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Abstract Nonlinear systems with two competing frequencies show locking or resonances. In 

lasers, the two interacting frequencies can be the cavity repetition rate and a frequency 

externally applied to the system. Conversely, the excitation of breather oscillations in lasers 

naturally triggers a second characteristic frequency in the system, therefore showing 

competition between the cavity repetition rate and the breathing frequency. Yet, the link 

between breathing solitons and frequency locking is missing. Here we demonstrate frequency 

locking at Farey fractions of a breather laser. The winding numbers show the hierarchy of the 

Farey tree and the structure of a devil’s staircase. Numerical simulations of a discrete laser 

model confirm the experimental findings. The breather laser may therefore serve as a simple 

model system to explore universal synchronization dynamics of nonlinear systems. The locked 

breathing frequencies feature high signal-to-noise ratio and can give rise to dense radio-

frequency combs, which are attractive for applications.  

 

Introduction  

Nonlinear systems with two competing frequencies show locking or resonances, in which the 

system locks into a resonant periodic response featuring a rational frequency ratio1. The locking 

increases with nonlinearity, and at subcritical values of the nonlinearity, the system has quasi-

periodic responses between locked states, whilst the supercritical system may exhibit chaotic 

as well as periodic or quasi-periodic responses. A general feature of frequency locking is the 

robustness of the locked states to variations of system parameters, namely, the constancy of 

the frequency ratio (or winding number) over a range of parameters. Resonances have been 

investigated theoretically and experimentally in many physical systems including coupled 



oscillators2, charge-density waves3, Josephson junctions
4, 5

 and the Van der Pol oscillator6 

amongst others7, and their distribution in parameter space in the form of a devil’s staircase8 is 

well understood from the number theory concept of Farey trees9, 10, 11, 12, 13, 14. In optics, 

frequency-locking phenomena have been extensively studied in modulated semiconductor 

lasers, where an external frequency can be readily coupled to the nonlinear system by using a 

radio-frequency (RF) source11, 15, 16, 17, 18, and the hierarchy of the Farey tree and structure of a 

devil’s staircase can be rather easily observed when tuning the external frequency11. Frequency 

locking has also been demonstrated in other laser structures, such as fibre lasers with external 

loss modulation19 or solid-state lasers operating in a two-mode regime20. Furthermore, although 

not explicitly mentioned by the authors, the subharmonic, harmonic and rational harmonic 

operation regimes of Kerr micro-resonators that were reported in Refs.21, 22 imply a frequency-

locking process. The generation of soliton molecules (i.e., stable bound states of two solitons) 

in a titanium-sapphire laser that was reported in Ref.23 also evidences the occurrence of 

frequency locking: a subharmonic response of the soliton molecule was observed when the 

strength of the external driving force exceeded a certain threshold.  

   All the frequency-locking examples mentioned above relate to nonlinear systems where an 

external, accurately controllable modulation adds a new characteristic frequency to the system. 

Far less is experimentally known, by comparison, when the second frequency is not externally 

controlled and is intrinsic to the nonlinear system. This is particularly relevant to breathing 

solitons that have recently emerged as a ubiquitous mode-locked regime of ultrafast fibre 

lasers24, 25, 26, 27, 28. Breathing solitons, manifesting themselves as localised temporal / spatial 

structures that exhibit periodic oscillatory behavior, are found in various subfields of natural 

science, such as solid-state physics, fluid dynamics, plasma physics, chemistry, molecular 

biology and nonlinear optics29. Optical breathers were first studied experimentally in Kerr fibre 

cavities30 and subsequently reported in optical micro-resonators21, 31, 32. They are currently 

attracting significant research interest in virtue of their connection with a range of important 

nonlinear dynamics, such as rogue wave formation33, 34, the Fermi-Pasta-Ulam recurrence35, 36, 

37, turbulence38, chimera states39, 40, chaos41 and modulation instability phenomena42. From a 

practical application perspective, breathers can increase the resolution of dual-comb 

spectroscopy43 as the breathing frequency comes along additional tones in a frequency comb, 

and the breather regime in a laser oscillator can be used to generate high-amplitude ultrashort 

pulses without additional compressors44, 45.  

