
HAL Id: hal-03750441
https://hal.science/hal-03750441

Submitted on 12 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PYTHIA: an oracle to guide runtime system decisions
Alexis Colin, François Trahay, Denis Conan

To cite this version:
Alexis Colin, François Trahay, Denis Conan. PYTHIA: an oracle to guide runtime system decisions.
2022 IEEE International Conference on Cluster Computing (CLUSTER), Sep 2022, Heidelberg, Ger-
many. pp.106-116, �10.1109/CLUSTER51413.2022.00025�. �hal-03750441�

https://hal.science/hal-03750441
https://hal.archives-ouvertes.fr

PYTHIA: an oracle to guide runtime system
decisions

Alexis Colin
Télécom SudParis

Institut Polytechnique de Paris
Palaiseau, France

alexis.colin@telecom-sudparis.eu

Francois Trahay
Télécom SudParis

Institut Polytechnique de Paris
Évry, France

francois.trahay@telecom-sudparis.eu

Denis Conan
Télécom SudParis

Institut Polytechnique de Paris
Évry, France

denis.conan@telecom-sudparis.eu

Abstract—Runtime systems are commonly used by parallel
applications in order to efficiently exploit the underlying hard-
ware resources. A runtime system hides the complexity of the
management of the hardware and exposes a high-level interface
to application developers. To this end, it makes decisions by
relying on heuristics that estimate the future behavior of the
application. In this paper, we propose PYTHIA, a library that
serves as an oracle capable of predicting the future behavior
of an application, so that the runtime system can make more
informed decisions. PYTHIA builds on the deterministic nature
of many HPC applications: by recording an execution trace,
PYTHIA captures the application main behavior. The trace can be
provided for future executions of the application, and a runtime
system can ask for predictions of future program behavior. We
evaluate PYTHIA on 13 MPI applications and show that PYTHIA
can accurately predict the future of most of these applications,
even when varying the problem size. We demonstrate how
PYTHIA predictions can guide a runtime system optimization by
implementing an adaptive thread parallelism strategy in GNU
OpenMP runtime system. The evaluation shows that, thanks to
PYTHIA prediction, the adaptive strategy reduces the execution
time of an application by up to 38 %.

Index Terms—Runtime system, Performance analysis, Perfor-
mance prediction.

I. INTRODUCTION

Servers and computers are increasingly complex systems
with more and more CPU cores and parallel capacities. As
a result, developing a parallel application that fully exploits
the hardware resources is tedious. In order to efficiently write
portable parallel programs, developers use runtime systems
such as communication libraries, task schedulers, or memory
management systems. These frameworks hide the complexity
of the hardware and provide common programming interfaces
to several hardware resources. Moreover, to ensure perfor-
mance portability, runtime systems make decisions so as to
exploit hardware efficiently. These decisions can have a sig-
nificant impact on program performance and are usually based
on heuristics. These heuristics generally use data collected
during the current execution of the program to estimate the
future behavior of the application. For example, the first-touch
memory allocation policy implemented in Linux allocates a
memory page on a NUMA node close to the first thread that
accesses it. It assumes that this thread will probably use the
memory page in the near future, so it favors memory locality.

However, the heuristic may be wrong and the application may
behave differently than expected.

Since the behavior of many parallel applications varies little
or not at all from run to run, knowledge of the past executions
of a program can provide valuable information about its future
behavior. This knowledge of the application’s behavior could
lead to better decisions than those based on current heuristics.
However, runtime systems are supposed to remain program
agnostic by design. Therefore, they cannot keep track of
program behavior and structure by themselves.

In this paper, we propose PYTHIA, an oracle that provides
runtime systems with predictions on the future behavior of
an application. This oracle can be used by runtime systems
to make better decisions than relying on heuristics. When
the application first runs, the runtime notifies events that are
relevant for deducing the structure of the program. These
events are collected and analyzed by PYTHIA, and stored in a
trace file at the end of the execution. At the next execution,
the oracle reloads the saved data and uses them to provide
predictions to the runtime.

The contributions of this paper are as follows:
• We propose a tool able to capture the behavior of an

application and to store this structured data in a file;
• We propose an oracle that compares the current execution

of a program with a trace file, and that predicts the future
behavior of the application.

We evaluate PYTHIA on 13 MPI or MPI+OpenMP ap-
plications, and show that capturing the behavior of these
applications does not significantly alter their performance.
Moreover, the proposed oracle accurately predicts the future
behavior of most applications, even when varying the problem
size. Finally, we demonstrate that PYTHIA prediction can be
used in a runtime system to dynamically adapt the number of
OpenMP threads, which can improve the performance of an
OpenMP application by up to 38 %.

The paper is organized as follows. We present the PYTHIA
library in Section II. In Section III, we evaluate PYTHIA
performance, that is the accuracy and the overhead of PYTHIA
prediction, and the usability of PYTHIA, that is how PYTHIA
can be integrated in a runtime system to improve the overall
performance of an application. We discuss related works in
Section IV. Finally, we conclude the paper in Section V.

II. THE PYTHIA ORACLE LIBRARY

We propose PYTHIA1, a library that allows runtime systems
to record events during the execution of a program, and that
produces predictions during future executions. During the first
execution of a program, called the reference execution in the
sequel, PYTHIA-RECORD collects events and stores them in
a trace file as a data structure that describes the application’s
behavior. On subsequent executions, PYTHIA-PREDICT loads
the produced data structure and compares the given new
sequence of events to the trace. A runtime system can ask
PYTHIA-PREDICT which events will occur in the future and
when these events will occur. The runtime system can make
a decision based on this prediction instead of relying on a
heuristic.

