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Abstract. Walter and Thomson (CT-RSA ’01) and Schindler (PKC
’02) have shown that extra-reductions allow to break RSA-CRT even
with message blinding. Indeed, the extra-reduction probability depends
on the type of operation (square, multiply, or multiply with a constant).
Regular exponentiation schemes can be regarded as protections since the
operation sequence does not depend on the secret.

In this article, we show that there exists a strong negative correlation
between extra-reductions of two consecutive operations, provided that
the first feeds the second. This allows to mount successful attacks even
against blinded asymmetrical computations with a regular exponenti-
ation algorithm, such as Square-and-Multiply Always or Montgomery
Ladder. We investigate various attack strategies depending on the con-
text—known or unknown modulus, known or unknown extra-reduction
detection probability, etc.—and implement them on two devices: a single
core ARM Cortex-M4 and a dual core ARM Cortex M0-M4.

Keywords: Side-channel analysis · Montgomery modular multipli-
cation · Extra-reduction leakage · Message blinding · Regular
exponentiation

1 Introduction

State of the Art of Timing Attacks. Any cryptographic algorithm in an embed-
ded system is vulnerable to side-channel attacks. Timing attacks on the RSA
Straightforward Method (RSA-SFM) were pioneered by Kocher [12]. The attack
consists in building “templates” whose distributions are compared to that of the
response. It is required that the cryptographic parameters be known since the
attack is profiled.
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Schindler [16] extended timing attacks to RSA with Chinese Remainder The-
orem (RSA-CRT) using chosen messages. This attack exploits a conditional
extra-reduction at the end of modular multiplications. Schindler and co-authors
carried out numerous improvements [1,2,17–20] in the case where the exponen-
tiation uses windows or exponent randomization.

Walter and Thompson [21] remarked that even when data is blinded, the
distribution of extra-reductions is different for a square and for a multiply. They
assumed that side-channel measurements such as power or timing during expo-
nentiation are sufficiently clean to detect the presence or absence of an extra-
reduction at each individual operation. Schindler [17] improved this attack by
also distinguishing multiplications by a constant from squarings and multiplica-
tions by non-fixed parameters.

Today’s Solutions. In order to protect the implementation from the above
attacks, a first solution consists in exponent randomization on top of mes-
sage blinding. Such a protection, however, is sensitive to carry leakage [9] and
amenable to other attacks like simple power analysis [7] (SPA). A second solu-
tion relies on regular exponentiation like Square-and-Multiply-Always (SMA, see
Algorithm1) or Montgomery Ladder (ML, see Algorithm2). Both algorithms
consist in a square and a multiply operation in each iteration i, yielding no
leakage to SPA.

Algorithm 1. Square and Multiply
Always Left-to-Right
Input: m, k = (klkl−1 . . . k0)2, p (kl = 1)
Output: mk mod p
1: R0 ← 1
2: R1 ← m
3: for i = l − 1 downto 0 do
4: R1 ← R1 × R1 mod p ! Si

5: Rki ← R1 × m mod p ! Mi

6: end for
7: return R1

Algorithm 2. Montgomery Ladder
Left-to-Right
Input: m, k = (klkl−1 . . . k0)2, p (kl = 1)
Output: mk mod p
1: R0 ← m
2: R1 ← R0 × R0 mod p ! FS
3: for i = l − 1 downto 0 do
4: R¬ki ← R0 × R1 mod p ! Mi

5: Rki ← Rki × Rki mod p ! Si

6: end for
7: return R0

Contributions of This Paper. We show that despite message blinding and regular
exponentiation, it is still possible for an attacker to take advantage of extra-
reductions: A new bias is found, namely a strong negative correlation between
the extra-reduction of two consecutive operations. As shown in this paper, the
bias can be easily leveraged to recover which registers are written to (at line 5 of
Algorithm1 or at lines 4 and 5 of Algorithm2) which eventually leads to retrieve
the secret key. The advantages of this method are the following:

– messages are unknown; this captures general situations such as RSA with
OAEP or PSS padding and RSA input blinding [11, Sect. 10];

– RSA parameters can be unknown; hence RSA-CRT is also vulnerable;
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– all binary exponentiation algorithms are vulnerable, even the regular ones like
Square and Multiply Always, Montgomery Ladder, etc.;

– our attack can also be applied to Elliptic Curve Cryptography (ECC).

From a mathematical viewpoint, we also provide a comprehensive framework for
studying the joint probabilities of extra-reductions in a sequence of multiplies
and squares.

Related Works. The “horizontal/vertical” side-channel attacks against blinded
exponentiation described in [6,10,24] also use the dependency between the
input/output of operands in square and multiply algorithms. Such attacks
exploit the vertical amplitude of the signal during the time duration. Our
work is thus complementary to these ideas since it considers a novel horizon-
tal exploitable bias.

Outline. The rest of the paper is organized as follows1. Section 2 recalls known
biases induced by extra-reductions in modular multiplication algorithms such
as the Montgomery modular multiplication. Our contribution starts at Sect. 3,
where the theoretical rationale for the strong negative correlation between extra-
reductions of two chained operations is presented. Section 4 shows how this bias
can be turned into a key recovery attack. Experimental validations for synthetic
and practical traces are in Sect. 5. Section 6 concludes.

