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Introduction

Multivariable functions play an important role in many professional fields in modeling numerous phenomena which naturally depend on several variables. In this research, we discuss results obtained in a research study where the didactical approach developed by [START_REF] Martínez-Planell | Students' understanding of the general notion of a function of two variables[END_REF][START_REF] Martínez-Planell | Graphs of functions of two variables: Results from the design of instruction[END_REF], 2019) and [START_REF] Trigueros | Geometrical representations in the learning of two variable functions[END_REF] through three cycles of research on the learning of two variable functions was used by a different teacher (the first author of this article) and in a different country. Our interest was to compare results obtained in a new context in terms of similarities with those obtained previously and critically analyze the possible similarities and differences obtained. Results of the first research cycle [START_REF] Martínez-Planell | Students' understanding of the general notion of a function of two variables[END_REF][START_REF] Trigueros | Geometrical representations in the learning of two variable functions[END_REF] stressed the importance of helping students construct an 𝑅 3 Schema including different subsets such as points and their movement in space, and fundamental planes and their intersection curves with surfaces (for a detailed description of an 𝑅 3 Schema see [START_REF] Martínez-Planell | Using cycles of research in APOS: The case of functions of two variables[END_REF]. The authors stressed the importance of conversions between different representations. They also underscored that generalization from the one-variable to the twovariable context is not easily done by students; the reconstruction of many basic ideas is needed. In their second research cycle, [START_REF] Martínez-Planell | Graphs of functions of two variables: Results from the design of instruction[END_REF] stressed the need to explicitly consider situations where the notion of free variable is needed to graph two-variable functions, cylinders, and make sense of other subsets of three-dimensional space. In the third research cycle, Martínez-Planell and [START_REF] Martínez-Planell | Using cycles of research in APOS: The case of functions of two variables[END_REF] found that students in a section that had used their researchbased activity sets and using the ACE cycle (activities, class discussion, and exercises) as didactical strategy outperformed students in a regular section (without the use of specially designed activities), and were more likely than students in the regular section to construct a conceptual understanding of function of two variables.

This study can be considered a replication study [START_REF] Melhuish | Reframing replication studies as studies of generalizability: a response to critiques of the nature and necessity of replication[END_REF] as it aims to confirm or refute previous results in the literature. "Replication study" has various possible meanings, none of which is generally accepted [START_REF] Sanchez Aguilar | Replication studies in mathematics education: What kind of questions would be productive to explore[END_REF]. In this article by "replication" we mean a test of a result of earlier research work that replicates most of the methodological features of the original study. Our study also satisfies conditions proposed by [START_REF] Star | In pursuit of a replication culture in mathematics education[END_REF], for a study to be a replication rather than a follow-up study, in that our study starts from results (rather than from a new idea) and it has a basic structure isomorphic to that of the original study, with methodological differences that do not alter that structure. Our replication study cannot be said to be either internal or external, in the sense that two of the researchers participated in the original study (internal) and one did not (external). The advantage of an internal replication is the knowledge of instruments, methods, and contributions of the original study, thus allowing a more faithful reproduction; the disadvantage is that it may be subject to some unconscious confirmation bias and that it might allow the incidence of "inside" knowledge that would make it difficult for others to conduct equivalent studies [START_REF] Schoenfeld | On replications[END_REF]. Our study pairs internal and external elements and so has the experience advantage of internal replication, while the external member affords the needed independence to safeguard against confirmation bias and the incidence of "inside" knowledge. The merit of this type of study has been suggested by [START_REF] Melhuish | Reframing replication studies as studies of generalizability: a response to critiques of the nature and necessity of replication[END_REF], We consider that the inclusion of the external researcher helped in overcoming both the incidence of internal knowledge, with his independent teaching, and the subjective bias that the original authors may introduce in their results. Generalizability and confirmation bias [START_REF] Schoenfeld | On replications[END_REF] is further addressed by the negotiation of results in the independently obtained analyses. Mathematics education, as a field of study, strives to understand and describe findings but also to change and improve the way mathematics is taught. It is important to aim to go beyond basic research and propose and test research findings under the same conditions and also under new ones to describe the conditions, affordances, and constraints of the experience [START_REF] Maass | Different ways to implement innovative teaching approaches at scale[END_REF]. Replication, as described above may validate research results, and help understand their possibilities and constrains under different conditions. Given the importance of multivariable calculus and the observed difficulties that students have learning this topic, it is important to study if pertinent research findings are applicable in different classrooms and to verify if this is the case in different institutional contexts. That is, it is important to question, could other researchers, in other types of institutions, with a different sample population, obtain comparable results?