In this paper, we present the first in-depth study of the locking of breather oscillations to the 

cavity repetition frequency in a fibre laser. Besides the hurdle represented by the absence of 

an external driver to realize frequency locking, the excitation of breathing solitons in a fibre laser 

requires fine tuning of the laser parameters, where the breather mode-locking regime exists in 

a narrower parameter space than stationary mode locking44. Therefore, targeting frequency-

locked breather states in the laser via trial and error is a laborious task. Here we show that such 

a difficulty can be circumvented by using an evolutionary algorithm (EA) based on the optimal 

parameter tuning of the intracavity nonlinear transfer function through computer-controlled 

polarisation control. Machine-learning strategies, referring to the use of statistical techniques 

and numerical algorithms to carry out tasks without explicit programmed and procedural 

instructions, are widely deployed in many areas of engineering and science46. In the field of 

ultrafast photonics, machine-learning approaches and the use of genetic and evolutionary 



algorithms have recently led to several dramatic improvements in dealing with the multivariable 

optimisation problem associated with reaching desired operating regimes in fibre lasers. In the 

present study, the merit function used in the EA optimisation procedure can distinguish between 

frequency-locked and unlocked breather states, thereby enabling fast and precise tuning of the 

laser to the target frequency-locked breather operation. The locked breather states show two 

unambiguous features: persistence under pump power and polarisation perturbations, and 

narrow linewidth and high signal-to-noise ratio (SNR) of the oscillation frequency in the 

electrical spectrum of the laser emission. Importantly, frequency-locked states occur in the 

sequence they appear in the Farey tree and within a pump-power interval given by the width of 

the corresponding step in the devil’s staircase. This demonstrates that breather mode-locked 

fibre lasers exhibit the universal properties characteristic of nonlinear systems driven by two 

competing frequencies.  

 

Results 

Frequency-locked and unlocked breathers in the laser 

To investigate the dynamics of breathers, we have built the fibre ring cavity that is sketched in 

Fig. 1(a). Pump light is provided by a laser diode operating at 980 nm and it is delivered to the 

unidirectional cavity through a wavelength-division multiplexer. A 1.25-m-long erbium-doped 

fibre segment constitutes the gain medium. Other fibres in the cavity are standard single-mode 

fibre from the pigtails of the optical components used, including an isolator and two collimators. 

The group-velocity dispersion (GVD) values of the two fibre types are 65, and –22.8 ps2/km, 

respectively, yielding a normal net cavity dispersion of 0.009 ps2 at the operating wavelength 

of ~1.5 μm. The repetition rate of the laser is 𝑓r=34.2 MHz. The mode-locked laser operation is 

obtained thanks to an effective saturable absorber based on the nonlinear polarisation evolution 

(NPE) effect47. The nonlinear transfer function of the NPE-based mode locking is controlled by 

three wave plates based on liquid crystal (LC) phase retarders working together with a 

polarisation beam splitter (PBS). The PBS is also used as an output coupler. The emitted light 

from the laser is monitored by several diagnostic systems. A fraction is directly detected by a 

fast photodiode (PD1, Finisar XPDV2320R; 20-ps response time, 50-GHz bandwidth) plugged 

to a real-time oscilloscope (Agilent; 33-GHz bandwidth, 80-GSa/s sampling rate). The 

remaining laser output is sent through a time-stretch dispersive Fourier transform (DFT) setup 

consisting of a long segment of normally dispersive fibre that cumulates a group-velocity 

dispersion large enough for the stretched waveform to represent the spectral intensity of the 

initial pulse waveform48. From the photodetection of the DFT output signal on a fast photodiode 

(PD2), the optical spectrum for each pulse is obtained directly on the oscilloscope. Additional 

measurement devices are used to characterise the spectral properties of the laser output: an 

optical spectrum analyzer, an electrical spectrum analyzer (ESA) and a cymometer.  

 



 

Fig. 1 (a) Experimental setup of the breather fibre laser. WDM: wavelength-division multiplexer; EDF: 

erbium-doped fibre; ISO: isolator; LC: liquid crystal phase retarder; PBS: polarisation beam splitter; Col: 

collimator; OC: optical coupler; NDF: normally dispersive single-mode fibre involved in the DFT 

measurements; PD: photodetector; OSC: real-time oscilloscope; CYM: cymometer; ESA: electronic 

spectrum analyzer; OSA: optical spectrum analyzer. (b) Illustration of the EA principle. 

