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Global Stabilization of a rigid
body moving in a compressible
viscous fluid

Debayan Maity, Arnab Roy and Takéo Takahashi

1.1 Introduction

There is a vast number of recent studies concerning the fluid-structure interac-
tion problems involving moving interfaces. We can classify these types of models
broadly into two types: either the structure is moving inside the fluid or the struc-
ture is located at the boundary of the fluid domain. Since in this chapter we are
interested in studying the motion of ball inside the compressible fluid domain,
below we mention related works from the literature concerning this case only.

In [5], Desjardins and Esteban studied the global-in-time existence (up to
contact) of weak solutions for the system of several rigid bodies interacting with a
compressible viscous flow (for γ ≥ 2) in a bounded domain of R3. Feireisl improved
the global existence result (for γ > 3/2) in [8] and allowed the possible collisions
of the rigid bodies or a contact of the rigid bodies with the exterior boundary.
Regarding strong solutions, the existence and uniqueness of global solutions for
small initial data have been achieved in [3] in the Hilbert space framework by
Boulakia and Guerrero as long as no collisions occur. Their work is based on a
method proposed by Matsumura and Nishida in [16] for a viscous compressible
fluid (without structure). In a Lp-Lq setting, the authors in [10] proved the ex-
istence and uniqueness of local-in-time strong solutions for the system composed
by rigid bodies immersed into a viscous compressible fluid and in [9], the authors
establish the global in time existence up to contact.

Let us mention some works related to a control supported on the rigid body
only. In the 1d case for a Burgers-particle system, the authors in [4] proved that the
particle reaches a point arbitrarily close to a given target, whereas the velocities
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of the fluid and of the particle are driven exactly to zero. In [17], the same result
has been established but with a uniform time for all initial data. In [20], the
authors consider the 3d case for a rigid ball moving into viscous incompressible
fluid and obtain a stabilization result by using a control of spring and damper
type connecting the center of the ball to a fixed point h1. Recently the same
problem has been tackled for the compressible viscous fluid in [18] and the main
difference is that we need to deal with more regular solutions in this case than the
incompressible one.

In [18], the stabilization result is obtained under a smallness condition on
the initial velocities and on the distance between the initial position of the center
of the ball and h1. In the present work we would like to have a stabilization result
similar to [18] but without the requirement that the initial position of the center
of the ball is close to h1. We achieve this by imposing a more complicated control
law, in which the anchor point of the spring and damper is not fixed at h1, but
instead it jumps between a finite number of possible points. In [18], we work in
the Hilbert space setting and we need to verify several compatibility conditions
for the initial conditions. The main hindrance to impose such a switching control
law in [18] is that we need to verify the compatibility conditions in each junction
of such switching control. We find a remedy to such a problem by working in the
Lp-Lq set up where we do not need to verify several compatibility conditions for
the initial conditions.

1.1.1 Mathematical description of the model

Let Ω ⊂ R3 be a bounded domain with C4 boundary occupied by a fluid and a
rigid ball. We denote by S(t) ⊂ Ω, the domain of the rigid ball at instant t > 0.
We suppose that the fluid domain F(t) := Ω \ S(t) is connected is for all t > 0.
Furthermore, let us assume that initially the ball is away from boundary:

dist(S(0), ∂Ω) > ν > 0. (1.1)

The fluid is modeled by the compressible Navier-Stokes system whereas the
motion of the rigid ball is governed by the balance equations for linear and angular
momentum. At time t > 0, let h̃(t) ∈ R3, Q(t) ∈ SO3(R) and ω̃(t) ∈ R3 denote
the position of the center of mass, the orthogonal matrix giving the orientation of
the solid and the angular velocity of the rigid ball. Therefore we have,

Q̇(t)Q(t)−1y = A(ω̃(t))y = ω̃(t)× y for all y ∈ R3,

where A(ω) is the skew-symmetric matrix:

A(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .



1.1. Introduction 5

Without loss of generality we can assume that Q(0) = I3. Thus the domain occu-
pied by the structure S(t) at time t > 0 is given by

S(t) =
{
h̃(t) +Q(t)(y − h0), y ∈ S(0)

}
, t > 0 (1.2)

where h0 ∈ Ω is the initial position of the centre of the mass of the rigid ball.
The full system of equations modelling the rigid ball inside the fluid can be

written as

∂ρ̃

∂t
+ div(ρ̃ũ) = 0 t > 0, x ∈ F(t),

ρ̃

(
∂ũ

∂t
+ (ũ · ∇) ũ

)
− divσ(ũ, p̃) = 0 t > 0, x ∈ F(t),

ũ(t, x) = 0 t > 0, x ∈ ∂Ω,

ũ(t, x) = h̃′(t) + ω̃(t)× (x− h̃(t)) t > 0, x ∈ ∂S(t),

m
d2

dt2
h̃ = −

∫
∂S(t)

σ(ũ, p̃)n dΓ + w t > 0,

J
d

dt
ω̃ = (Jω̃)× ω̃ −

∫
∂S(t)

(x− h(t))× σ(ũ, p̃) dΓ t > 0,

h̃(0) = h0, h̃′(0) = `0, ω̃(0) = ω0,

ρ̃(0, x) = ρ̃0(x), ũ(0, x) = u0(x) x ∈ F(0).

(1.3)

In the above equations, ρ̃ = ρ̃(t, x) and ũ = ũ(t, x) represent respectively the
density and the velocity of the fluid and the pressure of the fluid is denoted by p̃.
We assume that the flow is in the barotropic regime and we focus on the isentropic
case where the relation between p̃ and ρ̃ is given by the constitutive law:

p̃ = aρ̃γ ,

with a > 0 and the adiabatic constant γ > 1. The Cauchy stress tensor is defined
as:

σ(u, p) = 2µD(u) + α div uI3 − pI3,

where D(u) = 1
2

(
∇u+∇u>

)
denotes the symmetric part of the velocity gradient

(∇u> is the transpose of the matrix ∇u) and α, µ are the viscosity coefficients
satisfying

µ > 0, α+
2

3
µ > 0. (1.4)

We have denoted by ∂S(t) the boundary of the rigid structure at time t and by
n(t, x) the unit normal to ∂S(t) at the point x directed towards the interior of
the rigid ball. Let m, J be the mass and the moment of inertia of the rigid ball
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respectively. If ρS is the mass density of the ball, then the formulae for m and J
are

m =
4

3
πρS , J =

2m

5
I3.

Finally, w in (1.3)5 is our control that we take as a feedback control:

w(t) = kp(h1 − h̃(t))− kdh̃′(t), (1.5)

where kd and kp are well-chosen so that

lim
t→∞

h̃(t) = h1,

whereas the velocities of the fluid and of the rigid ball go to 0:

lim
t→∞

ũ(t) = 0, lim
t→∞

h̃′(t) = 0, lim
t→∞

ω̃(t) = 0.

In literature, this type of control is known as Proportional-Derivative (PD) con-
troller generated by a spring and a damper. The spring-damper is connected from
the center of mass of the ball to the fixed anchor point h1 and it is attracting the
ball towards the point h1.