2 State of the Art of Extra-Reductions Probabilities

This section reviews known results about extra-reductions and their probability
distributions. The results can be adapted easily to Barrett reduction or multi-
plication followed by reduction using the extended Euclid algorithm.

2.1 Montgomery Modular Multiplication: Definitions and Notations

Given two integers a and b, the classical modular multiplication a × b mod p
computes the multiplication a × b followed by the modular reduction by p.
Montgomery Modular Multiplication (MMM) transforms a and b into special
representations known as their Montgomery forms.

Definition 1 (Montgomery Transformation [14]). For any prime modu-
lus p, the Montgomery form of a ∈ Fp is φ(a) = a×R mod p for some constant
R greater than and co-prime with p.

In order to ease the computation, R is usually chosen as the smallest power
of two greater than p, that is R = 2"log2(p)#. Using the Montgomery form of
integers, modular multiplications used in modular exponentiation algorithms
(recall Algorithms 1 and 2) can be carried out using the Montgomery Modular
Multiplication (MMM):
1 A complete version containing auxiliary information is available in [8].
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Definition 2 Montgomery Modular Multiplication [14]). Let φ(a) and
φ(b) two elements of Fp in Montgomery form. The MMM of φ(a) and φ(b) is
φ(a) × φ(b) × R−1 mod p.

Algorithm 3 below shows that the MMM can be implemented in two steps: (i)
computeD = φ(a)×φ(b), then (ii) reduceD using Montgomery reduction which
returns φ(c). In Algorithm3, the pair (R−1, v) is such that RR−1 − vp = 1.

Algorithm 3. Montgomery Reduction (Algorithm14.32 of [13])
Input: D = φ(a) × φ(b)
Output: φ(c) = φ(a) × φ(b) × R−1 mod p
1: m ← (D mod R) × v mod R
2: U ← (D +m × p)÷R ! Invariant: 0 ≤ U < 2p
3: if U ≥ p then
4: C ← U − p ! Extra-reduction
5: else
6: C ← U
7: end if
8: return C

Definition 3 (Extra-Reduction). In Algorithm3, when the intermediate
value U is greater than p, a subtraction named eXtra-reduction occurs so as
to have a result C of the Montgomery multiplication between 0 and p − 1. We
set X = 1 in the presence of the eXtra-reduction, and X = 0 in its absence.

Most software implementations of modular arithmetic for large numbers
(such as OpenSSL and mbedTLS) use the MMM, where there is a final extra-
reduction. In mbedTLS, this extra-reduction is compensated. However, as shown
below in Sect. 5.2, an attacker is still able in practice to detect using some side-
channel which branch has been used (either line 4 or 6 of Algorithm3).

2.2 A Bias to Differentiate a Multiply from a Square

Proposition 1 (Probability of Extra-Reduction in a Multiply and
a Square Operation [16, Lemma 1]). Assuming uniform distribution of
operands, the probabilities of an extra-reduction in a multiply XMi and in a
square XSi at iteration i are

P(XMi = 1) =
p

4R
and P(XSi = 1) =

p

3R
. (1)

We note that extra-reductions are 33% more likely when the operation is a
square than when it is a multiply, irrespective of the ratio p

R ∈]12 , 1[. This allows
one to break unprotected exponentiation algorithms.
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3 A Bias to Test the Dependency of Operations

3.1 Principle of Correlated Extra-Reductions

In regular exponentiation algorithms, differentiating a multiply from a square
does not allow SPA to distinguish the value of the exponent bits. Indeed, at
every iteration i (l − 1 ≥ i > 0 where i is decremented after each iteration),
multiply and square operations are carried out unconditionally. However, the
input value of each operation depends on the current exponent bit value ki.
Figure 1 illustrates the dependence or independence between the input/output
values of multiplication Mi and the input value of the following square Si−1 as a
function of the bit value ki during the SMA algorithm (Algorithm1). Intuitively,
when the output of Mi is equal to the input of Si−1, we can expect that the
extra-reductions in both operation are strongly correlated.

Sl−1 Ml−1 Sl−2 Ml−2 Sl−3 Ml−3 Sl−4 Ml−4

Ml−1 Sl−2

Ml−2 &= Sl−3

Ml−3 Sl−4

kl−1 = 1 kl−2 = 0 kl−3 = 1 kl−4 = 1

Fig. 1. Comparison between the output value of multiplication with the input of
the following square in the Square-and-Multiply-Always exponentiation algorithm
(Algorithm1).

For the ML algorithm (Algorithm2), the Mi and Si−1 operations depends
directly on the two consecutive key bit values ki and ki−1. If the bit value ki−1

and its previous bit value ki are different then the output of multiplication
Mi and the input of square Si−1 are equal and yield strongly correlated extra-
reductions; in the opposite case they yield uncorrelated extra-reductions.

Definition 4 (Guess Notation). Let Gi be the “guess’ Boolean random vari-
able defined to be True (T) if the output of an operation at iteration i is equal
to the input of the next operation at iteration i − 1, and False (F) otherwise.