Theoretical framework

In APOS [START_REF] Arnon | APOS Theory: A framework for research and curriculum development in mathematics education[END_REF], an Action is a transformation of a mathematical Object that the individual perceives as external. An Action may be the rigid application of an explicitly available or memorized procedure. When an Action is repeated, and the individual reflects on the Action or on a chain of Actions, it might be interiorized into a Process. A Process is perceived as internal. The individual is able to justify the Process, to omit steps and anticipate results without explicitly performing the Process, and thus to generate dynamical imagery of the Process. When the individual is able to perceive a Process as an entity in itself, and is able to do or imagine doing Actions on it, the Process is encapsulated into an Object and new Actions can be performed on it to determine, for example, its properties. An Object can be de-encapsulated into the Process it came from when necessary. A Schema is a coherent collection of Actions, Processes, Objects, and other previously constructed Schemas having to do with a particular mathematical notion or topic. In APOS, mathematical knowledge with respect to a specific mathematical notion or topic, is defined as the general tendency of the students to perform Actions, Processes, Objects or Schemas in different problem situations related to the notion. Research in APOS typically starts by proposing a model, in terms of the structures and mechanisms of APOS, of how a student may construct a specific mathematical notion. This model is called a genetic decomposition (GD). It is used to design research instruments and didactic activities. After implementation of the GD-based activities, research is undertaken to find out what conjectured constructions students can do, which cause them difficulty, and what unconjectured constructions are done by students. Research results may suggest revising the GD and, consequently, the designed activities. The revised GD may then be tested through another research cycle. One may continue doing research cycles until the GD no longer needs revisions. At that moment the GD will model how students, in practice, do construct the mathematical notion of interest. The research questions in this study are: How do students' constructions when using research-based activity sets and the ACE cycle compare to those of students in a lecture-based section not using the activities? How do students' constructions compare with those obtained in the previous study?

Methodology

Two groups of an Iranian university participated in this study, one which will be called the APOS group, and the other the regular group. The APOS group worked collaboratively with GD-based activities designed for the third cycle of the Martínez-Planell and Trigueros (2019) study. Students in the regular section were taught mainly through lectures. Both groups used the same standard textbook [START_REF] Stewart | Calculus[END_REF] and followed a very similar course syllabus (chapters 12 to 16 of Stewart), including the same assigned homework exercises. The main difference was the use of the additional GD-based activities [START_REF] Martínez-Planell | Activities for multivariable calculus[END_REF] for the APOS group and the teaching methodology. Eleven students from each group were chosen to be interviewed so that in each group they represented the spectrum from above average to below average students as determined by their one-variable calculus course grade. The participating students were chosen so that those course grades were as similar as possible. Both groups (APOS and regular) had the same professor in their previous onevariable calculus course; the professor that taught the multivariable calculus course to the regular group of the present study. The professor of multivariable calculus for the APOS group was one of the authors of this article. All of the interviews were conducted by the instructor of the APOS group. Each interview lasted about 1 h. Interviews were conducted in person (not online), recorded, transcribed, and translated. The transcripts were individually analyzed by the researchers and differences in opinion were negotiated. Students' response to the interview questions were graded for their mathematical correctness; this was used to identify general patterns. The instrument involved questions related to constructions of: 1) fundamental planes (planes of the form 𝑥 = 𝑐, 𝑦 = 𝑐 , 𝑧 = 𝑐, for 𝑐 constant) and their intersections with surfaces, 2) free variables (i.e., variables that can take any value without affecting the values of the other variables, like y in 𝑓(𝑥, 𝑦) = 𝑥 2 , 𝑧 = 𝑥 2 , or in the intersection of the plane 𝑥 = 0 with the surface 𝑧 = 𝑥𝑠𝑖𝑛(𝑦)), 3) graphing two-variable functions, and 4) domain and range.

Results

We compared the performance of students in the APOS and regular sections. Our comparison showed that the total percentage of correct answers in the graded interview questions obtained in the APOS section (65%) was more than twice that of the regular section (25%). Table 1 compares the average scores of students in the APOS and regular sections in problems dealing with the intersection of a surface with a fundamental plane, the notion of free variable, domain and range, and graphing. It also compares the results of this study with those of students of the original article [START_REF] Martínez-Planell | Using cycles of research in APOS: The case of functions of two variables[END_REF]. The table suggests that the GD proposed by [START_REF] Martínez-Planell | Using cycles of research in APOS: The case of functions of two variables[END_REF] and the activity sets, designed to foster students' constructions described in the GD, seem to help students construct a deeper knowledge of basic and geometric notions of functions of two variables. 