Now we want to mention precisely the stabilization result obtained in [18] so
that we can state clearly the main difference between [18] and our present work.
Let us introduce

Ω0 := {x ∈ Ω ; dist(x, ∂Ω) > 1} . (1.6)

We assume that the set Ω0 is connected.
For 0 ≤ T1 < T2 ≤ ∞, we introduce the following space:

ŜT1,T2
=
{

(ρ, u, `, ω) | ρ ∈ L2(T1, T2;H3(F(t))) ∩ C0
b ([T1, T2];H3(F(t)))

∩H1(T1, T2;H2(F(t)) ∩ C1
b ([T1, T2];H2(F(t))) ∩H2(T1, T2;L2(F(t))),

u ∈ L2(T1, T2;H4(F(t))) ∩ C0
b ([T1, T2];H3(F(t))) ∩H1(T1, T2;H2(F(t))

∩C1
b ([T1, T2];H1(F(t))) ∩ H2(T1, T2;L2(F(t))), ` ∈ H2(T1, T2), ω ∈ H2(T1, T2)

}
,

(1.7)
where we denote by Ckb the set of continuous and bounded functions with deriva-
tives continuous and bounded up to the order k.

In [18], the authors proved the following result:

Theorem 1.1.1. Assume that Ω0 is non empty and connected. Let h1 ∈ Ω0 and
ρ > 0. Assume w is given by the feedback law (1.5). There exists δ > 0 such that
for any

h0 ∈ Ω0, ρ0 ∈ H3(F(0)), ρ0 > 0, u0 ∈ H3(F(0)), `0, ω0 ∈ R3, (1.8)

satisfying the compatibility conditions

u0(y) = `0 + ω0 × (y − h0) for y ∈ ∂B(0), u0 = 0 on ∂Ω, (1.9)
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− 1

ρ0
div σ(u0, p0) = 0 on ∂Ω, (1.10)

(
ω0 × (ω0 × (y − h0))

)
− 1

ρ0
div σ(u0, p0)(y)

=
1

m

 ∫
∂B(0)

σ(u0, p0)ndΓ

+

J−1 ∫
∂B(0)

(x− h0)× σ(u0, p0)ndΓ

× (y − h0),

for y ∈ ∂B(0), (1.11)

where

p0 = aργ0 .

and the smallness condition

‖(ρ0, u0, `0, ω0)‖Ŝ0,0 + |h1 − h0| ≤ δ, (1.12)

the system (1.3) admits a unique strong solution (ρ, u, `, ω) ∈ Ŝ0,∞, h ∈ L∞(0,∞).
Moreover, the solution (ρ, u, h, `, ω) of (1.3) satisfies

lim
t→∞

‖ρ(t, ·)− ρ‖H2(F(t)) = 0, lim
t→∞

‖u(t, ·)‖H2(F(t)) = 0,

lim
t→∞

h(t) = h1, lim
t→∞

`(t) = 0, lim
t→∞

ω(t) = 0.

The above theorem tells us that we can move the ball from any initial point
h0 ∈ Ω0 asymptotically to another point h1 ∈ Ω0, if h0 and h1 are sufficiently
close to each other, by connecting a spring and a damper to the ball and pulling
the ball towards h1.

In this work, we would like to have a result that tells us similar to the
above theorem, but without the requirement that h0 is close to h1 (see the precise
statement in Theorem 1.4.1). The main novelties of our work are:

• In [18], we need several compatibility conditions (1.9)–(1.11) to prove the
global existence theorem under the presence of feedback control w of the
form (1.5). But in the present work, we only need (1.16) (which is same as
(1.9)) to prove the global existence result under same feedback.

• We have obtained the stability properties (1.63)–(1.64) for the velocities of
the fluid and body and the position of the body without the closeness as-
sumption for initial and final position of the body.

• We have developed a complicated control law in which the anchor point of
the spring and damper is not fixed but instead it jumps between a finite
number of possible points.
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The outline of the chapter is as follows. In Section 1.2, we have introduced the
necessary notations required throughout the chapter. The global in time existence
and asymptotic analysis of solutions using the feedback (1.5) under a smallness
assumption of the initial data has been established in Section 1.3. One of the
main difficulties to do so is that the domain of the fluid equation is one of the
unknowns. We overcome this difficulty by introducing Lagrangian variables. Apart
from allowing to rewrite the coupled system in a fixed cylindrical domain this
allows us to tackle the term u·∇ρ in the density equation. Next we associate to the
original nonlinear problem a linear one, involving source terms and establish the
Lp−Lq regularity property for this linear problem by proving that the associated
linear operators are R-sectorial in an appropriate Banach spaces. The existence
and uniqueness proof is completed by estimating the nonlinear terms and by using
Banach fixed point theorem. The exponential stability of the semigroup generated
by the part of the fluid-structure operator helps us to analyze the asymptotic
behaviour of the solutions. In Section 1.4, we obtain the stability properties (1.63)–
(1.64) where we can skip the smallness condition on the distance between the initial
and final position of the ball by introducing a switching feedback control.

1.2 Notations

In this section, we fix notations, that will be used throughout the paper. Firstly
W s,q(F), with s > 0 and q > 1, denote the usual Sobolev spaces. Let k ∈ N. For
every 0 < s < k, 1 6 p < ∞, 1 6 q < ∞, we define the Besov spaces by real
interpolation of Sobolev spaces

Bsq,p(F) = (Lq(F),W k,q(F))s/k,p .

We refer to [1] and [22] for a detailed presentation of Besov spaces. If T ∈ (0,∞],
we set

W 1,2
p,q ((0, T );F) = Lp(0, T ;W 2,q(F)) ∩W 1,p(0, T ;Lq(F)).

It is well known that the following embedding holds

W 1,2
p,q ((0, T );F) ↪→ C0

b ([0, T );B2(1−1/p)
q,p (F)),

where we denote by Ckb the set of continuous and bounded functions with deriva-
tives continuous and bounded up to the order k. In view of this observation, we
use the following norm form W 1,2

p,q ((0, T );F) :

‖f‖W 1,2
p,q ((0,T );F) := ‖f‖Lp(0,T ;W 2,q(F))+‖f‖W 1,p(0,T ;Lq(F))+‖f‖C0

b ([0,T );B
2(1−1/p)
q,p (F))

.

We also introduce the functional spaces with time decay. For any β ∈ R,
p ∈ [1,∞] and X a Banach space, we define

Lpβ(0,∞;X) =:
{
f | t→ eβtf(t) ∈ Lp(0,∞;X)

}
,
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and a similar notation for W 1,2
p,q,β((0,∞)×F).

We also need a definition of Sobolev spaces in the time dependent domain
F(t). Let Λ(t, ·) be a C1-diffeomorphism from F(0) onto F(t) such that all the
derivatives up to second order in space variable and all the derivatives up to
first order in time variable exist. For all functions v(t, ·) : F(t) → R, we denote
v̂(t, y) = v(t,Λ(t, y)). Then for any 1 < p, q <∞ we define

Lp(0, T ;Lq(F(·)) = {v | v̂ ∈ Lp(0, T ;Lq(F(0)))} ,
Lp(0, T ;W 2,q(F(·))) =

{
v | v̂ ∈ Lp(0, T ;W 2,q(F(0)))

}
,

W 1,p(0, T ;Lq(F(·))) =
{
v | v̂ ∈W 1,p(0, T ;Lq(F(0)))

}
,

C([0, T ];W 1,q(F(·))) =
{
v | v̂ ∈ C([0, T ];W 1,q(F(0)))

}
,

C([0, T ];B2(1−1/p)
q,p (F(·))) =

{
v | v̂ ∈ C([0, T ];B2(1−1/p)

q,p (F(0))
}
.

1.3 Local stabilization

In this section, we prove a stabilization result when h0 and h1 are sufficiently close
to each other.

