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On the optimality and practicability of mutual
information analysis in some scenarios

Eloi de Chérisey! - Sylvain Guilley'?? -
Annelie Heuser! - Olivier Rioul!

Abstract The best possible side-channel attack maximizes the success rate and would
correspond to a maximum likelihood (ML) distinguisher if the leakage probabilities were
totally known or accurately estimated in a profiling phase. When profiling is unavailable,
however, it is not clear whether Mutual Information Analysis (MIA), Correlation Power
Analysis (CPA), or Linear Regression Analysis (LRA) would be the most successful in a
given scenario. In this paper, we show that MIA coincides with the maximum likelihood
expression when leakage probabilities are replaced by online estimated probabilities. More-
over, we show that the calculation of MIA is lighter that the computation of the maximum
likelihood. We then exhibit two case-studies where MIA outperforms CPA. One case is
when the leakage model is known but the noise is not Gaussian. The second case is when
the leakage model is partially unknown and the noise is Gaussian. In the latter scenario MIA
is more efficient than LRA of any order.
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1 Introduction

Many embedded systems implement cryptographic algorithms, which use secret keys that
must be protected against extraction. Side-channel analysis (SCA) is one effective threat:
physical quantities, such as instant power or radiated electromagnetic field, leak outside
the embedded system boundary and reveal information about internal data. SCA consists
in exploiting the link between the leakage signal and key-dependent internal data called
sensitive variables.

The cryptographic algorithm is generally public information, whereas the implemen-
tation details are kept secret. For high-end security products, the confidentiality of the
design is mandated by certification schemes, such as the Common Criteria [5]. For instance,
to comply with ALC_DVS (Life-Cycle support — Development Security) requirement, the
developer must provide a documentation that describes “ all the physical, procedural, per-
sonnel, and other security measures that are necessary to protect the confidentiality and
integrity of the TOE (target of evaluation) design and implementation in its development
environment” [5, clause 2.1 C at page 141]. In particular, an attacker does not have enough
information to precisely model the leakage of the device. On commercial products certified
at highest evaluation assurance levels (EAL4+ or EALS+), the attacker cannot set specific
secret key values hence cannot profile the leakage.! Therefore, many side-channel attacks
can only be performed online using some distinguisher.

Correlation Power Analysis (CPA) [1] is one common side-channel distinguisher. It is
known [10, Theorem 5] that its optimality holds only for a specific noise model (Gaussian)
and for a specific knowledge of the deterministic part of the leakage—namely it should be
perfectly known up to an unknown scaling factor and an unknown offset.

Linear Regression Analysis (LRA) [6] has been proposed in the context where the leak-
age model is drifting apart from a Hamming weight model. Its parametric structure and
ability to include several basis functions makes it a very powerful tool, that can adjust to a
broad range of leakage models when the additive noise is Gaussian. Incidentally, CPA may
be seen as a 2-dimensional LRA [10].

When both model and noise are partially or fully unknown, generic distinguishers have
been proposed, such as Mutual Information Analysis (MIA) [8], Kolmogorov-Smirnov test
[20, 23] or Cramér-von-Mises test [20, Section 3.3.]. Thorough investigations have been
carried out (e.g., [2, 13, 21]) to identify strengths and weaknesses of various distinguishers
in various scenarios, including empirical comparisons. In keeping with these results, we aim
at showing some mathematical justification regarding MIA versus CPA and LRA. Our goal
is thus to structure the field of attacks, by providing theoretical motivations why attacks
strength may differ, irrespective of the particular trace datasets.

Contributions In this article, we derive MIA anew as the distinguisher which maximizes
the success rate when the exact probabilities are replaced by online estimations. In order to
assess the practicability of this mathematical result, we show two scenarios where MIA can
outperform its competitors CPA and LRA, which themselves do not estimate probabilities.

Obviously, this hypothesis only holds provided the device manufacturer does not reuse the same crypto-
graphic engine in an open platform, such as a JavaCard, where the user is able to use the cryptographic API
at its will.



Section 3: MIA > CPA:

— known model,

CPA is optimal [10]: — non-Gaussian noise.
— known model,
— Gaussian noise. Section 4: MIA > CPA, LRA:

— unknown model,
— Gaussian noise.

Fig. 1 Illustration of two practical situations where MIA can defeat CPA

In these scenarios, we challenge the two hypotheses needed for CPA to be optimal: additive
Gaussian noise and perfect knowledge of the model up to an affine transformation. This is
illustrated in Fig. 1.

Last, we extend the fast computation trick presented in [11] to MIA: the distinguisher is
only computed from time to time based on histograms obtained by accumulation, where the
accumulated histograms are shared for all the key guesses.