In Section II-A, we describe how PYTHIA-RECORD collects
events and reduces sequences of events into a grammar that
describes the program structure. In Section II-B, we present
how PYTHIA-PREDICT compares the current execution of a
program with its reference trace. Finally, in Section II-C, we
describe how PYTHIA-PREDICT predicts which events will
happen in the future.

A. On-the-fly program structure compression

During the first execution of the program, the runtime
notifies PYTHIA-RECORD of an event when the application
reaches a key point. This key point can be, for instance, the
entry or exit of a particular function (e.g. MPI_Send), the start
or end of a construct (e.g. a loop, an OpenMP parallel region),
or other types of important events (e.g. the submission of a task
to be processed). Each event is composed of an integer that
identifies the key point and optionally additional informations
such as a timestamp, or the destination of an MPI message.

PYTHIA-RECORD accumulates the events of each thread
into a trace while detecting redundancies and repetitive se-
quences in order to extract the program structure. To do
this, we adopted an approach inherited from the algorithm
Sequitur [1].

PYTHIA reduces the sequential list of events into a grammar
on the fly. The grammar consists of a set of terminal symbols
and a set of non-terminal symbols. The terminal symbols
represent the events raised by the runtime and the non-terminal
symbols represent the recurrent sequences identified in the
trace by the reduction algorithm. Each non-terminal symbol
is associated with a finite sequence of terminal and non-
terminal symbols, which symbol can be replaced with to re-
cover the complete sequence of terminal symbols it represents.
Moreover, each symbol usage is associated with a number
of successive repetitions. One of the non-terminal symbols is
called the root symbol and represents the complete sequence
of the trace. Observe that the trace is the only expression that
can be constructed with the grammar.

By convention, we note terminal symbols in lower case and
non-terminal symbols in upper case. The root of the grammar
is named R. The operator 7→ associates a non-terminal symbol

1Available as open-source at https://github.com/libPythia/pythia

R ↦ AB²A
A ↦ ab
B ↦ bc

a b b c

B

R

b c a b

B

AB²A

Fig. 1: Unfolding of a grammar representing the trace
“abbcbcab”.

(a) Example of source code

i n t i ;
f o r (i = 0 ; i < 100 ; ++ i) {

i f (i % 2 == 0)
r a i s e e v e n t a () ;

e l s e
r a i s e e v e n t b () ;

}

(b) Resulting gram-
mar
R 7→ A50

A 7→ ab

Fig. 2: Source code example and the corresponding grammar.

with the sequence of symbols it represents. The number
of consecutive repetitions is noted with an exponent and is
ignored if it is equal to 1. For example, A 7→ ab2c means that
the non-terminal symbol A represents the sequence “abbc”.

The reduction of a sequence of events into a grammar
defines the structure of the program, while allowing the
sequence to be unfolded by recursively replacing all non-
terminals with their corresponding sequences.

For example, Figure 1 illustrates how a grammar can be the
reduction of a trace and how the grammar can be unfolded
to retrieve the trace. In practice, the data structure of the
grammar (which is drawn on the left in the figure), is stored at
the end of the first execution but not the corresponding trace
(which is drawn on the right in the figure). During subsequent
executions, it is the grammar that is loaded in memory and
used (without the trace being reconstructed in memory).

Please note that the trace does not represent the exact
structure of the source code of the application, but the structure
of the execution. For example, Figure 2 shows how a loop
containing a simple condition is represented by the grammar.
The code in Figure 2a consists in a loop of a hundred
iterations. Even iterations raise event a and odd iterations raise
event b, but the grammar in Figure 2b represents a loop of fifty
repetitions of the sequence “A 7→ ab”.

During the execution of the program, PYTHIA-RECORD
updates the grammar according to the events sent by the
runtime system and makes sure that at any time the grammar
representing the program trace respects three rules:

• All non-terminal symbols are used at least twice in the
grammar, which means that each non-terminal symbol
represents a sequence that repeats in the trace.

• All couple of symbols appear at most once side by side
in the grammar, i.e. all the sequences that repeat in the
trace are represented by a non-terminal symbol in the
grammar.

https://github.com/libPythia/pythia

(a) Initial 1
R 7→ ...Bb5 ← c
A 7→ b3c2

B 7→ b2A

(b) Step 1.1
R 7→ ...Bb2 ← C
A 7→ Cc
B 7→ b2A
C 7→ b3c

(c) Step 1.2
R 7→ ...Bb2C
A 7→ Cc
B 7→ b2A
C 7→ b3c

(d) Initial 2
R 7→ ...Bb2C ← c
A 7→ Cc
B 7→ b2A
C 7→ b3c

(e) Step 2.1
R 7→ ...Bb2 ← A
A 7→ Cc
B 7→ b2A
C 7→ b3c

(f) Step 2.2
R 7→ ...Bb2 ← A
A 7→ b3c2

B 7→ b2A

(g) Step 2.3
R 7→ ...B ← B
A 7→ b3c2

B 7→ b2A

(h) Step 2.4
R 7→ ...B2

A 7→ b3c2

B 7→ b2A

Fig. 3: PYTHIA-RECORD adding symbols in the grammar.

• No symbol appears twice side by side in the grammar.
All repetitions in the form of “anam” are merged into
“an+m”.

When a new event is submitted by the runtime, PYTHIA-
RECORD adds the corresponding terminal symbol to the root
sequence associated as follow:

• If the last symbol of the sequence is the symbol to
be added, PYTHIA-RECORD increments its number of
consecutive repetitions;

• Otherwise, if the couple formed by the last symbol of
the sequence plus the symbol to be added do not appear
anywhere else in the grammar, PYTHIA-RECORD adds
the new symbol at the end of the sequence;

• Otherwise, PYTHIA-RECORD either creates a new non-
terminal symbol representing the couple or, if possible,
reuses an existing one, and then replaces the existing
occurrence of the couple by the non-terminal. The last
symbol of the root sequence is deleted and the new non-
terminal symbol is added recursively to its end.