Also let XMi be a random variable corresponding to the eXtra-reduction of the
MMM multiplication at iteration i and XSi−1 be a random variable corresponding
to the eXtra-reduction during the MMM square at iteration (i − 1).

Then P(XMi ,XSi−1 |Gi = T ) is their joint probability when the output
value of the multiplication is equal to the input value of the square, and
P(XMi ,XSi−1 |Gi = F ) is their joint probability when the output value of the
multiplication is not equal to the input value of the square.
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Table 1. Example of probabilities of eXtra-reduction XMi of multiply operation and
XSi−1 of square operation knowing the Boolean value Gi for RSA-1024-p. The first line
(correct guess) is applicable for both SMA and ML.

(xMi , xSi−1) (0,0) (1,0) (0,1) (1,1)

P(xMi , xSi−1 |Gi = T ) 0.541575 0.191615 0.258276 0.008532

P(xMi , xSi−1 |Gi = F ) for SMA 0.612756 0.120158 0.186803 0.080281

P(xMi , xSi−1 |Gi = F ) for ML 0.586105 0.147246 0.213521 0.053128

The guess value Gi is linked to the key value depending on the regular expo-
nentiation algorithm. For SMA and for a bit ki, an attacker is able to estimate
the probabilities P̂(XMi ,XSi−1). This probability can be used to find the bit ki
as illustrated in Fig. 1 and explained in Sect. 4 below. For ML, Gi depends on
two consecutive key bits as explained also in Sect. 4.

We have estimated the joint probabilities P(XMi ,XSi−1 |Gi) using 1.000.000
random values for both SMA and ML algorithms and the example RSA-1024-p
defined in [8, Sect. 2.2] for this modulus for which the ratio p/R % 0.800907.
The values of the obtained probabilities are shown in Table 1.

It is important to notice that for each (xMi , xSi−1) ∈ {0, 1}2, the condi-
tional joint probabilities are distinct: P(XMi = xMi ,XSi−1 = xSi−1 |Gi = F ) &=
P(XMi = xMi ,XSi−1 = xSi−1 |Gi = T ). Also for Gi = F in ML, it can be observed
that P(XMi ,XSi−1 |Gi) = p

4R × p
3R = P(XMi)×P(XSi−1), which is consistent with

the fact the two operations XMi and XSi−1 should be independent since they
are completely unrelated.

It should be emphasized that the leakage identified in Table 1 is fairly large,
since the Pearson correlations ρ of the two randoms variables are2:

ρ(XMi ,XSi−1 |Gi = T ) ≈ −0.2535, (2)
ρ(XMi ,XSi−1 |Gi = F ) ≈ +0.1510 in SMA, (3)
ρ(XMi ,XSi−1 |Gi = F ) ≈ −0.0017 in ML. (4)

To the best of our knowledge, such correlations have not been observed previ-
ously. A few observations are in order:

– when a square follows a multiply, and if there has been an extra-reduction
in the multiplication, the result should be short, hence there is less chance
for an extra-reduction to occur in the following square. This accounts for the
negative correlation ρ(XMi ,XSi−1 |Gi = T );

– from Fig. 1 iteration i = l − 2 where ki = 0, we can see that one input of
the multiplication Mi equals the input of the following squaring Si−1. Since a
square and a multiplication share a common operand, provided it is sufficiently
large, both operations are likely to have an extra-reduction at the same time,
which accounts for the positive correlation ρ(XMi ,XSi−1 |Gi = F ) for SMA;

2
ρ(XMi

,XSi−1
) =

Cov(XMi
,XSi−1

)

σXMi
σXSi−1

=
P(XMi

=1,XSi−1
=1)−(P(XMi

=1)×P(XSi−1
=1))

√
P(XMi

=1)(1−P(XMi
=1))

√
P(XSi−1

=1)(1−P(XSi−1
=1))

.
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– when a square and a multiply handle independent data, the extra-reductions
are clearly also independent of each other, which explains the small value of
ρ(XMi ,XSi−1 |Gi = F ) for ML.

As explained next, when extra-reductions can be detected reliably, the data-flow
can be analyzed accurately thereby defeating regular exponentiation protections.

3.2 Methodology to Analyze the Bias

In order to estimate the probability P(XMi ,XSi−1 |Gi), we first determine the
distribution of the output value after one MMM (following the method described
by Sato et al. [15]) and then compute the joint probability for each case.

Let A, B be two independent random variables uniformly distributed in [0, p[
(represented in Montgomery form); let C be equal to the MMM product of A and
B and U corresponds to the MMM product of A and B before eXtra-reduction
(if any). Variables C and U coincide with that of Algorithm3. As a matter
of fact, an attacker cannot observe values, only extra-reductions which occur
during Montgomery reduction (at line 4 of Algorithm3). We use notations P for
probabilities and f for probability density functions (p.d.f.’s).