Organization The remainder of this paper is organized as follows. Section 2 provides
notations, assumptions, and the rigorous mathematical derivation that MIA reduces to a
ML distinguisher, where exact leakage probabilities are replaced by online probabilities.
Section 3 studies two examples where the attacker knows the one-bit model under non-
Gaussian algorithmic noise, and for which MIA is shown to outperform CPA. Section 4
provides a scenario in which the leakage model is partially unknown under additive
Gaussian noise, and where MIA outperforms CPA and LRA. Last, in Section 5, we propose
a fast MIA computation deduced from our mathematical rewriting allowing to factor several
computations. Section 6 concludes.

2 Optimality of mutual information analysis

2.1 Notations and assumptions

We assume that the attacker has at his disposal § independent online leakage measurements>
X = (X1,..., )Eg)3 for some sequence of independent and uniformly distributed n-bit text
words t = (71, ..., 15) (random but known). The n-bit secret key k* is fixed but unknown.

We do not make any precise assumption on the leakage model— in particular the attacker
is not able to estimate the actual probability density in a profiling phase. Instead we choose
an algorithmic-specific function f and a device-specific function ¢ to compute, for each
key hypothesis k, sensitive values y = (y1, ..., y5) by the formula

V= o(fk 1), oY)

that is, y; = @(f(k, %)) foralli = 1,...,g. In practice, a suitable choice of ¢ should be
optimized depending on some leakage model but in what follows, f and ¢ can be taken
arbitrarily such that they fulfill the following Markov condition.

Assumption 1 (Markov condition) The leakage X depends on the actual secret key k* only
through the computed model y = ¢(f (k*, t)).

2We comply with the usual notations of [7] where offline quantities are indicated with a hat, whereas online
quantities are indicated with a tilde. In this paper, there is no profiling phase hence no offline quantities.

3We use bold letters to indicate vectors while scalars are presented using small italic letters.



Thus, while the conditional distribution P (X[t) depends on t~he value k of the secret key,
the expression P(X|y) depends on k only through y = ¢(f (k, t)). If we let P (X, t) be the
joint probability distribution of X and t when k* = k, one has the Fisher factorization [3]

Py (%, ) = P(OPx(X|t) = POPXIY) where § = ¢(f (k, 1)). 2)

In the latter expression we have P(t) = 274" since all text n-bit words are assumed
independent and identically uniformly distributed.

In the case of an additive noise model, we simply have X = y + n where n is the noise
vector, and the Markov condition is obviously satisfied. In general, in order to fulfill the
Markov condition the attacker needs some knowledge on the actual leakage model. We give
two examples regarding the Markov condition:

Example 1 1f leakage x; is linked to #; and k* through the relationship x; = wy (k* ®1t;) +n;
foralli = 1,...,q, where wy is the Hamming weight and n; is the noise (independent
of ¢;), then both models y; = k @ t; and y; = wy(k & ¢;) satisfy the Markov condition.*
Sections 3 and 4 give other, more sophisticated, examples that satisfy the Markov condition.

Example 2 In the same scenario as in Example 1, consider the bit-dropping strategy (called
7LSB in [8] and used in [18, 22]). Then e.g., y; = (k & t;)[1 : 7] (the first seven bit
components) does not satisfy the Markov condition. Note that the leakage model in this
example intentionally discards some information, hence may not be satisfactory [18].

Let k be the key estimate that maximizes a distinguisher D given X and t,ie.

k = DX, ¥ 5
arg max (x,y) (5)

where IC is the key space.

We also assume that leakage values are quantized® in a suitable finite set X. Letting
Y denote the discrete sensitive value space, we have X € X 7 and y € V4. The actual
probability densities being unknown, the attacker estimates them online, during the attack,
from the available data in the sequences X and ¥ (via t), by counting all instances of possible
valuesof x € X and y € ):

~ 1 q
P(x) = qu Ly=x, (©6)

i=1

4In order to uniquely distinguish the correct key, some conditions on the expressions of y are required.
Specifically, let us denote by y; the function ¢ — yi(t) = y(k, t), and let A the set of bijections on the
leakage space X. We have:

if Vk, 3k # k, A8 € B s.t. yp = Boyk, then the distinguisher features a tie, 3)
if Vk, VK #k, A8 € B s.t. yp = Boyk, then the distinguisher is not sound. (@Y)

Indeed, in (3), there is no way for the distinguisher to tell £* from k', and in (4), the distinguisher yields the
same value for all the key guesses.

We refer the interested reader to the work done in [24, Sec. 3]. We note that y; = k @ t; does not lead to a
sound distinguisher, as for all ¥, x > x @ k' is bijective, and maps yj to yigi - On the contrary, there is no
bijection B such that for all ¢, wgy (k @ 1) = B(wy (k @ k' @ 1)). So the choice y; = wy (k & 1;) is sound.

>Some side-channels are discrete by nature, such as the timing measurements (measured in units of clock
period). In addition, oscilloscopes or data acquisition appliances rely on ADCs (Analog to Digital Convert-
ers), which usually sample a continuous signal into a sequence of integers, most of the time represented on
8 bits (hence X' = F5).