 

Breathing solitons can be excited in the laser cavity by tuning the gain (pump strength) and 

the cavity loss (polarisation controllers)24. Panels (a) and (b) of Fig. 2 show an example of a 

breather operation of the laser recorded at a pump power of 74 mW. In sharp contrast with 

soliton pulse shaping which generates uniform pulse trains, the train of output pulses shows 

periodic variations in intensity occurring, in the example of Fig. 2(a), across a well-defined 

period of 50 cavity roundtrips. Note that while Fig. 2(a) shows the photo-detected signal after 

time stretching, the same periodic evolution is also observed for the pulse train directly detected 

at the laser output. The corresponding spatio-spectral representation of the laser regime (Fig. 

2(b)) evidences a periodic compression and stretching of the optical spectrum over cavity 

roundtrips, accompanied by synchronous periodic changes in pulse energy (white curve), which 

is a distinctive feature of breathing solitons. Variations in the system parameters may give rise 

to a different breather state in the laser as shown in panels (c) and (d) of Fig. 2, where the pump 

power is decreased to 73 mW: whilst the period of oscillation seems to be unchanged, the 

quality of the periodic behavior is clearly degraded in comparison with the previous case. The 

RF spectra of the laser emission taken from the ESA (Fig. 3) reveal the major difference 

between the two types of breather states. The breathing frequency of the unstable breather 

state shown in Fig. 2(c) exhibits a noisy and broad structure (Fig. 3(c, d)). By contrast, the 

stable breather state of Fig. 2(a) features a neat breathing frequency with narrow linewidth (0.5 

Hz; see Supplementary Fig. 1 for details of the measurement) and high SNR (Fig. 3(a, b)). The 

measurements taken with the cymometer confirm the different stability properties of the 

breathing frequency for the two states (Fig. 3(e)). The breathing frequency of the stable 

breather state is 𝑓b =6.84 MHz exactly equalling one fifth of the fundamental repetition 



frequency, hence corresponding to a rational winding number of 𝑓b/𝑓r = 1/5. As discussed later 

in this paper, this locked breathing frequency remains unchanged over a range of pump power 

values.    

  

 
Fig. 2 Two different breather operations of the laser observed over 50 cavity roundtrips: (a, b) frequency-

locked breather state showing a well-defined periodicity, and (c, d) frequency-unlocked breather state 

featuring degraded periodicity. Panels (a, c) show the photo-detected DFT output signals (Tr is the 

roundtrip time), and panels (b, d) are the corresponding DFT recordings of single-shot spectra. The white 

curves in (b, d) represent the energy evolutions.  

 

 

 



 
Fig. 3 RF spectral measurements of the breather states shown in Fig. 2. The reference frequency is one 

fifth of the fundamental repetition frequency. (a, b) Single-mode oscillation of the breathing frequency 

when frequency locking occurs measured over spans of 50 kHz and 100 Hz, respectively. (c, d) Unstable 

multimode oscillation of the breathing frequency measured over 50-kHz and 10-kHz spans. (e) Change 

in breathing frequency over time for the locked (red) and unlocked (blue) breather states, as measured 

with a cymometer. The standard deviation (SD) of the breathing frequency values is 2.05 Hz for the 

frequency-locked state and is 7175.78 Hz for the unlocked state.  

 

Evolutionary algorithm optimisation of frequency-locked breathers  

Reaching a frequency-locked breather state in our laser depends on precisely adjusting four 

parameters: the pump strength and three polarisation controllers, which is quite difficult to do 

manually. In Ref.49, we have introduced an approach based on an EA for the search and 

optimisation of the breather mode-locking regime in ultrafast fibre lasers, which relies on 

specific features of the RF spectrum of the breather laser output. In the self-tuning regime, the 

operation state of the laser is characterised in real time with the oscilloscope, which is 

connected to a computer running the EA and controlling the polarisation state through the 

voltages applied on the LCs via a driver to lock the system to the desired breather regime (Figs. 