Let us now give the conditions we require on initial data and on (p, q) for the
system (1.3):

2 < p <∞, 3 < q <∞, 1

p
+

1

2q
6= 1

2
, (1.13)

h0 ∈ Ω0, h1 ∈ Ω0, `0 ∈ R3, ω0 ∈ R3, , (1.14)

ρ̃0 ∈W 1,q(F(0)), u0 ∈ B2(1−1/p)
q,p (F(0))3, min

F(0)
ρ̃0 > 0, (1.15)

with the compatibility conditions

u0 = 0 on ∂Ω and u0(y) = `0 + ω0 × (y − h0), y ∈ ∂S(0). (1.16)

Our first main result in this section asserts global existence and uniqueness
of the system (1.3) under smallness assumption on the initial data.

Theorem 1.3.1. Let us assume (p, q) satisfy (1.13), and let ρ > 0 be a given
constant. Assume that Ω0 (defined in (1.6)) is non empty, connected and (1.1) is
satisfied, and h1 ∈ Ω0. Assume w is given by the feedback law (1.5) with kp > 0,
kd > 0. Then there exist β > 0 and δ > 0, such that, for any (ρ̃0, u0, h0, `0, ω0)
satisfying (1.14)-(1.16), with

ρ =
1

|F(0)|

∫
F(0)

ρ̃0 dx, (1.17)

and

‖ρ̃0−ρ‖W 1,q(F(0))+‖u0‖B2(1−1/p)
q,p (F(0))3

+‖h0−h1‖R3 +‖`0‖R3 +‖ω0‖R3 6 δ, (1.18)
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the system (1.3) admits a unique strong solution (ρ̃, ũ, h̃, ˜̀, ω̃) satisfying

ρ̃ ∈ C0
b ([0,∞);W 1,q(F(·))), ∇ρ̃ ∈W 1,p

β (0,∞;Lq(F(·))),

ũ ∈W 1,2
p,q,β((0,∞);F(·)),

h̃− h1 ∈W 2,p
β (0,∞;R3), ˜̀∈W 1,p

β (0,∞;R3), ω̃ ∈W 1,p
β (0,∞;R,3 ).

Moreover, ρ̃(t, x) >
ρ

2
for all t ∈ (0,∞), x ∈ F(t) and dist(S(t), ∂Ω) > ν/2 for all

t ∈ [0,∞).

As a simple consequence of the above theorem, we have the following local
stabilisation result

Corollary 1.3.2. With the assumptions and notation in Theorem 1.3.1 we have

‖ρ̃(t, ·)− ρ‖W 1,q(F(t)) + ‖ũ(t, ·)‖
B

2(1−1/p)
q,p (F(t))3

+ ‖h̃(t)− h1‖R3

+ ‖˜̀(t)‖R3 + ‖ω̃(t)‖R3 6 Cδe−βt,

where the constant C is independent of t > 0. In particular,

lim
t→∞

‖ρ̃(t, ·)− ρ‖W 1,q(F(t)) = 0, lim
t→∞

‖ũ(t, ·)‖
B

2(1−1/p)
q,p (F(t))3

= 0,

lim
t→∞

h̃(t) = h1, lim
t→∞

˜̀(t) = 0, lim
t→∞

ω̃(t) = 0.

The rest of this section is devoted towards the proofs of Theorem 1.3.1 and
Corollary 1.3.2.

1.3.1 Change of variables

In order to prove Theorem 1.3.1, we first reformulate the problem in a fixed spatial
domain. Let us set F = F(0) and S = S(0). We consider the characteristics X
associated with the fluid velocity ũ :{

∂tX(t, y) = ũ(t,X(t, y)) t > 0,

X(0, y) = y ∈ F .
(1.19)

Due to the boundary conditions of ũ, we have

X(t, y) =

{
h(t) +Q(t)(y − h0) if y ∈ ∂S,
y if y ∈ ∂Ω.

Assume that X(t, ·) is a C1-diffeomorphism from F onto F(t) for all t > 0. For
each t > 0, we denote by Y (t, ·) = X(t, ·)−1 the inverse of X(t, ·). We consider the
following change of variables

ρ(t, y) = ρ̃(t,X(t, y))− ρ, u(t, y) = Q>(t)ũ(t,X(t, y)), (1.20)

h(t) = h̃(t)− h1, `(t) = Q>(t)h̃′(t), ω(t) = Q>(t)ω̃(t), (1.21)
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for (t, y) ∈ (0,∞)×F . In particular,

ρ̃(t, x) = ρ+ ρ(t, Y (t, x)), ũ(t, x) = Q(t)u(t, Y (t, x)), (1.22)

for (t, x) ∈ (0,∞)×F(t).

The above change of variable is the slight variation of the usual Lagrangian
change of coordinates, which allows us to rewrite the governing equations in a
fixed spatial domain and to preserve the linear form of the transmission condition
for the velocity field.

The system satisfied by (ρ, u, h, `, ω) reads as follows:



∂tρ+ ρdivu = F1 in (0,∞)×F ,
∂tu− divσl(ρ, u) = F2 in (0,∞)×F ,
u = 0 on (0,∞)× ∂Ω,

u = `+ ω × y on (0,∞)× ∂S,
d

dt
h = ` t ∈ (0,∞),

d

dt
`+m−1kph+m−1kd` = −m−1

∫
∂S
σl(ρ, u)n dΓ + G1 t ∈ (0,∞),

d

dt
ω = −J(0)−1

∫
∂S
y × σl(ρ, u)n dΓ + G2 t ∈ (0,∞),

ρ(0) = ρ0 := ρ̃0 − ρ, u(0) = u0, in F ,
h(0) = h0 − h1, `(0) = `0, ω(0) = ω0,

(1.23)
where

σl(ρ, u) =
2µ

ρ
Du+

1

ρ

(
αdivu− aγ(ρ)γ−1ρ

)
I3, D(u) =

1

2
(∇u+∇u>), (1.24)

and

X(t, y) = y +

∫ t

0

Q(s)u(s, y) ds, (1.25)

for every y ∈ F and t > 0. Using the notation

Z(t, y) = (Zij)16i,j63 = [∇X]−1(t, y) (t > 0, y ∈ F), (1.26)

the remaining terms in (1.23) are defined by

F1(ρ, u, h, `, ω) = −ρdivu− (ρ+ ρ)(Z> − I3) : ∇u, (1.27)
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(F2)i(ρ, u, h, `, ω) =− (ρ+ ρ)(ω ×Qu)i + ρ(∂tu)i − (ρ+ ρ) [(Q− I3)∂tu]i

+ µ
∑
l,j,k

∂2(Qu)i
∂yl∂yk

(Zkj − δkj)Zl,j + µ
∑
l,k

∂2(Qu)i
∂yl∂yk

(Zlk − δlk)

+ µ [(Q− I3)∆u]i + µ
∑
l,j,k

Zlj
∂(Qu)i
∂yk

∂Zkj
∂yl

+(µ+ α)
∑
l,j,k

∂2(Qu)j
∂yl∂yk

(Zkj − δkj)Zli + (µ+ α)
∑
l,j

∂2(Qu)j
∂yl∂yj

(Zli − δli)

+ (α+ µ)
∂

∂yi

[
∇u : (Q> − I3)

]
+
α+ µ

ρ

∑
l,j,k

Zli
∂(Qu)j
∂yk

∂Zkj
∂yl

− aγ (ρ̃+ ρ)γ−1

ρ

∑
j,l

Qji
∂ρ

∂yl
(Zjl − δj,l), (1.28)

