃y∃z . [x]@q∗ 〈x.out,z.in〉 ∗ chainh′,t ′(z,y)∗ 〈y.out,x.in〉
chainh,t(x,y)←∃z. [x]@q∗ 〈x.out,z.in〉 ∗ chainh′,t ′(z,y)

chain0,1(x,x)← [x]@T chain1,0(x,x)← [x]@H chain0,0(x,x)← [x]

where h′ def=
{

max(h−1,0) , if q = H
h , if q = T

and t ′ def=
{

max(t−1,0) , if q = T
t , if q = H

The predicate ringh,t(x) describes a ring with at least two components, such that at least
h (resp. t) components are in state H (resp. T). The ring consists of a component x in
state q, described by the formula [x]@q, an interaction from the out port of x to the in
port of another component z, described as 〈x.out,z.in〉, a separate chain of components
stretching from z to y (chainh′,t ′(z,y)), and an interaction connecting the out port of
component y to the in port of component x (〈y.out,x.in〉). Inductively, a chain consists of
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{
�� ��[y]@H∗ 〈y.out,z.in〉 ∗ chainh−1,t(z,x) ∗ 〈x.out,y.in〉}
disconnect(x.out, y.in);

{
�� ��[y]@H ∗ 〈y.out,z.in〉 ∗

�� ��chainh−t,t(z,x) }
disconnect(y.out, z.in);

{[y]@H∗
�� ��chainh−1,t(z,x) }

delete(y);

{
�� ��chainh−1,t(z,x) }
connect(x.out, z.in)
{chainh−1,t(z,x)∗ 〈x.out,z.in〉}
{ringh−1,t(z)}

(c)

Fig. 1: Inductive Specification and Reconfiguration of a Token Ring

a component [x]@q, an interaction 〈x.out,z.in〉 and a separate chainh′,t ′(z,y). Fig. 1 (b)
depicts the unfolding of the inductive definition of the token ring, with the existentially
quantified variables z from the above rules α-renamed to z1,z2, . . . to avoid confusion.

A reconfiguration program takes as input a mapping of program variables to com-
ponents and executes a sequence of basic operations i.e., component/interaction cre-
ation/deletion, involving the components and interactions denoted by these variables.
For instance, the reconfiguration program in Fig. 1 (c) takes as input three adjacent
components, mapped to the variables x, y and z, respectively, removes the component
y together with its left and right interactions and reconnects x directly with z. Program-
ming reconfigurations is error-prone, because the interleaving between reconfiguration
actions and interactions in a distributed system may lead to bugs that are hard to trace.
For instance, if a reconfiguration program removes the last component in state T (resp.
H) from the system, no token transfer interaction may fire and the system deadlocks.

We prove absence of such errors using a Hoare-style proof system [1], based on the
above logic as assertion language. For instance, the proof from Fig. 1 (c) shows that
the reconfiguration sequence applied to a component y in state H (i.e., [y]@H) in a ring
with at least h≥ 2 components in state H and at least t ≥ 1 components in state T leads
to a ring with at least h− 1 components in state H and at least t in state T; note that
the states of the components may change during the execution of the reconfiguration
program, as tokens are moved by interactions.

For reasons of proof scalability, a basic operation is specified only with regard to the
components and interactions required to avoid faulting. For instance {[x]@q} delete(x) {emp}
(resp. {〈x.out,y.in〉} disconnect(x.out,y.in) {emp}) means that delete (resp. disconnect)
requires a component (resp. interaction) and returns an empty configuration, whereas
{emp} connect(x.out,y.in) {〈x.out,y.in〉} means that connect requires nothing and
creates an interaction between the given ports of the given components. These local
specifications are plugged into a context described by a frame formula F , using the
frame rule {φ} P {ψ}⇒ {φ∗

�� ��F } P {ψ∗F}; for readability, the frame formulæ (from
the preconditions of the conclusion of the frame rule applications) are enclosed in boxes.



The proof also uses the consequence rule {φ} P {ψ} ⇒ {φ′} P {ψ′} that applies if
φ′ is stronger than φ and ψ′ is weaker than ψ. The side conditions of the consequence
rule require checking the validity of the entailments ringh,t(y) |= ∃x∃z . 〈x.out,y.in〉 ∗
[y]@H ∗ 〈y.out,z.in〉 ∗ chainh−1,t(z,x) and chainh−1,t(z,x) ∗ 〈x.out,z.in〉 |= ringh−1,t(z),
for all h≥ 2 and t ≥ 1. These side conditions can be automatically discharged using the
results on the decidability of entailments given in this paper. Additionally, checking the
satisfiability of a precondition is used to detect trivially valid Hoare triples.

1.2 Related Work

Formal modeling coordinating architectures of component-based systems has received
lots of attention, with the development of architecture description languages (ADL),
such as BIP [4] or REO [2]. Many such ADLs have extensions that describe pro-
grammed reconfiguration, e.g., [21,31], classified according to the underlying formal-
ism used to define their operational semantics: process algebras [13,34], graph rewrit-
ing [42,45,33], chemical reactions [44] (see the surveys [7,11]). Unfortunately, only
few ADLs support formal verification, mainly in the flavour of runtime verification
[10,17,32,22] or finite-state model checking [14].

Parameterized verification of unbounded networks of distributed processes uses
mostly hard-coded coordinating architectures (see [5] for a survey). A first attempt at
specifying architectures by logic is the interaction logic of Konnov et al. [30], a combi-
nation of Presburger arithmetic with monadic uninterpreted function symbols, that can
describe cliques, stars and rings. More structured architectures (pipelines and trees) can
be described using a second-order extension [35]. However, these interaction logics are
undecidable and lack support for automated reasoning.

Specifying parameterized component-based systems by inductive definitions is not
new. Network grammars [41,33,27] use context-free grammar rules to describe sys-
tems with linear (pipeline, token-ring) architectures obtained by composition of an un-
bounded number of processes. In contrast, we use predicates of unrestricted arities to
describe architectural styles that are, in general, more complex than trees. Moreover, we
write inductive definitions using a resource logic, suitable also for writing Hoare logic
proofs of reconfiguration programs, based on local reasoning [12].

Local reasoning about concurrent programs has been traditionally the focus of Con-
current Separation Logic (CSL), based on a parallel composition rule [37], initially
with a non-interfering (race-free) semantics [8] and later combining ideas of assume-
and rely-guarantee [39,29] with local reasoning [24,43] and abstract notions of fram-
ing [16,15,23]. However, the body of work on CSL deals almost entirely with shared-
memory multithreading programs, instead of distributed systems, which is the aim of
our work. In contrast, we develop a resource logic in which the processes do not just
share and own resources, but become mutable resources themselves.

The techniques developed in this paper are inspired by existing techniques for sim-
ilar problems in the context of Separation Logic (SL) [40]. For instance, we use an
abstract domain similar to the one defined by Brotherston et al. [9] for checking satis-
fiability of symbolic heaps in SL and reduce a fragment of the entailment problem in
our logic to SL entailment [20]. In particular, the use of existing automated reasoning
techniques for SL has pointed out several differences between the expressiveness of our



logic and that of SL. First, the configuration logic describes hypergraph structures, in
which edges are `-tuples for `≥ 2, instead of directed graphs as in SL, where ` is a pa-
rameter of the problem: considering ` to be a constant strictly decreases the complexity
of the problem. Second, the degree (number of hyperedges containing a given vertex) is
unbounded, unlike in SL, where the degree of heaps is constant. Therefore, we dedicate
an entire section (§5) to the problem of deciding the existence of a bound (and comput-
ing a cut-off) on the degree of the models of a formula, used as a prerequisite for the
encoding of the entailment problems from the configuration logic as SL entailments.

2 Definitions

We denote by N the set of positive integers. For a set A, we define A1 def
= A, Ai+1 def

= Ai×A,
for all i ≥ 0, and A+ =

⋃
i≥1 Ai, where × denotes the Cartesian product. We denote by

pow(A) the powerset of A and by mpow(A) the power-multiset (set of multisets) of A.
The cardinality of a finite set A is denoted as ||A||. By writing A ⊆fin B we mean that A
is a finite subset of B. Given integers i and j, we write [i, j] for the set {i, i+1, . . . , j},
assumed to be empty if i > j. For a tuple t = 〈t1, . . . , tn〉, we define |t| def= n, 〈t〉i

def
= ti and

〈t〉[i, j]
def
= 〈ti, . . . , t j〉. By writing x = poly(y), for given x,y∈N, we mean that there exists

a polynomial function f : N→ N, such that x≤ f (y).

2.1 Configurations

We model distributed systems as hypergraphs, whose vertices are components (i.e., the
nodes of the network) and hyperedges are interactions (i.e., describing the way the
components communicate with each other). The components are taken from a countably
infinite set C, called the universe. We consider that each component executes its own
copy of the same behavior, represented as a finite-state machine B= (P ,Q ,−→), where
P is a finite set of ports, Q is a finite set of states and −→⊆ Q ×P ×Q is a transition
relation. Intuitively, each transition q

p−→ q′ of the behavior is triggerred by a visible
event, represented by the port p. For instance, the behavior of the components of the
token ring system from Fig. 1 (a) is B = ({in,out},{H,T},{H in−→ T,T

out−→ H}). The
universe C and the behavior B= (P ,Q ,−→) are considered fixed in the rest of this paper.

We introduce a logic for describing infinite sets of configurations of distributed
systems with unboundedly many components and interactions. A configuration is a
snapshot of the system, describing the topology of the network (i.e., the set of present
components and interactions) together with the local state of each component:

Definition 1. A configuration is a tuple γ = (C ,I ,ρ), where:
– C ⊆fin C is a finite set of components, that are present in the configuration,
– I ⊆fin (C×P )+ is a finite set of interactions, where each interaction is a sequence
(c1, p1, . . . ,cn, pn) ∈ (C×P )n that binds together the ports p1, . . . , pn of the pair-
wise distinct components c1, . . . ,cn, respectively.

– ρ : C→ Q is a state map associating each (possibly absent) component, a state of
the behavior B, such that the set {c ∈ C | ρ(c) = q} is infinite, for each q ∈ Q .



The last condition requires that there is an infinite pool of components in each state
q∈Q ; since C is infinite and Q is finite, this condition is feasible. For example, the con-
figurations of the token ring from Fig. 1 (a) are ({c1, . . . ,cn},{(ci,out,c(i mod n)+1, in) |
i ∈ [1,n]},ρ), where ρ : C→ {H,T} is a state map. The ring topology is described by
the set of components {c1, . . . ,cn} and interactions {(ci,out,c(i mod n)+1, in) | i ∈ [1,n]}.

Intuitively, an interaction (c1, p1, . . . ,cn, pn) synchronizes transitions labeled by the
ports p1, . . . , pn from the behaviors (i.e., replicas of the state machine B) of c1, . . . ,cn,
respectively. The interactions are classified according to their sequence of ports, called
the interaction type and let Inter def

= P+ be the set of interaction types; an interaction
type models, for instance, the passing of a certain kind of message (e.g., request, ac-
knowledgement, etc.). From an operational point of view, two interactions that differ
by a permutation of indices e.g., (c1, p1, . . . ,cn, pn) and (ci1 , pi1 , . . . ,cin , pin) such that
{i1, . . . , in}= [1,n], are equivalent, since the set of transitions is the same; nevertheless,
we chose to distinguish them in the following, exclusively for reasons of simplicity.

Note that Def. 1 allows configurations with interactions that involve absent compo-
nents (i.e., not from the set C of present components in the given configuration). The
following definition distinguishes such configurations:

Definition 2. Let γ = (C ,I ,ρ) be a configuration. An interaction (c1, p1, . . . ,cn, pn) is
loose in γ if and only if ci 6∈ C , for some i ∈ [1,n]. If I contains at least one interaction
that is loose in γ, we say that γ is loose. An interaction (resp. configuration) that is not
loose is said to be tight.

For instance, every configuration of the system from Fig. 1 (a) is tight and becomes
loose if a component is deleted. Moreover, the reconfiguration program from Fig. 1 (c)
manipulates tight configurations only. In particular, loose configurations are useful for
the definition of a composition operation, as the union of disjoint sets of components
and interactions:

Definition 3. The composition of two configurations γi = (Ci,Ii,ρ), for i = 1,2, such
that C1 ∩C2 = /0 and I1 ∩ I2 = /0, is defined as γ1 • γ2

def
= (C1 ∪C2,I1 ∪ I2,ρ). The com-

position γ1 • γ2 is undefined if C1∩C2 6= /0 or I1∩ I2 6= /0.

Note that a tight configuration may be the result of composing two loose configura-
tions, whereas the composition of tight configurations is always tight. The example
below shows that, in most cases, a non-trivial decomposition of a tight configuration
necessarily involves loose configurations:

Example 1. Let γi =(Ci,Ii,ρ) be loose configurations, where Ci = {ci}, Ii = {(ci,out,c3−i, in)},
for all i= 1,2. Then γ

def
= γ1•γ2 is the tight configuration γ=({c1,c2},{(c1,out,c2, in),(c2,out,c1, in)},ρ).

The only way of decomposing γ into two tight subconfigurations γ′1 and γ′2 is taking
γ′1

def
= γ and γ′2

def
= ( /0, /0,ρ), or viceversa. �

In analogy with graphs, the degree of a configuration is the maximum number of inter-
actions from the configuration that involve a (possibly absent) component:

Definition 4. The degree of a configuration γ=(C ,I ,ρ) is defined as δ(γ)
def
= maxc∈C δc(γ),

where δc(γ)
def
= ||{(c1, p1, . . . ,cn, pn) ∈ I | c = ci, i ∈ [1,n]}||.

For instance, the configuration of the system from Fig. 1 (a) has degree two.



2.2 Configuration Logic

Let V and A be countably infinite sets of variables and predicates, respectively. For
each predicate A ∈ A, we denote its arity by #A. The formulæ of the Configuration
Logic (CL) are described inductively by the following syntax:

φ := emp | [x] | 〈x1.p1, . . . ,xn.pn〉 | x@q | x = y | x 6= y | A(x1, . . . ,x#A) | φ∗φ | ∃x . φ

where x,y,x1, . . . ∈ V, q ∈ Q and A ∈ A. A formula [x], 〈x1.p1, . . . ,xn.pn〉, x@q and
A(x1, . . . ,x#A) is called a component, interaction, state and predicate atom, respectively.
Sometimes, we use the shorthand [x]@q def

= [x] ∗ x@q. Intuitively, the formula [x]@q ∗
[y]@q′ ∗ 〈x.out,y.in〉 ∗ 〈x.in,y.out〉 describes a configuration consisting of two distinct
components, denoted by the values of x and y, in states q and q′, respectively, and
two interactions binding the out port of one to the in port of the other component. For
instance, γ = γ1 • γ2 from Example 1 is such a configuration.

A formula is said to be pure if and only if it consists of state atoms, equalities and
disequalities. A formula with no occurrences of predicate atoms (resp. existential quan-
tifiers) is called predicate-free (resp. quantifier-free). A variable is free if it does not oc-
cur within the scope of an existential quantifier and let fv(φ) be the set of free variables
of φ. A sentence is a formula with no free variables. A substitution φ[x1/y1 . . .xn/yn]
replaces simultaneously every free occurrence of xi by yi in φ, for all i ∈ [1,n]. Before
defining the semantics of CL formulæ, we introduce the set of inductive definitions that
assigns meaning to predicates:

Definition 5. A set of inductive definitions (SID) ∆ consists of rules A(x1, . . . ,x#A)←
φ, where x1, . . . ,x#A are pairwise distinct variables, called parameters, such that fv(φ)⊆
{x1, . . . ,x#A}. The rule A(x1, . . . ,x#A)← φ defines A and we denote by def∆(A) the set
of rules from ∆ that define A.

Note that having distinct parameters in a rule is without loss of generality, as e.g., a rule
A(x1,x1)← φ can be equivalently written as A(x1,x2)← x1 = x2 ∗φ. As a convention,
we shall always use the names x1, . . . ,x#A for the parameters of a rule that defines A.

The semantics of CL formulæ is defined by a satisfaction relation γ |=ν

∆
φ between

configurations and formulæ. This relation is parameterized by a store ν : V→ C map-
ping the free variables of a formula into components from the universe (possibly absent
from γ) and an SID ∆. We write ν[x← c] for the store that maps x into c and agrees with
ν on all variables other than x. The definition of the satisfaction relation is by induction
on the structure of formulæ, where γ = (C ,I ,ρ) is a configuration (Def. 1):

γ |=ν

∆
emp ⇐⇒ C = /0 and I = /0

γ |=ν

∆
[x] ⇐⇒ C = {ν(x)} and I = /0

γ |=ν

∆
〈x1.p1, . . . ,xn.pn〉 ⇐⇒ C = /0 and I = {(ν(x1), p1, . . . ,ν(xn), pn)}

γ |=ν

∆
x@q ⇐⇒ γ |=ν

∆
emp and ρ(ν(x)) = q

γ |=ν

∆
x∼ y ⇐⇒ γ |=ν

∆
emp and ν(x)∼ ν(y), for all ∼∈ {=, 6=}

γ |=ν

∆
A(y1, . . . ,y#A) ⇐⇒ γ |=ν

∆
φ[x1/y1, . . . ,x#A/y#A], for some rule

A(x1, . . . ,x#A)← φ from ∆

γ |=ν

∆
φ1 ∗φ2 ⇐⇒ exist γ1,γ2, such that γ = γ1 • γ2 and γi |=ν

∆
φi, for i = 1,2

γ |=ν

∆
∃x . φ ⇐⇒ γ |=ν[x←c]

∆
φ, for some c ∈ C



If φ is a sentence, the satisfaction relation γ |=ν

∆
φ does not depend on the store, written

γ |=∆ φ, in which case we say that γ is a model of φ. If φ is a predicate-free formula, the
satisfaction relation does not depend on the SID, written γ |=ν φ. A formula φ is satisfi-
able if and only if the sentence ∃x1 . . .∃xn . φ has a model, where fv(φ) = {x1, . . . ,xn}.
A formula φ entails a formula ψ, written φ |=∆ ψ if and only if, for any configuration γ

and store ν, we have γ |=ν

∆
φ only if γ |=ν

∆
ψ.