1(a) and (b)). Yet, the merit function of the breather mode locking used in Ref.49 is unable to 

distinguish between frequency-locked and unlocked breather states, where it usually breeds 



unlocked (unstable) states which have a wider parameter space. Here, we further develop our 

approach to directly pinpoint frequency-locked breathers so that the EA tunes the laser to these 

states only. To this end, we define a new merit function which takes into account the 

distinguishing trait of frequency-locked breather states, namely, a high SNR of the breathing 

frequency as shown in Fig. 3(a, b). The new merit function is given in Eq. (2) in the “Methods” 

section. An example of an optimisation curve (referring to a breather state with a winding 

number of 1/5) is presented in Fig. 4(a), which shows the evolution of the best and average 

merit scores of the population, as defined by Eq. (2), for each generation along with the 

corresponding evolution of the SNR of the breathing frequency. We can see that the SNR 

quickly increases and converges to a maximum value after 8 generations, thus indicating the 

establishment of a frequency-locked operation mode of the laser. The best merit score features 

a similar evolution. The measurements of the breathing frequency under pump power and 

ploarisation tuning shown in Figs. 4(b) and 4(c), respectively, confirm the operation of the laser 

in the target mode. The reliability of the merit function of the frequency-locked breather regime 

has been assessed by repeating the optimisation procedure numerous times, with the results 

showing that each time the SNR of the breathing frequency is high frequency locking occurs. 

Additional examples of optimisation curves (for breather states with the winding numbers 1/5 

and 2/9) are given in Supplementary Fig. 2.  

 

Fig. 4 (a) Evolution of the average (black diamonds) and maximum (blue squares) merit scores over 

successive generations, for the merit function given in Eq. (2) (Methods). Also shown is the corresponding 

evolution of the SNR of the breathing frequency (red circles). Persistence of the optimal state with variation 

of the (b) pump power and (c) polarisation (varied by changing the voltage on LC2).  

 

Farey tree and devil’s staircase of the breather laser 

Benefiting from a reliable and efficient EA-based optimisation approach, we have explored the 

transitions between the different breather states of the laser that can be accessed by varying 

the pump power starting from the range corresponding to a 1/5 frequency-locked state. Figure 



5(a) shows an example of a plot of the breathing frequency as a function of the pump power, 

revealing the presence of various plateaux (steps). The spectral measurements carried out with 

the ESA allow us to unambiguously relate the breathing frequencies associated with the 

plateaux to rational winding numbers: as shown in panels (b-d) of Fig. 5, when the laser 

operates in a frequency-locked state, the RF spectrum features a finite number n of spectral 

lines below the cavity repetition frequency 𝑓r and equally spaced by 𝑓r/n. For example, in 

panel (d) the frequency-locked breather regime brings about the excitation of a RF comb that 

is 41 times denser than that obtained when the laser operates in the usual single-pulse 

stationary regime. The most intense line in the spectrum is the breathing frequency 𝑓b, and if 

this is the mth line from the short-frequency side, then the corresponding winding number is 

given by m/n. The temporal and spectral dynamics of the breather patterns belonging to the 

winding numbers 2/9 and 9/41 are given in the Supplementary Fig. 3.   

  Importantly, in Fig. 5(a) the winding numbers appear from left to right in the order predicted 

by the Farey tree, as shown in the inset of the figure, and the width of the step associated with 

a m/n frequency-locked state depends on the level where m/n appears in the Farey tree’s 

hierarchy. The gaps (in pump power) between the stairs refer to quasi-periodic breather 

oscillations similar to the example shown in Fig. 2(c,d) and Fig. 3(c,d). The fractal dimension D 

of the set of gaps can be extracted from the width of the steps (see Methods), and is calculated 

to be D = 0.906±0.025, which is close to the value of 0.87 expected from a complete devil’s 

staircase9. Note that fractal dimensions of 0.890±0.001 and 0.91±0.03 were reported in Refs.11 

and8, respectively. Here, the small deviation (4%) from 0.87 partly results from the minimum 

power increment of the pump laser diode (0.1 mW). The fact that the steps associated with the 

winding numbers 7/32 and 9/41 consist of only one point in Fig. 5(a) is also due to this limitation, 

thus stressing the need for a very robust control of the system’s properties. The process of 

formation of the devil’s staircase is reversible: by decreasing the pump power, nearly the same 

staircase can be observed. We emphasise that contrarily to modulated external-cavity 