Fundamental planes and their intersections

Eight of the eleven students in the APOS section showed to have constructed fundamental plane as a Process or were in transition to doing so. Student A6 demonstrated the construction of fundamental plane as a Process. When drawing in 3D space the collection of points in that satisfy the equation 𝑦 = 2 and that are also in the graph of the function 𝑔(𝑥, 𝑦) = 𝑥 2 + 𝑥 3 (𝑦 -2) + 𝑦 2 :

Student A6: I only need to know the graph of 𝑔(𝑥, 𝑦) when 𝑦 = 2, umm the 𝑦 = 2 is a plane. I consider 𝑔(𝑥, 𝑦) as 𝑧. I have to substitute 𝑦 = 2 into 𝑔(𝑥, 𝑦) and 𝑥 can be everything. So 𝑧 will be umm 𝑥 2 + 4, its graph is something like a parabola which is placed on the plane 𝑦 = 2. When 𝑥 is 0 then 𝑧 will be 4 so the minimum height of the parabola is 4 umm at the point (0,2,4) [Figure 1].

Figure 1: Student A6's response

Student A6's overall behavior gave evidence of construction of the Process of fundamental plane. He gave evidence of relating algebraic and graphical representations of fundamental plane, including its placement in space. Moreover, A6 also demonstrated to have encapsulated this Process into an Object by performing Actions upon it, in order to obtain the resulting curve and to place it in its appropriate place in space. In comparison to the APOS section's students, only three of the eleven students in the regular section showed the construction of fundamental plane as a Process or showed to be in transition to doing such a construction. To exemplify the understanding of fundamental plane constructed by most students in the regular section, we consider R4's response to the same problem:

Student R4: I know 𝑦 = 2 is a line in 2D and it's a plane in 3D.

Interviewer: Okay, find what the question asks for.

Student R4: I can't draw 𝑔(𝑥, 𝑦) = 𝑥 2 + 𝑥 3 (𝑦 -2) + 𝑦 2 in 3D.

Interviewer: Is it necessary to draw it?

Student R4: For solving this question yes, I need, so I can't solve this question.

Student R4's response showed that although he was aware that 𝑦 = 2 is a plane, he believed that he needed to draw the surface in order to represent its intersection. He seemed not to be aware of the geometrical meaning of substituting a number for a variable in an equation; he showed a rigid understanding of its being a plane with algebraic representation as a variable equal to a constant but he was not able to use this information to do the needed Actions to find the intersection with the surface. R4's responses throughout the interview showed that R4's understanding of fundamental plane can be considered as consistent with an Action conception.

Free variables

We found that six students in the APOS section could construct a Process of free variable, meaning that they coordinated the Processes involved in relating the algebraic context of an equation (some with unnamed variables) and its solution set, with the verbally or symbolically given geometric context in which the equation and its solution set were to be interpreted. Two more students in the APOS section evidenced to be in transition to constructing such coordination. In contrast, two students in the regular section showed they had constructed or were in transition to constructing that coordination. We consider A5's response to one of the questions related to free variables. In the question, students were asked to draw the intersection of 𝑆 = {(𝑥, 𝑦, 𝑧): 𝑥 2 + 2𝑥 + 𝑦 2 = 3} with the x axis:

Student A5: On the x-axis, we have 𝑦 = 0 and 𝑧 = 0, so I have to put 0 for 𝑦, I should solve the equation 𝑥 2 + 2𝑥 = 3, the values of 𝑥 are 1 and -3, therefore the answer will be two points, (1,0,0) and (-3,0,0).

A5 was able to interrelate the given equations, the unmentioned variable z, and the context of the x axis he was asked to presume. By contrast, only two students in the regular section (compared to eight in the APOS section) gave evidence of relating the given equation, unnamed variable, and presumed context for solving problems related to free variable, or were in transition to constructing such relations. There were seven students in this section who were not able to correctly or even partially solve any of these problems. R3 is an example of such a student. In the same problem as above:

Student R3: For 𝑧 = 0 we have a circle umm it's (𝑥 -1) 2 + 𝑦 2 = 2, [sic] umm a circle with radius 2... Since we are in 3D, I think we have a sphere with center 𝑥 = 1, 𝑦 = 0, and 𝑧 = 0. So, the intersection with the 𝑥 axis will be a segment of the 𝑥 axis. Note, not taking into account her algebraic mistakes, that R3 attempted to graph the surface S rather than interpret algebraically the required context of the x axis, and she set the missing variable equal to zero ("for 𝑧 = 0"), without making reference to the x axis, rather than treat it as a free variable.

Graphing

In general, the graphical representation of functions of two variables posed difficulties for students in all the sections. However, students in the APOS section were more likely to exhibit behavior consistent with a Process conception of function graphing than students in the regular sections, who seemed to rely more frequently on memorization or who showed not to have yet constructed a relation between fundamental planes and graphs. We consider A4 as an example of a student in the APOS section who evidenced construction of a graphing Process. When graphing 𝑓(𝑥, 𝑦) = 𝑥 2 :

Student A4: If my parabola 𝑧 = 𝑥 2 that I drew it in the previous part moves in the 𝑦 direction then I can imagine the graph 𝑧 = 𝑥 2 in 3D, a surface umm it's like this [See Figure 3, left].