2.3 Separation Logic

Separation Logic (SL) [40] will be used in the following to prove several technical re-
sults concerning the decidability and complexity of certain decision problems for CL.
For self-containment reasons, we define SL below. The syntax of SL formulæ is de-
scribed by the following grammar:

φ := emp | x0 7→ (x1, . . . ,xK) | x = y | x 6= y | A(x1, . . . ,x#A) | φ∗φ | ∃x . φ

where x,y,x0,x1, . . . ∈ V, A ∈ A and K ≥ 1 is an integer constant. Formulæ of SL are
interpreted over finite partial functions h : C ⇀fin CK, called heaps2, by a satisfaction
relation h ν φ, defined inductively as follows:

h ν

∆
emp ⇐⇒ h= /0

h ν

∆
x0 7→ (x1, . . . ,xK) ⇐⇒ dom(h) = {ν(x0)} and h(ν(x0)) = 〈ν(x1), . . . ,ν(xK)〉

h ν φ1 ∗φ2 ⇐⇒ there exist h1,h2 such that dom(h1)∩dom(h2) = /0,
h= h1∪h2 and hi ν

∆
φi, for both i = 1,2

where dom(h)
def
= {c ∈ C | h(c) is defined} is the domain of the heap and (dis-)equalities,

predicate atoms and existential quantifiers are defined same as for CL.

2.4 Decision Problems

We define the decision problems that are the focus of the upcoming sections. As usual,
a decision problem is a class of yes/no queries that differ only in their input. In our case,
the input consists of an SID and one or two predicates, written between square brackets.

Definition 6. We consider the following problems, for a SID ∆ and predicates A,B∈A:

1. Sat[∆,A]: is the sentence ∃x1 . . .∃x#A . A(x1, . . . ,x#A) satisfiable for ∆?
2. Tight[∆,A]: is every model γ of the sentence ∃x1 . . .∃x#A . A(x1, . . . ,x#A) a tight

configuration?
3. Bnd[∆,A]: is the set {δ(γ) | γ |=∆ ∃x1 . . .∃x#A . A(x1, . . . ,x#A)} finite?
4. Entl[∆,A,B]: does A(x1, . . . ,x#A) |=∆ ∃x#B+1 . . .∃x#A . B(x1, . . . ,x#B) hold?

We define the size of a formula φ as the total number of occurrences of symbols needed
to write it down, denoted by size(φ). The size of a SID ∆ is size(∆) def

= ∑A(x1,...,x#A)←φ∈∆ size(φ)+
#A+1. Other parameters of a SID ∆ are its:

2 We use the universe C here for simplicity, the definition works with any countably infinite set.



– maximal arity, denoted as arity(∆) def
= max{#A | A(x1, . . . ,x#A)← φ ∈ ∆},

– width, denoted as width(∆) def
= max{size(φ) | A(x1, . . . ,x#A)← φ ∈ ∆},

– maximal interaction size, denoted as intersize(∆) def
= max{n | 〈x1.p1, . . . ,xn.pn〉 occurs in φ,

A(x1, . . . ,x#A)← φ ∈ ∆}.
For each decision problem P[∆,A,B], we consider its (k, `)-bounded versions P(k,`)[∆,A,B],
obtained by restricting the predicates and interaction atoms occurring ∆ to arity(∆)≤ k
and intersize(∆) ≤ `, respectively, where k and ` are either positive integers or infin-
ity. We consider, for each P[∆,A,B], the subproblems P(k,`)[∆,A,B] corresponding to
the three cases (1) k < ∞ and ` = ∞, (2) k = ∞ and ` < ∞, and (3) k = ∞ and ` = ∞.
As we explain next, this is because, for the decision problems considered (Def. 6), the
complexity for the case k < ∞, ` < ∞ matches the one for the case k < ∞, `= ∞.

Moreover, for each problem P[∆,A] (resp. P[∆,A,B]), we consider its general ver-
sion P[∆,φ] (resp. P[∆,φ,ψ]), where φ and ψ are CL formulæ, whose predicates are
interpreted by the rules in ∆. The generalized problems P[∆,φ] involving one predi-
cate atom (points 1 and 3 of Def. 6) can be reduced to their restricted versions P[∆,A],
by introducing a fresh predicate Aφ (not occurring in ∆), of arity n ≥ 0 and a rule
Aφ(x1, . . . ,xn)← φ, where fv(φ) = {x1, . . . ,xn}. This reduction is linear in the size of
the input and changes none of the following complexity results. Concerning the gener-
alized entailment problem Entl[∆,φ,ψ], the reduction to the problem Entl[∆,A,B] (Def.
6 4) might affect its decidability status, which is subject to syntactic restrictions on the
rules in ∆ (details will be given in §6).

Satisfiability (1) and entailment (4) arise naturally during verification of reconfigu-
ration programs. For instance, Sat[∆,φ] asks whether a specification φ of a set configu-
rations (e.g., a pre-, post-condition, or a loop invariant) is empty or not (e.g., an empty
precondition typically denotes a vacuous verification condition), whereas Entl[∆,φ,ψ]
is used as a side condition for the Hoare rule of consequence, as in e.g., the proof from
Fig. 1 (c). Moreover, entailments must be proved when checking inductiveness of a
user-provided loop invariant.

In contrast, the applications of the tightness (2) and boundedness (3) problems are
less obvious and require a few explanations. The Tight[∆,φ] problem is relevant in
the context of compositional verification of distributed systems. Suppose we have a
distributed system consisting of two interacting subsystems, whose sets of initial con-
figurations are described by φ1 and φ2, respectively i.e., the initial configurations of
the system are described by φ1 ∗ φ2. The compositional verification of a reconfigura-
tion program P reduces checking the validity of a Hoare triple {φ1 ∗φ2} P {ψ1 ∗ψ2}
to checking the validity of the simpler {φi} P {ψi}, for i = 1,2. Unfortunately, this
appealing method faces the problem of interference between the subsystems described
by φ1 and φ2, namely the loose interactions of φi might connect to present compo-
nents of φ3−i and change their states during the execution. In this case, it is sufficient
to infer the sets of cross-boundary interactions Fi,3−i, describing those interactions
from φi that connect to components from φ3−i, and check the validity of the triples
{φi ∗F3−i,i} P {ψi ∗F3−i,i}, under a relaxed semantics which considers that the inter-
actions in F3−i,i can fire anytime, or according to the order described by some regular
language. However, if Tight[∆,φ1] (resp. Tight[∆,φ2]) has a negative answer, the set of
cross-boundary interactions may be unbounded, hence not representable by a finite sep-



arating conjunction of interaction atoms F1,2 (resp. F2,1). Thus, the tightness problem is
important in establishing necessary conditions under which a compositional proof rule
can be applied to checking correctness of reconfigurations in a distributed system.

The Bnd[∆,φ] problem is used to check a necessary condition for the decidability
of entailments i.e., Entl[∆,φ,ψ]. If Bnd[∆,φ] has a positive answer, we can reduce the
problem Entl[∆,φ,ψ] to an entailment problem for SL, which is always interpreted over
heaps of bounded degree [20]. Otherwise, the decidability status of the entailment prob-
lem is open, for configurations of unbounded degree, such as the one described by the
example below.

Example 2. The following SID describes star topologies with a central controller con-
nected to an unbounded number of workers stations:

Star(x)← [x]∗Worker(x), Worker(x)← emp | ∃y . 〈x.out,y.in〉 ∗ [y]∗Worker(x) �

3 Satisfiability

We show that the satisfiability problem (Def. 6, point 1) is decidable, using a method
similar to the one pioneered by Brotherston et al. [9], for checking satisfiability of in-
ductively defined symbolic heaps in SL. We recall that a formula π is pure if and only
if it is a separating conjunction of equalities, disequalities and state atoms.

Definition 7. The closure cl(π) of a pure formula π is the limit of the sequence π0,π1,π2, . . .
such that π0 = π and, for each i≥ 0, πi+1 is obtained by joining (with ∗) all of the fol-
lowing formulæ to πi:

– x = z, where x and z are the same variable, or x = y and y = z both occur in πi,
– x 6= z, where x = y and y 6= z both occur in πi, or
– y@q, where x@q and x = y both occur in πi.

Because only finitely many such formulæ can be added, the sequence of pure formulæ
from Def. 7 is bound to stabilize after polynomially many steps. A pure formula is
satisfiable if and only if its closure does not contain contradictory literals i.e., x = y and
x 6= y, or x@q and x@q′, for q 6= q′ ∈ Q . We write x ≈π y (resp. x 6≈πy) if and only if
x = y (resp. x 6= y) occurs in cl(π) and not(x≈π y) (resp. not(x 6≈πy)) whenever x≈π y
(resp. x 6≈πy) does not hold. Note that e.g., not(x≈π y) is not the same as x 6≈πy.

Lemma 1. A pure formula π is satisfiable if and only if the following hold:

1. for all x,y ∈ fv(π), x = y and x 6= y do not occur both in cl(π),
2. for all x ∈ fv(π) and q 6= r ∈ Q , x@q and x@r do not occur both in cl(π).

Proof. A pure formula π is satisfiable if and only if there exists a store ν and a configu-
ration ( /0, /0,ρ), such that ( /0, /0,ρ) |=ν π. “⇐” It is easy to see that ≈π is an equivalence
relation, for each pure formula π. Given any state map ρ, we define ν by assigning each
equivalence class of ≈π a distinct component c, such that ρ(c) = q if y@q occurs in π,
for a variable y in the class. By the conditions of the Lemma, ρ and ν are well defined
and we have ( /0, /0,ρ) |=ν π, by definition. “⇒” If ( /0, /0,ρ) |=ν π then ( /0, /0,ρ) |=ν cl(π),
because each additional formula in cl(π) is a logical consequence of π. Since cl(π) is
satisfiable, the two conditions of the Lemma must hold. ut



Base tuples constitute the abstract domain used by the algorithms for checking sat-
isfiability (point 1 of Def. 6) and boundedness (point 3 of Def. 6), defined as follows:

Definition 8. A base tuple is a triple t= (C ],I ],π), where:
– C ] ∈mpow(V) is a multiset of variables denoting present components,
– I ] : Inter → mpow(V+) maps each interaction type τ ∈ Inter into a multiset of

tuples of variables of length |τ| each, and
– π is a pure formula.

A base tuple is called satisfiable if and only if π is satisfiable and the following hold:
1. for all x,y ∈ C ], not(x≈π y),
2. for all τ ∈ Inter, 〈x1, . . . ,x|τ|〉,〈y1, . . . ,y|τ|〉 ∈ I ](τ), there exists i ∈ [1, |τ|] such that

not(xi ≈π yi),
3. for all τ ∈ Inter, 〈x1, . . . ,x#τ〉 ∈ I ](τ) and 1≤ i < j ≤ |τ|, we have not(xi ≈π x j).

We denote by SatBase the set of satisfiable base tuples.

Note that a base tuple (C ],I ],π) is unsatisfiable if C ] (I ]) contains the same variable
(tuple of variables) twice (for the same interaction type), hence the use of multisets in
the definition of base tuples. It is easy to see that checking the satisfiability of a given
base tuple (C ],I ],π) can be done in time poly(||C ]||+∑τ∈Inter ||I ](τ)||+ size(π)).

We define a partial composition operation on satisfiable base tuples, as follows:

(C ]
1 ,I

]
1 ,π1)⊗ (C ]

2 ,I
]
2 ,π2)

def
= (C ]

1 ∪C ]
2 ,I

]
1 ∪ I ]

2 ,π1 ∗π2)

where the union of multisets is lifted to functions Inter→mpow(V+) in the usual way.
The composition operation ⊗ is undefined if (C ]

1 ,I
]
1 ,π1)⊗ (C ]

2 ,I
]
2 ,π2) is not satisfiable

e.g., if C ]
1 ∩C ]

2 6= /0, I ]
1(τ)∩ I ]

2(τ) 6= /0, for some τ ∈ Inter, or π1 ∗π2 is not satisfiable.
Given a pure formula π and a set of variables X , the projection π↓X removes from π

all atomic propositions α, such that fv(α) 6⊆ X . The projection of a base tuple (C ],I ],π)
on a variable set X is formally defined below:

(C ],I ],π)↓X
def
=
(
C ]∩X ,λτ . {〈x1, . . . ,x|τ|〉 ∈ I ](τ) | x1, . . . ,x|τ| ∈ X},cl(dist(I ])∗π)↓X

)
where dist(I ])

def
= ∗ τ∈Inter∗ 〈x1,...,x|τ|〉∈I ](τ)∗ 1≤i< j≤|τ| xi 6= x j

The substitution operation (C ],I ],π)[x1/y1, . . . ,xn/yn] replaces simultaneously each
xi with yi in C ], I ] and π, respectively. For a store ν, we denote by ν[x1/y1, . . . ,xn/yn] the
store such that ν[x1/y1, . . . ,xn/yn](xi)= ν(yi) and agrees with ν over V\{x1, . . . ,xn}.We
lift the composition, projection and substitution operations to sets of satisfiable base tu-
ples, as usual.

Lemma 2. Given a formula φ and a substitution σ = [x1/y1, . . . ,xn/yn], for any config-
uration (C ,I ,ρ) and store ν, (C ,I ,ρ) |=ν

∆
φσ only if (C ,I ,ρ) |=νσ φ.

Proof. By induction on the definition of |=ν

∆
. ut

Next, we define the base tuple corresponding to a quantifier- and predicate-free
formula φ = ψ∗π, where ψ consists of component and interaction atoms and π is pure.
Since, moreover, we are interested in those components and interactions that are visible



input: a SID ∆

output: µ
−→
X .∆]

1: initially µ
−→
X .∆] := λA . /0

2: for A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ ∈ ∆, with φ quantifier- and predicate-free do
3: µ

−→
X .∆](A) := µ

−→
X .∆](A)∪Base(φ,{x1, . . . ,x#A})↓x1 ,...,x#A

4: while µ
−→
X .∆] still change do

5: for r : A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ∗∗ h
`=1B`(z`1, . . . ,z

`
#B`

) ∈ ∆ do
6: if there exist t1 ∈ µ

−→
X .∆](B1), . . . , th ∈ µ

−→
X .∆](Bh) then

7: µ
−→
X .∆](A) := µ

−→
X .∆](A) ∪

(
Base(φ,{x1, . . . ,x#A})⊗

⊗h
`=1 t`[x1/z`1, . . . ,x#B`

/z`#B`
]
)
↓x1 ,...,x#A

Fig. 2: Algorithm for the Computation of the Least Solution

through a given indexed set of parameters X = {x1, . . . ,xn}, for a variable y, we denote
by {{y}}X

π
the parameter xi with the least index, such that y ≈π xi, or y itself, if no such

parameter exists. We define the following sets of formulæ:

Base(φ,X)
def
=

{
{(C ],I ],π)} , if (C ],I ],π) is satisfiable
/0 , otherwise

where C ] def
= {{{x}}X

π
| [x] occurs in ψ}

I ] def
= λ〈p1, . . . , ps〉.

{〈
{{y1}}X

π
, . . . ,{{ys}}X

π

〉
| 〈y1.p1, . . . ,ys.ps〉 occurs in ψ

}
We consider a tuple of variables

−→
X , having a variable X (A) ranging over pow(SatBase),

for each predicate A that occurs in ∆. With these definitions, each rule of ∆:

A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ∗B1(z1
1, . . . ,z

1
#B1

)∗ . . .∗Bh(zh
1, . . . ,z

h
#Bh

)

where φ is a quantifier- and predicate-free formula, induces the constraint:

X (A)⊇
(
Base(φ,{x1, . . . ,x#A})⊗

h⊗
`=1

X (B`)[x1/z`1, . . . ,x#B`
/z`#B`

]
)
↓x1 ,...,x#A (1)

Let ∆] be the set of such constraints, corresponding to the rules in ∆ and let µ
−→
X .∆]

be the tuple of least solutions of the constraint system generated from ∆, indexed by
the tuple of predicates that occur in ∆, such that µ

−→
X .∆](A) denotes the entry of µ

−→
X .∆]

correponding to A. Since the composition and projection are monotonic operations,
such a least solution exists and is unique. Moreover, since SatBase is finite, the least
solution can be attained in a finite number of steps, using a standard Kleene iteration(see
Fig. 2).

Given a base tuple (C ],I ],π) and a store ν, we define the following sets of compo-
nents and interactions, respectively:

ν(C ])
def
= {ν(x) | x ∈ C ]}

ν(I ])
def
=

⋃
〈p1,...,pn〉∈Inter

{(ν(x1), p1, . . . ,ν(xn), pn) | (x1, . . . ,xn) ∈ I ](〈p1, . . . , pn〉)}



We state below the main result leading to an elementary recursive algorithm for the
satisfiability problem (Thm. 1).

Lemma 3. Given a base tuple (C ],I ],π) ∈ µ
−→
X .∆](A)[x1/y1, . . . ,x#A/y#A], a state map

ρ and a store ν such that ( /0, /0,ρ) |=ν π, a set of components D disjoint from ν(C ]) and
a set of interactions J disjoint from ν(I ]), there exists a configuration (C ,I ,ρ), such
that (C ,I ,ρ) |=ν

∆
A(y1, . . . ,y#A), C ∩D = /0 and I ∩ J = /0.

