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Abstract  

G protein-coupled receptors (GPCRs) and Nuclear Receptors (NRs) are two 
signaling machineries that are involved in major physiological processes and, as a 
consequence, in a substantial number of diseases. Therefore, they actually represent 
two major targets for drugs with potential applications in almost all public health 
issues. Full exploitation of these targets for therapeutic purposes nevertheless 
requires opening original avenues in drug design, and this in turn implies a better 
understanding of the molecular mechanisms underlying their functioning. However, 
full comprehension of how these complex systems function and how they are 
deregulated in a physiopathological context is obscured by the fact that these proteins 
include a substantial number of disordered regions that are central to their 
mechanism of action but whose structural and functional properties are still largely 
unexplored. In this chapter, we describe how these intrinsically disordered regions 
(IDR) or proteins (IDP) intervene, control and finely modulate the thermodynamics 
of complexes involved in GPCR and NR regulation, which in turn triggers a 
multitude of cascade of events that are exquisitely orchestrated to ultimately control 
the biological output. 
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1. Introduction  
Why are Intrinsically Disordered Proteins (IDPs) so fascinating? They were discovered 

in the mid-90s and it is now well established that IDPs are very common in eukaryotes (40%)1 

where they confer complexity to these organisms.2,3 Moreover, their inherent flexibility 

renders IDPs accessible to post-translational modifications (PTMs)4 (phosphorylation,5 

ubiquitination,6 palmitoylation, acetylation, sumoylation,7 methylation). More than 300 PTMs 

can occur physiologically,8 leading to the availability of more than 140 amino acids produced 

by these various modifications.9 IDPs lack stable tertiary and secondary structure.10 This is 

due to their specific amino acid sequences depleted in hydrophobic residues and enriched in 

polar and charged residues that are uncompensated; and that often have low complexity.11 

Their transient secondary structures are often conserved and linked to function.12 Indeed, IDPs 

can adapt to many partners by changing their structure (promiscuity) and their ability to 

interact with high specificity and low affinity allow them to finely tune the thermodynamic 

properties of their complexes.13  

With all these general biophysical features, it is not surprising that IDPs are linked to 

very specific functions such as signaling, transcription, etc.14–16 As a consequence, their 

deregulation is at the origin of a multitude of diseases,17 such as cancer,18,19 

neurodegeneration,20,21 cardiovascular diseases22 and diabetes23. In order to understand the role 

of disorder in function and disease, we have to characterize their structure and partner-

recognition mechanisms. IDPs and their complexes are very difficult to characterize at the 

structural level due to their inherent flexibility.24 The most suited way to address their study is 

by combining data from complementary techniques.25 Indeed, Nuclear Magnetic Resonance 

(NMR) is the best-adapted technique to highlight the hot spots of IDPs in their free state.26,27 

Most of the times, these identified Short Linear Motifs (SLiMs)28 or Molecular Recognition 

Features (MoRFs)29 are evolutionary conserved30 and are the functional part of IDPs.31 These 

interacting regions identified in the complex, which usually fold upon binding,32,33 can then be 

delimitated by NMR, synthesized and submitted to co-crystallization trials. In parallel, Small 

Angle X-ray Scattering (SAXS) and Small Angle Neutron Scattering (SANS) can provide the 

overall envelope of the entire system.34,35 Finally, all these data are generally integrated into 

computational tools to deliver accurate structural models.36,37 These data can be 

complemented or validated by other biophysical methods such as FRET, interactions studies 

in vitro (fluorescence anisotropy, ITC, MST, etc), mutational analyses and cell-based assays 

allowing connecting detailed structural models with biological function. Such an integrative 
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strategy where experimental information obtained from complementary techniques is 

integrated and simultaneously interpreted to derive a unified model of the biological system 

has already allowed the understanding of the structural bases of crucial biological processes 

involving IDPs.14,38,39  

In this chapter, we will present two biological machineries involved in cell signaling for 

which structural disorder plays key roles: G Protein-Coupled Receptors (GPCRs) and Nuclear 

Receptors (NRs). GPCRs are the target of almost 40% of drugs on the market,40–42 and NR 

ligands constitute 10-20% of the worldwide pharmaceutical market43 and, as a consequence, it 

is essential to better understand their functioning to design more effective drugs without side 

effects. GPCRs and NRs are representative examples of the complementarity of ordered and 

disordered regions associated with distinct and complementary functions.15 Both GPCRs and 

NRs (Figs. 2 and 5) share many structural features. They have a well-folded core domain 

whose high-resolution tridimensional structures have been solved by X-ray crystallography 

and cryo-EM, and unfolded domains that are not well characterized because they are missing 

from the electron densities (see below §2.1 and 3.1). For class A or (rhodopsin-class) GPCRs, 

the disordered domains are the N- and C-terminal domains plus extra- and intra-cellular loops. 