Figure 2 shows histograms for C and U obtained from one million simulations;
the binning consists of 100 bins of the interval [0, 2p[. It can be observed that

– the p.d.f. of C is uniform on [0, p[;
– the p.d.f. of U is a piecewise continuous function composed of a strictly increas-

ing part, a constant part and a strictly decreasing part;
– the two conditional p.d.f.’s of C knowing XMi ∈ {0, 1} (resp. XSi ∈ {0, 1})

are not uniform;
– for c ∈ [0, p[, one has f(C = c) = f(U = c) + f(U = c+ p) by definition of U ;
– the maximum value of U is p+ p2/R, which is strictly smaller than 2p.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

0 p2/R p R p+p2/R 2p

f(C)
f(C|XM=0)
f(C|XM=1)

f(U=u)
Theory for mult (Thm. 1)

XM=0 XM=1

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

0 p2/R p R p+p2/R 2p

f(C)
f(C|XS=0)
f(C|XS=1)

f(U=u)
Theory for square (Thm. 1)

XS=0 XS=1

Fig. 2. Distribution of the output value of Montgomery multiplication (left) and square
(right) for RSA-1024-p.
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Recall that we use the Montgomery reduction described in Algorithm3, where
the reduction modulo p is carried out after every multiplication. This is also
the case in [16,17], but not in [20,21] where the multiplicands lie in [0, R[. To
complement those works, we now derive a closed-form expression of the output
distribution of the Montgomery multiplication product and square (not found
in [16,17]).

3.3 Mathematical Derivations

This subsection provides a mathematical justification of the biases observed in
Table 1. In particular, it shows that such biases hold for all values of p and
R = 2"log2(p)#. Our closed-form expressions are derived as limits in distribution
when p → +∞ that we shall write as approximations.

Theorem 1 (P.d.f. of MMM Before Extra-Reduction3). Asymptotically
when modulus p is large, the result of a Montgomery multiplication before the
final extra-reduction (at line 2 of Algorithm3) have piecewise p.d.f. given by

fU (u) =






Ru
p3

(
1 − ln(Ru

p2 )
)

if 0 ≤ u ≤ p2

R ;
1
p if p2

R ≤ u ≤ p;
1
p − R(u−p)

p3

(
1 − ln(R(u−p)

p2 )
)

if p ≤ u ≤ p+ p2

R ;

0 otherwise.

(5)

The corresponding p.d.f. for the square is also in four pieces with the same inter-
vals for u, and differs only from the multiplication in that it is equal to

√
Ru/p2

when 0 ≤ u ≤ p2

R , and 1/p −
√

R(u − p)/p2 when p ≤ u ≤ p+ p2

R .

The theoretical values of Theorem1 nicely superimpose with experimentally
estimated p.d.f.’s as shown in Fig. 2.

Theorem 2 (Joint Probability of Extra-Reduction in Multiplication
Followed by a Square [see Footnote 3]). The following joint probabilities
do not depend on the iteration index i, where l − 1 ≥ i > 0.

When Gi = T :

P(XMi , XSi−1) XSi−1 = 0 XSi−1 = 1

XMi = 0 1 − 7
12

p
R + 1

48

(
p
R

)4 p
3R − 1

48

(
p
R

)4

XMi = 1 p
4R − 1

48

(
p
R

)4 1
48

(
p
R

)4

3 Proof of this theorem is given in [8].
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When Gi = F in SMA:

P(XMi , XSi−1) XSi−1 = 0 XSi−1 = 1

XMi = 0 1 − 7
12

p
R + 1

8

(
p
R

)2 p
3R − 1

8

(
p
R

)2

XMi = 1 p
4R − 1

8

(
p
R

)2 1
8

(
p
R

)2

When Gi = F in ML:

P(XMi , XSi−1) XSi−1 = 0 XSi−1 = 1

XMi = 0 1 − 7
12

p
R + 1

12

(
p
R

)2 p
3R − 1

12

(
p
R

)2

XMi = 1 p
4R − 1

12

(
p
R

)2 1
12

(
p
R

)2

It can be easily checked that Theorem2 accurately matches experimental
probability estimations given in Table 1.

Corollary 1. The corresponding correlation coefficients are

ρ(XMi ,XSi−1 |Gi = T ) =
p4

48R4 − p2

12R2√
p
4R

(
1 − p

4R

) p
3R

(
1 − p

3R

) ,

ρ(XMi ,XSi−1 |Gi = F ) =
p2

24R2√
p
4R

(
1 − p

4R

) p
3R

(
1 − p

3R

) in SMA,

ρ(XMi ,XSi−1 |Gi = F ) = 0 in ML.

Proof. Apply Pearson’s correlation definition on the results of Theorem2. ,-
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Fig. 3. Pearson’s correlation between XMi and XSi−1 .
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When the guess is correct, ρ(XMi ,XSi−1 |Gi = T ) is negative and increasingly
negative as p/R increases, where

− 3
16

√
5
7 ≈ −0.158 ≤ ρ(XMi ,XSi−1 |Gi = T ) ≤ − 3

4
√
6

≈ −0.306.

When the guess is incorrect, either the correlation is null (in the case of ML), or
it is positive and increasing with p/R, where for 1/2 ≤ p/R ≤ 1,

1
2
√
5×7

≈ 0.085 ≤ ρ(XMi ,XSi−1 |Gi = F ) ≤ 1
2
√
6

≈ 0.204.