Figure 3 shows a complete example of the execution of
the algorithm by which PYTHIA-RECORD adds the terminal
symbol c to an existing grammar twice in a row. As depicted
in Figure 3a, the first step consists in adding c at the end of the
sequence associated with R and ending with “b5”. Because the
sequence “bc” already exists in the grammar as “b3c”, a new
non-terminal C is created to represent this sequence and “b3”
is removed from the end of R in Figure 3b. Next, PYTHIA-
RECORD adds the symbol C to R. The sequence “bC” is not
present in the grammar, so PYTHIA-RECORD appends C to R

in Figure 3c.
When the runtime system submits another c event, PYTHIA-

RECORD appends c to the root of the grammar as depicted in
Figure 3d. Because the “Cc” sequence is already present in
the grammar and is already represented by A, the C sequence
is removed from the end of R as displayed in Figure 3e. Also,
in Figure 3f, because the C symbol is only used once in the
grammar, it is removed from the grammar. Next, PYTHIA-
RECORD tries to add A to the end of R. Because sequence
“bA” is already present as “b2A” and is represented by B,
“b2” is removed from the end of R in Figure 3g. Finally, in
Figure 3h, B is appended to R so that its consecutive repeat
number is incremented.

Along with the grammar reduction, PYTHIA-RECORD op-
tionally records the timestamp of each event occurrence se-
quentially for later computations. At the end of the execu-
tion of the application, PYTHIA-RECORD saves the generated
grammar in a file for the following executions of the same
application.

B. Predicting the future behavior of the application

Once the grammar has been generated to model the structure
of a program, the grammar can be used for subsequent
executions. The grammar is loaded at startup, and when the
runtime system submits events to the oracle library, they
are searched in the grammar. Thereafter, the runtime system
requests predictions of events that will occur in the near future.

1) Following the progress of the application: To explain our
approach, we proceed by example. Let’s start with the gram-
mar of the reference execution that is depicted in Figure 1. The
application is executed again and let us start the execution of
PYTHIA-PREDICT at random, for example from the raising of
an event corresponding to the terminal symbol b. We do not
start the execution of PYTHIA-PREDICT at the beginning of the
execution to show that we do not need this strong assumption;
it is this tolerance that allows us to tolerate unforeseen events
(with respect to the grammar of the reference execution). Let
us start with a receiving b. PYTHIA-PREDICT tries to find
the parts of the reference execution corresponding to the new
sequence of events that begins with b. The reference execution
modeled in the grammar contains four occurrences of terminal
symbol b. Thereafter, the runtime submits event c. Of the
four occurrences of symbol b, only two of them are followed
by an occurrence of symbol c, so that PYTHIA-PREDICT can
identify that the application is currently executing one of the
occurrences of sequence B. If the runtime submits the next b
event, PYTHIA-PREDICT then assumes that the application is
starting a new occurrence of the B symbol sequence. Again,
we don’t need to know if sequence A preceded sequence B.
The “Bb” sequence in this example is what we call in the
following the progress sequence.

When the runtime system submits events, PYTHIA-PREDICT
tracks the progress of the application by locating the submitted
events in the grammar. Each occurrence of an event can be
denoted by the progress sequence, which is the path from the
terminal towards the root of the grammar. For example, as

R ↦ B A d A B

A ↦ a b

B ↦ A c

a b c a b d a b a b c

A

A A

c A c

B Bd

R

Fig. 4: Progress sequence (in blue) representing the fourth
occurrence of a in the grammar representing sequence
“abcabdababc”, with the corresponding path (in red) if the
grammar were unfolded.

displayed in Figure 4, in the grammar modeling the sequence
“abcabdababc”, the fourth occurrence of a is the first symbol
of the sequence of A (which corresponds to the sequence
“ab”), which is itself the first symbol of the sequence of B
(which corresponds to the sequence “Ac”) that is the final
symbol of the root symbol. As a result, if the application be-
haves exactly as in its previous execution, each event received
by PYTHIA-PREDICT is associated with the same event in the
sequence reduced in the grammar by PYTHIA-RECORD. In
this case, the maintenance of the correspondence between the
reference trace (corresponding to the grammar) and the trace
of the current execution consists in updating a unique progress
sequence with the following depth first traversal algorithm.

Figure 5 illustrates how PYTHIA-PREDICT updates a
progress sequence. Initially, in Figure 5a, the progress se-
quence is “bA”, i.e. it points to the third occurrence of
the terminal b in the trace “abcabdababc”. In Figure 5b, it
removes the terminal b from the progress sequence because
b has no successor in the sequence associated with A. In
Figure 5c, it replaces the first element of the progress sequence
with its successor, in this case the last B of R. Finally, in
Figure 5d, PYTHIA-PREDICT completes the progress sequence
by successively adding the non-terminals until it reaches the
first terminal symbol, here by adding a. The progress sequence
is updated to “aAB”, i.e. it points to the fourth occurrence of
the terminal a in the trace “abcabdababc”.

2) Tolerance to unexpected events: During the execution,
the program behavior may differ from the reference execution.
When this happens, the runtime submits an event that does not
appear in the next possible progress sequences. If the event
raised never occurred in the first execution, the oracle has no
information about the possible behavior of the program and
the runtime system must again temporary rely on heuristics.
However, if the event was present in the reference execution,
the program probably triggered a different code path, or
skipped some function calls, or even made them in a different
order. In this situation, the oracle can build partial knowledge
of the execution state by listing all the possibles sequences
starting with this event. To do this, PYTHIA-PREDICT stores
the progress sequences containing only the terminal corre-
sponding to the last event. From then on, at each new event,
PYTHIA-PREDICT tries to extend the progress sequence by

R ↦ B A d A B

A ↦ a b

B ↦ A c

(a) Initial

R ↦ B A d A B

A ↦ a b

B ↦ A c

(b) Step 1

R ↦ B A d A B

A ↦ a b

B ↦ A c

(c) Step 2

R ↦ B A d A B

A ↦ a b

B ↦ A c

(d) Step 3

Fig. 5: PYTHIA-PREDICT updates the progress sequence.