Proof. Let σ
def
= [x1/y1, . . . ,x#A/y#A] be a substitution and (C ]

0 ,I
]
0 ,π0) ∈ µ

−→
X .∆](A) be a

base pair, such that (C ],I ],π)= (C ]
0 ,I

]
0 ,π0)σ. Since ( /0, /0,ρ) |=ν π, we obtain ( /0, /0,ρ) |=ν0

π0, by Lemma 2, where we define ν0
def
= νσ. Let

K def
= D ∪{ci | (c1, p1, . . . ,cn, pn) ∈ J , i ∈ [1,n]}

The proof is by fixpoint induction on the definition of (C ]
0 ,I

]
0 ,π0). Assume that:

(C ]
0 ,I

]
0 ,π0)∈

(
Base(ψ∗π

′,{x1, . . . ,x#A})⊗
h⊗

`=2

µ
−→
X .∆](B`)[x1/z`1, . . . ,x#B`

/z`#B`
]
)
↓x1 ,...,x#A

for a rule A(x1, . . . ,x#A)←∃y1 . . .∃ym . ψ∗π′ ∗∗ h
`=2B`(z`1, . . . ,z

`
#B`

) of ∆, such that ψ∗
π′ is quantifier-free, ψ consists of component and interaction atoms and π′ is the largest
pure subformula of ψ∗π′. Then there exist base tuples (C ]

1 ,I
]
1 ,π1), . . . ,(C ]

h ,I
]
h ,πh), such

that:
– (C ]

1 ,I
]
1 ,π1) ∈ Base(ψ∗π′,{x1, . . . ,x#A}),

– (C ]
` ,I

]
` ,π`) ∈ µ

−→
X .∆](B`)[x1/z`1, . . . ,x#B`

/z`#B`
], for all ` ∈ [2,h],

– (C ]
0 ,I

]
0 ,π0) =

(
(C ]

1 ,I
]
1 ,π1)⊗ . . .⊗ (C ]

h ,I
]
h ,πh)

)
↓x1 ,...,x#A .

From the first and last points, we deduce π0 = cl(π′ ∗∗ h
`=2(dist(I ]

` )∗π`))↓x1 ,...,x#A . Let

π′′
def
= π′ ∗∗ h

`=2(dist(I ]
` )∗π`) and define a store ν′0, by assigning each ≈π′′ -equivalence

class the following component:
– ν0(xi), if xi belongs to the class, for some i ∈ [1,#A],
– else, if the class is disjoint from {x1, . . . ,x#A} and y@q occurs in π′, for a variable y

in the class, we assign c∈C\K , such that ρ(c) = q; since π′ is satisfiable, there are
no two state atoms y@q and z@r, such that y ≈π′ z and q 6= r in π′ and, moreover,
chosing c is always possible, by the last point of Def. 1,

– otherwise, the class is assigned an arbitrary component c ∈ C\K .
Such a store exists, because π′′ is satisfiable and, moreover, ( /0, /0,ρ) |=ν′0 π′′, hence
also ( /0, /0,ρ) |=ν′0 π`, for all ` ∈ [2,h]. We define two sequences of sets of components
C1, . . . ,Ch and interactions I1, . . . ,Ih, as follows:

– C1
def
= {ν′0(y) | [y] occurs in ψ},

– I1
def
= {(ν′0(z1), p1, . . . ,ν

′
0(zt), pt) | 〈z1.p1, . . . ,zt .pt〉 occurs in ψ},

– for all ` ∈ [2,h], assume that C1, . . . ,C`−1 and I1, . . . ,I`−1 have been defined and let
us define:

D`
def
= D ∪

⋃`−1
j=1 C j ∪

⋃h
j=`+1 ν′0(C

]
j )

J`
def
= J ∪

⋃`−1
j=1 I j ∪

⋃h
j=`+1 ν′0(I

]
j )



First, we prove that D`∩ν′0(C
]
` ) = /0 and J`∩ν′0(I

]
` ) = /0 (we prove the first point,

the second using a similar argument). Suppose, for a contradiction, that c ∈ D` ∩
ν′0(C

]
` ). We distinguish the following cases:

• if c ∈ D ∩ ν′0(C
]
` ), then c ∈ D ∩ ν′0(C

]
0), because C ]

` ⊆ C ]
0 , contradiction with

D ∩ν′0(C
]
0) = D ∩ν(C ]) = /0.

• else, if c ∈ C j ∩ ν′0(C
]
` ), for some j ∈ [1, `−1], then c ∈ C j ∩D j, because

ν′0(C
]
` )⊆D j, contradiction with the inductive hypothesis C j ∩D j = /0.

• otherwise, c∈ ν′0(C
]
j )∩ν′0(C

]
` ), hence there exist variables y j ∈ C ]

j and y` ∈ C ]
` ,

such that y j ≈π′′ y`, contradiction with the fact that (C ]
j ,I

]
j ,π j)⊗ (C ]

` ,I
]
` ,π`) is

satisfiable.
Second, we apply the inductive hypothesis to obtain configurations (C`,I`,ρ), such

that (C`,I`,ρ) |=
ν′0
∆
B`(t`1, . . . , t

`
#B`

), C`∩D` = /0 and I`∩J` = /0, for all ` ∈ [2,h]. By
the definitions of D` and J`, the sets C` and I` are pairwise disjoint, respectively,

hence the composition (C ,I ,ρ) def
=•h

`=1(C`,I`,ρ) is defined. Moreover, (C ,I ,ρ) |=ν′0
∆

ψ∗π′∗∗ h
`=2B`(t`1, . . . , t

`
#B`

), hence (C ,I ,ρ) |=ν′0
∆
A(x1, . . . ,x#A), leading to (C ,I ,ρ) |=ν

A(y1, . . . ,y#A).
Finally, we are left with proving that C ∩D = /0 and I ∩ J = /0 (we prove the first
point only, the second uses a similar reasoning). Since C =

⋃h
`=1 C`, this is equiva-

lent to proving the following:
• C1∩D = /0: suppose, for a contradiction, that ν′0(y) ∈D , for a variable y, such

that [y] occurs in ψ. By the definition of ν′0, we have either ν′0(y) ∈ ν′0(C
]
0) or

ν′0(y) ∈K . Since ν′0(C
]
0)∩D = K ∩D = /0, both cases lead to a contradiction.

• C`∩D = /0, for all ` ∈ [2,h]: because C`∩D` = /0 and D ⊆D`, by definition of
D`, for all ` ∈ [2,h]. ut

Lemma 4. Given a predicate atom A(y1, . . . ,y#A), a store ν and a configuration (C ,I ,ρ),
such that (C ,I ,ρ) |=ν

∆
A(y1, . . . ,y#A), there exists a base tuple (C ],I ],π)∈ µ

−→
X .∆](A)[x1/y1, . . . ,x#A/y#A],

such that ν(C ])⊆ C , ν(I ])⊆ I and ( /0, /0,ρ) |=ν π.

Proof. By fixpoint induction on the definition of the satisfaction relation |=ν

∆
. Since

(C ,I ,ρ) |=ν

∆
A(y1, . . . ,y#A), by Lemma 2, we have (C ,I ,ρ) |=ν0

∆
A(x1, . . . ,x#A), where

ν0
def
= ν[x1/y1, . . . ,x#A/y#A]. Hence, ∆ has a rule A(x1, . . . ,x#A)← ∃y1 . . .∃ym . ψ ∗π′ ∗
∗ h

`=2B`(z`1, . . . ,z
`
#B`

), such that ψ ∗π′ is quantifier-free, ψ consists of component and
interaction atoms and π′ is pure and there exists a store ν′0, that agrees with ν0 over
x1, . . . ,x#A and configurations (C1,I1,ρ), . . . ,(C`,I`,ρ), such that:

– (C1,I1,ρ) |=ν′0 ψ∗π′,

– (C`,I`,ρ) |=
ν′0
∆

B`(z`1, . . . ,z
`
#B`

), for all ` ∈ [2,h], and
– (C ,I ,ρ) = (C1,I1,ρ)• . . .• (Ch,Ih,ρ).

We consider the following base tuples:

– (C ]
1 ,I

]
1 ,π1)

def
= Base(ψ∗π′,{x1, . . . ,x#A}),



– (C ]
` ,I

]
` ,π`) ∈ µ

−→
X .∆](B`)[x1/z`1, . . . ,x#B`

/z`#B`
], such that ν′0(C

]
` )⊆ C`, ν′0(I

]
` )⊆ I`

and ( /0, /0,ρ) |=ν′0 π`, whose existence is guaranteed by the inductive hypothesis, for
all ` ∈ [2,h].

By the definition of Base(ψ∗π′,{x1, . . . ,x#A}) and the fact that (C1,I1,ρ) |=ν′0 ψ∗π′, we
obtain ν′0(C

]
1) = C1 and ν′0(I

]
1) = I1. Since the composition•h

`=1(C`,I`,ρ) is defined,
the sets C1, . . . ,Ch and I1, . . . ,Ih are pairwise disjoint, respectively. Since ν′0(C

]
` ) ⊆ C`

and ν′0(I ])⊆ I`, for all `∈ [1,h], we deduce that
⊗h

`=1(C
]
` ,I

]
` ,π`) is satisfiable, because:

– for all 1≤ i < j ≤ h, for any two variables y ∈ C ]
i and z ∈ C ]

j we have not(y≈π′ z),

because ν′0(C
]
i )∩ν′0(C

]
j ) = /0,

– for all 1 ≤ i < j ≤ h, all τ ∈ Inter, for any two tuples 〈y1, . . . ,y|τ|〉 ∈ I ]
i (τ) and

〈z1, . . . ,z|τ|〉 ∈ I ]
j (τ), we have not(yk ≈π′ zk), for at least some k ∈ [1, |τ|], because

ν′0(I
]
i )∩ν′0(I

]
j ) = /0,

– for each tuple 〈y1, . . . ,y|τ|〉 ∈ I ]
` (〈p1, . . . , pn〉), for ` ∈ [1,h], we have not(yi ≈π′ y j),

for all 1≤ i< j≤ n, because (ν′0(y1), p1, . . . ,ν
′
0(yn), pn)∈ I`, hence ν′0(y1), . . . ,ν

′
0(yn)

are pairwise distinct,
– ( /0, /0,ρ) |=ν′0 π′ ∗∗ h

`=2π`, hence ( /0, /0,ρ) |=ν′0 π′ ∗∗ h
`=2dist(I ]

` )∗π`, by the previ-
ous point.

Then we define (C ]
0 ,I

]
0 ,π0)

def
=
(⊗h

`=1(C
]
` ,I

]
` ,π`)

)
↓x1 ,...,x#A and (C ],I ],π)

def
= (C ]

0 ,I
]
0 ,π0)[x1/y1, . . . ,x#A/y#A].

By the definition of ∆], we have:

µ
−→
X .∆](A)⊇

(
Base(ψ∗π

′,{x1, . . . ,x#A})⊗
h⊗

`=2

µ
−→
X .∆](B`)[x1/z`1, . . . ,x#B`

/z`#B`
]
)
↓x1 ,...,x#A

and, since, by the construction of (C ]
0 ,I

]
0 ,π0),

(C ]
0 ,I

]
0 ,π0)∈

(
Base(ψ∗π

′,{x1, . . . ,x#A})⊗
h⊗

`=2

µ
−→
X .∆](B`)[x1/z`1, . . . ,x#B`

/z`#B`
]
)
↓x1 ,...,x#A

we obtain (C ]
0 ,I

]
0 ,π0)∈ µ

−→
X .∆](A), leading to (C ],I ],π)∈ µ

−→
X .∆](A)[x1/y1, . . . ,x#A/y#A].

Next, we check that ν(C ]) ⊆
⋃h

`=1 ν′0(C
]
` ) ⊆

⋃h
`=1 C` = C and ν(I ]) ⊆

⋃h
`=1 ν′0(I

]
` ) ⊆⋃h

`=1 I` = I . Finally, the requirement ( /0, /0,ρ) |=ν π follows from the following:
– π = π0[x1/y1, . . . ,x#A/y#A], by the definition of (C ],I ],π),
– ( /0, /0,ρ) |=ν′0 π′ and ( /0, /0,ρ) |=ν′0 π`, for all ` ∈ [2,h],
– π0 = cl(π′ ∗∗ h

`=2dist(I ]
` )∗π`)↓x1 ,...,x#A , where ( /0, /0,ρ) |=ν′0 dist(I ]

` ) follows from
the satisfiability of (C ]

` ,I
]
` ,π`), for all ` ∈ [2,h]. ut

Lemma 5. Sat[∆,A] has a positive answer if and only if µ
−→
X .∆](A) 6= /0.

Proof. “⇐” follows from Lemma 3 and “⇒” follows from Lemma 4. ut



If the maximal arity of the predicates occurring in ∆ is bound by a constant k, no
satisfiable base tuple (C ],I ],π) can have a tuple 〈y1, . . . ,y|τ|〉 ∈ I ](τ), for some τ ∈
Inter, such that |τ| > k, since all variables y1, . . . ,y|τ| are parameters denoting distinct
components (point 3 of Def. 8). Hence, the upper bound on the size of a satisfiable base
tuple is constant, in both the k < ∞, ` < ∞ and k < ∞, `= ∞ cases, which are, moreover
indistinguishable complexity-wise (i.e., both are NP-complete). In contrast, in the cases
k = ∞, ` < ∞ and k = ∞, `= ∞, the upper bound on the size of satisfiable base tuples is
polynomial and simply exponential in size(∆), incurring a complexity gap of one and
two exponentials, respectively. The theorem below states the main result of this section:

Theorem 1. Sat(k,∞)[∆,A] is NP-complete for k ≥ 4, Sat(∞,`)[∆,A] is EXP-complete
and Sat[∆,A] is in 2EXP.

Proof. Membership (upper bounds). For non-negative integers m≤ n denote by Sn,m
def
=

n!
(n−m)! the number of ordered m-element subsets of a n-element set.

Let α = arity(∆), β = intersize(∆) and p = ||P ||. The maximum length of a satis-
fiable base tuple is B def

= α+(∑
min(α,β)
j=1 p j · Sα, j)+ (2α2 +α), that is, size of the set of

components C ] plus the size of the set of interactions I ] plus the length of the longest
pure formula π. In general, for any non-negative integer j there exists at most p j in-
teraction types of arity j with ports from P ; moreover, for any such interaction type
there exists at most Sα, j interactions relating distinct components from an α-element
set. Moreover, no such interaction exists neither if j > α nor j > β.

For any u ≤ α it holds that ∑
u
j=1 p j · Sα, j ≤ puαu (an easy check by induction on

u). We use the inequality above with u = min(α,β) and obtain that B ≤ 2α+ 2α2 +

pmin(α,β)αmin(α,β) def
= B∗. We distinguish the three cases:

1. k < ∞, `= ∞: since α≤ k then α is constant and B∗ = O(1),
2. k = ∞, ` < ∞: since β≤ ` and α = O(size(∆)) then B∗ = poly(size(∆)),
3. k = ∞, `= ∞: since α = O(size(∆)) then B∗ = 2poly(size(∆)).

Let N def
= 2B∗ , that is, (an over-approximation of) the total number of base tuples. Clearly,

N is constant in case (1) and respectively 2poly(size(∆)) and 22poly(size(∆))
in cases (2), (3).

Let L be the number of predicates occuring in ∆ and H be the maximum number of
predicates used in a term in ∆. Let observe that both L and H are in general O(size(∆)).
Then the least solution µ

−→
X .∆] has at most N base tuples for each predicate, hence

at most L ·N base tuples. Furthermore, for each rule of ∆ the time to check and/or
produce the base tuple (C ]

0 ,I
]
0 ,π0) with respect to the rule constraint (1) and given

arguments (C ]
j ,I

]
j ,π j) j=1,h is polynomial poly(B∗,size(∆))). That is, both composition

and projection take at most (H +1)B∗+ size(∆)3 time as they need to process (union or
scan) at most H +1 base tuples of length B∗ each plus the closure of pure formula with
at most size(∆) variables.
1. k < ∞, ` = ∞: We define a non-determinstic algorithm as follows. Let (∆,A) be

the input instance. We guess a witness 〈W1, . . . ,WK〉 for a least solution, where
1 ≤ K ≤ L ·N and each Wi entry is of the form (Ti,ri,ei,1, . . . ,ei,hi), where Ti is
a base tuple, ri an index of a rule of ∆ and ei,1, . . . ,ei,h are index values from
{i+1, . . . ,K} for 0 ≤ hi ≤ H. The length of every witness entry is therefore at



most B∗+ dlog2(size(∆))e+Hdlog2(L ·N)e. As N is constant when k < ∞, and
L and H are O(size(∆)) it follows that the number of guesses is polynomial for
building 〈W1, . . . ,WK〉. We now check that 〈W1, . . . ,WK〉 represents indeed a valid
computation of a base tuples from the least solution i.e., (C ],I ],π) ∈ µ

−→
X .∆](A).

For this, we need to check: (a) every entry is well-formed, that is, the rule indexed
by ri instantiates precisely hi predicates; moreover, for every 1 ≤ j ≤ hi the index
ei, j designates an entry Wei, j whose rule defines the j-th predicate instantiated by
the rule ri; (b) the base tuple of every entry is satisfiable and correctly computed,
that is, Ti is the result of applying the constraint (1) for rule ri with actual arguments
Tei,1 , . . . ,Tei,hi

from the referred entries; (c) the rule r1 of the first entry W1 defines
the predicate A. Again, as B∗ and N are constant in this case, all these checks are
done in polynomial time. Since both the generation and the checking of the witness
are polynomial time, this ensures membership in NP.