The variations of the correlation coefficients between XMi and XSi−1 in the three
scenarios of Corollary 1 are plotted in Fig. 3.

Figure 3 shows that the correlation difference between guesses True/False
is greater for the SMA algorithm than for the ML algorithm. Thus our attack
on SMA should outperform that on ML. Also notice that the larger the ratio
p/R, the larger the correlation difference; hence, we expect P-256 to be easier
to break than brainpoolP256r1 with our attack.

4 Exploiting the Bias Using Our Attack

The difference between the two Pearson correlations according to the guess
value Gi (Corollary 1) allows us to test whether some data produced by an oper-
ation is fed into the next operation. The bit value ki can be estimated using the
Pearson correlation ρ as a distinguisher, a threshold T depending of the knowl-
edge of the attacker and a decision function denoted by FALG which depends of
the regular exponentiation algorithm and the used distinguisher.

Attacker’s Method. An attacker calls Q times the cryptographic operation with
a static key k and measures the corresponding side-channel trace. For each trace
q ∈ {1, . . . , Q}, (l−1) pairs of extra-reductions (xq

Mi
, xq

Si−1
)l−1≥i>0 are captured.

The complete acquisition campaign is denoted (xMi , xSi−1), and is a matrix of
size Q × (l − 1) pairs of bits. Notice that neither the input nor the output
of the cryptographic algorithm is required. For all i ∈ {l − 1, . . . , 1} and q ∈
{1, . . . , Q}, xq

Mi
is equal to 1 (resp. 0) if the eXtra-reduction is present (resp.

missing) during the multiplication Mi for query q. Similarly, xq
Si−1

is equal to 1
(resp. 0) if the eXtra-reduction is present (resp. missing) during the square Si−1

for query q. For each pair of random variable (XMi ,XSi−1), the attacker first
computes the estimated probability P̂(XMi ,XSi−1), using:

P̂(XMi ,XSi−1) =
1
Q

Q∑

q=1

1(XMi=xq
Mi

)∧(XSi−1=xq
Si−1

). (6)

The attacker then computes the Pearson correlation4 ρ̂(XMi ,XSi−1) for each pair
(xMi , xSi−1) ∈ {0, 1}2 using the estimated probability P̂(XMi ,XSi−1). Finally,

4
ρ̂(XMi

,XSi−1
) =

ˆCov(XMi
,XSi−1

)

σ̂XMi
σ̂XSi−1

=
P̂(XMi

=1,XSi−1
=1)−(P̂(XMi

=1)×P̂(XSi−1
=1))

√
P̂(XMi

=1)(1−P̂(XMi
=1))

√
P̂(XSi−1

=1)(1−P̂(XSi−1
=1))

.
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she estimates the exponent bit ki with her knowledge corresponding to threshold
T and decision function FALG .

Attacker’s Knowledge. In public key cryptography, the attacker wants to recover
the private exponent in RSA or the private scalar in ECC. In our attacks, we
assume these secret values are static, as for instance in RSA-CRT decryption or
static Diffie-Hellman key agreement protocol.

– In RSA-SFM and ECC, the attacker knows the parameters p and R defined
in Sect. 2.1. In RSA-SFM, p is equal to the public modulus nRSA. In ECC,
p equals the characteristic of the finite field over which the elliptic curve is
defined. The attacker can compute the Pearson correlations ρ(XMi ,XSi−1 |Gi =
T ) and ρ(XMi ,XSi−1 |Gi = F ) using corollary 1. The threshold for the success-
ful attack is defined by:

T =
ρ(XMi ,XSi−1 |Gi = T ) + ρ(XMi ,XSi−1 |Gi = F )

2
. (7)

– In RSA-CRT, the attacker does not know the parameters p and R defined
in Sect. 2.1, because the prime factors pRSA and qRSA are secret parame-
ters. Hence the determination of the probabilities by theory or simulation are
impossible. However, using the Q measurements (xMi , xSi−1), the attacker is
able to determine the mean estimated probability ÊiP̂(XMi ,XSi−1) by5:

ÊiP̂(XMi ,XSi−1) =
∑l−1

i=1 P̂(XMi ,XSi−1)
l − 1

. (8)

The attacker then computes the mean estimated Pearson correlations using
the mean estimated probability (8), and the threshold for the successful attack
is defined by:

T =
ÊiP̂(XMi = 1,XSi−1 = 1) − (ÊiP̂(XMi = 1) × ÊiP̂(XSi−1 = 1))

√
ÊiP̂(XMi = 1)ÊiP̂(XMi = 0)

√
ÊiP̂(XSi−1 = 1)ÊiP̂(XSi−1 = 0)

. (9)

In fact, the threshold value T computed in (7) or (9) does not depend on i. The
indication of index i was kept as a reminder that the multiplication Mi is done
in the iteration which precedes that of the square Si−1.

Decision Function. The decision function depending of the regular algorithm
and the used distinguisher ρ is denoted as FALG . We detail this function for the
SMA (Algorithm1) and ML (Algorithm2) algorithms.