R ↦ B A d A B

A ↦ a b

B ↦ A c

a b c a b d a b a b c

A

A A

c A c

B Bd

R

Fig. 6: Progress sequence representing all the occurrences of
terminal b following an occurrence of terminal a and followed
by an occurence of terminal c in the grammar modeling the
trace “abcabdababc”.

adding a non-terminal whenever it recognizes the associated
sequence in the runtime event sequence.

C. Predicting the following events

By applying the algorithm seen previously, predicting future
events boils down to simulating the future execution from
a copy of the current progress sequences. Since PYTHIA-
PREDICT is capable of tracking multiple progress sequences
at the same time, it must estimate the probability of each.
Given a set of possible progress sequences, estimating the
probability that each one occurring relative to the others is
equivalent to counting the number of uses of them in the
reference execution event sequence. In grammatical form, the
probability is calculated using a recursive algorithm that counts
the number of occurrences of the symbol in the grammar.

Optionnaly, PYTHIA-PREDICT can predict the duration be-
fore future events are raised. This is done by recording the
timestamps of all events raised by the runtime during the refer-
ence execution. Practically, at the end of the first run, PYTHIA-
RECORD replays the sequence of events in the grammar using
the same prediction algorithm: At each step of the “replay”,
list all the possible associated progress sequences, and for
each of them, calculate the average elapsed time from the
previous event to the one designated by the progress sequence.

These average elapsed time are saved with the grammar so
that PYTHIA-PREDICT is able to recover an estimate of the
duration between the last event raised by the runtime and
future events it predicts.

Thanks to the progress sequence, the time prediction takes
into account the context. For example, PYTHIA-RECORD asso-
ciates to the “BAb” progress sequence represented in Figure 6
the average duration between an a event and a b event in the
specific case where a c event is expected next. As previously
seen, this progress sequence represents two occurrences of
event b in the reference execution. The duration between an
a event and a b event when the next event is not known is
associated to the “Ab” progress sequence and corresponds to
the average time between the four possible occurrences of a b
event following an a event.

III. EVALUATION

We evaluate PYTHIA and its usefulness as an oracle for
runtime systems2. In Section III-A, we describe the evaluation
environment and the evaluated applications. In Section III-B,
we describe two runtime systems that rely on PYTHIA for
recording events and then for predicting the future behavior
of an application. In Section III-C, we evaluate the overhead
of PYTHIA-RECORD, we assess the generated grammars, and
we measure the accuracy and the cost of PYTHIA-PREDICT
predictions. In Section III-D, we design and evaluate a runtime
system that uses PYTHIA-PREDICT prediction to improve the
performance of an application. Finally, in Section III-E, we
assess PYTHIA resilience to unexpected events.

A. Experimental environment

1) Experimental platform: We run experiments on three
different machines:

1) Pudding is equipped with two Intel Xeon Silver 4116
CPUs with 12 cores / 24 threads each (total: 24 cores)
running at 2.1 GHz, and 64 GiB of DRAM. The machine
runs Linux kernel version 5.4.0;

2) Pixel is equipped with two Intel Xeon E5-2630 v3 with
8 cores / 16 threads each (total: 16 cores) running at
2.4 GHz, and 32 GiB of DRAM. The machine runs Linux
kernel version 5.4.0;

3) Paravance is a cluster of 72 machines, each equipped
with 2 Intel Xeon E5-2630 v3 CPUs with 8 cores
each (total: 16 cores per machine) running at 2.4 GHz,
and 128 GiB or RAM; the machines are interconnected
with a 10Gbps Ethernet network. They run Linux kernel
version 5.10.0;

2) Evaluated applications: We evaluate PYTHIA on several
applications. For each application, we define three types of
working set: small, medium, and large.

• NAS Parallel Benchmarks (version 3.3.1) is a set of
programs designed to evaluate supercomputers. We use
the MPI implementation of the benchmarks. We evaluate

2Scripts for reproducing our experiments are available at https://github.com/
libPythia/Pythia cluster22 reproductibility

the following kernels: BT, CG, EP, FT, IS, LU, MG, SP.
The small, medium, and large working sets use the NAS
Parallel Bencharks problem sizes A, B, and C;

• AMG is a parallel algebraic multigrid solver that mixes
MPI and OpenMP. The working sets use the following pa-
rameters: -n 100 100 100 (small), -n 150 150 150

(medium), and -n 200 200 200 (large);
• Lulesh is an MPI+OpenMP application that solves a Se-

dov blast problem [2]. The working sets use the following
parameters: -s 10 (small), -s 30 (medium), and -s 50

(large);
• Kripke is a deterministic particle transport appli-

cation that uses MPI and OpenMP. The working
sets use the following parameters: --procs 2,2,2

--groups 128 (small), --procs 2,2,2 --groups

512 (medium), and --procs 2,2,2 --groups 1024

(large);
• miniFE is a proxy application for unstructured implicit

finite element codes. This application mixes MPI and
OpenMP. The working sets use the following param-
eters: -nx 100 -ny 100 -nz 100 (small), -nx 200

-ny 200 -nz 200 (medium), and -nx 300 -ny 300

-nz 300 (large);
• Quicksilver is a proxy application that solves a dynamic

monte carlo particle transport problem. This application
mixes MPI and OpenMP. The working sets use the
following parameters: --lx 500 --ly 500 --lz 500

-n 1000000 (small), --lx 500 --ly 500 --lz 500

-n 10000000 (medium), and --lx 500 --ly 500

--lz 500 -n 20000000 (large).