2. k = ∞, ` < ∞: Consider the computation of the least solution µ
−→
X .∆] using standard

Kleene iteration. At every step, a rule of ∆ and a tuple of at most H base tuples
arguments are selected to produce a new base tuple. Thus, in the worst case, at
most size(∆) rules in combination with at most NH base tuples need to be selected
and evaluated. If no new base tuple is generated the fixpoint is reached and the
algorithms stops. Since there are at most L ·N base tuples in the least solution, the
total time will be therefore L ·N · size(∆) ·NH · t(B∗,size(∆)) where t(B∗,size(∆))
is the (polynomial) time to process one selection. It is an easy check that the above
is 2poly(size(∆)) since N = 2poly(size(∆)) in this case.

3. k = ∞, `= ∞: Following the same reasoning as in the previous case the complexity
is 22poly(size(∆))

as N = 22poly(size(∆))
in this case.

Hardness (lower bounds). The restricted fragment of CL to ∗, =, 6= is equisatisfiable
to the restricted fragment of SL restricted to ∗, =, 6=. The satisfiability of the above SL
fragment has been proven respectively NP-hard, if the arities of predicates are bounded
by a constant k ≥ 3 [9, Theorem 4.9] and EXP-hard, in general [9, Theorem 4.15]. Yet,
the reductions considered in these proofs rely on the use of a predefined nil constant
symbol in the SL logic; this constant can be nevertheless replaced by a variable con-
sistently propagated along the SID, that is, at the price of increasing the arities of all
predicates by one. Therefore, it follows immediately that Sat(k,∞)[∆,φ] is NP-hard for
k ≥ 4 and Sat(∞,`)[∆,φ], Sat[∆,φ] are both EXP-hard. ut

Example 3. The doubly-exponential upper bound for the algorithm computing the least
solution of a system of constraints of the form (1) is necessary, in general, as illustrated
by the following worst-case example. Let n be a fixed parameter and consider the n-arity
predicates A1, . . . ,An defined by the following SID:

Ai(x1, . . . ,xn)→∗ n−i
j=0 Ai+1(x1, . . . ,xi−1, [xi, . . . ,xn]

j) , for all i ∈ [1,n−1]
An(x1, . . . ,xn)→ 〈x1.p, . . . ,xn.p〉
An(x1, . . . ,xn)→ emp

where, for a list of variables xi, . . . ,xn and an integer j ≥ 0, we write [xi, . . . ,xn]
j for the

list rotated to the left j times (e.g., [x1,x2,x3,x4,x5]
2 = x3,x4,x5,x1,x2). In this example,

when starting with A1(x1, . . . ,xn) one eventually obtains predicate atoms An(xi1 , . . . ,xin),



for any permutation xi1 , . . . ,xin of x1, . . . ,xn. Since An may choose to create or not an
interaction with that permutation of variables, the total number of base tuples generated
for A1 is 2n!. That is, the fixpoint iteration generates 22O(n logn)

base tuples, whereas the
size of the input of Sat[∆,A] is poly(n). �

4 Tightness

The tightness problem (Def. 6, point 2) is the complement of a problem slightly stronger
than satisfiability (1): given a SID ∆ and a formula φ, such that fv(φ) = {x1, . . . ,xn}, the
looseness problem Loose[∆,A] asks for the existence of a loose configuration γ (Def. 2),
such that γ |=∆ ∃x1 . . .∃xn . φ. We establish upper and lower bounds for the complexity of
the looseness problem by a reduction to and from the satisfiability problem. The bounds
for the tightness problem follow by standard complementation of the complexity classes
for the looseness problem.

From Looseness to Satisfiability. Let ∆ be a given SID and A be a predicate. For each
predicate B that occurs in ∆, we consider a fresh predicate B′, not occurring in ∆, such
that #B′ = #B+1. The SID ∆̃ consists of ∆ and, for each rule of ∆ of the form:

B0(x1, . . . ,x#B0)←∃y1 . . .∃ym . φ∗B1(t1
1 , . . . , t

1
#B1

)∗ . . .∗Bh(th
1 , . . . , t

h
#Bh

)

where φ is a quantifier- and predicate-free formula, ∆̃ has the following rules:

B′0(x1, . . . ,x#B0+1)←∃y1 . . .∃ym . φ ∗ x#B0+1 = z ∗ B1(t1
1 , . . . , t

1
#B1

) ∗ . . .∗ Bh(th
1 , . . . , t

h
#Bh

)

if z occurs in an interaction atom from φ, and:

B′0(x1, . . . ,x#B0+1)← ∃y1 . . .∃ym . φ∗B1(t1
1 , . . . , t

1
#B1

)∗ . . .∗B′i(t i
1, . . . , t

i
#Bi

,x#B0+1)

∗ . . .∗Bh(th
1 , . . . , t

h
#Bh

)

for some i ∈ [1,h], if h ≥ 1. Moreover, for each rule of ∆ of the form above, with no
predicate atoms (i.e., h = 0), ∆̃ contains the rule:

B′(x1, . . . ,x#B+1)← ∃y1 . . .∃ym . φ∗ [x#B0+1]

if and only if φ contains no predicate atoms. Finally, there is a fresh predicate Ã, of arity
#A, with a rule:

Ã(x1, . . . ,x#A)←∃y . A′(x1, . . . ,x#A,y)∗ [y]

Intuitively, the last parameter of a B′ predicate binds to an arbitrary variable of an in-
teraction atom. A configuration γ is loose if and only if the value (component) of some
variable occurring in an interaction atom is absent, in which case the component can
be added to γ (without clashing with a present component of γ) by the last rule. The
reduction is polynomial, since the number of rules in ∆̃ is linear in the number of rules
in ∆ and the size of each newly added rule is increased by a constant. The following
lemma states the correctness of the reduction:



Lemma 6. Given a SID ∆ and a predicate A, the problem Loose[∆,A] has a positive
answer if and only if the problem Sat[∆̃, Ã] has a positive answer.

Proof. “⇒” Let γ
def
= (C ,I ,ρ) be a loose configuration, such that γ |=ν

∆
A(x1, . . . ,x#A),

for some store ν. Since γ is loose, there exists an interaction (c1, p1, . . . ,cn, pn)∈ I , such
that ci 6∈ C , for some i ∈ [1,n]. We prove that γ |=ν[y←ci]

∆̃
A′(x1, . . . ,x#A,y), by fixpoint

induction on the definition of γ |=ν

∆
A(x1, . . . ,x#A). This is sufficient, because then we

obtain (C ∪{ci},I ,ρ) |=ν

∆̃
Ã(x1, . . . ,x#A), thus Sat[∆̃, Ã] has a positive answer. Consider

the rule of ∆:

A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ∗B1(t1
1 , . . . , t

1
#B1

)∗ . . .∗Bh(th
1 , . . . , t

h
#Bh

)

where φ is quantifier- and predicate-free and c′1, . . . ,c
′
m ∈ C are components, such that

(C ,I ,ρ) |=ν′
∆

φ∗B1(t1
1 , . . . , t

1
#B1

)∗ . . .∗Bh(th
1 , . . . , t

h
#Bh

), where ν′
def
= ν[y1← c′1, . . . ,ym←

c′m]. We distinguish the following cases:
– if (c1, p1, . . . ,cn, pn) ∈ I because of an interaction atom 〈z1.p1, . . . ,zn.pn〉 from φ,

such that ν′(zi)= ci, for all i∈ [1,n], then (C ,I ,ρ) |=ν′[y←ci]

∆̃
φ∗y= zi∗B1(t1

1 , . . . , t
1
#B1

)∗

. . .∗Bh(th
1 , . . . , t

h
#Bh

), hence (C ,I ,ρ) |=ν[y←ci]

∆̃
A′(x1, . . . ,x#A,y), by the definition of

∆̃.
– else (c1, p1, . . . ,cn, pn) ∈ I because of a configuration γ′, such that γ = γ′ • γ′′, for

some configuration γ′′, and γ′ |=ν′
∆
Bi(t i

1, . . . , t
i
#Bi

). By the inductive hypothesis, we

obtain γ′ |=ν′[y←ci]
∆

B′i(t i
1, . . . , t

i
#Bi

,y), hence γ |=ν[y←ci]
∆

A′(x1, . . . ,x#A,y), because ∆̃

contains the rule:

A′(x1, . . . ,x#A+1)← ∃y1 . . .∃ym . φ∗B1(t1
1 , . . . , t

1
#B1

)∗ . . .∗B′i(t i
1, . . . , t

i
#Bi

,x#A+1)

∗ . . .∗Bh(th
1 , . . . , t

h
#Bh

)

and γ′′ |=ν′ φ∗B1(t1
1 , . . . , t

1
#B1

)∗ . . .∗B′i−1(t i−1
1 , . . . , t i−1

#Bi−1
)∗B′i+1(t i+1

1 , . . . , t i+1
#Bi+1

)∗
. . .∗Bh(th

1 , . . . , t
h
#Bh

) follows from γ = γ′ • γ′′.

”⇐” Let γ
def
= (C ,I ,ρ) be a configuration and ν be a store, such that γ |=ν

∆̃
Ã(x1, . . . ,x#A).

Since the only rule of ∆̃ that defines Ã is:

Ã(x1, . . . ,x#A)←∃y . A′(x1, . . . ,x#A,y)∗ [y]

there exists a component c ∈ C , such that (C \{c},I ,ρ) |=ν[y←c]
∆̃

A′(x1, . . . ,x#A,y). We
prove the following:

– there exists an interaction (c1, p1, . . . ,cn, pn) ∈ I , such that ci = c, and
– (C \{c},I ,ρ) |=ν

∆
A(x1, . . . ,x#A),

by fixpoint induction on the definition of (C \{c},I ,ρ) |=ν[y←c]
∆̃

A′(x1, . . . ,x#A,y). Based

on the definition of ∆̃, we distinguish the following cases, where φ is quantifier- and
predicate-free, c′1, . . . ,c

′
m ∈ C are components and ν′

def
= ν[y1← c′1, . . . ,ym← c′m]:



– (C \{c},I ,ρ) |=ν′[y←c]
∆̃

φ ∗ y = z ∗ B1(t1
1 , . . . , t

1
#B1

) ∗ . . .∗ Bh(th
1 , . . . , t

h
#Bh

), where
z occurs in an interaction atom from φ. In this case, there exists an interaction
(c1, p1, . . . ,cn, pn)∈ I , such that c= ci, for some i∈ [1,n]. Moreover, (C \{c},I ,ρ) |=ν

∆

A(x1, . . . ,x#A), because ∆ has a rule:

A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ∗B1(t1
1 , . . . , t

1
#B1

)∗ . . .∗Bh(th
1 , . . . , t

h
#Bh

)

such that (C \{c},I ,ρ) |=ν

∆
φ∗B1(t1

1 , . . . , t
1
#B1

) ∗ . . .∗ Bh(th
1 , . . . , t

h
#Bh

).

– (C \{c},I ,ρ) |=ν′[y←c]
∆̃

φ∗B1(t1
1 , . . . , t

1
#B1

)∗. . .∗B′i(t i
1, . . . , t

i
#Bi

,y)∗. . .∗Bh(th
1 , . . . , t

h
#Bh

).
In this case, there exists configurations γ′ and γ′′, such that (C \{c},I ,ρ) = γ′ • γ′′,
γ′ |=ν′[y←c]

∆̃
B′i(t i

1, . . . , t
i
#Bi

,y) and γ′′ |=ν

∆
φ ∗B1(t1

1 , . . . , t
1
#B1

) ∗ . . . ∗Bh(th
1 , . . . , t

h
#Bh

).
By the inductive hypothesis, there exists an interaction (c1, p1, . . . ,cn, pn) in γ′, such
that c = ci, for some i∈ [1,n] and γ′ |=ν

∆
Bi(t i

1, . . . , t
i
#Bi

). Then (c1, p1, . . . ,cn, pn)∈ I
and (C \{c},I ,ρ) |=ν

∆
A(x1, . . . ,x#A), since ∆ has a rule:

A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ∗B1(t1
1 , . . . , t

1
#B1

)∗ . . .∗Bh(th
1 , . . . , t

h
#Bh

)

such that γ′ • γ′′ |=ν′
∆

φ∗B1(t1
1 , . . . , t

1
#B1

) ∗ . . .∗ Bh(th
1 , . . . , t

h
#Bh

).

– (C \{c},I ,ρ) |=ν′[y←c]
∆̃

φ∗ [y] this case contradicts the semantics of CL. ut

From Satisfiability to Looseness. Given a SID ∆ and a predicate A, we build a SID ∆̃

that defines a predicate Ã, of equal arity, not occurring in ∆, such that Sat[∆,A] has a
positive answer if and only if there exists a loose configuration γ and a store ν, such
that γ |=ν

∆̃
Ã(x1, . . . ,x#A). The rules of ∆̃ are the rules of ∆, to which the following rule

is added, for some ports p1, p2 ∈ P :

Ã(x1, . . . ,x#A)←∃y1∃y2 . A(x1, . . . ,x#A)∗ 〈y1.p1,y2.p2〉

This reduction is polynomial, because we add one rule, of size linear on #A. The fol-
lowing lemma states the correctness of the reduction:

Lemma 7. Given a SID ∆ and a predicate A, the problem Sat[∆,A] has a positive
answer if and only if the problem Loose[∆̃, Ã] has a positive answer.

Proof. “⇒” If Sat[∆,A] has a positive answer, there exists a configuration γ
def
= (C ,I ,ρ)

and a store ν, such that γ |=ν

∆
A(x1, . . . ,x#A). Consider the configuration γ′

def
= ( /0,{(c1, p1,c2, p2)},ρ),

for some components c1,c2 6∈ C . Then the composition γ • γ′ is defined and we have
γ • γ′ |=ν[y1←c1,y2←c2]

∆
A(x1, . . . ,x#A) ∗ 〈y1.p1,y2.p2〉, leading to γ • γ′ |=ν

∆̃
Ã(x1, . . . ,x#A).

Moreover, γ•γ′ is loose, because c1,c2 6∈ C . “⇐” If γ |=ν

∆̃
Ã(x1, . . . ,x#A), we necessarily

have γ |=ν[y1←c1,y2←c2]
∆

A(x1, . . . ,x#A) ∗ 〈y1.p1,y2.p2〉, for some components c1,c2 ∈ C,
hence there exists a configuration γ′, such that γ′ |=ν

∆
A(x1, . . . ,x#A). ut

The polynomial reductions from Lemmas 6 and 7 establish the following complex-
ity bounds for the tightness problem:



Theorem 2. Tight(k,∞)[∆,A] is co-NP-complete, Tight(∞,`)[∆,A] is EXP-complete and
Tight[∆,A] is 2EXP.

Proof. Since Loose(k,∞)[∆,A] is polynomially-reducible to Sat(k+1,∞)[∆,A], by The-
orem 1, we obtain that Loose(k,∞)[∆,A] is in NP. Moreover, since Sat(k,∞)[∆,A] is
polynomially-reducible to Loose(k,∞)[∆,A], by Theorem 1, we obtain that Loose(k,∞)[∆,A]

is NP-complete. Because Tight(k,∞)[∆,A] is the complement of Loose(k,∞)[∆,A], we ob-
tain that Tight(k,∞)[∆,A] is co-NP-complete. The rest of the bounds are obtained by the
same polynomial reductions and the fact that Tight(k,∞)[∆,A] is the complement of
Loose(k,∞)[∆,A], for any k and `, either integer constants, or infinity. ut

5 Degree Boundedness

The boundedness problem (Def. 6, point 3) asks for the existence of a bound on the
degree (Def. 4) of the models of a sentence ∃x1 . . .∃x#A . A(x1, . . . ,x#A). For instance, it
is possible to define inductively star topologies, with a central controller connected to
an unbounded number of workers stations. Roughly speaking, the Bnd[∆,A] problem
has a negative answer if and only if there are increasingly large unfoldings (expan-
sions of a formula by replacement of a predicate atom with one of its definitions) of
A(x1, . . . ,x#A) repeating a rule that contains an interaction atom involving a parame-
ter of the rule, which is always bound to the same component. For instance, the rule
Worker(x) ← ∃y . 〈x.out,y.in〉 ∗ [y] ∗Worker(x) (Example 2) declares an unbounded
number of interactions 〈x.out,y.in〉 involving the component to which x is bound.

Definition 9. Given a predicate A and a sequence (r1, i1), . . . ,(rn, in)∈ (∆×N)+, where

r1 is the rule A(x1, . . . ,x#A)← φ∈ ∆, the unfolding A(x1, . . . ,x#A)
(r1,i1)...(rn,in)
========⇒

∆
ψ is in-

ductively defined as (1) ψ= φ if n= 1, and (2) ψ is obtained from φ by replacing its i1-th

predicate atom B(y1, . . . ,y#B) with ψ1[x1/y1, . . . ,x#B/y#B], where B(x1, . . . ,x#B)
(r2,i2)...(rn,in)
========⇒

∆

ψ1 is an unfolding, if n > 1.

We show that the Bnd[∆,A] problem can be reduced to the existence of increasingly
large unfoldings or, equivalently, a cycle in a finite directed graph, built by a variant of
the least fixpoint iteration algorithm used to solve the satisfiability problem (Fig. 3).