G0(ρ, u, h, `, ω) =
µ

ρ

[
∇u(ZQ− I3) + [(ZQ)> − I3] (∇u)

>
]

+
α

ρ

(
([ZQ]

> − I3) : ∇u
)
I3 −

a

ρ
(ρ+ ρ)γI3, (1.29)

G1(ρ, u, h, `, ω) = −m−1kp(Q> − I3)h− m

ρ
(ω × `)−

∫
∂S
G0n dΓ, (1.30)

G2(ρ, u, h, `, ω) =
J(0)

ρ
ω × ω −

∫
∂S
y × G0n dΓ. (1.31)

Using the above change of variables, Theorem 1.3.1 can be reformulated as

Theorem 1.3.3. Let us assume (p, q) satisfy (1.13), and let ρ > 0 be a given
constant as in (1.17). Assume that Ω0 (defined in (1.6)) is non empty, connected
and (1.1) is satisfied, h1 ∈ Ω0, kp > 0, and kd > 0. Then there exist β > 0 and
δ > 0, such that, for any (ρ0 + ρ, u0, h0, `0, ω0) satisfying (1.14)-(1.16) and

‖ρ0‖W 1,q(F(0)) + ‖u0‖B2(1−1/p)
q,p (F(0))3

+ ‖h0− h1‖R3 + ‖`0‖R3 + ‖ω0‖R3 6 δ, (1.32)

the system (1.23)–(1.29) admits a unique strong solution (ρ, u, h, `, ω) satisfying

‖ρ‖L∞(0,∞;W 1,q(F)) + ‖∇ρ‖W 1,p
β (0,∞;Lq(F)) + ‖∂tρ‖Lpβ(0,∞;Lq(F))

+ ‖u‖W 1,2
p,q,β((0,∞);F)3 + ‖h‖W 2,p

β (0,∞;R3)

+ ‖`‖W 1,p
β (0,∞;R3) + ‖ω‖W 1,p

β (0,∞;R3) 6 Cδ. (1.33)

Moreover, X ∈ L∞(0,∞;W 2,q(F))3 ∩ W 1,∞(0,∞;W 1,q(F)) and X(t, ·) : F →
F(t) is a C1-diffeormorphim for all t ∈ [0,∞).

The rest of this section is devoted towards the proof of above theorem.
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1.3.2 Linearized System

The proof of Theorem 1.3.3 relies on a linearization and a fixed point theorem.
Thus as a first step, we linearise the system (1.23)–(1.29) around (ρ, 0, 0, 0, 0).
More precisely, we consider the following linear system



∂tρ+ ρdivu = f1 in (0,∞)×F ,
∂tu− divσl(ρ, u) = f2 in (0,∞)×F ,
u = 0 on (0,∞)× ∂Ω,

u = `+ ω × y on (0,∞)× ∂S,
d

dt
h = ` in (0,∞),

d

dt
`+m−1kph+m−1kd` = −m−1

∫
∂S
σl(ρ, u)n dΓ + g1 in (0,∞),

d

dt
ω = −J(0)−1

∫
∂S
y × σl(ρ, u)n dΓ + g2 in (0,∞),

ρ(0) = ρ0, u(0) = u0, in F ,
h(0) = h0 − h1, `(0) = `0, ω(0) = ω0,

(1.34)

where σl(ρ, u) is defined as in (1.24).

The above system is known as the linearized fluid-structure system. We can
say the considered system is “monolithic”, in the sense that the linear system
preserve the fluid-structure coupling. Our aim is to study the regularity and de-
cay properties of the above linear system. To this aim, in the section below, we
will introduce the corresponding linear fluid-structure operator AFS in a suitable
Banach space X . We are going to show that the operator AFS is R-sectorial in X
(see Theorem 1.3.8). Then according to [23, Theorem 4.3], the operator AFS has
the maximal Lp regularity property in the Banach space X . This will help us to
obtain Lp − Lq type regularity of the linear system (1.34). However, in order to
obtain exponential decay we need to consider certain subspace Xm of X . This is
done in Theorem 1.3.9. Finally, the exponential stability of the system, Lp − Lq
type regularity and the Banach fixed point theorem, will help us to conclude the
proof of Theorem 1.3.3.

Let us mention that, maximal Lp − Lq type regularity of various fluid-
structure system has been studied recently by many authors. We refer to the
articles [12, 15, 9, 13, 14] and the references therein for a detailed presentation on
this topic. In fact, our analysis here is based on the articles [12, 15] and [9].
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1.3.3 The fluid-structure operator

In this subsection, we want to rewrite the system (1.34) in a suitable operator. We
first introduce the operator

D(Au) = W 2,q(F) ∩W 1,q
0 (F), Au =

µ

ρ
∆ +

α+ µ

ρ
∇div. (1.35)

It is known that, the operator Au is an isomorphism from D(Au) to Lq(F)3 for
any q ∈ (1,∞) (see for instance [19]). Given (`, ω) ∈ C3 × C3, let us consider the
following problem {

−µρ∆W − α+µ
ρ ∇divW = 0 in F ,

W = `+ ω × y on ∂S, W = 0 on ∂Ω.
(1.36)

Using the trace properties, it is easy to verify that the above system admits a
unique solution W ∈W 2,q(F)3. Therefore, we can define the Dirichlet operator

Ds ∈ L(C3 × C3;W 2,q(F)3), Ds(`, ω) = W, (1.37)

where W solves (1.36). For q ∈ (1,∞), let us set

X = W 1,q(F)× Lq(F)3 × C3 × C3 × C3. (1.38)

Using the above definitions, we introduce the fluid-structure operator AFS :
D(AFS)→ X defined by

D(AFS) =
{

(ρ, u, h, `, ω) ∈W 1,q(F)×W 2,q(F)3 × C3 × C3 × C3 ;

u−Ds(`, ω) ∈ D(Au)
}
, (1.39)

and
AFS = A0

FS + BFS,
with

A0
FS


ρ
u
h
`
ω

 =


−ρdiv u

Au (u−Ds(`, ω))
0
0
0

 , (1.40)

BFS


ρ
u
h
`
ω

 =



0
−aγ(ρ)γ−1

`

−m−1
∫
∂S
σl(ρ, u)n dΓ−m−1kph−m−1kd`

−J(0)−1
∫
∂S
y × σl(ρ, u)n dΓ


. (1.41)

The following equivalence holds:
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Theorem 1.3.4. Let 1 < p < ∞ and 1 < q < ∞. Let h ∈ W 2,p(0,∞;C3), ` ∈
W 1,p(0,∞;C3), ω ∈W 1,p(0,∞;C3), ρ ∈W 1,p(0,∞;W 1,q(F)), u ∈W 1,2

p,q ((0,∞);F)3.
Then (ρ, u, h, `, ω) is a solution to the system (1.34) if and only if (ρ, u, h, `, ω) sat-
isfies

d

dt


ρ
u
h
`
ω

 = AFS


ρ
u
h
`
ω

+


f1
f2
0
g1
g2

 (t ∈ (0,∞)),


ρ(0)
u(0)
h(0)
`(0)
ω(0)

 =


ρ0
u0
h0
`0
ω0

 . (1.42)

1.3.4 Some background on R-sectorial operators

In this section, we briefly introduce R-sectorial operators. We refer to the article
by Weis [23] for a detailed presentation and properties of R-sectorial operators.
First, let us give definition of R-boundedness family of operators.