5 Notice that in some cases, e.g. if the key bits happen not to be balanced,
ÊiP̂(XMi , XSi−1) can be estimated in a less biased way using maxi{P̂(XMi , XSi−1)}−
mini{P̂(XMi , XSi−1)}.
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– In the SMA algorithm, the scalar bit ki decides whether the output of Mi

is the input of Si−1 or not (see Fig. 1). If the bit value ki equals 1, then the
square Si−1 depends on Mi (Gi = T ), otherwise the output value of Mi is
different from the input value of Si−1 (Gi = F ). Using the Sect. 3, we see
that ρ(XMi ,XSi−1 |Gi = T ) < ρ(XMi ,XSi−1 |Gi = F ), so the decision function
FSMA is defined by:

k̂i = FSMA(ρ, T ) =

{
0 if ρ̂(XMi ,XSi−1) ≥ T ,

1 otherwise.
(10)

– For the Montgomery Ladder (ML) algorithm, the Mi and Si−1 operations do
not depend directly on the key bit value ki. The dependence comes from the
bit value ki−1 and the previous bit value ki. If the two bits value ki−1 and
ki are different then the output of multiplication Mi and the input of square
Si−1 are equal (Gi = T ), otherwise these output/input are different (Gi = F ).
Using Sect. 3, we see that ρ(XMi ,XSi−1 |Gi = T ) < ρ(XMi ,XSi−1 |Gi = F ), so
the decision function FML using the previously estimated bit k̂i−1 is defined
for each i (l − 1 > i ≥ 1) by:

k̂i = FML(k̂i−1, ρ, T ) =

{
k̂i−1 if ρ̂(XMi ,XSi−1) ≥ T ,

¬k̂i−1 otherwise.
(11)

Regarding the second most significant bit kl−1 of the exponent, either both
values kl−1 = 0 and kl−1 = 1 are tested to recover the full secret key, or
our attack can be applied between the first square FS (defined at line 2 of
Algorithm2) and the square Sl−1 (line 5 of Algorithm2).

Algorithm 4. ρ-attack
Input: (xMi , xSi−1), a set of Q pairs of (l − 1) bits

Output: An estimation k̂ ∈ {0, 1}l−1 of the secret exponent
1: for i = l − 1 downto 1 do
2: P̂(XMi , XSi−1) ← 0
3: for q = 1 to Q do
4: P̂(XMi = xq

Mi
, XSi−1 = xq

Si−1
) ← P̂(XMi = xq

Mi
, XSi−1 = xq

Si−1
) + 1

5: end for
6: P̂(XMi , XSi−1) ← P̂(XMi , XSi−1) / Q ! Normalization

7: Compute ρ̂(XMi , XSi−1) using P̂(XMi , XSi−1)
8: end for
9: Compute T depending on the attacker’s knowledge
10: for i = l − 1 downto 1 do
11: k̂i ← FALG

(
ρ̂(XMi , XSi−1), T

)
! Threshold

12: end for
13: return k̂
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Summary of the Attack. To estimate the exponent k by k̂, we define two attacks:

– The attack named “ρ-attack-Hard”, knowing the values of P(XMi ,XSi−1 |Gi =
T ) and P(XMi ,XSi−1 |Gi = F ), using the threshold T computed by (7).

– The attack named “ρ-attack-Soft”, when the theoretical value P(XMi ,
XSi−1 |Gi) is unknown. It uses the estimated probability P̂(XMi ,XSi−1) to
compute the threshold T by (9).

Algorithm4 describes the attack to recover a full key. Lines 1-8 correspond
to the computation of the estimated probabilities for each bit ki defined by (6).
Line 9 is the computation of the threshold: if the attack is ρ-attack-Hard the
attacker uses (7), otherwise the attack is ρ-attack-Soft and she uses (9). The
lines 10-12 compute the full estimated key using the decision function FALG ,
defined by the Eqs. (10) or (11).

5 Experimental Results

In the first part of this section, we detail a simulated attack which exploits
the bias (explained in Corollary 1) to determine the number of queries neces-
sary for the success of the attack. Then, we detail the side-channel part (local
timing analysis using power consumption and electromagnetic analysis to dis-
tinguish functional vs dummy subtractions) in order to detect whether an eXtra-
reduction is performed (X = 1) or not (X = 0) during the Montgomery reduction
(Algorithm3).

5.1 Simulations

Let RSA-1024-p defined at [8, Sect. 2.2] the modulus p used in the SMA algo-
rithm (Algorithm1). We generated one thousand random queries and saved
for all MMM the information whether an extra-reduction is done or not. The
length of static key k is 512 bits. As detailed in the ρ-attack (Algorithm4)
we computed the estimated probabilities P̂(XMi ,XSi−1) and the estimated
Pearson correlation ρ̂(XMi ,XSi−1) to retrieve each ki. The estimated threshold
T computed by (9) in our simulation is equal to −0.06076, which is an excel-
lent approximation of the theoretical threshold (7). To retrieve each bit if the
exponent, we used the decision function FSMA described for ρ-attack in SMA
by (10).