Definition 10. Given satisfiable base pairs t,u ∈ SatBase and a rule from ∆:

r : A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ∗B1(z1
1, . . . ,z

1
#B1

)∗ . . .∗Bh(zh
1, . . . ,z

h
#Bh

)

where φ is a quantifier- and predicate-free formula, we write (A, t)
(r, i)

∼∼∼∼B (B,u) if and
only if B=Bi and there exist satisfiable base tuples t1, . . . ,u= ti, . . . , th ∈ SatBase, such
that t ∈

(
Base(φ,{x1, . . . ,x#A})⊗

⊗h
`=1 t`[x1/z`1, . . . ,x#B`

/z`#B`
]
)
↓x1 ,...,x#A . We define the

directed graph with edges labeled by pairs (r, i) ∈ ∆×N:

G(∆)
def
=
(
{def(∆)×SatBase},{〈(A, t),(r, i),(B,u)〉 | (A, t)

(r, i)
∼∼∼∼B (B,u)}

)



input: a SID ∆

output: G(∆) = (V,E)
1: initially V := /0, E := /0

2: for A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ ∈ ∆, with φ quantifier- and predicate-free do
3: V :=V ∪

(
{A}×Base(φ,{x1, . . . ,x#A})↓x1 ,...,x#A

)
4: while V or E still change do
5: for r : A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ∗∗ h

`=1B`(z`1, . . . ,z
`
#B`

) ∈ ∆ do
6: if there exist (B1, t1), . . . ,(Bh, th) ∈V then
7: X :=

(
Base(φ,{x1, . . . ,x#A})⊗

⊗h
`=1 t`[x1/z`1, . . . ,x#B`

/z`#B`
]
)
↓x1 ,...,x#A

8: V :=V ∪ ({A}×X )
9: E := E ∪{〈(A, t),(r, `),(B`, t`)〉 | t ∈ X , ` ∈ [1,h]}

Fig. 3: Algorithm for the Construction of G(∆)

The graph G(∆) is built by the algorithm in Fig. 3, a slight variation of the classical
Kleene iteration algorithm for the computation of the least solution of the constraints
of the form (1)(see Fig. 2). A path (A1, t1)

(r1 , i1)∼∼∼∼B (A2, t2)
(r2 , i2)∼∼∼∼B . . .

(rn , in)
∼∼∼∼B (An, tn) in

G(∆) induces a unique unfolding A1(x1, . . . ,x#A1)
(r1,i1)...(rn,in)
========⇒

∆
φ (Def. 9). Since the

vertices of G(∆) are pairs (A, t), where t is a satisfiable base tuple and the edges of G(∆)
reflect the construction of the base tuples from the least solution of the constraints (1),
the outcome φ of this unfolding is always a satisfiable formula.

Lemma 8. Given a path (A0, t0)
(r1 , i1)∼∼∼∼B . . .

(rn , in)
∼∼∼∼B (An, tn) in G(∆), where t0 =(C ],I ],π),

a state map ρ and a store ν, such that ( /0, /0,ρ) |=ν π, there exists a configuration

(C ,I ,ρ), such that (C ,I ,ρ) |=ν

∆
φ, where A0(x1, . . . ,x#A0)

(r1,i1)...(rn,in)
========⇒

∆
φ is the unique

unfolding corresponding to the path.

Proof. Let r1 be the following rule:

A0(x1, . . . ,x#A0)← φ, where φ = ∃y1 . . .∃ym . ψ∗π∗∗ h
`=2B`(z`1, . . . ,z

`
#B`

)

and ψ∗π is a quantifier- and predicate-free formula and π is, moreover, pure. The proof
goes by induction on the length n≥ 1 of the path. For the base case n = 1, by Def. 10,
the edge (A0, t0)

(r1 , i1)∼∼∼∼B (A1, t1) implies the existence of base tuples u` ∈ µ
−→
X .∆](B`),

for all ` ∈ [2,h], such that Bi1 = A1, ui1−1 = t1 and:

t0 ∈

(
Base(ψ∗π,{x1, . . . ,x#A})⊗

h⊗
`=2

u`[x1/z`1, . . . ,x#B`
/z`#B`

]

)
↓x1 ,...,x#A

Let u`
def
= (C ]

` ,I
]
` ,π`), for all ` ∈ [2,h] and π′

def
= π∗∗ h

`=2π`. Since t0 is satisfiable, there
exists a store ν′, that agrees with ν over x1, . . . ,x#A0 , such that, moreover:

ν′(x) = ν′(y) only if x≈π′ y, for all x,y ∈ fv(ψ∗π′)∪ (†)⋃h
`=2
(
C ]
` ∪{zi | 〈z1, . . . ,zn〉 ∈ I ]

` (τ),τ ∈ Inter}
)

We define the configurations (C1,I1,ρ), . . . ,(Ch,Ih,ρ) inductively, as follows:



– C1
def
= {ν′(y) | [y] occurs in ψ},

– I1
def
= {(ν′(z1), p1, . . . ,ν

′(zs), ps) | 〈z1.p1, . . . ,zt .pt〉 occurs in ψ},
– for all ` ∈ [2,h], assuming C1, . . . ,C`−1 and I1, . . . ,I`−1 are defined, let:

D`
def
=

⋃`−1
i=1 Ci∪

⋃h
i=`+1 ν′(C ]

i )

J`
def
=

⋃`−1
i=1 Ii∪

⋃h
i=`+1 ν′(I ]

i )

We prove first that D` ∩ν′(C ]
` ) = /0 and J` ∩ν′(I ]

` ) = /0 (we prove only the first point,
the second uses a similar reasoning), by induction on ` ∈ [2,h]. For the base case D2∩
ν′(C ]

2) 6= /0, we prove the points below:
– C1∩ν′(C ]

2) = /0: suppose, for a contradiction, that there exists c ∈ C1∩ν′(C ]
2), then

c = ν′(y), for a component atom [y] from ψ and c = ν′(x), for some x ∈ C ]
2 . By (†),

we obtain x≈π′ y, contradicting the existence of t0.
– ν′(C ]

i )∩ν′(C ]
2)= /0, for some i∈ [3,h]: suppose, for a contradiction, that there exists

c ∈ ν′(C ]
i )∩ν′(C ]

2), then c = ν′(x) = ν′(y), for some x ∈ C ]
i and y ∈ C ]

2 . By (†), we
obtain x≈π′ y, contradicting the existence of t0.

We assume that D j∩ν′(C ]
j ) = /0, for all j ∈ [2, `−1]. By Lemma 3, there exist configu-

rations (C j,I j,ρ), such that C j ∩D j = /0 (‡) and (C j,I j,ρ) |=ν′ B j(x1, . . . ,x#B j), for all

j ∈ [2, `−1]. We prove D`∩ν′(C ]
` ) = /0, by showing the following points:

– C j ∩ν′(C ]
` ) = /0, for all j ∈ [1, `−1]: suppose, for a contradiction, that there exists

c ∈ C j ∩ν′(C ]
` ), for some j ∈ [1, `−1], then c ∈ C j ∩D j, because D j ⊆ ν′(C ]

` ), in
contradiction with C j ∩D j = /0 (‡).

– ν′(C ]
j )∩ ν′(C ]

` ) = /0, for all j ∈ [2, `−1]: suppose, for a contradiction, that there

exists c ∈ ν′(C ]
j )∩ν′(C ]

` ), then c = ν′(x) = ν′(y), for some x ∈ C ]
j and y ∈ C ]

` . By
(†), we obtain x≈π′ y, contradicting the existence of t0.

Consequently, D`∩ν′(C ]
` ) = /0, for all ` ∈ [2,h]. By Lemma 3, there exists a configura-

tion (C`,I`,ρ), such that C`∩D` = /0 and (C`,I`,ρ) |=ν′ B`(x1, . . . ,x#B`
), for all `∈ [2,h].

We obtain that Ci∩C j = /0 and Ii∩I j = /0, for all 1≤ i < j≤ h, meaning that the config-
uration (C ,I ,ρ) def

= (C1,I1,ρ)• . . .• (Ch,Ih,ρ) is defined, which leads to (C ,I ,ρ) |=ν′ φ.

For the inductive step n > 1, by Def. 10, there exists base tuples u` ∈ µ
−→
X .∆](B`), for

all ` ∈ [2,h], such that A1 = Bi1 , ui1−1 = t1 and:

t0 ∈

(
Base(ψ∗π,{x1, . . . ,x#A})⊗

h⊗
`=1

u`[x1/z`1, . . . ,x#B`
/z`#B`

]

)
↓x1 ,...,x#A

Then there exists a store ν′ that agrees with ν over x1, . . . ,x#A0 and satisfies (†). Let ν′′
def
=

ν′[x1/zi1
1 , . . . ,x#A1/zi1

#A1
]. By the inductive hypothesis, since (A1, t1)

(r2 , i2)∼∼∼∼B . . .
(rn , in)
∼∼∼∼B (An, tn)

is a path in G(∆), there exists a configuration (C ′,I ′,ρ), such that (C ′,I ′,ρ) |=ν′′

A1(z
i1
1 , . . . ,z

i1
#A1

), because (C ′,I ′,ρ) |=ν′ φ1, for the unfolding A1(x1, . . . ,x#A1)
(r2,i2)...(rn,in)
========⇒

∆

φ1. The required configuration is defined as (C ,I ,ρ) def
= (C1,I1,ρ)•. . .•(Ci1−1,Ii1−1,ρ)•



(C ′,I ′,ρ)• (Ci1+1,Ii1+1,ρ)• . . .• (Ch,Ih,ρ), where (C1,I1,ρ), . . ., (Ci1−1,Ii1−1,ρ) and
(Ci1+1,Ii1+1,ρ), . . ., (Ch,Ih,ρ) are defined as in the base case, by taking ν′′ instead of
ν′ and defining, for all ` ∈ [2,h]\{i1}:

D`
def
= C ′∪

⋃`−1
i=1 Ci∪

⋃h
i=`+1 ν′(C ]

i )

J`
def
= I ′∪

⋃`−1
i=1 Ii∪

⋃h
i=`+1 ν′(I ]

i )

The proof of the fact that C1, . . ., Ci1−1, C ′, Ci1+1, . . ., Ch and I1, . . ., Ii1−1, I ′, Ii1+1,
. . ., Ih are pairwise disjoint, respectively, follows by the same argument as in the base
case. ut

Lemma 9. Given an unfolding A0(x1, . . . ,x#A0)
(r1,i1)...(rn,in)
========⇒

∆
φ, a configuration (C ,I ,ρ)

and a store ν, such that (C ,I ,ρ) |=ν

∆
φ, then G(∆) has a path (A0,(C ]

0 ,I
]
0 ,π0))

(r1 , i1)∼∼∼∼B . . .
(rn , in)
∼∼∼∼B (An,(C ]

n ,I ]
n ,πn)),

for some (C ]
0 ,I

]
0 ,π0), . . . ,

(C ]
n ,I ]

n ,πn) ∈ SatBase, such that ν(C ]
0)⊆ C0, ν(I ]

0)⊆ I0 and ( /0, /0,ρ) |=ν π0.

Proof. Let r1 be the following rule:

A0(x1, . . . ,x#A0)←∃y1 . . .∃ym . ψ∗π∗∗ h
`=2B`(z`1, . . . ,z

`
#B`

)

and ψ∗π is a quantifier- and predicate-free formula and π is, moreover, pure. The proof
goes by induction on the length n ≥ 1 of the path. For the base case n = 1, we have
φ = ∃y1 . . .∃ym . ψ∗π∗∗ h

`=2B`(z`1, . . . ,z
`
#B`

), hence there exists a store ν′, that agrees
with ν over x1, . . . ,x#A0 , and configurations (C1,I1,ρ), . . . ,(Ch,Ih,ρ), such that:

– (C1,I1,ρ) |=ν′ ψ∗π,
– (C`,I`,ρ) |=ν′

∆
B`(z`1, . . . ,z

`
#B`

), for all ` ∈ [2,h], and
– γ = (C1,I1,ρ)• . . .• (Ch,Ih,ρ).

We consider the following base tuples:
– (C ]

1,I
]
1,π1)

def
= Base(ψ∗π,{x1, . . . ,x#A0}),

– for all `∈ [2,h], there exist (C ]
`,I

]
`,π`)∈ µ

−→
X .∆](B`)[x1/z`1, . . . ,x#B`

/z`#B`
], such that

C` ⊆ ν′(C ]
`), I` ⊆ ν′(I ]

`) and ( /0, /0,ρ) |=ν′ π`, by Lemma 4.
By similar argument to the one from the proof of Lemma 4 (base case), we show that the
composition

⊗h
`=1(C

]
`,I

]
`,π`) is defined and let (C ]

0 ,I
]
0 ,π0)

def
=
(⊗h

`=1(C
]
`,I

]
`,π`)

)
↓x1 ,...,x#A .

Moreover, we obtain ν(C ]
0) ⊆ C0, ν(I ]

0) ⊆ I0 and ( /0, /0,ρ) |=ν π0, as in the proof of

Lemma 4. Then, by Def. 10, G(∆) has an edge (A0,(C ]
0 ,I

]
0 ,π0))

(r1 , i1)∼∼∼∼B (Bi1−1,(C
]
i1−1,I

]
i1−1,πi1−1)).

For the inductive step n > 1, let Bi1−1(x1, . . . ,x#Bi1−1)
(r2,i2)...(rn,in)
========⇒

∆
φ1 be an unfold-

ing, such that φ is obtained from ∃y1 . . .∃ym . ψ ∗π ∗∗ h
`=2B`(z`1, . . . ,z

`
#B`

), by replac-

ing Bi1−1(z
i1−1
1 , . . . ,zi1−1

#Bi1−1
) with φ1[x1/zi1−1

1 , . . . ,x#Bi1−1/zi1−1
#Bi1−1

]. Since (C ,I ,ρ) |=ν

∆
φ,

there exists a store ν′, that agrees with ν over x1, . . . ,x#A0 , and configurations (C1,I1,ρ), . . . ,(Ch,Ih,ρ),
where γ = (C1,I1,ρ)• . . .• (Ch,Ih,ρ) and the following hold:



– (C1,I1,ρ) |=ν′ ψ∗π,
– (C`,I`,ρ) |=ν′

∆
B`(z`1, . . . ,z

`
#B`

), for all ` ∈ [2,h]\{i1 +1},
– (Ci1−1,Ii1−1,ρ) |=ν′

∆
φ1[x1/zi1−1

1 , . . . ,x#Bi1−1/zi1−1
#Bi1−1

], hence (Ci1−1,Ii1−1,ρ) |=ν′
∆
Bi1−1(z

i1−1
1 , . . . ,zi1−1

#Bi1−1
).

We consider the following base tuples:
– (C ]

1,I
]
1,π1)

def
= Base(ψ∗π,{x1, . . . ,x#A0}),

– for all `∈ [2,h]\{i1 +1}, there exist (C ]
`,I

]
`,π`)∈ µ

−→
X .∆](B`)[x1/z`1, . . . ,x#B`

/z`#B`
],

such that C` ⊆ ν′(C ]
`), I` ⊆ ν′(I ]

`) and ( /0, /0,ρ) |=ν′ π`, by Lemma 4.
– G(∆) has a path (Bi1−1,(C ]

1 ,I
]
1 ,π1))

(r2 , i2)∼∼∼∼B . . .
(rn , in)
∼∼∼∼B (An,(C ]

n ,I ]
n ,πn)), such that

Ci1−1 ⊆ ν′(C ]
1), Ii1−1 ⊆ ν′(I ]

1) and ( /0, /0,ρ) |=ν′ π1, by the inductive hypothesis.

By an argument similar to the one from Lemma 4, the composition (C ]
,I ]

,π)
def
=

⊗i1−2
`=1 (C

]
`,I

]
`,π`)⊗

(C ]
1 ,I

]
1 ,π1)⊗

⊗h
`=i1(C

]
`,I

]
`,π`) is defined and let (C ]

0 ,I
]
0 ,π0)

def
= (C ]

,I ]
,π)↓{x1 ,...,x#A0

}. Fi-

nally, the conditions ν(C ]
0) ⊆ C0, ν(I ]

0) ⊆ I0 and ( /0, /0,ρ) |=ν π0 follow from a similar
argument to the one used in Lemma 4. ut

An elementary cycle of G(∆) is a path from some vertex (B,u) back to itself, such
that (B,u) does not occur on the path, except at its endpoints. The cycle is, moreover,
reachable from (A, t) if and only if there exists a path (A, t)

(r1 , i1)∼∼∼∼B . . .
(rn , in)
∼∼∼∼B (B,u) in

G(∆). We reduce the complement of the Bnd[∆,A] problem, namely the existence of
an infinite set of models of ∃x1 . . .∃x#A . A(x1, . . . ,x#A) of unbounded degree, to the
existence of a reachable elementary cycle in G(∆′), where ∆′ is obtained from ∆, as
described in the following.

First, we consider, for each predicate B ∈ def(∆), a predicate B′, of arity #B+ 1,
not in def(∆) i.e., the set of predicates for which there exists a rule in ∆. Second, for
each rule B0(x1, . . . ,x#B0)← ∃y1 . . .∃ym . φ ∗∗ h

`=2B`(z`1, . . . ,z
`
#B`

) ∈ ∆, where φ is a
quantifier- and predicate-free formula and iv(φ)⊆ fv(φ) denotes the subset of variables
occurring in interaction atoms in φ, the SID ∆′ has the following rules:

B′0(x1, . . . ,x#B0 ,x#B0+1)← ∃y1 . . .∃ym . φ∗∗ ξ∈iv(φ)x#B0+1 6= ξ∗

∗ h
`=2B

′
`(z

`
1, . . . ,z

`
#B`

,x#B0+1) (2)

B′0(x1, . . . ,x#B0 ,x#B0+1)← ∃y1 . . .∃ym . φ∗ x#B0+1 = ξ∗

∗ h
`=2B

′
`(z

`
1, . . . ,z

`
#B`

,x#B0+1) (3)
for each variable ξ ∈ iv(φ), that occurs in an interaction atom in φ.

Intuitively, there exists a family of models (with respect to ∆) of ∃x1 . . .∃x#A .A(x1, . . . ,x#A)
of unbounded degree if and only if these are models of ∃x1 . . .∃x#A+1 . A

′(x1, . . . ,x#A+1)
(with respect to ∆′) and the last parameter of each predicate B′ ∈ def(∆′) can be mapped,
in each of the these models, to a component that occurs in unboundedly many interac-
tions. The latter condition is equivalent to the existence of an elementary cycle, con-
taining a rule of the form (3), that it, moreover, reachable from some vertex (A′, t) of
G(∆′), for some t ∈ SatBase. This reduction is formalized below:

Lemma 10. Let A be a predicate and γ be a model of ∃x1 . . .∃x#A . A(x1, . . . ,x#A). Then
there exists an unfolding A(x1, . . . ,x#A)

w
=⇒

∆
ψ of length |w| ≥ log(δ(γ))−logβ1

logβ2
where β1



is the maximal number of components and interaction atoms and β2 is the maximal
number of predicate atoms, occurring in a rule of ∆.