Definition 1.3.5. Assume X and Y are Banach spaces and E ⊂ L(X ,Y). We say
that E is R-bounded if there exist p ∈ [1,∞) and a constant C > 0, such that for
any integer N > 1, any T1, T2, · · · , TN ∈ E any independent Rademacher random
variables r1, r2, · · · , rN , and any x1, x2, · · · , xN ∈ X ,E

∥∥∥∥∥∥
N∑
j=1

rjTjxj

∥∥∥∥∥∥
p

Y

1/p

6 C

E

∥∥∥∥∥∥
N∑
j=1

rjxj

∥∥∥∥∥∥
p

X

1/p

,

where E denotes the expectation of a random variable.

Note that the above definition is independent of p ∈ [1,∞). Also, if E ⊂
L(X ,Y) is R-bounded, then it is uniformly bounded. On the other hand if X and
Y are Hilbert spaces, then every the definition of R-boundedness coincides with
uniform boundedness.

For any θ ∈ (0, π), we define the sector

Σθ = {λ ∈ C \ {0} | |argλ| < θ} . (1.43)

We now give definition of R-sectorial operators

Definition 1.3.6. Let X be a Banach space, and let A : D(A) → X be a densely
defined closed linear operator on X . The operator A is said to be R-sectorial of
angle θ ∈ (0, π) if Σθ ⊂ ρ(A), and if the set

{
λ(λ−A)−1 | λ ∈ Σθ

}
is R-bounded

in L(X ).

If X is a Hilbert space, then the definition of R-sectorial operators coincides
with the definition of sectorial operators. We also recall that, a Banach space X is
said to be an UMD Banach space if the Hilbert transformer is bounded in Lp(R;X )
for p ∈ (1,∞).
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Let us consider the following system:

u′ = Au+ f in (0,∞), u(0) = u0. (1.44)

For our purpose, we need the following version of maximal Lp regularity result:

Theorem 1.3.7. Let X be a UMD Banach space, 1 < p < ∞ and let A be a
closed, densely defined operator in X with domain D(A). Let us assume that A is
a R-sectorial operator of angle θ > π

2 and that the semigroup generated by A has
negative exponential type. Then for every u0 ∈ (X ,D(A))1−1/p,p and for every f ∈
Lp(0,∞;X ), (1.44) admits a unique solution in Lp(0,∞;D(A)) ∩W 1,p(0,∞;X ).

Proof. The proof follows from [23, Theorem 4.2], [6, Theorem 2.4] and [21, Theo-
rem 1.8.2]. �

1.3.5 R-sectoriality of the fluid-structure operator

We recall the definition of the space X and the operator AFS from subsection 1.3.3.
We prove the following result onR-sectoriality of the fluid-structure operatorAFS :

Theorem 1.3.8. Let 1 < q <∞. The space X is an UMD Banach space, and there
exists γ > 0 such that AFS − γ is an R-sectorial operator in X of angle θ > π/2.

Proof. First of all, from [7, Theorem 2.5] we have that Au − γ is a R-sectorial
operator of angle θ > β on Lq(F)3. By standard calculation, it is easy to verify
that for λ ∈ γ + Σθ, we have

λ(λI3 −A0
FS)−1 =

Id −ρdiv(λI3 −Au)−1 ρdivAu(λI3 −Au)−1D̃sλ
−1

0 λ(λI3 −Au)−1 −Au(λI3 −Au)−1D̃s

0 0 I9×9


where D̃s(h, `, ω) = Ds(`, ω). Then using the properties of R-boundedness opera-
tors, we can deduce that A0

FS − γ is an R-sectorial operator of angle θ > π/2 (see
for instance [13, Theorem 4.2], [9, Theorem 3.12], [12] for more details about the
proof).

Next, using trace results, for any 1/q < s < 1, there exists a constant C > 0
such that∥∥∥∥∥∥∥∥∥∥

BFS


ρ
u
h
`
ω


∥∥∥∥∥∥∥∥∥∥
X

6 C
(
‖ρ‖W s,q(F) + ‖u‖W 1+s,q(F)3 + ‖(h, `, ω)‖C3×C3×C3

)
.

Since the embedding W 1,q(F) ↪→ W s,q(F) is compact for s ∈ (1/q, 1), we obtain
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that for any δ > 0 there exists C(δ) > 0 such that∥∥∥∥∥∥∥∥∥∥
BFS


ρ
u
h
`
ω


∥∥∥∥∥∥∥∥∥∥
X

6 δ

∥∥∥∥∥∥∥∥∥∥
A0

FS


ρ
u
h
`
ω


∥∥∥∥∥∥∥∥∥∥
X

+ C(δ)

∥∥∥∥∥∥∥∥∥∥


ρ
u
h
`
ω


∥∥∥∥∥∥∥∥∥∥
X

.

In particular, BFS is a A0
FS-bounded perturbation. Finally, using [11, Corollary 2]

(see also [12, Proposition 1.18]) we conclude the proof of the theorem. �

1.3.6 Exponential stability of the fluid-structure operator

The aim of this subsection is to show the operator AFS generates an analytic
semigroup of negative type in the following subspace of X :

Xm =

{
(f1, f2, g1, g2, g3) ∈ X |

∫
F
f1dy = 0

}
.

One can check that the space Xm is invariant under (etAFS)t>0. Therefore we can
consider the restriction of AFS to the domain D(AFS)∩Xm. We prove the following
theorem

Theorem 1.3.9. Let 1 < q < ∞. Then the part of AFS in Xm generates an expo-
nentially stable semigroup (etAFS)t>0 on Xm. In other words, there exist constants
C > 0 and β0 > 0 such that

‖etAFS(ρ0, u0, h0, `0, ω0)>‖Xm 6 Ce
−β0t‖(ρ0, u0, h0, `0, ω0)>‖Xm , (1.45)

for all (ρ0, u0, h0, `0, ω0) ∈ Xm.

Remark 1.3.10. When λ = 0, integrating the first equation of (1.46) and using the
boundary conditions of u we have ∫

F
f1dy = 0.

Thus to study exponential stability of the fluid-structure semigroup it is necessary
to consider the space Xm.

Proof of Theorem 1.3.9. We first note that the standard results on analytic semi-
groups (see [2, Proposition 2.9, p.120]) imply that the exponential stability of the
semigroup generated by the part of AFS in Xm is equivalent to establish

{λ ∈ C ; Reλ ≥ −β} ⊂ ρ(AFS|D(AFS)∩Xm
), for some β > 0.

We divide our proof into two steps.
Step 1. {λ ∈ C ; Reλ ≥ 0} ⊂ ρ(AFS|D(AFS)∩Xm

).
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Let λ ∈ C+ and (f1, f2, g0, g1, g2) ∈ Xm. We consider the following resolvent
problem

λρ+ ρdivu = f1 in F ,
λu− divσl(ρ, u) = f2 in F ,
u = `+ ω × y on ∂S,
u = 0 on ∂Ω,

λh = `+ g0,

λ`+m−1kph+m−1kd`+m−1
∫
∂S
σl(ρ, u)n dΓ = g1,

λω + J(0)−1
∫
∂S
y × σl(ρ, u)n dΓ = g2.

(1.46)

We are going to show that the system (1.46) admits a unique solution (ρ, u, h, `, ω) ∈
D(AFS) ∩ Xm. The proof is divided into several parts.