Figure 4 shows the estimated Pearson correlation values ρ̂(XMi ,XSi−1) for
the first iterations. It can be easily seen that the estimated key value by this
sequence corresponds to 0×1000111110101110111010011 . . . = 0×11f5dd3 . . .
Our ρ-attack retrieves the 511 bits of the exponent using 1000 randoms queries
with success rate 100%.

Success Rate Curves. We implemented ρ-attack-Hard and ρ-attack-Soft in
the ideal case, i.e., without noise. The success rate to recover one bit of the
exponent is represented in Fig. 5, for both SMA and ML cases. Interestingly,
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Fig. 4. Estimated Pearson correlations using 1000 randoms queries for RSA-1024-p for
the first 20 iterations.

Fig. 5. Evolution of the success rate for the ρ-attack-Soft and the ρ-attack-Hard as
a function of the number Q of queries (upper bound is the maximum likelihood), for
RSA-1024-p.

ρ-attack-Hard and ρ-attack-Soft yield the same success rate, which happens to
be (very close to) the optimal value. This optimal value is that obtained with
the maximum likelihood distinguisher derived in [8].

The reason for the hard and soft attacks to have similar success probability is
that the online estimation of the threshold is very good. Indeed, in the example
of Fig. 5, the threshold T (Eq. (9)) is estimated based on 512Q traces, which
is huge (one needs only to estimate 4 probabilities to get the estimation of T ).
So, in the rest of this section, we make no difference between the hard and soft
versions of the attacks from a success rate point of view.

The ρ-attacks are very close to the Maximum Likelihood attack for a similar
reason. Estimating the difference between two random variables of very little
dimensionality (recall that (XMi ,XSi−1) lives in {0, 1}2) can be done almost
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P = 10% P = 20% P = 30% P = 40%

Fig. 6. Evolution of the success rate for the ρ-attack in function of queries Q using
p = RSA-1024-p for four increasing noise values.

equivalently in the proportional scale [23] (Pearson correlation) as in the context
of information theoretic attacks (maximum likelihood attack) [8].

We may also notice that as the distinguisher margin [22] is larger for SMA
than for ML (recall Fig. 3), the former attack requires less traces to reach a given
success rate.

In practical cases, detecting an extra-reduction using only one acquisition can
lead to errors. The probability to have an error is denoted by Pnoise. We show in
Fig. 6 that the attack continues to be successful (albeit with more traces) over
a large range of Pnoise values. Evidently when Pnoise = 50% the attack becomes
infeasible.

5.2 Experimental Detection of Extra-Reductions

Two Montgomery reduction implementations will be analyzed in this section.
We raise the following questions.

1. How to exploit the local timing to distinguish the eXtra-reduction using power
consumption measurements, on OpenSSL v1.0.1k-3 (6)?

2. How to exploit the difference between a real and a dummy final subtraction
using electromagnetic (EM) emanations, on mbedTLS v 2.2.0 (7)?

(1a) Experiment Setup in Power. The target is a dual core LPC43S37 micro-
controller fabricated in CMOS 90 nm Ultra Low Leakage process soldered on
an LPCXpresso4337 board, and running at its maximum frequency (208MHz).
The side-channel traces where obtained measuring the instantaneous power con-
sumption with a PICOSCOPE 6402C featuring 256MB of memory, 500MHz
bandwidth and 5GS/s sampling rate. We executed the private function of RSA

6 Latest stable version at the time of submission.
7 Latest version at the time of submission.
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in OpenSSL with the private primes parameters defined by RSA-1024-p and
RSA-1024-q in [8, Sect. 2.2]. The private modular exponentiation is RSA-CRT
with a regular algorithm.

(1b) OpenSSL Experiment. In OpenSSL (see Listing 1.1 in AppendixA), the
final subtraction is made when U is greater than p like described in Algorithm3.
A simple power analysis using the delay (referred to as “SPA-Timing”) between
two MMM operations found whether the extra-reduction is present (X = 1)
or not (X = 0). On the Cortex M4 core, the delay between the Mi and Si−1

when XMi = 1 is 41.4952µs, whereas the delay when XMi = 0 is 41.1875µs.
For the square operation Si−1, the delay is 41.5637µs when XSi−1 = 1 and it
is 41.2471µs when XSi−1 = 0. All in one, the observable timing differences are
respectively 308 ns and 317 ns. When OpenSSL is offloaded on the Cortex M0
core of the LPC43S37, the timing difference is respectively 399 ns and 411 ns.
The success rate of this detection attack is 100%, hence Pnoise = 0.

(2a) Experiment Setup in EM. The target device is an STM32F4 micro-
controller, which contains an ARMCortex-M4 processor running at its maximum
frequency (168 MHz). For the acquisition, we used a Tektronix oscilloscope and
a Langer near field probe. The sampling frequency is 1GSa/s with 50MHz hard-
ware input low-pass filter enabled. The position of the probe was determined to
maximize the signal related to the activity of the hardware 32 × 32 processor.
We executed the private function of RSA in mbedTLS, with the private primes
parameters defined by RSA-1024-p and RSA-1024-q in [8, Sect. 2.2]. The private
modular exponentiation is RSA-CRT with a regular algorithm.