Proof. Let γ be a configuration, ν be a store and A be a predicate, such that γ |=ν

∆

A(x1, . . . ,x#A). We consider the derivation tree T induced by the definition of the |=ν

∆

relation. The nodes of T are labelled by a triple γ′ |=ν′
∆
B(x1, . . . ,x#B). We start from the

root labelled by γ |=ν

∆
A(x1, . . . ,x#A) and define the children of a node inductively.

For each node γ′ |=ν′
∆
B(x1, . . . ,x#B), there exists a rule:

r : B(x1, . . . ,x#A)←∃y1 . . .∃ym . φ∗B1(z1
1, . . . ,z

1
#B1

)∗ . . .∗Bh(zh
1, . . . ,z

h
#Bh

)

and configurations γ0, . . . ,γh, such that γ= γ0• . . .•γh, γ0 |=ν′′
∆

φ and γi |=ν′′
∆
Bi(zi

1, . . . ,z
i
#Bi

)

for every i ∈ [1,h], where φ is a predicate-free formula and ν′′ is a store that agrees with
ν′ over x1, . . . ,x#B. We define ν`

def
= ν′′[x1/z`, . . . ,x#B`

/z`#B`
], for all ` ∈ [1,h]. Then the

node γ′ |=ν′
∆
B(x1, . . . ,x#B) has h children in T , where the `-th child is labelled by γ` |=ν`

∆

B`(x1, . . . ,x#B`
), for all ` ∈ [1,h]. The construction is finite since γ |=ν

∆
A(x1, . . . ,x#A)

has a finite inductive definition.
We now consider the degree of the configurations which occur in T . By Def. 3,

we obtain δ(γ) ≤ δ(γ0) +∑
h
i=1 δ(γi). With each γi associated to a child of this node

(except γ0), we obtain that δ(γinit) does not exceed β1 times the number of nodes in T .
Since h ≤ β2, the height n of T is bound to the degree δ(γ) by the inequality δ(γ) ≤
β1×∑

n
k=0 β2

k = β1×β2
n+1−1, leading to:

n+1≥ logδ(γ)− logβ1

logβ2

Finally, with T of height n, there exists a branch in T (starting from the root) of length
exactly n+ 1. Yet each branch of T corresponds to an unfolding A(x1, . . . ,x#A)

w
=⇒

∆
ψ,

with w obtained by concatenating for every node (γ,ν,A) of the branch (from root to
leaf) the couple (r, i) consisting of:

– the rule r ∈ ∆ used to unfold A(x1, . . . ,x#A), and
– the position i of this node among its brothers in T (take i = 1 for the root).

This unfolding has the length required, which concludes the lemma. ut

Lemma 11. There exists an infinite sequence of configurations γ1,γ2, . . . such that γi |=∆

∃x1 . . .∃x#A . A(x1, . . . ,x#A) and δ(γi)< δ(γi+1), for all i≥ 1 if and only if G(∆′) has an
elementary cycle containing a rule (3), reachable from a node (A′, t), for t ∈ SatBase.

Proof. “⇒” Let ν1,ν2, . . . be stores such that γi |=νi
∆
A(x1, . . . ,x#A), for all i ≥ 1. By

Lemma 10, where exists unfoldings A(x1, . . . ,x#A)
wi=⇒

∆′ φi of lengths |w1|< |w2|< .. .,

such that γi |=νi
∆

φi, for all i ≥ 1. For each configuration γi, let di ∈ C be a component,
such that δ(γi) = ||{(c1, p1, . . . ,cn, pn) | di = c j, j ∈ [1,n]}||. By induction on |wi| ≥ 1,

we build unfoldings A′(x1, . . . ,x#A,x#A+1)
w′i=⇒

∆′ φ
′
i that bind x#A+1 to all variables bound

to di, using rules of type (3). By Lemma 9, w′1,w
′
2, . . . are labels of paths from G(∆′), that



start in (A, t1),(A, t2), . . ., respectively. Since G(∆′) is finite, we can chose an infinite
subsequence of paths that start in the same node of G(∆′) and repeat the same vertex,
with a rule of type (3) in between.

“⇐” Let (A′, t)
(r′1 , i1)∼∼∼∼B . . .

(r′n , in)∼∼∼∼B (Bn, tn)
(r′n+1 , in+1)
∼∼∼∼∼∼∼∼B . . .

(r′n+p , in+p)
∼∼∼∼∼∼∼∼B (Bn, tn) be a path

in G(∆′), such that one of the rules r′n+1, . . . , r
′
n+p is of the form (3) and let w′i

def
=

(r′1, i1) . . .(r
′
n, in)[(r

′
n+1, in+1) . . .(r

′
n+p, in+p)]

i, for all i≥ 1. By Lemma 8, there exist un-

foldings A′(x1, . . . ,x#A+1)
w′i=⇒

∆′ φ′i, stores νi and configurations γi, such that γi |=νi φ′i.

We define:

δi
def
= ||{(c1, p1, . . . ,cn, pn) ∈ Ii | ν(x#A+1) = c j, j ∈ [1,n]}||, for all i≥ 1

where γi
def
= (Ci,Ii,ρi). Since γi |=νi φ′i and one of the rules r′n+1, . . . , r

′
n+p is of type (3),

the sequence δ1,δ2, . . . is strictly increasing. Moreover, we have δi ≤ δ(γi), for all i≥ 1,
hence there exists a sequence of integers 1 ≤ i1 < i2 < .. . such that δ(γi j) < δ(γi j+1),
for all j ≥ 1. ut

The complexity result below uses a similar argument on the maximal size of (hence
the number of) base tuples as in Theorem 1, leading to similar complexity gaps:

Theorem 3. Bnd(k,∞)[∆,A] is in co-NP, Bnd(∞,`)[∆,A] is in EXP and Bnd[∆,A] is in
2EXP.

Proof. Lemma 11 shows the reduction of the complement of Bnd[∆,A] to the existence
of a reachable cycle in the graph G(∆′), where ∆′ is constructed from ∆ in polynomial
time. Moreover, we have arity(∆′) = arity(∆)+1 and intersize(∆′) = intersize(∆). We
distinguish the three cases below:

– k < ∞, `= ∞: in this case, we can define a non-deterministic algorithm as follows.
We guess the solution (〈W1, . . . ,WK〉,WK+1,〈i1, i2, . . . , in〉, where:
• 〈W1, . . . ,WK〉 defines an acyclic witness for a satisfiable least solution of A′ in

∆′ constructed as in the proof of Thm. 1;
• WK+1 = (TK+1,rK+1, tK+1,1, ...,eK+1,hK+1) is similar to a regular entry Wi, that

is, contains a base tuple TK+1, an index rK+1 of a rule of ∆′ and indices eK+1,1,
. . ., eK+1,hK+1 ∈ {1, . . . ,K} such that TK+1 is computed correctly by applying
the rule rK+1 from base tuples TeK+1,1 , . . . ,TeK+1,hK+1

as explained in the proof
of Thm. 1;

• 〈i1, i2, . . . , in〉 defines an acyclic path starting at the initial node in the directed
acyclic graph defined by W , that is, 1 = i1 < i2 < .. . < in ≤ K and moreover
i j+1 ∈ {ei j ,1, . . . ,ei j ,hi j

} for all j ∈ {1,2, . . . ,n−1};
• the path 〈i1, i2, . . . , in〉 can be closed into a witness reachable cycle from i1 by

using WK+1 that is, whenever (i) rules rin and rK define the same predicate,
and moreover Tin = TK+1 , (ii) the intersection X = {eK+1,1, . . . ,eK+1,hK+1}∩
{i1, i2, . . . , in} 6= /0, (iii) if i j = minX , that is, the cycle starts at i j then at least
one of the rules used along the cycle ri j ,ri j+1 , . . . ,rin−1 ,rK+1 is of the form (3).



The solution is of linear size O(size(∆′)) by the same arguments as in the proof of
Thm. 1. Therefore, it can be guessed in polynomial time, and moreover checked in
polynomial time following the conditions above. This implies the membership of
the complement problem in NP, henceforth Bnd(k,∞)[∆,A] is in co-NP.

– k = ∞, ` < ∞: in this case, using the algorithm from Fig. 3, the graph G(∆′) is
constructed in time 2poly(size(∆′)) as previously explained in the proof of Theorem
1. Finding a reachable cycle with the additional properties required by Lemma 11
can be done in two additional steps, respectively, first building the SCCs decompo-
sition of G(∆′) and then checking reachability of SCCs containing edges derived
from rules of form (3) from SCCs containing vertices (A′, t). Both steps can be
done in in linear time in the size of G(∆′) i.e., using Tarjan algorithm for SCC de-
composition and standard graph traversals. Therefore, the overall time complexity
remains 2poly(size(∆′)), and as such Bnd(∞,`)[∆,A] is in EXP.

– k = ∞, ` = ∞: following the same argument as in the previous point and noticing
that the graph G(∆′) is constructed in time 22poly(size(∆′))

we conclude that Bnd[∆,A]
is in 2EXP. ut

Moreover, the construction of G(∆′) allows to prove the following cut-off result:

Proposition 1. Let γ be a configuration and ν be a store, such that γ |=ν

∆
A(x1, . . . ,x#A).

If Bnd(k,`)[∆,A] then (1) δ(γ) = poly(size(∆)) if k < ∞, `= ∞, (2) δ(γ) = 2poly(size(∆)) if
k = ∞, ` < ∞ and (3) δ(γ) = 22poly(size(∆))

if k = ∞, `= ∞.

Proof. First, we show that in all cases, the degree is bounded by 2B∗ ·L · I where B∗ is
the maximal length of a satisfiable base tuple in ∆′, L is the number of predicates in
∆′ and I is the maximal number of interactions defined in a rule in ∆′. The maximal
length B∗ of a satisfiable base tuples has been considered in the proof of Thm. 1 to
derive an upper bound on the the number of distinct satisfiable base tuples for a SID.
Then, 2B∗ ·L represents a bound on the number of nodes in the graph G(∆′) as for every
predicate there will be at most 2B∗ satisfiable base tuples associated to it. Meantime,
this value also represents a bound on the longest acyclic path in G(∆′). We are inter-
ested on acyclic paths because cycles in G(∆′) are guaranteed to never connect (use in
interactions) the extra variable introduced in ∆′ (otherwise the system would not be of
bounded degree). But then, along the acyclic paths, at most I interactions are defined
at each step, henceforth, the bound of 2B∗ ·L · I on the number on total interactions that
could involve the extra variable.

Second, let observe that both L and I are the same in ∆′ and in ∆ and equal to
O(size(∆)). Moreover, it was shown in the proof of Thm. 1 that B∗ = 2α + 2α2 +
pmin(α,β)αmin(α,β) for α = arity(∆′) = arity(∆)+1 and β = intersize(∆′) = intersize(∆),
p = ||P || the number of ports. Henceforth, we distinguished the three cases, respec-
tively (i) B∗ = O(1) if k < ∞, ` = ∞, (ii) B∗ = poly(size(∆)) if k = ∞, ` < ∞ and (iii)
B∗ = 2poly(size(∆)) if k = ∞, ` = ∞. By using the above in the expression 2B∗ ·L · I we
obtain the values of the bound as stated in the Proposition. ut



6 Entailment

This section is concerned with the entailment problem Entl[∆,A,B], that asks whether
γ |=ν

∆
∃x#A+1 . . .∃x#B . B(x1, . . . ,x#B), for every configuration γ and store ν, such that

γ |=ν

∆
A(x1, . . . ,x#A). For instance, the proof from Fig. 1 (c) relies on the following

entailments, that occur as the side conditions of the Hoare logic rule of consequence:

ringh,t(y) |=∆ ∃x∃z.[y]@H∗ 〈y.out,z.in〉 ∗ chainh−1,t(z,x)∗ 〈x.out,y.in〉
[z]@H∗ 〈z.out,x.in〉 ∗ chainh−1,t(x,y)∗ 〈y.out,z.in〉 |=∆ ringh,t(z)

By introducing two fresh predicates A1 and A2, defined by the rules:

A1(x1)←∃y∃z.[x1]@H∗〈x1.out,z.in〉 ∗ chainh−1,t(z,y)∗〈y.out,x1.in〉 (4)
A2(x1,x2)←∃z.[x1]@H∗ 〈x1.out,z.in〉 ∗ chainh−1,t(z,x2)∗ 〈x2.out,x1.in〉 (5)

the above entailments are equivalent to Entl[∆, ringh,t ,A1] and Entl[∆,A2, ringh,t ], re-
spectively, where ∆ consists of the rules (4) and (5), together with the rules that define
the ringh,t and chainh,t predicates (§1.1).

We show that the entailment problem is undecidable, in general (Thm. 4), and re-
cover a decidable fragment, by means of three syntactic conditions, typically met in our
examples. These conditions use the following notion of profile:

Definition 11. The profile of a SID ∆ is the pointwise greatest function λ∆ : A →
pow(N), mapping each predicate A into a subset of [1,#A], such that, for each rule
A(x1, . . . ,x#A)← φ from ∆, each atom B(y1, . . . ,y#B) from φ and each i ∈ λ∆(B), there
exists j ∈ λ∆(A), such that x j and yi are the same variable.

The profile identifies the parameters of a predicate that are always replaced by a vari-
able x1, . . . ,x#A in each unfolding of A(x1, . . . ,x#A), according to the rules in ∆; it is
computed by a greatest fixpoint iteration, in time poly(size(∆)).

Definition 12. A rule A(x1, . . . ,x#A)←∃y1 . . .∃ym . φ∗∗ h
`=1B`(z`1, . . . ,z

`
#B`

), where φ

is a quantifier- and predicate-free formula, is said to be:

1. progressing if and only if φ = [x1]∗ψ, where ψ consists of interaction atoms involv-
ing x1 and (dis-)equalities, such that

⋃h
`=1{z`1, . . . ,z`#B`

}= {x2, . . . ,x#A}∪{y1, . . . ,ym},
2. connected if and only if, for each `∈ [1,h] there exists an interaction atom in ψ that

contains both z`1 and a variable from {x1}∪{xi | i ∈ λ∆(A)},
3. equationally-restricted (e-restricted) if and only if, for every disequation x 6= y from

φ, we have {x,y}∩{xi | i ∈ λ∆(A)} 6= /0.

A SID ∆ is progressing, connected and e-restricted if and only if each rule in ∆ is
progressing, connected and e-restricted, respectively.

For example, the SID consisting of the rules from §1.1, together with rules (4) and (5)
is progressing, connected and e-restricted. For a configuration γ = (C ,I ,ρ), let:

nodes(γ) def
= C ∪{ci | (c1, p1, . . . ,cn, pn) ∈ I , i ∈ [1,n]}

be the set of (possibly absent) components that occur in γ.



Lemma 12. Given a progressing SID ∆ and a predicate A ∈ def(∆), for any configura-
tion γ=(C ,I ,ρ) and store ν, such that γ |=ν

∆
A(x1, . . . ,x#A), we have {ν(x1), . . . ,ν(x#A)}⊆

nodes(γ) = C .

Proof. We proceed by fixpoint induction on the definition of γ |=ν

∆
A(x1, . . . ,x#A). By

definition, there exists a progressing rule

r : A(x1, . . . ,x#A)←∃y1 . . .∃ym . [x1]∗ψ∗∗ h
`=1B`(z`1, . . . ,z

`
#B`

)

a store ν′ and configurations γ0, . . . ,γh such that:
– γ = γ0 • . . .• γh,
– ν(xi) = ν′(xi) for all i ∈ [1,#A],
– γ0 |=ν′

∆
[x1]∗ψ, and

– γ` |=ν′
∆
B`(z`1, . . . ,z

`
#B`

) for all ` ∈ [1,h].
For 1 ≤ ` ≤ h, let ν`(xi) = ν′(z`i ) for 1 ≤ i ≤ #B`. Now apply the induction hypothe-
sis on the derivation of γ` |=ν`

∆
B`(x1, . . . ,x#B`

) to obtain that {ν`(x1), . . . ,ν`(x#B`
)} ⊆

nodes(γ`). Since r is progressing, we have:

{ν(x1), . . . ,ν(x#A)} ⊆ {ν′(x1), . . . ,ν
′(x#A)}∪{ν′(y1), . . . ,ν

′(ym)}

= {ν′(x1)}∪
h⋃

`=1

{ν′(z`1), . . . ,ν′(z`#B`
)}= {ν′(x1)}∪

h⋃
`=1

{ν`(x1), . . . ,ν`(x#B`
)}

⊆ nodes(γ0)∪
h⋃

`=1

nodes(γ`) = nodes(γ) ut

We recall that def∆(A) is the set of rules from ∆ that define A and denote by def∗
∆
(A)

the least superset of def∆(A) containing the rules that define a predicate from a rule in
def∗

∆
(A). The following result shows that the entailment problem becomes undecidable

as soon as the connectivity condition is even slightly lifted:

Theorem 4. Entl[∆,A,B] is undecidable, even when ∆ is progressing and e-restricted,
and only the rules in def∗

∆
(A) are connected (the rules in def∗

∆
(B) may be disconnected).