B. Runtime systems

To assess PYTHIA usability and performance, we develop
two runtime systems.

The MPI runtime system mimics the behavior of an MPI
implementation that uses PYTHIA to optimize the commu-
nication patterns of an application. Implementing an actual
communication optimization is beyond the scope of this paper,
but the optimization could consist in aggregating multiple
successive MPI send messages [3], or setting up persistent
communication if a communication pattern repeats. To imple-
ment the MPI runtime system, we intercept the application
calls to MPI primitives using LD_PRELOAD. For each MPI
function call, we record an event with PYTHIA-RECORD. Each
event consists of the MPI function being called, as well as
an additional information for some functions: the source or
destination rank for point-to-point communication primitives
(such as MPI_Send, or MPI_Recv), the reduction operation for
reduction primitives (such as MPI_Reduce), and the root rank
of collective communication primitives (such as MPI_Bcast).
In addition to submitting events to PYTHIA, the MPI runtime
system asks for predictions when entering an MPI_Wait

function (including MPI_Waitall, etc.), or when entering a
collective communication primitive (such as MPI_Barrier).
This mimics the behavior of an MPI runtime system that would
use the synchronization time to perform an optimization.

https://github.com/libPythia/Pythia_cluster22_reproductibility
https://github.com/libPythia/Pythia_cluster22_reproductibility

The OpenMP runtime system mimics the behavior of an
OpenMP implementation that uses PYTHIA to optimize the
handling of OpenMP threads. We describe and evaluate an
example of such optimization in Section III-D1. Our OpenMP
runtime system intercepts the application calls to GNU
OpenMP runtime system functions (such as GOMP_parallel,
or GOMP_critical_start). In addition to submitting events
to PYTHIA, the OpenMP runtime system asks for predictions
when starting an OpenMP parallel region. In Section III-D1,
we further modify this runtime system to implement an
optimization that relies on PYTHIA-PREDICT predictions.

C. Performance evaluation of PYTHIA

1) Performance evaluation of PYTHIA-RECORD: To eval-
uate the cost of recording events, we run the applications pre-
sented in Section III-A2 with and without PYTHIA-RECORD.
The applications run on 4 nodes of the Paravance cluster,
and we use the large working sets. We run the NAS Parallel
Benchmarks applications with 64 MPI ranks (16 ranks per
machine), and the other applications (AMG, Lulesh, Kripke,
miniFE, and Quicksilver) run with 8 MPI ranks (2 ranks per
machine), each running 8 OpenMP threads. When running the
applications with PYTHIA-RECORD, we use our MPI runtime
system for NAS Parallel Benchmarks applications, and our
MPI and OpenMP runtime systems for AMG, Lulesh, Kripke,
miniFE, and Quicksilver.

Table I reports the measured execution time when relying on
current heuristics of the operating system (Vanilla), and when
running the applications with PYTHIA-RECORD. The table also
reports the total number of events recorded, and the average
number of rules in the generated grammar. The reported per-
formance is the average measured execution time over 10 runs.
The results show that recording events with PYTHIA-RECORD
does not significantly impact the performance of most appli-
cations. The measured overhead of PYTHIA-RECORD ranges
from -5.8 % for miniFE, to +4.9 % for Quicksilver, and most
applications show an overhead that ranges between -1.1 %
and +1.4 %. The unexpected performance impovement we
observe may be due to PYTHIA-RECORD memory allocations
disrupting the programs behavior.

The number of collected events varies from a few hundred
events for applications that only perform a few MPI collective
communications (such as EP or FT), to several millions events
for applications that extensively use MPI (such as LU), or MPI
and OpenMP (such as Lulesh or Quicksilver).

As the runtime systems submit events to PYTHIA-RECORD,
a grammar that represents the program execution is maintained
for each thread. The size of this grammar can be measured as
the average number of rules of the grammar. The results show
that for most applications, PYTHIA-RECORD builds a grammar
that consists of less than 15 rules. A manual analysis of the
generated grammars shows that their structure is similar to
the application structure. For example, Figure 7 shows the
grammar generated by one of the MPI ranks when running
BT. This grammar consists of a loop that contains a few calls

R 7→ Bcast6 B Barrier A200 Allreduce Allreduce B
Reduce Barrier

A 7→ B Isend Irecv [...] Wait2

B 7→ Irecv Irecv [...] WaitAll

Fig. 7: Overview of the grammar extracted from BT.large. (The
MPI_ prefix is removed to simplify the presentation.)

to MPI functions. This structure is similar to the behavior of
the application that iterates 200 times.

A few applications have irregular execution patterns that
generate a large number of rules. For example, Quicksilver
sends a particle when it exits the domain of an MPI worker.
As a result, its MPI communication pattern depends on the
particles’ position, and the grammar generated by PYTHIA-
RECORD becomes complex.

This experiment shows that most of the evaluated appli-
cations have repetitive patterns and can be summarized with
simple grammar rules. It also shows that the collection of
events and the generation of a grammar at runtime does not
significantly impact the performance of applications.

2) Accuracy of PYTHIA-PREDICT predictions: To evaluate
the accuracy of PYTHIA-PREDICT predictions, we measure the
success rate of predictions. We generate traces of the evaluated
applications with PYTHIA-RECORD using the small working
sets, and we provide these traces to PYTHIA-PREDICT when
running the applications with the different working sets.

The event prediction is implemented as follows. When
entering an MPI blocking function such as MPI_Wait, or
any MPI blocking collective primitive (e.g. MPI_Allreduce),
PYTHIA-PREDICT predicts the event that will happen in x
events, and we vary the value of x. For example, if x = 1, we
predict the next event. We then count how many predictions
are correct, or incorrect (which means that PYTHIA-PREDICT
predicted event ei, but event ej occurred).