semiconductor lasers where the modulation frequency can be arbitrarily set hence the 

frequency-locked states expected according to the Farey tree can be easily accessed11, in a 

breathing-soliton mode-locked laser the breathing frequency is established once the laser is 

fabricated, while it can be entrained by tuning the laser parameters. Nevertheless, the Farey 

tree and devil’s staircase can still be observed, indicating the universal nature of this nonlinear 

system. Setting the laser to a slightly different initial polarisation state, Farey fractions belonging 

to other two parts of the Farey tree can be identified through the RF spectra while tuning the 

pump power (see Supplementary Figs. 4 and 5). In both cases, the calculated dimension of the 

set complementary to the stairs approaches that of a complete devil’s staircase.  



 

Fig. 5. RF spectra, Farey tree and devil’s staircase. (a) Measured breathing frequency (winding number) as a function of the 

pump power. In the inset is shown the part of the Farey tree containing the observed Farey fractions. (b, c, d) RF spectra 

measured with the ESA showing dense frequency combs for the frequency-locked states corresponding to the winding numbers 

1/5, 2/9 and 9/41, respectively. A new set of equidistant spectral lines fills in the frequency interval corresponding to the cavity 

repetition rate 𝑓r (34.2 MHz). (e) Map of spectral intensity in the space of radiofrequency and pump power, showing the build-

up of rational winding numbers.  

 

Figure 5(e) illustrates the build-up phase of frequency locking. Starting from a pump power 

of 69 mW, three radiofrequencies are present, namely the breathing frequency ( 𝑓b ), the 

difference frequency between 𝑓r  and 5th harmonic of 𝑓b   (𝑓r − 5𝑓b) , and the difference 

frequency between the first two (6𝑓b − 𝑓r). As 𝑓r − 5𝑓b approaches zero, frequency locking 

occurs at the winding number 1/5. This winding number then experiences redshifts under pump 

power increments, generating other winding numbers. The map shown in Fig. 5(e) also 

evidences the very different spectral features of frequency-locked and quasi-periodic breather 



states. Therefore, even though the winding numbers 7/32 and 9/41 display only one point in 

Fig. 5(a), they can clearly be identified in this map, which reveals a richness of detail that has 

been largely overlooked in previous studies due to lack of high-quality RF spectral 

measurements. It is also noteworthy that changing the pump power by only 10% is enough to 

find seven frequency-locked states for the laser, whose power-stability properties are dictated 

by a devil’s staircase. As a further note, we would like to emphasize that the frequency-locked 

states observed are reproducible but not self-starting, meaning that if the pump power is turned 

off when the laser operates in a locked state and then it is turned back on again, the laser does 

not return to that state instantaneously. To restore the frequency-locked operation, one can run 

the EA controlling the polarisation states again, which will quickly reset the laser to the desired 

state. Many such experimental tests have confirmed the reproducibility of the locked states. 

   To validate our experimental findings, we have performed numerical simulations of the laser 

using a scalar-field, lumped model that includes the dominant physical effects of the system on 

the evolution of a pulse over one round trip inside the cavity, namely, GVD and self-phase 

modulation for all the fibres, gain saturation and bandwidth-limited gain for the active fibre50, 

and the discrete effects of a saturable absorber element (see ‘Methods’ section). The gain 

saturation energy in the model is related to the pump power in the experiment. Panels (a) and 

(b) of Fig. 6 show plots of the breathing frequency (winding number) as a function of the gain 

saturation energy when the latter is varied starting from the range corresponding to a 1/5 locked 

state with a step of 10 pJ and 1 pJ, respectively. With the smaller step, more plateaux are 

observed, thus confirming the fractal structure of the winding number distribution. It is seen in 

Fig. 6(b) that the model can reproduce the same part of the Farey tree from a breathing 

frequency of 1/5 to 2/9 as that observed in the experiment (Fig. 5(a)). The gaps (in gain 

saturation energy) between the stairs also resemble those (in pump power) found in the 

experiment. The fractal dimension of the set of gaps calculated from the model is 0.873±0.09, 

which is closer to the value expected from a complete devil’s staircase than the experimentally 

calculated value because the step in gain saturation energy can be made arbitrarily small in the 

model. Figure 6(c) illustrates the build-up phase of frequency locking, which again shows good 

agreement with the experimental results (Fig. 5(e)). As mentioned above, a small change in the 

initial polarisation state of the laser can trigger Farey fractions belonging to a different part of 

the Farey tree. This experimental observation is confirmed by the results shown in 

Supplementary Fig. 6, which have been obtained by slightly changing the linear intracavity loss 

in the model.  