Step 1.1. Existence and uniqueness for λ = 0. Consider the system (1.46) with
λ = 0. Then ` = −g0. Let χ ∈ C∞c (Ω) such that χ = 1 on S. We define v = u−χ`.
Then it is easy to see that, (ρ, v, ω) satisfies

−µ∆v + aγργ−1∇ρ = ρf2 +
α+ µ

ρ
∇f1

−µ
ρ

∆(χ`)− α+ µ

ρ
∇(div(χ`)) in F ,

divv =
f1
ρ
− div(χ`) in F ,

v = ω × y on ∂S,
v = 0 on ∂Ω,

J(0)−1
∫
∂S
y × σ0(ρ, v)n dγ = g2 −

α

ρ2

∫
∂S
y × f1dγ,

(1.47)

where

σ0(ρ, v) =
2µ

ρ
Du+

1

ρ

(
−aγ(ρ)γ−1ρ

)
I3.

The above system is similar to the Stokes-rigid ball system studied in [15].
In fact following the proof of Theorem 4.2 in [15], we can show that, the system
(1.47) admits a unique solution (ρ, v, ω) ∈W 1,q(F)×W 2,q(F)3×C3. Finally, the
existence of h follows from equation (1.46)6.

Step 1.2. Existence for λ 6= 0, λ ∈ C+. By setting ρ =
1

λ
(f1 − ρdivu) and h =
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1
λ (`+ g0) the system (1.46) can be rewritten as

λu− divσ̂λ(u) = f̂2 in F ,
u = `+ ω × y on ∂S,
u = 0 on ∂Ω,(
λ+m−1

kp
λ

+m−1kd

)
` = −m−1

∫
∂S
σ̂λ(u) ndΓ + ĝ1

λω = −J(0)−1
∫
∂S(t)

y × σ̂λ(u)ndΓ + ĝ2

(1.48)

where

σ̂λ(u) =
2µ

ρ
D(u) +

(
1

ρ

(
α+

aγργ

λ

)
divu

)
I3,

f̂2 = f2 −
aργ−1

λρ
∇f1, ĝ1 =

(
g1 +m−1

aργ−1

λρ

∫
∂S
f1ndΓ

)
− m−1kp

λ
g0,

ĝ2 =

(
g2 + J(0)−1

aργ−1

λρ

∫
∂S
y × f1ndΓ

)
.

The above system is similar to the system (3.39) of [9]. Thus following the idea of
the proof of Theorem 3.16 in [9], we can conclude the existence for λ ∈ C+, λ 6= 0.

Step 1.3. Uniqueness for λ 6= 0, λ ∈ C+. Let us assume that (ρ, u, h, `, ω) ∈
D(AFS) ∩ Xm solves the system (1.46) with (f1, f2, g0, g1, g2) = 0. We claim that,
(ρ, u, h, `, ω) ∈W 1,2(F)×W 2,2(F)× C3 × C3 × C3. We set

ρ =
1

λ
(−ρdivu), h =

1

λ
`. (1.49)

We take λ0 > 0 and the system (1.46) with (f1, f2, g0, g1, g2) = 0 can be rewritten
as 

λ0u− divσ̂λ(u) = (λ0 − λ)u in F ,
u = `+ ω × y on ∂S,
u = 0 on ∂Ω,(
λ0 +m−1

kp
λ

+m−1kd

)
` = −m−1

∫
∂S
σ̂λ(u) ndΓ + (λ0 − λ)`

λ0ω = −J(0)−1
∫
∂S(t)

y × σ̂λ(u)ndΓ + (λ0 − λ)ω.

(1.50)
Since W 2,q(F) ↪→ L2(F), we deduce from (1.50) that (u, `, ω) ∈W 2,2(F)××C3×
C3. Using the expressions of ρ and h in (1.49), we conclude that ρ ∈W 1,2(F) and
h ∈ C3.
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Multiplying (1.46)2 by v, (1.46)6 by ` and (1.46)7 by ω, after integration by
parts and taking the real part, we obtain

Reλ

∫
F
|u|2dy + 2µ

∫
F
|Du|2dy + α

∫
F
|divu|2dy

+ (Reλ)m|`|2 + Re(λJ(0)ω · ω) + kp|h|2 + kd|`|2 = 0.

Since Reλ > 0, using (1.4), kp, kd > 0 and the boundary conditions, we obtain
ρ = u = h = ` = ω = 0.
Step 2. {λ ∈ C ; Reλ ≥ −β} ⊂ ρ(AFS|D(AFS)∩Xm

), for some β > 0.
We know from Theorem 1.3.8 that there exists γ > 0 such that AFS−γ is an

R-sectorial operator in X of angle greater than π/2. It implies that there exists
C1 > 0 such that for any λ ∈ γ + Σπ−θ (the notation Σθ is defined in (1.43)) with
θ < π/2,

‖(λ−AFS)−1‖L(Xm) ≤ C1.

Since
{λ ∈ C | Reλ ≥ 0} \ [γ + Σπ−θ]

is a compact set, there exists C2 > 0 such that for any λ ∈ C with Reλ ≥ 0

‖(λ−AFS)−1‖L(Xm) ≤ C.

This yields that for some β > 0,

{λ ∈ C | Reλ ≥ −β} ⊂ ρ(AFS |D(AFS)∩Xm
).

This completes the proof of the theorem. �

1.3.7 Maximal Lp−Lq Regularity for the Linearized Fluid-Structure
System

In this section, we prove maximal Lp−Lq type regularity result with decay prop-
erties of the linear system (1.34). Following [9, 13], we introduce the following
standard decomposition: for any f ∈ L1(F),

f = fm + favg, with

∫
F
fm(y) dy = 0, favg = |F|−1

∫
F
f(y) dy. (1.51)

For 1 < p, q <∞, and β ∈ R, the solution space Ep,q,β is defined by

Ep,q,β =
{

(ρ, u, h, `, ω) | ρ = ρm+ρavg, ρm ∈W 1,p
β (0,∞;W 1,q(F)), ρavg ∈ L∞(0,∞),

∂tρavg ∈ Lpβ(0,∞), u ∈W 1,2
p,q,β((0,∞);F)3,

h ∈W 2,p
β (0,∞;R3), ` ∈W 1,p

β (0,∞;R3), ω ∈W 1,p
β (0,∞;R3)

}
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and

‖(ρ, u, h, `, ω)‖Ep,q,β = ‖ρm‖W 1,p
β (0,∞;W 1,q(F)) + ‖ρavg‖L∞(0,∞) + ‖∂tρavg‖Lpβ(0,∞)

+ ‖u‖W 1,2
p,q,β((0,∞);F)3 + ‖h‖W 2,p

β (0,∞) + ‖`‖W 1,p
β (0,∞) + ‖ω‖W 1,p

β (0,∞).

Similarly, for 1 < p, q < ∞, and β ∈ R, we define Bp,q,β , the space for
non-homogeneous source terms, as follows

Bp,q,β =
{

(f1, f2, g1, g2) | f1 = f1,m+f1,avg, f1 ∈ Lpβ(0,∞,W 1,q(F)), f1,avg ∈ L1(0,∞),

f2 ∈ Lpβ(0,∞;Lq(F))3, g1 ∈ Lpβ(0,∞;R3), g2 ∈ Lpβ(0,∞;R3)
}
, (1.52)

with

‖(f1, f2, g1, g2)‖Bp,q,β = ‖f1‖Lpβ(0,∞;W 1,q(F)) + ‖f1,avg‖L1(0,∞)

+ ‖f2‖Lpβ(0,∞;Lq(F))3 + ‖g1‖Lpβ(0,∞) + ‖g2‖Lpβ(0,∞).