~ 1 q
P(y) = EZ L=y, (7
i=1

~ 1 q
P(x,y) = th L. 5i=y» ®)
i=1

?:1 ]liiIX,ffi:y _ P(X, y)
S, L FO)

where 1 4 denotes the indicator function of A: 14 = 1 if A is true and = 0 otherwise.

P(x|y) = )

Definition 1 (Empirical Mutual Information) The empirical mutual information is
defined as

- 5 Px, y)
&= Y Py logy——=—, (10)
xeX,yey P(x)P(y)
which can also be written as
&y =H® - HEXY), (11
where the empirical entropies are defined as
~ - 1
HE) =) P(x) logy — (12)
xex P(x)
and
~ i ~ 1
HXy) = Y P y) log = : (13)
reX yeY P(x]y)

These quantities are functions of the sequences X and y since P(x, y) is a function of X
and y. They also depend on the key guessed value k, via the expression of y.

2.2 Mathematical derivation

In this subsection, we show that MIA coincides with the ML expression where leakage
probabilities [P are replaced by online estimated probabilities P.

Definition 2 (Success Rate [19, Sec. 3.1]) The success rate (averaged over all possible
secret key values) is defined as

2" —1
1 -
SR= > Ptk = k). (14)
k=0

Here we follow a frequentist approach. An equivalent alternative Bayesian approach
would be to assume a uniform prior key distribution [10].

Theorem 3 (Maximum Likelihood [4]) Lety = ¢(f (k, t)). The optimal key estimate that
maximizes the success rate (14) is

k = arg m]?x Px|y). (15)



Proof We give here a formal proof, which nicely relates to Definition 2. Straightforward
computation yields

2i‘l
1 ~
SR = Z—HZZ Pr(%, 1) 1,_; (16)
k=1 %t
2}’[
= ZZ Px|y = o(f(k, 1)) P(t) I, (by(2)& Assumption 1) (17)
k=1 gt
2"
= S ZZ PEF = ¢(f kD) T, (18)
=2WH1§: PR[§ = o(f(k =k, D). (19)

X,t
Thus, for each given sequences X, t maximizing the success rate amounts to choosing k = k
so as to maximize P(X|y) = P(X|y = ¢(f(k =k, t))):

k= argmax P(X|y). (20)
k O
When no profiling is possible the conditional distribution

q
PEIY) = [ [ PG5 1)

is unknown to the attacker. Therefore, Theorem 3 is no longer practical and we require a
universal® version of it.

Definition 3 (Universal Maximum Likelihood) Let y = ¢(f(k, t)). The universal
maximum likelihood (UML) key estimate is defined by

k = arg m]?x PE[y), (22)
where
N q
Pxly) = H P(%;15). (23)

Here Iﬁ), defined in (9), (8), (7) and (6), is estimated directly from the available data, that is,
from the actual values in the sequences X and y.

Theorem 4 (UML is MIA) The universal maximum likelihood key estimate is equivalent
to the mutual information analysis [8]:

k = arg max P(X|y) = arg max [, 9), (24)

where 1 (X, ¥) is the universal mutual information (Definition 1).

6 Universal, in the information theoretic sense of the word, means: computed from the available data without
prior information.



Proof Rearrange the likelihood product according to values taken by the X; and y;’s

PRIy =[] PGl = ] Paly™ (25)

xeX,yey

Il A
—_ :

where 71, , is the number of components (X;, y;) equal to (x, y), i.e.,

q
iy =Y Lirgimy =4 P(x, ). (26)

The second equality in (25) is based on a counting argument: some events collide, i.e.,
we have (x;, y;) = (x;7, yi) for i # i’. The exponent 71, , is meant to enumerate all such
possible collisions. This gives

PR = [] Baly? ey = 2796w, 27)
xeX,yey

(see Definition 1). Therefore, maximizing IP’(x|y) amounts to minimizing the empirical con-
ditional entropy H (x]y). Since H (x) 1s key-lndependent this in turn amounts to maximizing
the empirical mutual information I (x,y) = H (x) — H X|y). O

From Theorem 4 we can conclude that MIA is “optimal” as a universal maximum likeli-
hood estimation. This constitutes a rigorous proof that mutual information is a relevant tool
for key recovery when the leakage is unknown (in the case where the model satisfies the
Markov condition) as was already hinted in [8, 16, 18, 21].

Corollary 5 MIA coincides with the ML distinguisher as g — oo.

Proof By the law of large numbers, the online probability P converges almost surely to the
exact probability of the leakage as ¢ — oo. For any fixed valuesof x € X',y € V),

P(x|j) — PGE|J)  as.
q—>00
Thus in the limit, MIA coincides with the ML rule. O

Remark 1 1t is well known [16] that if the mapping 7 — ¥ = @(f(k,)) is one-to-one
(for all values of k), then MIA cannot distinguish the correct key. This is also clear from
(4) in footnote 4: given two different keys k, k', there is a bijection between y; and yy/,
which is simply 8 = yx oy, ! In our present setting this is easily seen by noting that when
¥ =(fk, 1),

]fp(xly) — lc'1=1~ ]]‘fi=X,)~’i=y — :] 1 ]]-)E;=x fi=t (28)

q N -
i=1 ]lyi=y i=1 ]]'tt—l

is independent of the value k. Note that this is true for any fixed number of measurements
q during the attack.