Figure 8 reports the results we measured. The results show
that the accuracy of short-term prediction is high for all
the applications. As the distance of the prediction increases,
the accuracy of PYTHIA-PREDICT slowly decreases while
remaining high for most applications. For 8 out of the 13 tested
applications, PYTHIA-PREDICT achieves a prediction accuracy
higher than 90 % at a distance of 128. Despite the irregular
behavior of Quicksilver and AMG (as described in Sec-
tion III-C1), PYTHIA-PREDICT accuracy remains above 70 %
for those applications for short-distance predictions. As the
prediction distance increases, the predictions become inaccu-
rate. Some applications such as LU or MG perform the same
algorithm for any working set, but the number of iterations
of the algorithm depends on the size of the data set. This
causes PYTHIA-PREDICT to mispredict events when reaching
the loops boundaries.

This experiment shows that most of the tested applications
have the same behavior even when the working set changes.
PYTHIA-PREDICT is able to accurately predict the future
behavior of most applications, even when the distance of

Application Vanilla (s) PYTHIA-RECORD (s) overhead(%) # events # rules
BT.Large 24.2 24.2 0.7 2,329,920 3
CG.Large 9.9 9.9 -0.3 3,837,890 15
EP.Large 4.2 4.1 -3.8 384 1
FT.Large 17.4 17.4 0.2 3,072 2
IS.Large 3.2 3.2 0.1 2,493 2
LU.Large 23.0 23.3 1.4 18,164,200 11
MG.Large 4.2 4.1 -0.5 609,888 14
SP.Large 24.3 24.4 0.2 356,870 9

AMG.Large 38.7 38.4 -0.9 118,438 150
Lulesh.Large 125.6 124.2 -1.1 28,150,300 12
Kripke.Large 59.8 61.0 2.0 9,881 46
miniFE.Large 25.8 24.3 -5.8 39,272 8

Quicksilver.Large 35.9 37.6 4.9 26,786,800 409

TABLE I: Performance evaluation of PYTHIA-RECORD.

Distance of the prediction

20 22 24 26 28

largesmall

medium

Dataset

LU

Lulesh

MG

MiniFE

Quicksilver

SP

AMG

BT

CG

EP

FT

IS

Kripke

Application

0

50

100

Ra
tio

 o
f c

or
re

ct
 p

re
di

ct
io

ns
 (%

)

Fig. 8: Accuracy of PYTHIA-PREDICT predictions on Paravance.

prediction is high.
3) Overhead of PYTHIA-PREDICT predictions: When a

runtime system requests a prediction from PYTHIA-PREDICT,
the response time of the oracle is critical because runtime
system uses the prediction to perform an optimization. The
response time thus has to be lower than the expected gain
of the optimization. We now evaluate the cost of a PYTHIA-
PREDICT prediction while varying the prediction distance.

Figure 9 reports the average duration of a prediction for
several applications running the large working set. The cost of
a prediction grows linearly when the distance of the prediction
increases. We observe that the cost of a prediction varies from
one application to another, and that irregular applications with
complex grammar rules induce higher costs of prediction. This
is because PYTHIA-PREDICT browses through the grammar
graph to predict future events. Browsing a graph that is
composed of many nodes can become costly for applications

such as Quicksilver.
For most applications, the cost of short distance predictions

is between a few hundreds nanoseconds to less than 2 µs,
which would allow a runtime system to perform a fine-grain
optimization. Predicting an event that happens in a far distance
is costlier because it requires to browse the grammar graph
extensively. The cost of prediction for a distance of 64 is
less then 20µs for most applications, which would allow a
runtime system to conduct coarse-grain optimization such as
prefetching data.

D. Evaluation of the usability of PYTHIA

We now evaluate the usability of PYTHIA to perform an
optimization in a runtime system.

1) Implementing an optimization based on PYTHIA-
PREDICT predictions: GNU OpenMP is the runtime system
used by the GCC implementation of OpenMP. It manages

Distance of the prediction

20 22 24 26 28

AMG

BT

CG

EP

FT

IS

Kripke

LU

Lulesh

MG

MiniFE

Quicksilver

SP

Application

10-7

10-6

10-5

10-4

10-3

Co
st

 o
f p

re
di

ct
io

ns
 (s

)

Fig. 9: Cost of PYTHIA-PREDICT predictions on Paravance.

threads and distributes the OpenMP workload among the
threads. In this section, we show how PYTHIA can be used in
GNU OpenMP to predict the future behavior of an OpenMP
application to improve the overall performance of the program.

To parallelize a piece of code, the programmer can annotate
it with OpenMP directives and the OpenMP runtime automat-
ically spawn threads (or reuse existing ones) to process that
parallel region. When deciding how many threads to use for
a parallel region, the OpenMP runtime trades off the speedup
due to many threads processing a workload in parallel against
the cost of synchronizing the threads. The GNU OpenMP
runtime usually chooses the maximum number of threads
to process a parallel region, which can be expensive if the
application consists of many small parallel regions.

We modified the GNU OpenMP runtime so that it uses
PYTHIA in order to decide how many threads should be used
for each OpenMP parallel region. These modifications consist
in:

• Submitting events to PYTHIA-RECORD at the beginning
and end of each parallel region. We use the function
pointer that contains the code of the parallel region as
an event identifier to distinguish the different regions of
the application;

• Requesting a prediction to PYTHIA-PREDICT at the be-
ginning of a parallel region. Thanks to this prediction,
the runtime system knows the probable duration of the
parallel region. Based of the estimated duration Dest,
GNU OpenMP decides how many threads should be used,
e.g. 1 thread if Dest < t1, 4 threads if Dest < t4, 8
threads if Dest < t8, and so on.