Proof. By a reduction from the known undecidable problem of universality of context-
free languages [3]. A context-free grammar G = 〈N,T,S,∆〉 consists of a finite set N
of nonterminals, a finite set T of terminals, a start symbol S ∈ N and a finite set ∆ of
productions of the form A→ w, where A ∈ N and w ∈ (N ∪ T )∗. Given finite strings
u,v ∈ (N ∪T )∗, the step relation u⇒ v replaces a nonterminal A of u by the right-hand
side w of a production A→ w and ⇒∗ denotes the reflexive and transitive closure of
⇒. The language of G is the set L(G) of finite strings w ∈ T ∗, such that s⇒∗ w. The
problem T ∗ ⊆ L(G) is known as the universality problem, known to be undecidable.
Moreover, we assume w.l.o.g. that:

– T = {0,1}, because every terminal can be encoded as a binary string,
– L(G) does not contain the empty string ε, because computing a grammar G′ such

that L(G′) = L(G)∩T+ is possible and, moreover, we can reduce from the modi-
fied universality problem problem T+ ⊆ L(G′) instead of the original T ∗ ⊆ L(G),



– G is in Greibach normal form, i.e. it contains only production rules of the form
B0→ bB1 . . .Bn, where B0, . . .Bn ∈ N, for some n≥ 0 and b ∈ T .

Let P = {p0, p1} be a set of ports. For each nonterminal B0 ∈ N, we have a predicate
B0 or arity two and a rule B0(x1,x2)← ∃y1 . . .∃yn . [x1] ∗ 〈x1.pa,y1.pa〉 ∗B1(y1,y2) ∗
. . . ∗Bn(yn,x2), for each rule B0 → bB1 . . .Bn of G. Moreover, we consider the rules
A(x1,x2)←∃z . 〈x1.pa,z.pa〉∗A(z,x2) and A(x1,x2)←〈x1.pa,x2.pa〉, for all a ∈ {0,1}.
Let ∆ be the SID containing the above rules. It is easy to check that the SID is progress-
ing and e-restricted and that, moreover, the rules from def∗

∆
(A) are connected. Finally,

A(x1,x2) |=∆ B(x1,x2) if and only if T+ ⊆ L(G). ut

On the positive side, we prove that Entl[∆,A,B] is decidable, if ∆ is progressing,
connected and e-restricted, assuming further that Bnd[∆,A] has a positive answer. In this
case, the bound on the degree of the models of A(x1, . . . ,x#A) is effectively computable,
using the algorithm from Fig. 3 (see Prop. 1 for a cut-off result) and denote by B this
bound, throughout this section.

The proof uses a reduction of Entl[∆,A,B] to a similar problem for SL, showed
to be decidable [20]. We recall the definition of SL, interpreted over heaps h : C ⇀fin

CK, introduced in §2.3. SL rules are denoted as A(x1, . . . ,x#(A))← φ, where φ is a SL

formula, such that fv(φ)⊆ {x1, . . . ,x#(A)} and SL SIDs are denoted as ∆. The profile λ∆

is defined for SL same as for CL (Def. 11).

Definition 13. A SL rule A(x1, . . . ,x#(A))← φ from a SID ∆ is said to be:

1. progressing if and only if φ = ∃t1 . . .∃tm . x1 7→ (y1, . . . ,yK) ∗ψ, where ψ contains
only predicate and equality atoms,

2. connected if and only if z1 ∈ {xi | i ∈ λ∆(A)} ∪ {y1, . . . ,yK}, for every predicate
atom B(z1, . . . ,z#(B)) from φ.

Note that the definitions of progressing and connected rules are different for SL, com-
pared to CL (Def. 12); in the rest of this section, we rely on the context to distinguish
progressing (connected) SL rules from progressing (connected) CL rules. Moreover,
e-restricted rules are defined in the same way for CL and SL (point 3 of Def. 12). A
tight upper bound on the complexity of the entailment problem between SL formulæ,
interpreted by progressing, connected and e-restricted SIDs, is given below:

Theorem 5 ([20]). The SL entailment problem is in 22poly(width(∆)·logsize(∆))
, for progress-

ing, connected and e-restricted SIDs.

The reduction of Entl[∆,A,B] to SL entailments is based on the idea of viewing a
configuration as a logical structure (hypergraph), represented by an indirected Gaifman
graph, in which every tuple from a relation (hyperedge) becomes a clique [26]. In a
similar vein, we encode a configuration, of degree at most B, by a heap of degree K
(Def. 14), such that K is defined using the following integer function:

pos(i, j,k) def
= 1+B ·

j−1

∑
`=1
|τ`|+ i · |τ j|+ k
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Fig. 4: Gaifman Heap for a Chain Configuration

where Inter def
= {τ1, . . . ,τM} is the set of interaction types and Q def

= {q1, . . . ,qN} is the set
of states of the behavior B= (P ,Q ,−→) (§2). Here i ∈ [0,B−1] denotes an interaction
of type j ∈ [1,M] and k ∈ [0,N−1] denotes a state. We use M and N throughout the rest
of this section, to denote the number of interaction types and states, respectively.

For a set I of interactions, let Tuples
j
I (c)

def
= {〈c1, . . . ,cn〉 | (c1, p1, . . . ,cn, pn) ∈

I , τ j = 〈p1, . . . , pn〉, c ∈ {c1, . . . ,cn}} be the tuples of components from an interac-
tion of type τ j from I , that contain a given component c.

Definition 14. Given a configuration γ= (C ,I ,ρ), such that δ(γ)≤B, a Gaifman heap
for γ is a heap h : C⇀fin CK, where K

def
= pos(0,M+1,N), dom(h) = nodes(γ) and, for

all c0 ∈ dom(h), such that h(c0) = 〈c1, . . . ,cK〉, the following hold:

1. c1 = c0 if and only if c0 ∈ C ,
2. for all j ∈ [1,M], Tuples j

I (c) = {c1, . . . ,cs} if and only if there exist integers 0 ≤
k1 < .. . < ks <B, such that 〈h(c0)〉inter(ki, j) = ci, for all i∈ [1,s], where inter(i, j) def

=
[pos(i−1, j,0),pos(i, j,0)] are the entries of the i-th interaction of type τ j in h(c0),

3. for all k ∈ [1,N], we have 〈h(c0)〉state(k) = c0 if and only if ρ(c0) = qk, where the

entry state(k) def
= pos(0,M+1,k−1) in h(c0) corresponds to the state qk ∈ Q .

We denote by G(γ) the set of Gaifman heaps for γ.

Intuitively, if h is a Gaifman heap for γ and c0 ∈ dom(h), then the first entry of h(c0)
indicates whether c0 is present (condition 1 of Def. 14), the next B ·∑M

j=1 |τ j| entries are
used to encode the interactions of each type τ j (condition 2 of Def. 14), whereas the last
N entries are used to represent the state of the component (condition 3 of Definition 14).
Note that the encoding of configurations by Gaifman heaps is not unique: two Gaifman
heaps for the same configuration may differ in the order of the tuples from the encoding
of an interaction type and the choice of the unconstrained entries from h(c0), for each
c0 ∈ dom(h). On the other hand, if two configurations have the same Gaifman heap
encoding, they must be the same configuration.

Example 4. Fig. 4 (b) shows a Gaifman heap for the configuration in Fig. 4 (a), where
each component belongs to at most 2 interactions of type 〈out, in〉. �

We say that a configuration γ′ is a subconfiguration of γ, denoted γ′ v γ if and only
if γ = γ′ •γ′′, for some configuration γ′′. The following lemma builds Gaifman heaps for
subconfigurations:

Lemma 13. Given configurations γ and γ′, such that γ′ v γ, if h∈G(γ), then h′ ∈G(γ′),
where dom(h′) = dom(h)∩nodes(γ′) and h′(c) = h(c), for all c ∈ dom(h′).



Proof. We have dom(h′) = dom(h)∩nodes(γ′) = nodes(γ)∩nodes(γ′) = nodes(γ′), be-
cause dom(h) = nodes(γ)⊇ nodes(γ′). The points (1-3) of Def. 14 are by easy inspec-
tion. ut

We build a SL SID ∆ that generates the Gaifman heaps of the models of the predicate
atoms occurring in a progressing CL SID ∆. The construction associates to each variable
x, that occurs free or bound in a rule from ∆, a unique K-tuple of variables η(x) ∈ VK,
that represents the image of the store value ν(x) in a Gaifman heap h i.e., h(ν(x)) =
ν(η(x)). Moreover, we consider, for each predicate symbol A ∈ def(∆), an annotated
predicate symbol Aι of arity #Aι = (K+1) ·#A, where ι : [1,#A]× [1,M]→ 2[0,B−1] is
a map associating each parameter i ∈ [1,#A] and each interaction type τ j, for j ∈ [1,M],
a set of integers ι(i, j) denoting the positions of the encodings of the interactions of type
τ j, involving the value of xi, in the models of Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#A)) (point 2
of Def. 14). Then ∆ contains rules of the form:

Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A)))← (6)

∃y1 . . .∃ym∃η(y1) . . .∃η(ym) . ψ∗π ∗∗ h
`=1 B

`
ι`(z

`
1, . . . ,z

`
#(B`)

,η(z`1), . . . ,η(z
`
#(B`)

))

for which ∆ has a stem rule A(x1, . . . ,x#(A))←∃y1 . . .∃ym . ψ∗π∗∗ h
`=1B

`(z`1, . . . ,z
`
#B`),

where ψ∗π is a quantifier- and predicate-free formula and π is the conjunction of equal-
ities and disequalities from ψ∗π. However, not all rules (6) are considered in ∆, but only
the ones meeting the following condition:

Definition 15. A rule of the form (6) is well-formed if and only if, for each i ∈ [1,#A]
and each j ∈ [1,M], there exists a set of integers Yi, j ⊆ [0,B−1], such that:

– ||Yi, j|| = ||I j
ψ,π(xi)||, where I j

ψ,π(x) is the set of interaction atoms 〈z1.p1, . . . ,zn.pn〉
from ψ of type τ j = 〈p1, . . . , pn〉, such that zs ≈π x, for some s ∈ [1,n],

– Yi, j ⊆ ι(i, j) and ι(i, j)\Yi, j = Z j(xi), where Z j(x)
def
=

⋃h
`=1

⋃#B`

k=1{ι`(k, j) | x≈π z`k}
is the set of positions used to encode the interactions of type τ j involving the
store value of the parameter x, in the sub-configuration corresponding to an atom
B`(z`1, . . . ,z

`
#(B`)

), for some ` ∈ [1,h].

We denote by ∆ the set of well-formed rules (6), such that, moreover:

ψ
def
= x1 7→ η(x1) ∗ ∗x∈fv(ψ) CompStatesψ(x) ∗ ∗#A

i=1 InterAtomsψ(xi), where:

CompStatesψ(x)
def
=∗ [x] occurs in ψ 〈η(x)〉1 = x ∗ ∗ x@qk occurs in ψ 〈η(x)〉state(k) = x

InterAtomsψ(xi)
def
=∗M

j=1∗r j
p=1 〈η(xi)〉inter( j,k j

p)
= x j

p and {k j
1, . . . ,k

j
r j}

def
= ι(i, j)\Z j(xi)

Here for two tuples of variables x = 〈x1, . . . ,xk〉 and y = 〈y1, . . . ,yk〉, we denote by
x = y the formula ∗ k

i=1xi = yi. Intuitively, the SL formula CompStatesψ(x) realizes
the encoding of the component and state atoms from ψ, in the sense of points (1) and
(3) from Def. 14, whereas the formula InterAtomsψ(xi) realizes the encodings of the
interactions involving a parameter xi in the stem rule (point 2 of Def. 14). In particular,
the definition of InterAtomsψ(xi) uses the fact that the rule is well-formed.



Lemma 14. Let ∆ be a progressing SID and A ∈ def(∆) be a predicate, such that γ |=ν

A(x1, . . . ,x#A), for some configuration γ = (C ,I ,ρ) and store ν. Then, for each heap
h ∈ G(γ), there exists a map ι : [1,#A]× [1,M]→ 2[0,B−1] and a store ν, such that the
following hold:

1. ν(xi) = ν(xi) ∈ dom(h) and ν(η(xi)) = h(ν(xi)), ∀i ∈ [1,#A],
2. Tuples

j
I (ν(xi)) =

{
〈ν(η(xi))〉inter( j,k) | k ∈ ι(i, j)

}
, ∀i ∈ [1,#A] ∀ j ∈ [1,M],

3. h ν

∆
Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#(A))).

Proof. By induction on the definition of γ |=ν A(x1, . . . ,x#A), assume that γ |=ν ∃y1 . . .∃ym . ψ∗
π∗∗ h

`=1B
`(z`1, . . . ,z

`
#(B`)

), where A(x1, . . . ,x#(A))←∃y1 . . .∃ym . ψ∗π∗∗ h
`=1B

`(z`1, . . . ,z
`
#(B`)

)

is a rule from ∆, such that ψ∗π is quantifier- and predicate-free and π is the conjunction
of equalities and disequalities from ψ∗π. Then there exists a store ν′, that agrees with
ν over x1, . . . ,x#A, and configurations γ0 = (C0,I0,ρ), . . . ,γh = (Ch,Ih,ρ), such that:

– γ0 |=ν′
∆

ψ∗π,
– γ` |=ν′

∆
B`(z`1, . . . ,z

`
#B`

), for all ` ∈ [1,h], and
– γ = γ0 • . . .• γh.

We define the heaps h0, . . . ,hh, as follows:
– for each ` ∈ [1,h], let dom(h`) = nodes(γ`), h`(c) = h(c), for all c ∈ dom(h`),
– h0

def
= h\ (

⋃h
`=1 h`).

By Lemma 13, we obtain that h` ∈ G(γ`), for all ` ∈ [1,h]. We define h
def
= h0 ∪ . . .∪

hh and prove that this is indeed a heap, by showing dom(hi)∩ dom(h j) = /0, for all
0 ≤ i < j ≤ h. If i = 0, we have dom(hi)∩ dom(h j) = /0, by the definition of hi. Else,
suppose, for a contradiction, that c ∈ dom(hi)∩dom(h j), for some 1≤ i < j ≤ h. Then
c ∈ nodes(γi)∩nodes(γ j). Since γ` |= ∃x1 . . .∃x#B`

. B(x1, . . . ,x#B`
), by Lemma 12, we

obtain c ∈ Ci ∩C j, which contradicts the fact that γi • γ j is defined. Next, we apply the
inductive hypothesis to find stores ν` and maps ι` such that, for ` ∈ [1,h], we have:

– ν(z`i ) = ν′(z`i ) ∈ dom(h`) and h`(ν
′(z`i )) = ν(η(z`i )), ∀i ∈ [1,#B`],

– Tuples
j
I`(ν(z

`
i ))=

{
〈ν`(η(z`i ))〉inter( j,k) | k ∈ ι`(i, j)

}
, ∀i∈ [1,#(B`)] ∀ j∈ [1,M], and

– h` 
ν`
∆
B`ι(z

`
1, . . . ,z

`
#B`

,η(z`1), . . . ,η(z
`
#(B`)

)).

First, for each i∈ [1,#A] and each j∈ [1,M], we define ι(i, j) def
= {k1, . . . ,ksi}∪

⋃h
`=1

⋃#B`
k=1

{
ι`(k, j) | xi ≈π z`k

}
,

where:
– Tuples

j
I0
(ν(xi)) = {c1, . . . ,csi, j}, and

– 0 ≤ ki, j
1 < .. . < ki, j

si, j < B are integers, such that 〈h(ν(xi))〉inter( j,ki, j
` )

= c`, ∀` ∈
[1,si, j]; the existence of these integers is stated by point (2) of Def. 14, relative
to ν(xi).

Second, we define the store ν as follows:
– ν(x1) = ν(x1) and ν(η(x1))

def
= h(ν(x1)),

– ν(z`i )
def
= ν′(z`i ), ∀` ∈ [1,h] ∀i ∈ [1,#B`],

– ν(η(z`i ))
def
= h(ν′(z`i )), ∀` ∈ [1,h] ∀i ∈ [1,#B`],

– ν is arbitrary everywhere else.
The points (1) and (2) of the statement follow from the definitions of ν and ι, respec-
tively. To prove point (3), suppose, for a contradiction, that k∈{ki, j

1 , . . . ,ki, j
si, j}∩ι`(t, j) 6=



/0, for some i∈ [1,#A], j ∈ [1,M], t ∈ [1,#B`] and `∈ [1,h], such that xi≈π z`t . Then there
exists a tuple of components c ∈ Tuples

j
I0
(ν(xi)), such that c = 〈ν`(η(z`i ))〉inter( j,t) ∈

Tuples
j
I`(ν(z

`
i )). Hence I0∩I` 6= /0, which contradicts the fact that the composition γ0•γ`

is defined. Hence, the rule:

Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A)))←

∃y1 . . .∃ym∃η(y1) . . .∃η(ym) . ψ∗π ∗∗ h
`=1 B

`
ι`(z

`
1, . . . ,z

`
#(B`)

,η(z`1), . . . ,η(z
`
#(B`)

))

is well-formed and thus belongs to ∆. To obtain hν

∆
Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#(A))),

by the definition of:

ψ
def
= x1 7→ η(x1)∗∗x∈fv(ψ) CompStatesψ(x)∗∗#A

i=1 InterAtomsψ(xi)

it is sufficient to prove the following points:
– h0 ν x1 7→ η(x1): by the definition ν, we have ν(η(x1)) = h(ν(x1)), hence it is

sufficient to prove that dom(h0) = {ν(x1)}. “⊆” Let c ∈ dom(h0) be a component.
By the definition of h0 = h\

⋃h
`=1 h`, we have dom(h0) = dom(h)\

⋃h
`=1 dom(h`) =

nodes(γ) \
⋃h

`=1 nodes(γ`) = nodes(γ0), because h ∈ G(γ) and h` ∈ G(γ`), for all
` ∈ [1,h]. Since γ0 |=ν′

∆
ψ, we have c = ν′(x), for some x ∈ fv(ψ). Suppose, for a

contradiction, that x and x1 are not the same variable, then x ∈ {z`1, . . . ,z`#B`
}, for

some ` ∈ [1,h], because ∆ is progressing (Def. 12). By Lemma 12, we obtain c ∈
nodes(γ`), contradiction. Then c = ν′(x1) = ν(x1). “⊇” Because ∆ is progressing,
ψ = [x1]∗ϕ, hence ν(x1) = ν′(x1) ∈ nodes(γ0) = dom(h0), because γ0 |=ν′ ψ.