2.3 MIA faster than ML distinguisher

Now that we have shown that the Universal ML distinguisher is strictly equivalent to the
MIA distinguisher, we show that the use of the MIA Distinguisher is cheaper in terms of



calculations than the ML distinguisher. Both distinguishers require the knowledge of P, the
online estimation of the leakage probability. However, the summation is not exactly the
same:

— the ML distinguisher consists in a sum of g logarithms, whereas
— the MIA involves a sum over | X'| x || logarithms.’

This means that computing a ML requires ¢ logarithm computations while computing a
MIA requires |X'| x |)| logarithm computations. As long as |X'| x |)/| is smaller than
g, which is verified for practical signal-to-noise values, the MIA is faster than the ML in
terms of logarithm computations. Furthermore, in Section 5.2, we present a fast algorithm
to compute MIA; it takes advantage of precomputations, which are similar to that already
presented in [11].

3 Non-gaussian noise challenge

In this section, we show two examples where MIA outperforms CPA due to non-Gaussian
noise. The first example presented in Section 3.1 is an academic (albeit artificial) example
built in order to have the success rate of CPA collapse. The second example in Section 3.2
1s more practical.

3.1 Pedagogical case-study

We consider a setup where the variables are X = Y 4+ N, with Y = o(f(k*, T)), where
Y € {£1},and N ~ U({F0o}) (meaning that N takes values —o and +o randomly, with

probabilities % and %), where o is an integer. Specifically, we assume that k*, te [, with

n = 4, and that f : F) x[F]— F75' is a (truncated version) of the SERPENT Sbox® fed by
the XOR of the two inputs (key and plaintext nibbles) and ¢ = wpg is the Hamming weight
(which reduces to the identity F, — [F, if m = 1 bit).

The optimal distinguisher (Theorem 3) in this scenario has the following closed-form
expression:

_ - - 1 &
D, {) = argmax P(X|t, k) = arg max 7 né(x,-, i, k), (29)
1=

where § : ! x ) x ] — {0, 1} is defined as

1 ifx —e(f(k, 1) =—o,
S(x,t,k)=431 ifx —e(f(k, 1)) = +o,
0 otherwise .

7In practice, logarithms require a high computational power, hence the number of calls to this function shall
be minimized.

8The least significant bit Sp of the PRESENT Sbox S is not suitable because one has Vze F4, So(z) =
So(z ® 0x9) = —=Sp(z & 0x1) = —Sp(z & 0x8). As in (3) of footnote 4, ties occur: it is not possible to
distinguish k*, k* @ 0x9, k* @ 0x1, k* & 0x8 (the corresponding bijections are respectively x +— x and
x = 1 — x). Therefore, we consider component 1 instead of 0, which does not satisfy such relationships.



The evaluation of this quantity requires the knowledge of o, which by definition is an
unknown quantity related to the noise. Our simulations have been carried out as follows.

1. Generate two large uniformly distributed random vectors t and fi of length §;
. Deliver the pair of vectors (t, X = ¢(f(k*, t)) + i) to the attacker;
3. Estimate averages and PMFs (probability mass functions) of this data for gsep (= 1),
then for 2gstep, 3gstep and so on;
4. At each multiple of ggtep, carry out CPA and MIA.

The attacks are reproduced 100 times to allow for narrow error bars on the estimated success
rate.

Remark 2 We do not consider linear regression analysis here because the model is not
parametric. The only unknown parameter is related to the noisy part of the leakage, not its
deterministic part.

Simulation results are given in Fig. 2 for 0 = 2 and 0 = 4. The success rate of the
“optimal” distinguisher (the ML distinguisher of Theorem 3 — see (29)) is drawn in order to
visualize the limit between feasible (below) and unfeasible (above) attacks. It can be seen
that MIA is almost as successful as the ML distinguisher, despite the knowledge of the value
of o is not required for the MIA. In addition, one can see that the CPA performs worse, and
all the worst as o increases. In this case, the CPA is not the optimal distinguisher (as e.g.,
underlined in [10, Theorem 5]) since the noise is not Gaussian (but discrete).

Remark 3 Another attack strategy for the leakage model presented in this subsection would
simply be to filter out the noise. One could for instance dispose of all traces where the
leakage is negative. The remaining traces (half of them) contain a constant noise N =
+o0 > 1, hence the signal Y can be read out without noise. Such attack, known as the subset
attack [14, Sec. 5.2], is not far from the optimal one (29). It actually does coincide with the
optimal attack if the attacker recovers Y from both subsets {i/X; > 0} and {i/X; < 0}.
Still, it can be noted that MIA is very close to being optimal for this scenario.