For NRs, the main disordered domains are the N-terminal Activation Domain (NTD), a linker 

between the DNA and ligand binding domains (DBD and LBD, respectively) and the H12 

helices at the C-terminus of LBD. Both N-terminal domain of GPCRs and H12 of NRs 

undergo folding upon ligand binding processes that trigger different functional outputs. For 

GPCRs, this disorder to order transition triggers the transduction of signal via a 

transmembrane core reorganization, and for NRs it triggers the switch of the repressor 

complex by the activator one to initiate transcription of the target genes. NR coregulators are 

among the first proteins reported to be functional despite being mainly disordered.44,45 

Transcriptional coregulators are very large IDPs that include corepressorss and coactivators, 

containing around 2,400 and 1,400 amino acids, respectively. Concerning the cytoplasmic C-

terminal domain of GPCRs, they were discovered with the tridimensional structure of the 

beta-2 adrenergic receptor (β2AR)46. This structure came out seven years after the first 

membrane protein solved by X-ray crystallography, the Rhodopsin.47 Similarly as NTD of 

NRs, C-terminal domains of class A GPCRs are very variable in length and amino acid 

composition (from 30 to 325 residues), and are recognized as fully disordered.48 Intrinsically 

disordered coregulators, NTDs of NRs and C-terminal domains of GPCRs are submitted to a 

multitude of PTMs. Together with these PTM-sites, these highly flexible IDPs and IDRs 

contain SLiMs and/or MoRFs regions (for a review, see 49 for GPCRs and 50 for NRs). This 
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combination increases the degree of diversity of binding sites, thus making the modulation of 

their interactions with their physiological partners more multifaceted, which ultimately allows 

these complexes to play their role of super regulators. These regions were assigned in the 

literature (described in 51 and illustrated in Fig. 1) as functional semi-foldons (i.e. partially 

folded protein segments with transient residual structure) and inducible foldons (i.e. segments 

that are able to fold upon interacting with specific binding partners). Moreover, the functions 

of non-foldons (i.e. protein segment with intrinsically disordered nature), which are found in 

this kind of regulating systems, are very important because of their obviously entropic chain 

activities. Indeed, this activity is remarkably well exemplified by coregulators that encompass 

multiple binding sites that increase the cooperativity in their interaction with NRs. This 

conformational variability complements the dynamical assembly of foldons (i.e. ordered 

segments or independently foldable regions) represented by the central core of GPCR and 

NRs (Figs. 2 and 5), which hold complementary function (transduction of signal for GPCRs 

and DNA and ligand recognition for NRs). The last piece of the mosaic of the protein 

structure-function space (Fig. 1) is illustrated by the functional unfoldons (a part of the 

ordered protein that has to undergo order-to-disorder transition to make protein active). This 

activity is exemplified in GPCRs interaction with arrestin, where the flexible cytosolic 

domain of GPCRs releases the C-terminal tail of arrestin that in turn will expose some 

specific interaction regions that will trigger different downstream effectors in the cell for 

specific functional responses. 

The two complex machineries presented in this review, GPCRs and NRs, are illustrative 

of the structure-function continuum that undergoes IDPs and IDRs in these signaling and 

regulation systems to elegantly control cell signaling by orchestrating a combination of 

modular assembly of different type of foldons51. 

 
 
Fig. 1 Schematic representation of the mosaic nature of the protein structure–function space, where differently 
folded segments of a protein (foldons, semi-foldons, non-foldons, inducible foldons, and unfoldons) might 
possess different biological functions. Reproduced with permission from 51. 
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2. G protein-coupled receptors 

2.1  GPCRs: general trends and function 
G protein-coupled receptors (GPCRs) are one of largest class of membrane receptors. 