– /0 ν CompStatesψ(x), for each x ∈ fv(ψ): by the definition of ν, h ∈ G(γ) and
points 1 and 3 of Def. 14.

– /0 ν InterAtomsψ(xi), for each i ∈ [1,#A]: by the definition of ν, h ∈G(γ), defini-
tion of ι(i, j), for all i ∈ [1,#A] and j ∈ [1,M] and point 2 of Def. 14.

– /0 ν π: because ( /0, /0,ρ) |=ν′ π and ν agrees with ν′ over fv(π). ut

Lemma 15. Let ∆ be a progressing SID and A ∈ def(∆) be a predicate, such that h ν

∆

Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))), for a map ι : [1,#(A)]× [1,m]→ 2[0,B−1] and a
store ν. Then, the following hold:

1. ν(xi) ∈ dom(h) and h(ν(xi)) = ν(η(xi)), for all i ∈ [1,#A],
2. there exists a configuration γ, such that h ∈G(γ) and γ |=ν

∆
A(x1, . . . ,x#A).

Proof. By fixpoint induction on the definition of hν

∆
Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))).

Consider the following well-formed rule from ∆:

Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A)))←

∃y1 . . .∃ym∃η(y1) . . .∃η(ym) . ψ∗π ∗∗ h
`=1 B

`
ι`(z

`
1, . . . ,z

`
#(B`)

,η(z`1), . . . ,η(z
`
#(B`)

))



such that h ν
′

∆
ψ∗π ∗∗ h

`=1 B
`
ι`(z

`
1, . . . ,z

`
#(B`)

,η(z`1), . . . ,η(z
`
#(B`)

)), where ν
′ is a store

that agrees with ν over x1, . . . ,x#(A) and η(x1), . . . ,η(x#(A)).

(1) If i = 1 then x1 7→ η(x1) is a subformula of ψ, thus ν(x1) = ν
′(x1) ∈ dom(h) and

h(ν(x1))= ν
′(η(x1))= ν(η(x1)). Otherwise, because ∆ is progressing, xi ∈{z`1, . . . ,z`#B`

},
for some ` ∈ [1,h] and point (1) follows from the inductive hypothesis.

(2) There exist heaps h0, . . . ,hh, such that the following hold:
– dom(hi)∩dom(h j) = /0, for all 0≤ i < j ≤ h and h= h0∪ . . .∪hh,
– h0 ν

′
ψ∗π,

– h` ν
′

∆
B
`
ι`(y

`
1, . . . ,y

`
#(B`)

,η(y`1), . . . ,η(y
`
#(B`)

)), for all ` ∈ [1,h].

By the inductive hypothesis, there exist configurations γ1 =(C1,I1,ρ1), . . . ,γh =(Ch,Ih,ρh),
such that h` ∈ G(γ`) and γ` |=ν

∆
B`(z`1, . . . ,z

`
#(B`)

), for all ` ∈ [1,h]. We define the con-
figuration γ0 = (C0,I0,ρ0), as follows:

– C0
def
= {ν(x1)},

– I0
def
= {(ν′(z1), p1, . . . ,ν

′(zn), pn) | 〈z1.p1, . . . ,zn.pn〉 occurs in ψ},
– ρ0(ν

′(z)) def
= qk if and only if z@qk occurs in ψ, otherwise ρ0 is arbitrary.

Moreover, we define the state map ρ as ρ(c) def
= ρ`(c) if c ∈ dom(h`), for all ` ∈ [0,h]

and ρ(c) is arbitrary, for c 6∈
⋃h

`=0 dom(h`). Since dom(h0), . . . ,dom(hh) are pairwise
disjoint, ρ is properly defined. First, we prove that the composition (C0,I0,ρ) • . . . •
(Ch,Ih,ρ) is defined, namely that, for all 0≤ i < j ≤ h, we have:

– Ci ∩ C j = /0: If i = 0 then either C0 = /0, in which case we are done, or C0 =

{ν(x1)}= {ν′(x1)}. By the definition of ψ = x1 7→ η(x1)∗ϕ and h0 ν
′
ψ, we ob-

tain ν
′(x1) ∈ dom(h0). Since dom(h0)∩dom(h j) = /0, we obtain ν(x1) 6∈ dom(h j).

Since h j ∈G(γ j), we obtain C j ⊆ nodes(γ j) = dom(h j), thus Ci∩• j = /0. Else i > 0
and, since hi ∈ G(γi) and h j ∈ G(γ j), we obtain Ci ⊆ nodes(γi) = dom(hi) and
C j ⊆ nodes(γ j) = dom(h j). But dom(hi)∩dom(h j) = /0, leading to Ci∩C j = /0.

– Ii ∩ I j = /0: If i = 0, by the definition of I0, each interaction from I0 is of the
form (ν′(z1), p1, . . . ,ν

′(zn), pn), such that 〈z1.p1, . . . ,zn.pn〉 is an interaction atom
occuring in ψ. Since, moreover, ∆ is progressing, we have x1 ∈ {z1, . . . ,zn}, hence
ν(x1) ∈ {ν′(z1), . . . ,ν

′(zn)}. Let (c1, p1, . . . ,cn, pn) ∈ I j be an interaction. Since
h j ∈ G(γ j), we obtain {c1, . . . ,cn} ⊆ nodes(γ j) = dom(h j), hence {c1, . . . ,cn} ∩
dom(h0) = {c1, . . . ,cn}∩{ν(x1)}= /0, leading to Ii∩I j = /0, because the choices of
(ν′(z1), p1, . . . ,ν

′(zn), pn) ∈ Ii and (c1, p1, . . . ,cn, pn) ∈ I j are arbitrary. Else, i > 0
and let (ci

1, p1, . . . ,ci
n, pn) ∈ Ii, (c

j
1, p1, . . . ,c

j
n, pn) ∈ I j be two interactions of the

same type. Since hi ∈ G(γi) and h j ∈ G(γ j), we have {ci
1, . . . ,c

i
n} ⊆ nodes(γi) =

dom(hi) and {c j
1, . . . ,c

j
n} ⊆ nodes(γ j) = dom(h j), respectively. Since dom(hi)∩

dom(h j)= /0, we obtain {ci
1, . . . ,c

i
n}∩{c

j
1, . . . ,c

j
n}= /0. Since the choices of (ci

1, p1, . . . ,ci
n, pn)∈

Ii and (c j
1, p1, . . . ,c

j
n, pn) ∈ I j are arbitrary, we obtain Ii∩ I j = /0.

Consequently, we define γ
def
= (C0,I0,ρ) • . . . • (Ch,Ih,ρ) and conclude by proving the

following points:



– h = G(γ): we prove that dom(h) =
⋃h

`=0 dom(h`) = nodes(γ), as required by Def.
14. The conditions (1-3) for c0 = ν(x1) are by the definition of ψ; for c0 ∈ dom(h`)
these conditions follow from h` ∈ G(γ`). “⊆” Let c ∈ dom(h) be a component. If
c ∈ dom(h0) = {νx1}, then c ∈ C0 ⊆ nodes(γ0) ⊆ nodes(γ). Else c ∈ dom(h`), for
some ` ∈ [1,h], then c ∈ nodes(γ`) ⊆ nodes(γ), because h` ∈ G(γ`). “⊇” Let c ∈
nodes(γ) =

⋃h
`=0 nodes(γ`) be a component. If c ∈ nodes(γ0) then either c ∈ C0 or c

occurs in some interaction from I0. If c ∈ C0 then c = ν(x1) ∈ dom(h0)⊆ dom(h),
by the definition of C0. Else there exists an interaction (c1, p1, . . . ,cn, pn)∈ I0, such
that c ∈ {c1, . . . ,cn}. In this case c = ν

′(z), for some variable z that occurs in an
interaction atom from ψ. Since ∆ is progressing, z ∈ {z`1, . . . ,z`#B`

}, for some ` ∈
[1,h]. Because γ` |=ν

′
∆
B`(z`1, . . . ,z

`
#B`

), we obtain c = ν
′(z) ∈ nodes(γ`), by Lemma

12, and c ∈ dom(h`) ⊆ dom(h), because h` ∈ G(γ`). If c ∈ nodes(γ`), for some
` ∈ [1,h], we have c ∈ dom(h`)⊆ dom(h), because h` ∈G(γ`).

– γ |=ν

∆
A(x1, . . . ,x#A): Let the stem of the above rule from ∆ be:

A(x1, . . . ,x#A)←∃y1 . . .∃ym . ψ∗π∗∗ h
`=1B`(z`1, . . . ,z

`
#B`

)

Since (C`,I`,ρ`) |=ν
′

∆
B`(z`1, . . . ,z

`
#B`

) and ρ agrees with ρ` over nodes(γ`), it follows

that (C`,I`,ρ) |=ν
′

∆
B`(z`1, . . . ,z

`
#B`

), for all ` ∈ [1,h]. Moreover, (C0,I0,ρ) |=ν
′

ψ

by definition, and ( /0, /0,ρ) |=ν
′

π, because /0 ν
′

π. Altogether, we obtain γ |=ν
′

∆

ψ∗π∗∗ h
`=1B`(z`1, . . . ,z

`
#B`

), leading to γ |=ν

∆
A(x1, . . . ,x#A). ut

We state below the main result of this section on the complexity of the entailment prob-
lem. The upper bounds follow from a many-one reduction of Entl[∆,A,B] to the SL en-
tailment Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#A)) ∆ ∃x#B+1 . . .∃x#B∃η(x#B+1) . . .∃η(x#B) .
Bι′(x1, . . . ,x#B,η(x1), . . . ,η(x#B)), in combination with the upper bound provided by
Theorem 5, for SL entailments. If k < ∞, the complexity is tight for CL, whereas gaps
occur for k = ∞, ` < ∞ and k = ∞, `= ∞, due to the cut-off on the degree bound (Prop.
1), which impacts the size of ∆ and time needed to generate it from ∆.

Theorem 6. If ∆ is progressing, connected and e-restricted and, moreover, Bnd[∆,A]
has a positive answer, Entlk,`[∆,A,B] is in 2EXP, Entl∞,`[∆,A,B] is in 3EXP ∩ 2EXP-
hard, and Entl[∆,A,B] is in 4EXP ∩ 2EXP-hard.

Proof. The proof consists of three parts. (1) We reduce Entl[∆,A,B] to an equivalent
SL entailment problem, for a progressing, connected and e-restricted SID. (2) This re-
duction provides upper bounds for Entlk,`[∆,A,B], in the cases k, ` < ∞, k = ∞, ` < ∞

and k = ` = ∞, respectively. (3) We give a lower bound for Entl[∆,A,B], by reduction
from SL entailment.

(1) We prove that, for each map ι : [1,#A]× [1,M]→ 2[0,B−1] there exists a map ι′ :
[1,#B]× [1,M]→ 2[0,B−1], such that:

A(x1, . . . ,x#A) |=∆ ∃x#B+1 . . .∃x#B . B(x1, . . . ,x#B) ⇐⇒
Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#A)) ∆ ∃x#B+1 . . .∃x#B∃η(x#B+1) . . .∃η(x#B) .

Bι′(x1, . . . ,x#B,η(x1), . . . ,η(x#B))



“⇒” Let h be a heap and ν be a store, such that h ν

∆
Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#A)).

By Lemma 15, we have h(ν(xi)) = ν(η(xi)), for all i ∈ [1,#A] and, moreover, there
exists a configuration γ, such that h ∈ G(γ) and γ |=ν

∆
A(x1, . . . ,x#A). By the hypothe-

sis, we obtain γ |=ν

∆
∃x#A+1 . . .∃x#B . B(x1, . . . ,x#B), hence there exists a store ν

′, that
agrees with ν over x1, . . . ,x#A, such that γ |=ν

′
∆
B(x1, . . . ,x#B). By Lemma 14, there ex-

ists a store ν
′′ that agrees with ν

′ over x1, . . . ,x#B, such that h(ν′′(xi)) = ν
′′(η(xi)), for

all i ∈ [1,#B] and h ν
′′

∆
Bι′(x1, . . . ,x#B,η(x1), . . . ,η(x#B))), for some map ι′ : [1,#B]×

[1,M]→ 2[0,B−1], because h∈G(γ). Hence, ν
′′ agrees with ν over x1, . . . ,x#A,η(x1), . . . ,η(#A),

thus we obtain h ν

∆
∃x#A+1 . . .∃x#B . Bι′(x1, . . . ,x#B,η(x1), . . . ,η(x#B)).

”⇐” Let γ be a configuration, ν be a store such that γ |=ν

∆
A(x1, . . . ,x#A) and h ∈ G(γ)

be a heap. Cleary, such a heap exists, for any given configuration, by Def. 14. By
Lemma 14, there exists a map ι : [1,#A]× [1,M]→ 2[0,B−1] and a store ν, that agrees
with ν over x1, . . . ,x#A, such that ν(η(xi)) = h(ν(xi)), for all i ∈ [1,#A] and h ν

∆

Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#A)). By the hypothesis, we have hν
′

∆
Bι′(x1, . . . ,x#B,η(x1), . . . ,η(x#B)),

for some map ι′ : [1,#B]× [1,M]→ 2[0,B−1] and a store ν
′ that agrees with ν over

x1, . . . ,x#A and η(x1), . . . ,η(x#A). By Lemma 15, we have ν
′(η(xi))= h(ν(xi))= ν(η(xi)),

for all i ∈ [1,#A] and there exists a configuration γ′, such that h ∈ G(γ′) and γ′ |=ν
′

∆

B(x1, . . . ,x#B). Since h ∈ G(γ) ∩G(γ′), by Def. 14, we obtain γ = γ′, hence γ |=ν
′

∆

B(x1, . . . ,x#B). Since, moreover ν
′, ν and ν all agree over x1, . . . ,x#A, we obtain γ |=ν

∆

∃x#A+1 . . .∃x#B . B(x1, . . . ,x#B).

Since ∆ is progressing and connected, ∆ is progressing and connected as well. More-
over, ∆ is e-restricted, because ∆ is e-restricted and the construction of ∆ only introduces
equalities, not disequalities.

(2) The upper bound relies on the result of [19, Theorem 32], that gives a 22poly(width(∆)·logsize(∆))

upper bound for SL entailments. Note that the number of variables in each rule from
∆ is the number of variables in its stem rule multiplied by K+ 1, hence width(∆) ≤
width(∆)·(K+1)=width(∆)·B·intersize(∆)·2O(intersize(∆)), because K= pos(0,M+1,N)=
1+B ·∑M

`=1 |τ`|+N =B · intersize(∆) ·2O(intersize(∆)). The time needed to build ∆ and
its size are bounded as follows:

size(∆) ≤ ||∆|| ·width(∆), since there are 2B·M·arity(∆) maps ι : [1,#A]× [1,M]→ 2[0,B−1]

≤ 2B·M·arity(∆) · ||∆|| ·width(∆)
= 2B·2

intersize(∆)·arity(∆) · ||∆|| ·B · intersize(∆) ·2O(intersize(∆))

= size(∆) ·2poly(B·2intersize(∆)·arity(∆))

By Prop. 1, we consider the following cases:

– if k, ` < ∞ then B= poly(size(∆)), thus size(∆) = 22O(size(size(∆)))

– if k = ∞ and ` < ∞ then B= 2poly(size(∆)), thus size(∆) = 222O(size(size(∆)))

– if k = ∞ and `= ∞ then B= 22poly(size(∆))
, thus size(∆) = 2222O(size(size(∆)))



(3) The 2EXP-hard lower bound for Entl∞,`[∆,A,B] and Entl[∆,A,B] is obtained by
reduction from the SL entailment problem A(x1, . . . ,xk) ∆ B(x1, . . . ,xk), where ∆ is a
progressing and connected SID, with no disequalities [18, Theorem 18]. Note that the
maximum arity of ∆ cannot be bounded to a constant, in order to obtain 2EXP-hardness
of the SL entailment problem, hence the lower bound does not apply to Entlk,`[∆,A,B].
The idea of the reduction is to encode each SL atomic proposition of the form x 7→
(y1, . . . ,yK) by the formula [x] ∗ 〈x.p0, . . . ,yK.pK〉. Then each model h of a SL pred-
icate atom A(x1, . . . ,x#(A)) is represented by a configuration γ = (C ,I ,ρ), such that
C = dom(h) and I = {(c0, p0, . . . ,cK, pK) | h(c0) = 〈c1, . . . ,cK〉}. Since ∆ is progress-
ing and connected, the CL SID ∆, obtained from the reduction, is progressing and con-
nected. Since, moreover, the reduction does not introduce disequalities, ∆ is trivially e-
restricted. Because the reduction takes polynomial time, we obtain a 2EXP-hard lower
bound. ut

7 Conclusions and Future Work

We study the satisfiability and entailment problems in a logic used to write proofs of
correctness for dynamically reconfigurable distributed systems. The logic views the
components and interactions from the network as resources and reasons also about the
local states of the components. We reuse existing techniques for Separation Logic [40],
showing that our configuration logic is more expressive than SL, fact which is confirmed
by a number of complexity gaps. Closing up these gaps and finding tight complexity
classes in the more general cases is considered for future work. In particular, we aim
at lifting the boundedness assumption on the degree of the configurations that must be
considered to check the validity of entailments.
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