Asymptotics We can estimate the theoretical quantities for CPA and MIA as follows. We have
Var(Y) = 1 and Var(N) = o2, hence a signal to noise ratio SNR = 1/ 2. In addition, X can
only take four values: £14o0. Since E(XY) = E(X2)+E(YN) = Var(X)+E(Y)E(N) =
1 + 0 x 0 = 1, the correlation is simply p(X, Y) = 1/0, which vanishes as o increases.

0.8

T
Unreacp, able

0.6

Success rate
Success rate

04

0.2 -

Number of traces (q) Number of traces (q)

Fig. 2 Success rate for 0 = 2 (left) and o = 4 (right), when Y ~ U ({£1}) and N ~ U({£o})



However, for ¢ > 1, the mutual information I(X,Y) = 1 bit. Indeed, H(X) =
— Y reizo) PX = 010y P(X = x) = =3 1110y 3108 7 = logy 4 = 2 bits,
H(X|y = £1) = log,2 = 1bit, so I(X,Y) = log,4 — Zye{il}IP(X = x)log,2 =
log, 4 — log, 2 = 1 bit, irrespective of o € N.

The important fact is that the mutual information does not depend on the value of o.
Accordingly, it can be seen from Fig. 2 that the success rate of the MIA is not affected by
the noise variance. This explains why MIA will outperform the CPA for large enough o.

3.2 Application to bitslice PRESENT

Bitslicing algorithms is a common practice. This holds both for standard [17] (e.g., AES)
and lightweight [12] (PRESENT, Piccolo) block ciphers. Here the distinguishers must be
single-bit: ¥ € {£1}. However, compared to the case of Section 3.1, the noise takes now
more than two values: On an 8-bit computer, the 7 other bits will leak independently. They
are, however, not concerned by the attack, and constitute algorithmic noise N which follows
a binomial law o x B(7, %), where « is a scaling factor.

Simulation results for various values of « are in Fig. 3. Interestingly, MIA is efficient for
the cases where the leakage ¥ ~ U/ ({£1}) is not altered by the addition of noise: For« = 0.8
and o = 2.0, it is still possible to tell unambiguously from X what is the value of Y. On the
contrary, when o« = 0.5 or « = 1.0, the function (¥, N) — X = Y + N is not one-to-one.
For instance, in the case « = 1.0, the value X = 2 can result as well from ¥ = —1 and
N =3,orY =+1and N = 2 (see Fig. 4).

4 Partially unknown model challenge

Veyrat-Charvillon and Standaert [20, section 4] have already noticed that MIA can outper-
form CPA if the model is drifted too far away from the real leakage. However, LRA is able

Success rate
Success rate

Number of traces (q)

Success rate
Success rate

0 i i i I
0 10 20 30 40 50 60

Number of traces (q) Number of traces (q)

Fig. 3 Success rate for the attack of a bitsliced algorithm on an 8-bit processor, where 7 bits make up
algorithmic noise, and have weight 0.5, 1.0 (fop) and 0.8 and 2.0 (bottom)
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Fig. 4 Illustration of bijectivity (left) vs. non-injectivity (right) of the leakage function

to make up for the model drift of [20] (which considered unevenly weighted bits). In this
section, we challenge CPA and LRA with a partially unknown model. We show that, in our
example, MIA has a much better success rate than both CPA and LRA.

For our empirical study we used the following setup:

X =y k")) +N, Y (k*) = wy (Sbox (k" & T)),

where Sbox is the AES substitution box, v is the non-linear function given by:

X 0 1 2 3 4 5 6 7 8

¥ (x) +1 +2 +3 +4 0 —4 -3 —2 ~1

which is unknown to the attacker, and N is a centered Gaussian noise with unknown stan-
dard deviation o. The non-linearity of v is motivated by [13], where it is discussed that a
linear model favors CPA over MIA.

The leakage is continuous due to the Gaussian noise. In order to discretize the leakage to
obtain discrete probabilities, we used the binning method. We conducted MIA with several
different binning sizes:

B={[(i—-1) xAx,i x Ax[, i € Z} for Ax ={1,3,5,7,9}. (30)

In this paper, we do not try to establish any specific result about binning, but content
ourselves to present empirical results obtained with different bin sizes.

We have carried out LRA for the standard basis in dimension d =9 and higher dimensions
d = {37, 93, 163}. More precisely, for d =9 we have y' (k) = (1, y1(k), y2(k), ..., ¥s(k))
with y; (k) = [Sbox(k & T)]; where [-]; : [}, — [, is the projection mapping onto the
j-th bit and where 1 an all-one string. For d = 37 the attacker additionally takes into
consideration the products between all possibley; (1 < j < 8),i.e,¥y1-¥2,¥1-¥3,¥1 - Y4
and so on. Consequently, d = 93 considers additionally the product between three y’s and
d = 163 includes also all possible product combinations with four columns. See [9] for a
detailed description on the selection of basis functions.