We set

Jp,q =
{

(ρ0, u0, h0 − h1, `0, ω0) | ρ0 ∈W 1,q(F) ∩ Lqm(F), u0 ∈ B2(1−1/p)
q,p (F)3,

h0 − h1 ∈ R3, `0 ∈ R3, ω0 ∈ R3
}
, (1.53)

and we introduce the space of initial data

J ccp,q = Jp,q if
1

p
+

1

2q
> 1,

J ccp,q =
{

(ρ0, u0, h0 − h1, `0, ω0) ∈ Jp,q | u0 = 0 on ∂Ω,

u0(y) = `0 + ω0 × y y ∈ ∂S
}

if
1

p
+

1

2q
< 1.

Theorem 1.3.11. Let 1 < p < ∞ and 1 < q < ∞ satisfying 1
p + 1

2q 6= 1. Let β0 is

the constant introduced in Theorem 1.3.9, and β ∈ [0, β0). Then for any

(ρ0 − ρ, u0, h0 − h1, `0, ω0) ∈ J ccp,q, (f1, f2, g1, g2) ∈ Bp,q,β

the system (1.34) admits a unique solution (ρ, u, h, `, ω) ∈ Ep,q,β with

‖(ρ, u, h, `, ω)‖Ep,q,β 6 CL
(
‖(ρ0, u0, h0 − h1, `0, ω0)‖Jp,q+‖(f1, f2, g1, g2)‖Bp,q,β

)
.

(1.54)
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Proof. Let us first consider the case β = 0. We integrate equation (1.34)1 satisfied
by ρ in F , use the boundary conditions u and the decomposition (1.51) to conclude
that ρavg is a solution of the following system

∂tρavg = f1,avg t ∈ (0,∞), ρavg(0) = 0. (1.55)

As f1,avg belongs to L1(0,∞) we have ρavg ∈ L∞(0,∞). On the other hand, it is
easy to see that (ρm, u, h, `, ω) satisfies the following system

d

dt


ρm
u
h
`
ω

 = AFS


ρm
u
h
`
ω

+


f1,m
f2
0
g1
g2

 (t ∈ (0,∞)),


ρm(0)
u(0)
h(0)
`(0)
ω(0)

 =


ρ0
u0

h0 − h1
`0
ω0

 ,
(1.56)

where AFS is the linear fluid-structure operator introduced in Section 1.3.3. Recall
that, from Theorem 1.3.8 and Theorem 1.3.9 we know that AFS is a R-sectorial
operator on Xm, and generates an exponentially stable semigroup on Xm. Note
that, the hypothesis of the theorem yields that

(ρ0, u0, h0 − h1, `0, ω0) ∈ (Xm,D(AFS) ∩ Xm)1−1/p,p ,

and

(f1,m, f2, 0, g1, g2) ∈ Lp(0,∞;Xm).

Therefore, according to Theorem 1.3.7, the system (1.56) admits a unique solution

(ρm, u, h, `, ω) ∈ Lp(0,∞;D(AFS) ∩ Xm) ∩W 1,p(0,∞;Xm) ⊂ S∞,p,q.

The case β > 0 can be reduced to the previous case by multiplying all the functions
by eβt and using the fact that AFS−γ is a R-sectorial operator with negative type.
This completes the proof of the theorem. �

1.3.8 Proof of Theorem 1.3.1 and Corollary 1.3.2

First we give a short proof of Theorem 1.3.3. The proof is similar to the proof of
[9, Theorem 3.22]. We just indicate the main steps.

Throughout this subsection, we assume

2 < p <∞ and 3 < q <∞.

Let us fix β ∈ (0, β0), where β0 is the constant introduced in Theorem 1.3.9. For
δ > 0, we define the ball Ep,q,β,δ in Ep,q,β as follows

Ep,q,β,δ =
{

(ρ, u, h, `, ω) | ‖(ρ, u, h, `, ω)‖Ep,q,β 6 δ
}
. (1.57)
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Let us take (σ, v, ζ, κ, τ) ∈ Ep,q,β,δ and we consider the system

∂tρ+ ρdivu = F1(σ, v, ζ, κ, τ) in (0,∞)×F ,
∂tu− divσl(ρ, u) = F2(σ, v, ζ, κ, τ) in (0,∞)×F ,
u = 0 on (0,∞)× ∂Ω,

u = `+ ω × y on (0,∞)× ∂S,
d

dt
h = ` t ∈ (0,∞),

d

dt
`+m−1kph+m−1kd`

= −m−1
∫
∂S
σl(ρ, u)n dγ + G1(σ, v, ζ, κ, τ) t ∈ (0,∞),

d

dt
ω = −J(0)−1

∫
∂S
y × σl(ρ, u)n dγ + G2(σ, v, ζ, κ, τ) t ∈ (0,∞),

ρ(0) = ρ0 := ρ̃0 − ρ, u(0) = u0, in F ,
h(0) = h0 − h1, `(0) = `0, ω(0) = ω0.

(1.58)
We consider the mapping

N : Ep,q,β,δ → Ep,q,β,δ (σ, v, ζ, κ, τ) 7→ (ρ, u, h, `, ω), (1.59)

where (ρ, u, h, `, ω) is the solution to the system (1.58). To prove Theorem 1.3.3,
it is enough to show that following result

Proposition 1.3.12. There exists δ > 0 such that, for any

‖(ρ0, u0, h0 − h1, `0, ω0)‖Jp,q <
δ

2CL
, (1.60)

where CL is the positive constant appearing in Theorem 1.3.11, the mapping N
defined in (1.59) is a strict contraction in Ep,q,β,δ.

Let us remark that, the nonlinear terms appearing in (1.23)–(1.29) are exactly
same as the nonlinear terms in [9]. In fact, following the proof of Proposition 3.20
and Proposition 3.21 in [9], we can show that, there exists δ > 0 such that, for
any (σ, v, ζ, κ, τ) ∈ Ep,q,β,δ, and (σi, vi, ζi, κi, τi) ∈ Ep,q,β,δ, i = 1, 2, we have∥∥∥(F1(σ, v, ζ, κ, τ),F2(σ, v, ζ, κ, τ),G1(σ, v, ζ, κ, τ),G2(σ, v, ζ, κ, τ)

)∥∥∥
Bp,q,β

6 Cδ2,

and∥∥∥(F1
1 ,F1

2 ,G11 ,G12)− (F2
1 ,F2

2 ,G21 ,G22)‖Bp,q,β

6 Cδ
∥∥∥(σ1, v1, ζ1, κ1, τ1)− (σ1, v1, ζ1, κ1, τ1)

∥∥∥
Ep,q,β

,
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for some C > 0 independent of δ, where

F i1 = F1(σi, vi, ζi, κi, τi), F i2 = F2(σi, vi, ζi, κi, τi),

Gi1 = G1(σi, vi, ζi, κi, τi), Gi2 = G2(σi, vi, ζi, κi, τi).

Using the above estimates together with (1.54), we can easily conclude the proof
of Proposition 1.3.12, and hence the proof of Theorem 1.3.3.

Finally, using the change of variables we conclude the proof of Theorem 1.3.1
and Corollary 1.3.2. We refer to [9] for more details regarding the proofs.