In her response, A4 showed to relate fundamental planes to graphing ("if my parabola 𝑧 = 𝑥 2 that I drew it in the previous part") and gave evidence of dynamical imagery ("… moves in the 𝑦 direction"). Showing connections between different representations and generating dynamical imagery is consistent with a Process conception. Eight of the eleven students in the regular section could do none or only one of the five problems dealing with the graphical representation of a function.

We considered R3 as an example of these students. When graphing 𝑓(𝑥, 𝑦) = 𝑥 2 , R3 interpreted it as 𝑦 = 𝑥 2 and directly generalized from the 2D to the 3D context to obtain a paraboloid (Figure 3, right). Moreover, she was not be able to justify, which is consistent with performing Actions. 

Domain and range

We will focus on two of the interview problems dealing with domain, where students had to represent the domain of 𝑓(𝑥, 𝑦) = 𝑥 2 + 𝑦 2 restricted to the pairs that satisfy -1 ≤ 𝑥 ≤ 1 and -1 ≤ 𝑦 ≤ 1 as a subset of 3D space, and also had to find the domain of 𝑔(𝑥, 𝑦) = 𝑥 2 . 

Discussion and conclusions

In this study, as in the original, considerable differences in the constructions made by students in the APOS and regular sections were found. Observation shows that in both, the original and new studies, students who were taught using APOS theory's didactical approach and using the activities designed with a validated genetic decomposition showed the constructions of the expected Actions and some of them showed the construction of Processes demonstrating a deeper learning of topics related to functions of two variables. Discussing replicability of studies in the context of mathematics education research is difficult. Mathematics education is a social phenomenon and, as such, is also complex. We limit our attention to study if the use of a specific didactical approach based on a cognitive theoretical approach to teach a specific mathematics topic, functions of two variables in this case, results in similar learning in two different institutions. It is very interesting to observe that the mental constructions observed in students in the APOS and regular sections in both institutions seem, for the most part, to be independent of the country and the institution where they were studied. So, our results show that there may be cognitive factors that are somehow independent of social, cultural and institutional differences. Results show that the use of activities designed in terms of the constructions described in a validated GD, in this case for the teaching of two-variable functions, are useful in promoting a deeper learning of this topic in two different contexts when the teaching approach follows the ACE cycle. This may ratify the strength of the GD as a design model and also how research-based activities using this prediction model and collaborative work can result in students' learning with some independence of the teacher, the institution and the country where they are used.
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 2 Figure 2: Student R3's work
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 3 Figure 3: A4's work (left) and R3's work (right) in drawing 𝒇(𝒙, 𝒚) = 𝒙 𝟐

Student A4 :

 A4 It explicitly tells us that the domain of 𝑓(𝑥, 𝑦) = 𝑥 2 + 𝑦 2 umm is all the pairs (𝑥, 𝑦) such that -1 ≤ 𝑥 ≤ 1 and -1 ≤ 𝑦 ≤ 1. Its figure I mean the domain in 3D is like this square in the 𝑥𝑦 plane [Figure 4, left]. Student A4: [in the next problem] The domain of function 𝑔(𝑥, 𝑦) = 𝑥 2 is 𝑅 2 because I can put all the points (𝑥, 𝑦) of the 𝑥𝑦 plane into 𝑔(𝑥, 𝑦) = 𝑥 2 . The above response shows that A4 reconstructed her notion of function domain to deal with the new situation of functions of two variables. Domain elements are now ordered pairs of real numbers rather than real numbers. Further, she relates her verbal set-theoretic description to the graphical representation of domain in 3D. Now consider the case of student R4. Student R4: The domain of 𝑓 is umm set of points (𝑥, 𝑦, 0) such that -1 ≤ 𝑥 ≤ 1, -1 ≤ 𝑦 ≤ 1, and 𝑥, 𝑦 belong to 𝑅 3 . The domain is this part on the 𝑥 axis and this part on the 𝑦 axis [Figure 4, right].
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 4 Figure 4. A4's work (left) and R4's work (right) in representing the domain

Table 1 : Comparison of APOS and regular sections in the original and reproducibility studies, by problem categories (total points obtained/total possible points)

 1 

	Problems dealing with:	% APOS section reproducibility study	% Regular section reproducibility study	% APOS section original study	% Regular section original study
	Fundamental planes	70	15	85	25
	Free variable	67	18	58	17
	Domain & Range	64	45	72	21
	Graphing	60	20	84	23
	% entire instrument	65	25	77	34