Figure 5 shows the success rate using 100 independent experiments. Perhaps surprisingly,
MIA turns out to be more efficient than LRA. Quite naturally, MIA and LRA become closer
as the the variance of the independent measurement noise N increases. It can be seen that
LRA using higher dimension requires a sufficient number of traces for estimation (for d =
37 around 100, d = 93 around 150, and d = 137 failed below 200 traces). Consequently,
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Fig. 5 Success rate for o € {0, 1, 2, 3} when the model is unknown

in this scenario using high dimensions is not appropriate, even if the high dimension in
question might fit the unknown function .

One reason why MIA outperforms CPA and LRA in this scenario is that the function
Y was chosen to have a null covariance. Moreover, one can observe that the most efficient
binning size depends on the noise variance and thus on the scattering of the leakage. As o
increases, larger values of A should be chosen. This is contrary to the suggestions made in
[8], which proposes to estimate the probability distributions as accurately as possible and
thus to consider as many bins as there are distinct values in the traces. In our experiments,
when noise is absent (o = 0) the optimal binning size is A = 1 which is equivalent to the
step size of Y, while for o = 2 the optimal binning is A = 5 (see Fig. 5c¢).

It can be seen that using 40 traces the success rate of MIA with A = 5 reaches 90%, whereas
using A = 1 it is only about 30%. To understand this phenomenon, Fig. 6 displays the esti-
mated P(x|y) ina3D histogram for the correct key and one false key hypothesis, such that MIA is
able to reveal the correct key using A = 5 but fails for A = 1. Clearly, the distinguishability
between the correct and false key is much higher in case of A =5 than for A = 1.

More precisely, as the leakage is dispersed by the noise the population of bins of the false
key becomes similar to the the ones of the correct key when considering smaller binning size
(compare Fig. 6a and b). In contrast, the difference is more visible when the leakage is quan-
tified into larger bins (compare Fig. 6¢ and d). Therefore, even if the estimation of i (X,y)



-
-
-
-

[
5]
I
o

~

8
9 9
6 8 8
o 73 7
o o
£ 6 E 6
x g
2 5 % 5
gs s 8 s
2 3 3
2 2
1
1 1
0 0 0
-6 -4 -2 0 2 4 6 8 -6 -4 -2 0 2 a4 6 8
Binned Leakage Binned Leakage
) A=1, correct key guess ) A=1, false key guess

[
=
-
-

[
=)
-
(=]

~

8
9 9
o 8 8
T 7 g 7
o o
£ 6 £ 6
g 4 g
Il 5 o S
% %
4 3 4 9 4
2 3 3
2 2
1
1 1
0 0 0
aned Leakage Blnned Leakage
(c) A:S, correct key guess (d) A=5, false key guess

Fig. 6 Estimated P(X|Y) using 40 traces for o = 2 (see Fig. 5¢)

using f[i’(xly) for larger A is coarser and thus looses some information, the distinguishing
ability to reveal the correct key is enhanced.

5 Fast computations

In this section, we explain how we compute CPA and MIA in a faster way. We first show an
algorithm for CPA, then for MIA.

5.1 Fast computation of CPA

We recall here the definition of empirical CPA:
LS i = (& 50 ) (5 X0 wih)

2

\/ Zz 1x l)\/ Zz lyz(k) ( Z;nzl yl(k))
my L 1x,y,(k) (2o xi) (2272 vi (k)

I a — (S )y m I 3R = (S w )’

p(X, Y (k) =

€1y




where y;(k) = ¢@(f(k,t;)). For the fast computation the following accumulators are
required:

—  sxlt] =}/, _, Xi, the sum of leakages for a common 7

- sx2t]=); Jti=t xl.z, the sum of leakage squares for a common 7;

- qtltl=>_;,,—, 1, the number of 7 which occurred.

We detail the various terms in the next two paragraphs.
5.1.1 Averages

First, we simply have

Y oxi=) s,
i=1 t

which is key independent. Second,

gl:yi:ZZ)’i

toi/t=t

=Y o(fk, 1)

t i/l‘,’:l

= ) _o(fk.m)atlr],
t

which, quite surprisingly, is key independent.
5.1.2 Scalar product

The scalar product can be written the following way:

m
Qi =) ) i
i=l1

Yy i/yi=y
DI
y o i/yi=y

= Zy Z Xi

Yoo i/e(f(k.n))=y

=Y ysXDl,
y

where sx'[y] = ), Jo(f (k.ty)=y SX[7]. This optimization is certainly useful for long traces,
because it minimizes the number of multiplications (precisely, only 2" multiplications are
done). However, we need 2" temporary accumulators to save the sx'[y].