1.4 Global Stabilizability

In this section, using switching feedback control, we prove a global stabilization
result, where we remove the assumption that h0 and h1 are sufficiently close. More
precisely, we prove the following result

Theorem 1.4.1. Under the assumptions of Theorem 1.3.3, there exists δ > 0,
depending only on Ω, kp, kd such that for any (ρ̃0, u0, h0, `0, ω0) satisfying (1.14)-
(1.16), (1.17) and

‖ρ̃0 − ρ‖W 1,q(F(0)) + ‖u0‖B2(1−1/p)
q,p (F(0))3

+ ‖`0‖R3 + ‖ω0‖R3 6
δ

2
, (1.61)

there exists a piecewise constant function s : [0,∞)→ Ω satisfying dist(s(t), ∂Ω) >
1, for all t > 0, such that the strong solution of (1.3) with switching feedback law

w(t) = kp(s(t)− h̃(t))− kdh̃′(t), t > 0, (1.62)

satisfies the stability properties

lim
t→∞

‖ρ̃(t, ·)− ρ‖W 1,q(F(t)) = 0, lim
t→∞

‖ũ(t, ·)‖
B

2(1−1/p)
q,p (F(t))3

= 0, (1.63)

lim
t→∞

h̃(t) = h1, lim
t→∞

h̃′(t) = 0, lim
t→∞

ω̃(t) = 0. (1.64)

Proof of Theorem 1.4.1. Let us recall the set (1.6):

Ω0 = {x ∈ Ω | dist(x, ∂Ω) > 1} .

Let us consider h0, h1 belong to Ω0. The path-connectedness of Ω0 follows from the
fact that Ω0 ⊂ R3 is open and connected. Hence, we have a path γ : [0, 1] → Ω0

such that γ(0) = h0 and γ(1) = h1. Also observe that γ([0, 1]) is compact, it
implies that there exists ν > 0 such that

dist(γ([0, 1]), ∂Ω) ≥ 1 + ν.
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According to Theorem 1.3.1, there exists δ > 0 such that for any h∗ ∈
γ([0, 1]), initial data satisfying∥∥∥(ρ̃0 − ρ, u0, h0 − h∗, `0, ω0)

∥∥∥
Jp,q
6 δ,

under the feedback law

w(t) = kp[h
∗ − h̃(t)]− kdh̃′(t),

the system (1.3) admits a unique global in time strong solution. Furthermore, we
can use Corollary 1.3.2 to conclude: as t→∞, we have

‖ρ̃(t, ·)− ρ‖W 1,q(F(t)) + ‖ũ(t, ·)‖
B

2(1−1/p)
q,p (F(t))3

+ ‖h∗ − h̃(t)‖R3

+ ‖h̃′(t)‖R3 + ‖ω̃(t)‖R3 → 0.

Now we make a partition {xr} of the path joining h0 to h1 such that

x0 = h0, xk+1 = h1, ‖xr+1 − xr‖R3 <
δ

2
, for all r = 0, 1, 2, ..., k.

First we explain how we can go from x0 to x1 and from x1 to x2. After that
we state the general strategy. With the help of the partition {xr} and condition
(1.61), we obtain

‖ρ̃0 − ρ‖W 1,q(F(0)) + ‖u0‖B2(1−1/p)
q,p (F(0))3

+ ‖x1 − h0‖R3 + ‖`0‖R3 + ‖ω0‖R3 6 δ.

Under the feedback law

w0(t) = kp(x1 − h̃(t))− kdh̃′(t), t ≥ 0,

the system(1.3) admits a unique global in time strong solution along with the
asymptotic behaviour:

‖ρ̃(t, ·)− ρ‖W 1,q(F(t)) + ‖ũ(t, ·)‖
B

2(1−1/p)
q,p (F(t))3

+ ‖x1 − h̃(t)‖R3

+ ‖h̃′(t)‖R3 + ‖ω̃(t)‖R3 → 0, as t→∞.

Thus, we choose T1 > 0 large enough such that

‖ρ̃(T1, ·)− ρ‖W 1,q(F(T1)) + ‖ũ(T1, ·)‖B2(1−1/p)
q,p (F(T1))3

+ ‖x1 − h̃(T1)‖R3

+ ‖h̃′(T1)‖R3 + ‖ω̃(T1)‖R3 6
δ

2
.

As ‖x1 − x2‖R3 < δ
2 , we can deduce

‖ρ̃(T1, ·)− ρ‖W 1,q(F(T1)) + ‖ũ(T1, ·)‖B2(1−1/p)
q,p (F(T1))3

+ ‖x2 − h̃(T1)‖R3

+ ‖h̃′(T1)‖R3 + ‖ω̃(T1)‖R3 6 δ.
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To proceed further, use the feedback law:

w1(t) = kp(x2 − h̃(t))− kdh̃′(t), for t > T1.

In general, we construct a partition

0 = T0 < T1 < T2 < · · · < Tk < Tk+1 = +∞

of [0,∞] in the following way: let r ∈ {1, 2, ..., k} and Tr > 0 be such that

‖ρ̃(Tr−1, ·)−ρ‖W 1,q(F(Tr−1))+‖ũ(Tr−1, ·)‖B2(1−1/p)
q,p (F(Tr−1))3

+‖xr−1−h̃(Tr−1)‖R3

+ ‖h̃′(Tr−1)‖R3 + ‖ω̃(Tr−1)‖R3 6
δ

2
.

Due to the partition {xr}, we know ‖xr − xr−1‖R3 < δ
2 , which implies

‖ρ̃(Tr−1, ·)−ρ‖W 1,q(F(Tr−1)) +‖ũ(Tr−1, ·)‖B2(1−1/p)
q,p (F(Tr−1))3

+‖xr− h̃(Tr−1)‖R3

+ ‖h̃′(Tr−1)‖R3 + ‖ω̃(Tr−1)‖R3 6 δ.

Now under the feedback law

wr−1(t) = kp(xr − h̃(t))− kdh̃′(t), for t > Tr−1,

the system (1.3) admits a unique global in time strong solution and there exists
Tr > Tr−1 such that

‖ρ̃(Tr, ·)− ρ‖W 1,q(F(Tr)) + ‖ũ(Tr, ·)‖B2(1−1/p)
q,p (F(Tr))3

+ ‖xr − h̃(Tr)‖R3

+ ‖h̃′(Tr)‖R3 + ‖ω̃(Tr)‖R3 6
δ

2
.

As |xr+1 − xr| < δ
2 , we can deduce

‖ρ̃(Tr, ·)− ρ‖W 1,q(F(Tr)) + ‖ũ(Tr, ·)‖B2(1−1/p)
q,p (F(Tr))3

+ ‖xr+1 − h̃(Tr)‖R3

+ ‖h̃′(Tr)‖R3 + ‖ω̃(Tr)‖R3 6 δ.

We can iterate the above step with the help of the feedback law:

wr(t) = kp(xr+1 − h̃(t))− kdh̃′(t), for t > Tr.

Hence, in the presence of the switching feedback law

w(t) = kp(s(t)− h̃(t))− kdh̃′(t), t > 0,

where piecewise constant function s : [0,∞)→ Ω0 is given by

s(t) = xj , j ∈ {1, 2, ...., (k + 1)}, t ∈ [Tj−1, Tj),

we obtain a unique strong solution of (1.3) and the solution enjoys the stability
properties (1.63)-(1.64). This completes the proof of the Theorem. �
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Birkhäuser/Springer Basel AG, Basel, 2010. Reprint of 1983 edition
[MR0730762], Also published in 1983 by Birkhäuser Verlag [MR0781540].
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