They play a central role in most intercellular communication processes, including vision, 

metabolism and neurological communication.52,53 As such, they represent a major target 

family for drugs, with potential applications in many clinical spheres including cancer, 

metabolic, inflammatory and neurological disorders or hypertension, among many others.41 

GPCRs transmit information through a mechanism that primarily involves activation by 

an external agonist compound and subsequent coupling to intracellular signaling partners. 

Historically, the first of these partners to be identified were G proteins, from which GPCRs 

got their name. G proteins are αβγ heterotrimers composed of diverse combinations of the 

twenty-one α, five β and twelve γ subunit isoforms.54 Coupling to GPCRs triggers GDP-to-

GTP exchange in the α subunit, resulting in the activation of the G protein. Activated G 

proteins in turn activate their downstream effectors to trigger signaling.54 Besides G proteins, 

GPCRs can trigger signaling through an extensive set of cytoplasmic partners. Among them 

are arrestins. There are four isoforms of arrestins, including the two visual ones (arrestin 1 

and 4), which are involved in both signaling and receptor desensitization.55 In the classical 

paradigm, activated GPCRs are first recognized by G protein-coupled Receptor Kinases 

(GRKs), leading to receptor phosphorylation at specific sites.56 The phosphorylated receptor 

becomes competent for interacting with arrestins. Arrestin binding then triggers recruitment 

of the internalization machinery to the activated GPCR, leading either to signal termination or 

to a second wave of signaling through internalized receptors.57 In addition, arrestin 

recruitment to the phosphorylated receptor can initiate an alternate intracellular signal.55,58 

Whether this additional signal is correlated or not to G protein activation is still under debate, 

however.59 Finally, in addition to G proteins, GRKs and arrestins, GPCRs can interact with a 

full network of cytoplasmic proteins, including scaffolding ones, that further regulate the 

transmission of the signal. This interaction network has been extensively described in 

particular for the serotoninergic system in the brain.60 

2.2  Structural organization of GPCRs and activation process 
The GPCR family is composed of almost 800 different members separated into five 

different classes (Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2 and Secretin).61 Although 

these classes differ in their structure and function, they all share common structural elements. 

Indeed, GPCRs are primarily composed of two separated domains, the intra- and 
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extramembrane segments. For all GPCRs, the membrane domain is composed of seven 

transmembrane helices labeled TM1 to TM7.61 The extramembrane region differs, depending 

on the class of GPCR considered. In some classes, i.e. glutamate and secretin, these regions 

include large extracellular domains that participate to ligand binding and receptor activation. 

In others, in particular the rhodopsin-like, the extramembrane regions essentially consist in 

relatively short N- and C-extensions, including a cytoplasmic H8 helix, and extra- and 

intracellular loops connecting the transmembrane helices. These segments in the rhodopsin 

class of GPCRs will be the main focus of the present chapter, as the large N-terminal parts of 

the glutamate and secretin receptors essentially display the characteristics of folded protein 

domains. In contrast to the transmembrane sequences that include highly conserved motifs, 

the extracellular and cytoplasmic regions of GPCRs are far more divergent in sequence.62 

The three-dimensional organization of the membrane domain of GPCRs will be 

described here briefly, as it is not the focus of the present chapter. Starting from the first 

crystal structures of rhodopsin47 and the β2-adrenergic receptor,46,63 the structural arrangement 

of the membrane domain of GPCRs has been progressively illuminated during the last decade 

through a series of crystal structures of receptors loaded with either agonists or antagonists 

(for a review, see 64). These structures provided a detailed description of the general 

architecture of the helical domains, of the orthosteric and/or allosteric ligand binding sites, as 

well as the conformational changes associated with agonist binding. Structural analyses 

subsequently provided the arrangement of the complexes of receptors with their signaling 

partners. The first structure was obtained through X-ray crystallography with the β2-

adrenergic receptor associated to Gs.65 The subsequent explosion in cryo-electron microscopy 

(cryoEM) approaches then provided us with a plethora of structures of receptors from 

different classes, i.e. rhodopsin (for a review, see 66), secretin (for a review, see 67), 

glutamate68 and Smoothened69, in complex with different G protein partners (G11, Gs, Gi/o). 

More recently, cryoEM structures were obtained for receptors in complex with arrestins70–72 or 

even with both G proteins and arrestins73. All these structures provide a detailed description of 

the three-dimensional arrangement of the complexes as well as the changes in receptor and 

signaling protein conformation associated to the activation process. 