 



 
Fig. 6. Farey tree and devil’s staircase observed in the numerical simulations. (a, b) Breathing frequency (winding number) as 

a function of the gain saturation energy (related to the pump power in the experiment) varied with a step of 10 and 1 pJ, 

respectively. With the smaller step, more plateaux are observed, evidencing a fractal pattern. In the insets are shown the parts 

of the Farey tree containing the observed Farey fractions. Since the plateau representing winding number 4/19 is very narrow, 

it is magnified in the inset in panel (b). (c) Map of spectral intensity in the space of radiofrequency and gain saturation energy, 

showing the build-up of rational winding numbers.  

 

Discussion  

We have demonstrated for the first time that a fibre laser working in the breathing-soliton 

generation regime is a nonlinear system showing frequency locking at Farey fractions. The 

frequency-locked breather states of the laser are characterised by robustness against 

parameter (pump power and polarisation) variations and a breathing frequency with narrow 

linewidth and high SNR. We have exploited the latter feature to realise intelligent control of the 

frequency-locking process, where the use of an EA with a locked breather-tailored merit 

function has been the key to the precise excitation of these breather states. Indeed, contrary to 

previous frequency-locking demonstrations in optics relying on an external modulation applied 

to the system, we have been able to manipulate the intrinsic breathing frequency of the laser 

system. The dimension of 0.906 determined from the measured devil’s staircase indicates the 

universal nature of this nonlinear system. The breather mode-locked fibre laser thus may serve 

as a simple model system for the investigation of universal nonlinear properties. Besides, our 

work may stimulate the study of frequency locking in other physical systems where breathing 

solitons are found, where frequency locking could give a new angle on the dynamics of these 



systems. The EA approach used in this paper could benefit the control of the frequency-locking 

process in such systems as well as in others. We also believe that our EA-based approach for 

the control of frequency locking in fibre lasers is not restricted to NPE-based configurations and 

can be extended to other laser mode-locking schemes that entail period multiplication, such as 

the Mamyshev oscillator51, 52.   

Optical breathing solitons have been extensively studied in open-loop nonlinear systems 

such as, for example, single-pass fibre systems36, 53. However, in the absence of a frequency-

locking mechanism, these breathers may suffer from instabilities originating from the noise of 

the input light. By contrast, we have studied the dynamics of breathers in a closed-loop system 

– a laser resonator. In this system, the universal frequency-locking process is tailored through 

the nonlinear interaction between the cavity repetition frequency provided by the laser resonator 

and the breathing frequency. Ergo, frequency-locked breathers can be generated, showing 

excellent stability against cavity parameter perturbations.  

Frequency-locked breathers give rise to wide and dense RF combs which are not constrained 

by the length of the laser cavity. We have shown an example of a comb where the density of 

the spectral lines is increased by a factor of 41 compared with stationary single-pulse mode 

locking, thus enabling a line spacing in the sub-MHz range. Another example of a dense comb 

(where the density increase factor is 35) is given in Supplementary Fig. 4. Therefore, 

representing an alternative to fibre cavities of hundreds of meters which are regarded as being 

highly unstable, controlled frequency-locked breather lasers are attractive for many applications, 

for instance, in high-resolution spectroscopy.   

  We note that subharmonic entrainment of breather oscillations to the cavity repetition rate in 

a fibre laser was recently reported and explained as arising between the exceptional points of 

a non-Hermitian system involving two coupled modes with different detunings26. However, in 

light of the results presented in this paper, we believe that the observed dynamics of 

subharmonically entrained breathers fall outside of the exceptional point physics and can be 

well understood in the framework of resonances of a nonlinear system with two competing 

frequencies.   