For monosample traces, we can also use this simpler computation:

oxivi =) ) xie(fk 1)
i=1

toi/ti=t

=Y > (k1)

toi/ti=t

= pr(f(k ) Y x

i/ti=t

= Y o(fk, 1))sx(t].
1

5.2 Fast computation of MIA

We setup a structure for the PMF, namely an array of hash tables, denoted as PMF[¢][x],
where ¢ and x lie in the sets I and Im(¢ o f) + supp(N), respectively. Suppose we have
accumulated g leakage pairs (7, x).

At this stage, the joint probability is given by

P, x) = iPMF[z][x].
q

Now, when using MIA as a distinguisher, we need to compute PMF[y][x], where ye I}
(expecting the (t,k) — y = @(f(k,t)) function to be non-injective [24], which is the
case in the previous sections). The value PMF[y][x] implicitly depends upon a key guess k:
PMF[yl[x] = PMF[y = o@(f(,1))][x]. Now, instead of computing If”(x,y) through
PMF[y][x] explicitly for each key guess, we can reformulate

Z PMF[¢][x].

Py.x)=> Pt.yx)= >  Prx)=
' He(f k. D)=y

t/o(f(k,1)=y

Q| —

Thus, we can reuse the tabulated PMF([z][x] for each key guess, which requires thus much
less computations than a straightforward implementation.
Recall the expression of the estimated mutual information:

P(x, y)

I(X, P logy, —————
(X, ¥) = Z G log g 25

The value for P(x) is identical for all key hypotheses and thus can be factored out. In fact,
this quantity is a scaling constant which could be omitted. But for the sake of completeness,
we have

Px)=) P(.x)= %[ > PMF[t][x]
t t



Lastly, we need to evaluate P(y). This is simply done as follows:

P(y) =) P(x.y).

Algorithm 1 Fast computation algorithm for MIA

w

e e N N it A

10
11
12
13

14
15
16
17
18

19
20

21
22
23

24

25

26
27
28
29

30

input : X a set of g traces which take discrete values,
t a corresponding set of g plaintexts/ciphertexts

output: (I (X, y(k)))kek

// From X and t, build a hash table PMF[f][x] (i.e., a

histogram)
fori e {1,...,g}do
\ PMF[7;]1[%;] +=1
end
for x € X do
P(x) =0
for 1 7 do
| P(x) += PMF[t][x]
end
end

fork e K do// Key enumeration
Vx e)(,yey,ﬁ”(x,y)=0
for te IF; do

for x € X do

end
end
I(x,y(k)) =0
for y € V do
P(y)=0
for x € X do
| P(y) +=P(x, y)
end
for x € X do

| & 50) += " log

m
end
end

end

end

return (I (X, ¥(k)))rex

// If”(x,y) holds mIf”(x,y), cf.

| PCx, p(f (k, 1)) += PMFt][x]

// P(x) holds mP(x), cf.

// P(y) holds mP(y), cf.

mP(x,y)

P(x)P(y)

)

/]l y=w@(f(k,t)), cf.

// Nota bene: (P(x)=0V If”(y) =0) = P(x, y)=20
if P(x) # 0 and P(y) # 0 then

:

// As 1in

(10)




Algorithm 2 Computation of the MIA success rate

LI B R e S

10

11
12
13
14

15
16

17

input :

— X aset of g traces which take discrete values,

— tacorresponding set of § plaintexts/ciphertexts,

—  k* € K, the correct key,

—  {step, typically of the order of g/100 (number of times the success rate is computed),
— M, the number of experiments

output: §l\2k*, the empirical rate of MIA (computed as per (10))

§l\2k* =1{0,...,0} // Initialization of m/mge values to zero
foreach experiment € {1, ..., M} do
PMF[7][x] = 0, Vre FI, x € X
foreach step € {1, ..., ¢/Gstep} do
for i € {1 4 (step — 1) X Gstep, - . ., St€P X Gstep} dO
| PMF[5][x;] +=1
end
fork € Kdo// Key enumeration
+ + scorey = MIA-DISTINGUISHER(PMF, k) + +
// See MIA-Distinguisher
score; = MIA-DISTINGUISHER (PMF, k) // Function at
page 19
end
if arg maxgek scorek = k* then
| SRys[step] += 1
end

end

end

return S/l\{k* // The empirical Success Rate

Algorithm 1 illustrates the fast computation process for MIA while Algorithm 2 com-

putes the success rate of MIA. Algorithm 2 calls the function MIA-Distinguisher as
a subroutine. This last function corresponds to the of the computation of fast MIA
(Algorithm 1). However, it is optimized as follows:

The values of P(x) and g do not impact the result, hence they are not computed. This
means that lines 4-8 of Algorithm 1 are not part of Algorithm MIA-Distinguisher, and
that in the accumulation of I (X, y(k)) at line 15 of Function MIA-Distinguisher, the
terms P(x) and g (present at line 25 of Algorithm 1), are simply dropped.