Besides the transmembrane domains, GPCRs include a significant proportion of 

residues that lie out of the lipid bilayer. These include the N- and C-terminal domains as well 

as in the intra- and extracellular loops. In contrast to our initial view, these regions are not to 

be considered as ancillary domains. Depending on the class of GPCR considered, they range 

from ca. 40% (rhodopsin-like receptors) to ca. 70% (glutamate) of the total receptor 
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residues.74 However, so far, their structural arrangement remains obscure. Indeed, both their 

conformational dynamics and their modification for crystallization purposes (truncation of the 

N- and C-terminal regions, fusion of protein partners in the intracellular loops or N-terminus) 

precluded their observation in most of the GPCR crystal structures. This dynamic character 

also makes the use of modeling methods uncertain. In a few crystal- and cryoEM structures of 

the receptor:effector complexes, some of these regions are visible, however, in particular 

when their dynamics is restrained because of the direct interaction with the signaling partner 

(see below). 

GPCRs transmit an information through concerted changes in their conformation. The 

three-dimensional structure of receptors in complex with antagonists, agonists and signaling 

proteins provided a detailed description of these changes. These include large amplitude 

motions in the TM helices as well as specific conserved microswitches. However, the 

diversity in signaling properties of GPCRs strongly suggests that this process can be hardly 

accounted for with the limited number of conformational states described in the crystal and 

cryoEM structures. Combination of computational and experimental approaches, including 

fluorescence and NMR, rather indicates that control and modulation of signaling involves a 

strong conformational plasticity GPCRs. The current model proposes that receptors explore 

complex conformational landscapes populated with multiple states, and that they adapt their 

shape in response to their environment through a series of conformational rearrangements that 

are central to the selective activation of downstream signaling partners.75,76 

2.3  Extramembrane regions  
As state above, a significant part of GPCRs lies outside the membrane. These include 

the N- and C-terminus as well as the intra- and extracellular loops connecting the TM 

segments. In the case of rhodopsin-like receptors, they represent about 40% of the total 

receptor residues. Initially, these loop segments were essentially considered as necessary to 

maintain the architecture of the receptor central core. This is the case, as they likely constrain 

the respective arrangement of the transmembrane helices,77 but not only. Indeed, in addition to 

their structural role, these regions are deeply involved in the functional properties of GPCRs 

and are subject to specific post-translational modifications that modulate GPCR function. As 

such these regions display some of the characteristics of intrinsically disordered regions 

(IDRs).  
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Fig. 2 Schematic representation of class A GPCR structural and functional organization. GPCRs are 
primarily organized in two kinds of domains, the ordered transmembrane helices and the dynamic extra- and 
intracellular loops and N- and C-terminal extensions. The general (but not restrictive) nature of PTMs (A) and 
binding properties (B) in the extra-membrane regions are indicated. 
 

2.3.1 Intrinsic disorder 

Using the FoldIndex program, Jaakola and co-workers62 concluded that these regions 

show the characteristic patterns of IDRs. Accordingly, in the case of the dopamine receptor 

for instance, the occurrence of repeats in the region encoding the third intracellular loop cause 

this region to have a high disorder index.78 Of importance, the amino-acid content in these 

unstructured regions is significantly different from that found in disordered proteins, with a 

particularly high content in basic (R, K) and histidine residues.62 This specific composition is 

probably directly related to the functional properties of these regions (e.g. interaction with 

signaling partners and scaffolding proteins). Interestingly, independently of their intrinsic 

properties, the structural and dynamics features of these regions also appear to be intimately 

linked to the dynamics of the transmembrane domains. For instance, the structural 

arrangement of the C-terminal domain of the β2-adrenergic48 or vasopressin79  receptors is 

dependent on the activation state triggered by pharmacologically distinct ligands. Specifically, 

biased ligands triggered a different arrangement of the C-terminal end of the receptor relative 

to the transmembrane domain. It is then tempting to speculate that the arrangement of the C-

terminal domain occurs as in concerted movement with the dynamics of the TM helices, 

ultimately modulating the interaction with cognate cytoplasmic proteins.  
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2.3.2 Post-translational modifications 

GPCRs undergo a full series of post-translational modifications (PTM) that primarily 

involve the unstructured extra-membrane domains, in particular the intracellular loops and C-

terminal domain. Initially considered as an ancillary process, PTM now appear as central to 

GPCR functioning and regulation. Accordingly, dysregulation of the PTM machinery has 

been linked to pathological conditions, e.g. nephrogenic diabetes insipidus80 or obesity81. The 

major GPCR modifications include glycosylation, ubiquitination, lipidation or 

phosphorylation, in addition to other far less described, more limited modifications (e.g. 

tyrosine sulfation). However, the impact of these modifications on the structure of GPCRs is 

largely unexplored, as most modification sites were removed in many structural studies, in 

particular in crystallization assays, to increase the homogeneity of receptor preparations. 