Overall, exploiting PYTHIA predictions in GNU OpenMP
required less than 100 lines of code.

In addition to these changes, we have also changed the

way GNU OpenMP manages its threads pool. By default,
GNU OpenMP destroys spurious threads when the number
of OpenMP threads (specified by omp_set_num_threads)
decreases. In order to reduce the overhead of creating and
destroying threads when the number of OpenMP threads
varies, we have made the spurious threads wait until they are
needed again.

2) Application: Our illustrative use case is the OpenMP
version of Lulesh that contains 30 parallel regions of different
sizes. For our experiments, we modify Lulesh slightly in two
ways. First, some parallel regions of Lulesh were written
as if the number of OpenMP threads could not change
during program execution. The fix consists of a few calls
to omp_get_num_threads instead of keeping the maximum
number of threads in a variable. Second, the Lulesh memory
allocation model generates many page faults. Surprisingly,
when recording events with PYTHIA-RECORD, the allocation
model is disrupted and the performance of Lulesh improves
by 15 %. To remove this bias in our measurements, we modify
Lulesh to reuse memory from one computation step to the
next to reduce the number of page faults and thus mitigate the
variation in performance.

All the measurements are obtained over ten runs and we
report the minimum, maximum, and average execution times.
Unless otherwise specified, we run 1 thread per core, i.e we do
not use hyperthreading, and threads are bound in a round-robin
fashion.

3) Performance evaluation of the proposed optimization:
Figures 10 and 11 shows how the execution time of Lulesh
varies with the problem size when running on machines
Pudding and Pixel. Note that the Y axis is in logarithmic
scale. The measurements show that event recording with
PYTHIA-RECORD does not significantly affect performance

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Problem size

Vanilla
Pythia-record
Pythia-predict

Fig. 10: Execution time of Lulesh as a function of the problem
size (on Pudding with 24 threads).

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Problem size

Vanilla
Pythia-record
Pythia-predict

Fig. 11: Execution time of Lulesh as a function of the problem
size (on Pixel with 16 threads).

compared to VANILLA. On the other hand, PYTHIA-PREDICT
significantly reduces the execution time, especially for small
problems. For example, for a problem size 30 on Pudding,
Vanilla executes in 8.44s, while PYTHIA-PREDICT executes
in 5.25s, improving performance by 38 %. As the problem size
increases, the performance improvement of PYTHIA-PREDICT
slowly decreases. This is due to the small parallel regions that
account for a significant portion of the run time for small prob-
lems, but become negligible for larger problems. Therefore,
running the maximum number of threads for large problems is
the optimal solution, and the prediction of PYTHIA-PREDICT
does not help the runtime system.

To further analyze the performance implications of PYTHIA,
we now run Lulesh with a problem size of 30, and vary the
maximum number of threads. In this experiment, VANILLA
and PYTHIA-RECORD use the maximum number of threads,
and PYTHIA-PREDICT dynamically adapts the number of
threads while respecting the specified maximum number. Fig-
ures 12 and 13 report the performance measured on Pudding
and Pixel.

When the maximum number of threads is low (typically
up to 8 threads), all three OpenMP implementations have

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Maximum number of threads

Vanilla
Pythia-record
Pythia-predict

Fig. 12: Execution time of Lulesh as a function of the
maximum number of threads (on Pudding for a problem size
of 30).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Maximum number of threads

Vanilla
Pythia-record
Pythia-predict

Fig. 13: Execution time of Lulesh as a function of the
maximum number of threads (on Pixel for a problem size of
30).

similar performance. For larger numbers of threads, PYTHIA-
PREDICT improves performance by up to 38.8 % (on Pudding)
and 20.0 % (on Pixel). This is due to VANILLA and PYTHIA-
RECORD suffering from the synchronization overhead during
the many small parallel regions, while PYTHIA-PREDICT
dynamically lowers the number of threads for these regions.

E. Resilience to unexpected events

In order to evaluate the performance of PYTHIA-PREDICT
when the runtime system generates unexpected events, we
modify GNU OpenMP to randomly submit unexpected events
with a given error rate, and measure the performance on
Lulesh. Figure 14 shows how Lulesh (with a problem size
of 30 on Pudding) performs with PYTHIA as the error
rate increases. The results show that for low error rates,
PYTHIA-PREDICT performs significantly better than VANILLA
and PYTHIA-RECORD. When the error rate increases, the
performance improvement obtained with PYTHIA-PREDICT
decreases. This is due to the predictions becoming less and
less reliable, which causes the OpenMP runtime to make bad

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Error rate (%)

Vanilla
Pythia-record
Pythia-predict

Fig. 14: Execution time of Lulesh as a function of the error
rate (on Pudding for a problem size of 30).

decisions such as using the maximum number of threads for
a small parallel region.

IV. RELATED WORKS

Over the past few decades, the detection of the structure
of execution traces has been studied for multiple purposes.
Several works focus on generic data compression [4], [5], or
on execution traces compression [6]. ScalaTrace detects the
MPI communication patterns of parallel programs in order
to compress execution traces [7]. Some works extract the
structure of an execution trace by finding different types of
redundancies in them [8], [9], while another work simpli-
fies repetitions in execution traces with tolerance to small
variations [10]. DiffTrace [11] reduces traces and compares
them for debugging purpose. Combining the source code with
compiler debugging information can also reduce execution
traces [12]. These works are used for reducing the size of
trace files, or for helping developers debug or understand the
structure of an application.

The idea of representing a trace as a grammar has been stud-
ied in several works. Sequitur [1] is an incremental algorithm
used for compressing various types of data under the form
of a grammar. It has a linear time and space complexity, but
suffers from drawbacks for detecting some control flow from
execution traces. Sequitur(1) is an improvement of Sequitur
that is used to dynamically represent the flow of control
of programs [13]. Cyclitur [14] has extended Sequitur to
add the notion of consecutive repetitions, and is applied to
compression and anomaly detection in execution traces of
embedded programs.