  Dispersion plays an important role in determining the pulse dynamics in ultrafast fibre lasers54, 

55, 56. The laser cavity used in this work has a nearly zero net dispersion. We have observed 

that frequency locking of breathers does not occur when the laser is operated at moderate or 

large normal dispersion24, 49. Thus, a very small net cavity dispersion seems to be crucial to the 

emergence of frequency-locked breathers in a fibre laser. It is worth noting in this regard that 

breathing solitons at nearly zero net dispersion and at large normal dispersion differ quite 

significantly in respect to their period of oscillation. Indeed, the former oscillate with a period 

ranging from several to dozens of round trips while the latter generally feature a much longer 

period of the order of hundreds of round trips24, indicating that the underlying formation 

mechanism could be different. Future work will thoroughly investigate the connection between 

the frequency locking mechanism and the cavity dispersion.    

 

Methods 

Farey tree. The Farey tree represents a particular ordering of the rational numbers by applying 

the Farey-sum or median operation ⨁ to two neighboring fractions, m/n and p/q, which gives 

a new fraction in the next lower level of the tree by adding the numerators and the denominators 



separately: 
𝑚

𝑛
⨁

𝑝

𝑞
=

𝑚+𝑝

𝑛+𝑞
 . The physically motivated hypothesis invoked to explain the local 

ordering of the hierarchy of (two-frequency) resonances is that the larger the denominator, the 

smaller the plateau. The Farey fraction or Farey mediant is the fraction with smallest 

denominator between m/n and p/q, if they are sufficiently close that |𝑛𝑝 − 𝑚𝑞| = 1 – when 

they are called adjacents – hence it is the most important resonance in the interval. The Farey 

tree provides a qualitative local ordering of two-frequency resonances and gives rise to a curve 

with an infinite number of steps showing self-similarity, which is known as the devil’s staircase. 

For a detailed review see, e.g., Ref.10.  

 

Fractal dimension of complementary set. We have employed the equation57 

∑ (𝑆i 𝑆⁄ )𝐷
i = 1     (1)                                                            

for computation of the fractal dimension D of the Cantor set complementary (on the pump-

power axis) to a complete devil’s staircase. In this equation, S refers to the gap (in pump power) 

between two parental stairs representing winding numbers m/n and p/q, and the Si correspond 

to the gaps between the filial stair (𝑚 + 𝑝) (𝑛 + 𝑞)⁄  and the parental stairs.  

 

Evolutionary algorithm. The principle of the EA, as illustrated in Fig. 1(b), mimics mechanisms 

inspired by Darwin’s theory of evolution: individuals composing a population progress through 

successive generations only if they are among the fittest58. Here, an individual refers to a laser 

regime, associated with the nonlinear transfer function determined by the three control voltages 

applied on the LCs; these voltages are therefore the genes of the individuals. The process 

begins with a collection of individuals or ‘population’, each comprising a set of randomly 

assigned genes. The system output is measured for each individual in the generation, 

evaluated by a user-defined merit function and assigned a score. The EA then creates the next 

generation by breeding individuals from the preceding generation, with the probability that an 

individual is selected to be a ‘parent’ based on their score (‘roulette wheel’ selection58). Two 

new individuals – children - are created from the crossover of two randomly selected parents, 

namely the interchange of their genes. A mutation probability is also specified, allowing for the 

genetic sequence to be refreshed. This process repeats until the algorithm converges and an 

optimal individual is produced. In the experiment, the algorithm is initialised with a population 

of 50 individuals and the population size of the next generations is kept constant to 30 

individuals (6 parents and 24 children). Evaluation of the properties of an entire generation of 

individuals typically takes 2.5 minutes.  

A critical factor to the success of a self-optimising laser implementation is the merit function, 

which must return a higher value when the laser is operating closer to the target regime. In the 

present work, we have defined and tested the following merit function for the auto-setting of an 

optimised self-starting frequency-locked breather regime:  

𝐹merit = 𝛼𝐹ml + 𝛽𝐹b + 𝛾𝐹snr   (2) 