GPCR glycosylation has been recently reviewed in details.82 Briefly, glycosylation, and 

in particular N-glycosylation, essentially affects the N-terminal region of GPCRs and is 

primarily involved in their folding and transport to the cell surface.83–87 As such, it may 

indirectly affect signaling by modulating the number of receptors present at the cell surface. 

In addition, glycosylation can have a direct impact on receptor functioning. For instance, 

activation of the β2-adrenergic receptor by pathogens has been shown to involve traction 

forces on the receptor N-terminus via N-glycan chains.88 GPCRs can also be ubiquitinated, 

and ubiquitination has been proposed to regulate GPCR signaling through degradation of cell-

surface receptors.89 In addition, this modification could also directly impact on signaling, as 

demonstrated for instance in the case of CXCR4-dependent MAPK activation.90 Lipidation of 

GPCRs essentially involves addition of a palmitoyl chain on a conserved cysteine of the 

receptor C-terminus. This results in the anchoring of this region to the membrane, creating an 

additional intracellular loop. As such, it modulates the geometrical features of this region and, 

as a consequence, the receptor signaling and internalization properties.91 

Phosphorylation actually appears as one of the most important PTM in the context of 

GPCR-dependent signal regulation. This has pushed forward, during the last decade, the 

development of novel analytical techniques and strategies, based in particular on mass 

spectrometry and specific antibodies, to identify residues subjected to phosphorylation under 

a variety of conditions.92 Phosphorylation occurs in response to agonist-mediated receptor 

activation and is carried out by different classes of kinases. These essentially include second-

messenger dependent protein kinases (PKA, PKC), and GRKs. Both phosphorylate specific 

Ser and Thr residues on the extra-membrane, intracellular regions of GPCRs. We will put the 
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focus here on GRKs, as they appear as a class of kinases that phosphorylate GPCRs 

specifically.   

 

 
 

Fig. 3 Importance of the conserved αN domain and AGC C-tail in GRK activation. (A) GRKs share a 

common structural organization. Residue numbers correspond to those of human GRK6.108 The N-terminal 

domain (αN, red) is followed by a regulator of G-protein signaling homology domain (RH, dark grey) 

surrounding a kinase domain (KD, light gray) and its AGC C-tail (orange). The C-terminal domain (CT, green) 

contains elements for membrane targeting specific to each subfamily.56 (B) BLASTp alignment and 

conservation of the αN and the AGC C-tail domains of human GRK100,105 (sequence numbering based on GRK6 

and Uniprot codes of human GRKs are in brackets). The αN helix and the AST region are shown below the 

alignment. (C) Structures of GRK6 in open (PDB 2ACX, on the left)108 and closed (PDB 3NYN, on the right)102 

conformations. The αN domain and the AGC C-tail are represented in cartoon, the numbering on the left figure 

correspond to the end and the beginning of segments 1-23 and 475-491 which are absent of the electron density. 

C-terminal domains (CT) are not represented. The active site (green circle) contains adenylyl-imidodiphosphate 

(AMP-PNP, ATP analogue) and sangivamycin (nucleoside analogue, kinase inhibitor) (in purple) in open and 

closed conformation, respectively and its closure is represented by the angle between the N- and C-lobes of the 

kinase domain. The RH/KD interface containing the ionic lock (blue circle). 
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 GRK is a family composed of seven members (1 to 7) that are subdivided into three 

subfamilies (GRK1/7, GRK2/3 and GRK4/5/6).93 They share a common structural 

organization (Fig. 3A) composed of a specific and conserved N-Terminal domain (αN), a 

discontinuous Regulator of G-protein signaling Homology domain (RH), a kinase domain 

(KD) belonging to the family of AGC kinases, and a C-terminal domain (CT) containing 

specific structural elements to each subfamily that is responsible for their membrane 

targeting.56 GRKs require induced conformational rearrangements to become active (Fig. 3C). 