(2b) mbedTLS Experiment. In order to achieve constant-time MMM, mbedTLS
library implements a countermeasure using a dummy subtraction (see Listing 1.2
in AppendixA). In order to test the efficiency of the countermeasure, the duration
of the real and dummy subtraction were compared as shown in Fig. 7. The dura-
tions are the same. Therefore, the SPA-Timing attack is not practical anymore.

In a view to differentiate the two patterns, we use a horizontal side-channel
analysis [3], namely Pearson correlation (max-corr) [4] or the sum of the absolute
differences (min-abs-diff). We build two reference patterns of the real sub-
traction RP (X = 1) and dummy subtraction RP (X = 0), and compare these
patterns with one acquisition.

For this experiment, we use 500 acquisitions to build template RP (X = 1)
and again 500 acquisitions to make RP (X = 0). The detection attack using one
acquisition Ax where the extra-reduction X = x is considered successful:

– when ρ(Ax, RP (X = x)) > ρ(Ax, RP (X = ¬x)) for max-corr, and
– when E(|Ax − RP (X = x)|) < E(|Ax − RP (X = x)|) for min-abs-diff.

The success rate of the extra-reduction detection using 30000 acquisitions is
82.50% for max-corr and 83.47% for min-abs-diff, hence Pnoise < 20%.
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Fig. 7. Electromagnetic acquisition focus on one real subtraction (left) and pattern of
one dummy subtraction (right) between two consecutive MMM operations.

5.3 Conclusions on Experiments

By combining the detection of extra-reductions using side-channel analysis
(Sect. 5.2) and the theoretical attack to decide whether or not there is a depen-
dency between various MMMs (Sect. 4), we deduce the number of queries Q
needed to recover the secret exponent k. Table 2 summaries the results.

Table 2. Summary of the number of queries (see Fig. 6(b)) to retrieve all key bits of a
secret exponent, as a function of side-channel detection method and regular exponen-
tiation algorithm.

Type of attack side-channel for detection SPA-Timing max-corr min-abs-diff

Detection probability for one query
= 1 − Pnoise

100% 82.50% 83.47%

Number of queries (SMA) ≈ 200 ≈ 10000 ≈ 10000

Number of queries (ML) ≈ 400 ≈ 20000 ≈ 20000

6 Conclusion

This paper has presented a new theoretical and practical attack against asym-
metrical computation with regular exponentiation using extra-reductions as a
side-channel. The working factor is the existence of a strong bias between the
extra-reductions during the Montgomery Modular Multiplication of two consecu-
tive operations. This new bias can be exploited in each regular binary algorithm,
because each iteration consists in a square and a multiply whose inputs depend
on the outputs of an operation from the previous iteration.
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The new attacks have been detailed on RSA but are also applicable to ECC
with appropriate customizations for various ECC implementations. As an exam-
ple [5] for addition madd-2004-hmv, the Z-coordinate in output of addition is
computed by a multiplication Z3 = Z1×T1 and for doubling dbl-2007-bl, the
Z-coordinate in input of doubling is a square ZZ = Z1 × Z1.
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A Analysis of Extra-Reduction in OpenSSL and
MbedTLS Source Codes

The extra-reduction is explicit in the source code of OpenSSL, as shown in
Listing 1.1.

Listing 1.1. Extra-reduction in OpenSSL code. File crypto/bn/bn mont.c

309 i f (BN ucmp( ret , &(mont−>N)) >= 0)
310 {
311 i f ( ! BN usub ( ret , ret ,&(mont−>N) ) ) goto e r r ;
312 }

The big-number library of mbedTLS implements a protection against timing
attacks. A subtraction is also carried out: it is either functional or dummy, as
shown in Listing 1.2.

Listing 1.2. Extra-reduction in mbedTLS code. File library/bignum.c, function
mpi montmul

1500 i f ( mpi cmp abs ( A, N ) >= 0 )
1501 mpi sub hlp ( n , N−>p , A−>p ) ;
1502 else
1503 /∗ prevent t iming a t t a c k s ∗/
1504 mpi sub hlp ( n , A−>p , T−>p ) ;
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attacks on RSA. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 229–247. Springer, Heidelberg (2015)

19. Schindler, W., Koeune, F., Quisquater, J.-J.: Improving divide and conquer attacks
against cryptosystems by better error detection/correction strategies. In: Honary,
B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 245–267. Springer,
Heidelberg (2001)

20. Schindler, W., Walter, C.D.: More detail for a combined timing and power attack
against implementations of RSA. In: Paterson, K.G. (ed.) Cryptography and Cod-
ing 2003. LNCS, vol. 2898, pp. 245–263. Springer, Heidelberg (2003)

21. Walter, C.D., Thompson, S.: Distinguishing exponent digits by observing modular
subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 192–207.
Springer, Heidelberg (2001)

22. Whitnall, C., Oswald, E.: A comprehensive evaluation of mutual information analy-
sis using a fair evaluation framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 316–334. Springer, Heidelberg (2011)

23. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA..and the
magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–
205. Springer, Heidelberg (2014)

24. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-
always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)