Other works are more related to PYTHIA as they analyze
traces in order to predict the future behavior of an application.
NLR [15] reduces sequences by inferring nested loop gen-
erators from their variation patterns and uses it for memory
access prediction. Omnisc’IO [16] uses a grammar algorithm
named StarSequitur and applies to I/O access prediction. While
these work predict the future behavior of an application, they
are specific to one type of resource usage prediction, whereas

PYTHIA provides a generic prediction interface that can be
used for any kind of runtime system optimization.

V. CONCLUSION

We have proposed an oracle library that provides runtime
systems with predictions of the future behavior of an appli-
cation. This oracle relies on the deterministic nature of many
parallel applications and compares the current execution with
a previous execution in order to predict the program future
behavior in the current execution. The evaluation shows that
PYTHIA captures the behavior of an application as a grammar
without altering the program performance, that the collected
data can be used to guide a runtime system during future
executions of the same application. To demonstrate the use
of PYTHIA in a runtime system, we integrate it into the GNU
OpenMP runtime system in order to predict the duration of the
application’s OpenMP parallel regions. Using the prediction
of PYTHIA, GNU OpenMP dynamically selects the number
of threads for each parallel region. Experiments show that
PYTHIA correctly predicts the future behavior of the program,
and that this information can significantly improve the perfor-
mance of the application. Further investigations are needed to
make Pythia able to predict accurately when the application
runs with different configuration (number of threads, number
of processes,...)

This paves the ways for other types of runtime optimiza-
tions. Instead of relying on heuristics, a runtime system can
base its decision on the expected future of the application.

REFERENCES

[1] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical
structure in sequences: A linear-time algorithm,” Journal of Artificial
Intelligence Research, vol. 7, pp. 67–82, 1997.

[2] I. Karlin, J. Keasler, and J. Neely, “Lulesh 2.0 updates and changes,”
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), Tech. Rep., 2013.

[3] O. Aumage, E. Brunet, N. Furmento, and R. Namyst, “New madeleine:
A fast communication scheduling engine for high performance net-
works,” in 2007 IEEE International Parallel and Distributed Processing
Symposium. IEEE, 2007, pp. 1–8.

[4] E.-H. Yang and J. C. Kieffer, “Efficient universal lossless data com-
pression algorithms based on a greedy sequential grammar transform.
i. without context models,” IEEE Transactions on Information Theory,
vol. 46, no. 3, pp. 755–777, 2000.

[5] J. Kieffer and E.-h. Yang, “Lossless data compression algorithms based
on substitution tables,” in Conference Proceedings. IEEE Canadian Con-
ference on Electrical and Computer Engineering (Cat. No. 98TH8341),
vol. 2. IEEE, 1998, pp. 629–632.

[6] A. Milenkovic and M. Milenkovic, “Stream-based trace compression,”
IEEE Computer Architecture Letters, vol. 2, no. 1, pp. 4–4, 2003.

[7] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. De Supinski,
“ScalaTrace: Scalable compression and replay of communication traces
for high-performance computing,” Journal of Parallel and Distributed
Computing, vol. 69, no. 8, pp. 696–710, 2009.

[8] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue, “Ex-
tracting sequence diagram from execution trace of java program,” in
International Workshop on Principles of Software Evolution (IWPSE),
2005, pp. 148–151.

[9] F. Trahay, E. Brunet, M. M. Bouksiaa, and J. Liao, “Selecting points of
interest in traces using patterns of events,” in Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing,
2015, pp. 70–77.

[10] A. Knupfer and W. E. Nagel, “Construction and compression of com-
plete call graphs for post-mortem program trace analysis,” in Interna-
tional Conference on Parallel Processing (ICPP), 2005, pp. 165–172.

[11] S. Taheri, I. Briggs, M. Burtscher, and G. Gopalakrishnan, “Difftrace:
Efficient whole-program trace analysis and diffing for debugging,” in
IEEE International Conference on Cluster Computing (CLUSTER),
2019, pp. 1–12.

[12] D. Myers, M.-A. Storey, and M. Salois, “Utilizing debug information
to compact loops in large program traces,” in European Conference on
Software Maintenance and Reengineering, 2010, pp. 41–50.

[13] J. R. Larus, “Whole program paths,” ACM SIGPLAN Notices, vol. 34,
no. 5, pp. 259–269, 1999.

[14] A. Amiar, M. Delahaye, Y. Falcone, and L. Du Bousquet, “Compressing
microcontroller execution traces to assist system analysis,” in Interna-
tional Embedded Systems Symposium, 2013, pp. 139–150.

[15] A. Ketterlin and P. Clauss, “Prediction and trace compression of data
access addresses through nested loop recognition,” in IEEE/ACM inter-
national symposium on Code generation and optimization, 2008, pp.
94–103.

[16] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’IO: a
grammar-based approach to spatial and temporal I/O patterns predic-
tion,” in International Conference for High Performance Computing,
Networking, Storage and Analysis, 2014, pp. 623–634.

	Introduction
	The Pythia oracle library
	On-the-fly program structure compression
	Predicting the future behavior of the application
	Following the progress of the application
	Tolerance to unexpected events

	Predicting the following events

	Evaluation
	Experimental environment
	Experimental platform
	Evaluated applications

	Runtime systems
	Performance evaluation of Pythia
	Performance evaluation of Pythia-record
	Accuracy of Pythia-predict predictions
	Overhead of Pythia-predict predictions

	Evaluation of the usability of Pythia
	Implementing an optimization based on Pythia-predict predictions
	Application
	Performance evaluation of the proposed optimization

	Resilience to unexpected events

	Related works
	Conclusion
	References