In Eq. (2),
 
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
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
  is the merit function relating to the mode-locked laser operation59, 

where N is the number of laser output intensity points recorded by the oscilloscope (N=224, 

corresponding to a time trace of 7174 cavity round-trips), Ii is the intensity at point i and Ith is a 

threshold intensity that noise should not exceed. Thus, Fml represents the average of pulses’ 



intensities, and is used to exclude laser modes, such as relaxation oscillations and noise-like 

pulse emission, which may display similar RF spectral features to the breather regime. The 

second term Fb is a merit function that discriminates between breather and stationary pulsed 

operations, derived from the feature that the breathing frequency 𝑓b manifests itself as two 

symmetrical sidebands 𝑓±1 around the cavity repetition frequency 𝑓r in the RF spectrum of 

the laser output (𝑓b = |𝑓±1 − 𝑓r|).There are no sidebands when the laser works in a stationary 

mode-locking regime. Therefore, Fb is designed to exploit the intensity ratio of the central band 

located at 𝑓r to the sidebands at 𝑓±1: 𝐹b = 1 − ∑ 𝐼(𝑓)
𝑓=𝑓𝑟+Δ
𝑓=𝑓𝑟−Δ ∑ 𝐼(𝑓)

𝑓=𝑓+1
𝑓=𝑓−1

⁄ , where the numerator 

and denominator in the fraction are the intensities measured across the width 2Δ of the 

frequency band centred on 𝑓r  and the frequency interval from  𝑓−1 to 𝑓+1 , respectively. 

Accordingly, if Fb approaches zero, it means that 𝑓r  prevails and there are no sidebands, 

indicating a stationary mode locking state. On the contrary, Fb values far from zero evidence 

the presence of strong sidebands in the RF spectrum, indicating possible breather formation in 

the laser cavity. In the optimisation procedure, the RF spectrum is obtained directly from the 

oscilloscope that processes the fast Fourier transform of the laser output intensity recording. 

The weighted sum of Fml and Fb can be used for the self-optimisation of the breather mode 

locking regime49. The third term in Eq. (2) is a new merit function that discriminates between 

frequency-locked and unlocked breather oscillations by evaluating the strongest breathing 

frequency in the interval [𝑓r + 𝛿, 3𝑓r 2⁄ ] : 𝐹snr = max 𝐼(𝑓), 𝑓 ∈ [ 𝑓r + 𝛿, 3𝑓r 2⁄ ] , where the 

frequency shift 𝛿 is used to exclude the fundamental frequency from the evaluation interval, 

and 𝑓r /2 represents the maximum possible breathing frequency. The weights of the three 

components in Eq. (2) are determined empirically and set to 𝛼=2000, 𝛽=200 and 𝛾=200. 

 

Numerical modelling. The pulse propagation in the optical fibres is modelled by a generalised 

nonlinear Schrödinger equation, in the scalar approach, which takes the following form50:  

𝜓𝑧 = −
𝑖𝛽2

2
𝜓𝑡𝑡 + 𝑖𝛾|𝜓|2𝜓 +

𝑔

2
(𝜓 +

1

Ω2
𝜓𝑡𝑡),         (3) 

where 𝜓 = 𝜓(𝑧, 𝑡) is the slowly varying electric field moving at the group velocity along the 

propagation coordinate z, 𝛽2  and 𝛾  are the second-order dispersion and Kerr nonlinearity 

coefficients, respectively, and the dissipative terms represent linear gain as well as a parabolic 

approximation to the gain profile with the bandwidth Ω. The gain is saturated according to 

𝑔(𝑧) = 𝑔0exp(− 𝐸p 𝐸sat⁄ ), where g0 is the small-signal gain, which is non-zero only for the gain 

fibre, 𝐸p(𝑧) = ∫ d𝑡|𝜓|2 is the pulse energy, and 𝐸sat is the gain saturation energy determined 

by the pump power. The effective nonlinear saturation involved in the NPE mode-locking 

technique is modelled by an instantaneous and monotonous nonlinear transfer function for the 

field amplitude: 𝑇 = √1 − 𝑞0 + 𝑞m [1 + 𝑃(𝑡) 𝑃sat⁄ ]⁄ , where 𝑞0 is the unsaturated loss due to the 

absorber, 𝑞m is the saturable loss (modulation depth), 𝑃(𝑧, 𝑡) = |𝜓(𝑧, 𝑡)|2 is the instantaneous 

pulse power, and 𝑃sat is the saturation power. Linear losses are imposed after the passive fibre 

segments, which summarise intrinsic losses and output coupling. The numerical model is 

solved with a standard symmetric split-step propagation algorithm and using similar parameters 

to the nominal or estimated experimental values (see Supplementary Table 1). 
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