In the line 17 of MIA-Distinguisher, we subtract the term which corresponds to the
denominator IF’(y) of line 25 of Algorithm 1. Notice that all the parameters of the log-
arithms are now integers. We can thus tabulate the logarithms in a table 1ogli], for
i = 1,...,q. Incidentally, the basis of the logarithm can be arbitrarily chosen. If g
is really large, say larger than 10 millions, then 1og[i] can be precomputed from all
i < 10°, and evaluated otherwise, since anyhow the call of log for large values is
restricted to the case of IP’(y) which is expected to be way larger than any P(x, y).



Function MIA-Distinguisher

input : PMF[7][x] € NF2 xX , a non-normalized bi-dimensional histogram,
k € K, akey guess

output: A score, affinely proportional to MIA (computed as per (10)), with the same
(irrelevant) affine scaling factors for all the keys

1 Vxe X, ye), I@’(x, y)=0 // If”(x,y) holds m]f”(x,y), cf. (8)
2 forte IF’; do

3 for x € X do

4 | P(x, o(f (k. 1)) += PMF[1][x] /] y=e¢(fk1), c£. (1)
5 end

6 end

7 1, §(k) =0 // Quantity actually affine with I(X,§(k))
8 for y € Y do

9 | P(y)=0 // P(y) holds mP(y), cf. (7)
10 for x € X do

11 ‘ P(y) +=P(x, y)

12 end

13 for x € X do

14 if P(x, y) # 0 then /] Plx,y) #0 = ([P(x) #0AP(y) #0)
15 | I& §() +=P(x, ) - Log[P(x, y)]

16 end

17 [(X,§(k) —=P(x) - Log[P(y)]

18 end

19 end

2

>

return [ (X, y(k))

5.3 Standard computation algorithm for MIA

The standard computation for MIA unfolds as in Algorithm 3. This algorithm outputs
exactly the same as Algorithm 1 but is slower for two reasons:

1. All the g samples are scanned for each key hypothesis;
2. Probability mass functions are normalized. Now, divisions are costly, and also they
require a conversion from integer to floating point numbers;

6 Conclusion

We derived MIA anew as the distinguisher which maximizes the success rate when the exact
probabilities are replaced by online estimations. This suggests that MIA is an interesting
alternative when the attacker is not able to exactly determine the link between the measured
leakage and the leakage model. This situation can either result from an unknown determin-
istic part or from an unknown noise distribution. We have proved that, if the number of
traces is greater than the number of possible values of x and y, the MIA is faster in terms of
logarithm computations.



Algorithm 3 Standard computation algorithm for MIA

input : X a set of m traces which take discrete values,
t a corresponding set of m plaintexts/ciphertexts

output: (I (X, §(k)))rex
[(X,§(k)=0,Vxe X, ke K

fork € Kdo// Key enumeration

[

(%)

// From X and y, build a hash table PMF[y][x] (i.e., an
histogram)
3 fori e{l,...,m}do
| PMFp(f(k, )][x]+=1 /] y=9(fk, 1), c£. (1)
end
6 Vxe)(,yey,lﬁ’(x,y)=0 // cf. (8)
for y € V do
for x € X do
9 | P(x,y) = L PMF[y][x]
10 end
11 end
12 for y € Y do
13 P(y) =0 /] cE. (7)
14 for x € X do
15 | P(y) +=P(x, y)
16 end
17 end
18 for x € X do
19 Px) =0 /] cE. (7)
20 for y € YV do
21 ’ P(x) += P(x, y)
22 end
23 end
24 for y € Y do
25 for x € X do
// Nota bene: (P(x)=0V If”(y) =0) = P(x, y)=0
26 if P(x) # 0 and P(y) # 0 then
T~ o~ = P(x,
2 TR 50) += B(x, ) log, (222
28 end
29 end
30 end
31 end
32 return (I (X, §(k)))kek // As in (10)

We have presented two practical case-studies in which MIA can indeed be more efficient
than CPA or LRA. The first scenario is for non-Gaussian noise but known deterministic
leakage model. The second scenario is for Gaussian noise with unknown deterministic leak-
age model, where one leverages a challenging leakage function which results in failure for



CPA, and in harsh regression using LRA. Incidentally, this example is in line with the work
carried out by Whitnall and Oswald [21] where a notion of relative margin is used to com-
pare attacks. Our findings go in the same direction using the success rate as a figure of merit
to compare attacks.

Finally, we extended the computation trick given for CPA to MIA avoiding the histogram
estimation of conditional probabilities for each sub key individually, improving the speed
of the computation.

We note that all our results are ¢-dependent. It seems obvious that the closer we are to
the actual leakage, the better the success rate will be. An open question is to find an analytic
way to determine the function model that will provide the highest success rate.

Last, we note that our analysis is monovariate: we consider a leakage which consists in
only one value. A future work would be to extend our results to mutivariate attacks.

Another topic of research is to carry out practical examples where MIA beats CPA. An
viable option would be the exploitation of some specific timing attacks where the behaviour
of the processor changes at every start-up.
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