In the inactive conformation of GRKs the two N- and C-lobes of the kinase domain are 

splayed apart (‘open conformation’) compared to active AGC kinase structures (‘closed 

conformation’),94,95 and is stabilized by the interaction between the RH and the kinase 

domains.96,97 The activation of GRKs is promoted by docking to activated GPCRs.98,99 Indeed, 

in the model of GRK5/β2AR complex,97 the binding of β2AR induce GRK5 conformational 

changes caused by the disruption of a transient ‘ionic lock’ between the RH and the kinase 

domains, and by the closure of the catalytic domain (‘closed conformation’). The stabilization 

of this active state of GRKs involves two conserved elements (Fig. 3B): the C-tail extension 

of the kinase domain (AGC C-tail) and the αN domain. During the activation and thus the 

closure of the kinase domain, the central part of the AGC C-tail (called the active site tether 

(AST)) and the αN domain become more ordered.100–102 Indeed, the αN domain that folds in 

an αN-helix and the AGC C-tail bring together the N- and C-lobes of the KD, stabilizing it in 

its ‘closed’ and active conformation (Fig. 3C).96,101,102 We see here again, the functional 

importance of the disorder to order transition for the kinase activation and receptor 

phosphorylation.103–107 

Phosphorylation of GPCRs essentially occurs in their third intracellular loop and C-

terminal region, two regions that are central to the coupling to signaling partners. It is 

required for recruitment of arrestins, which ultimately leads to either receptor internalization 

or activation of alternate signaling pathways. Importantly, besides modulating the interaction 

with signaling partners, phosphorylation of the GPCR C-terminal tail could also affect the 

way it interacts with the membrane, and therefore its structural and dynamics features.109 Even 

if it was initially considered that the most important feature for arrestin recruitment was the 

number of the phosphate residues and their spacing in the C-terminal domain,110 GPCR 

phosphorylation appears to be a more complex process. First, the different GRK isoforms 

may regulate distinct, specific physiological functions of GPCRs.111 In addition, these proteins 

appear to be able to specifically interact with different conformational states of the receptors. 

For instance, GRK2 can phosphorylate the D2 dopamine receptor without G protein 
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activation.112 In this context, an emerging model is that of the “phospho-barcode” that states 

that distinct receptor conformations trigger interaction with different GRKs that in turn 

phosphorylate the receptor at distinct sites, establishing a “barcode” that ultimately dictates 

the functional outcome. This model was established by R. Lefkowitz and co-workers for the 

β2-adrenergic receptor.111 It has since then been extended to a full series of GPCRs including 

GPR120113 and the ghrelin receptor114. 

2.3.3 Ligand binding and coupling to signaling partners 

As stated above, besides being the site for PTMs, in particular phosphorylation, the 

extramembrane regions of GPCRs display one of the main characteristics of intrinsically 

disordered regions, i.e. interaction with cognate protein partners. This is the case, at least to 

some extent, for the extracellular regions. First, the extracellular loops can regulate the 

constitutive, ligand-independent, activity of some GPCRs such as the ghrelin receptor115 and 

the orphan receptor GPR52116. In the latter case, the second extracellular loop directly plays 

the role of an intrinsic agonist for this otherwise orphan receptor. In addition, these regions 

can participate to ligand recognition and binding. This can occur through a direct interaction 

with the ligand, as demonstrated in particular for the chemokine117–119 or adenosine120 

receptors. They can also play the role of a funnel delineating the binding pathway of ligands, 

as shown for the leukotriene121 and ghrelin122 receptors. Finally, the extracellular loops, in 

particular ECL2, can also affect indirectly the binding parameters for ligands by playing the 

role of a lid that precludes dissociation of compounds from their binding site within the 

transmembrane domains.123 

Such a role as a “binding platform” for associated partners is even more relevant for the 

intracellular parts of GPCRs. First, the C-terminus appears to serve as a platform for 

assembling a full series of scaffolding proteins, in particular the so-called GPCR Interacting 

Proteins (GIPs), through the recognition of small motifs on the C-terminal regions of GPCRs. 

This leads to the formation of large functional protein:protein complexes involved in 

signaling. The role of these assemblies is particularly well-documented in the physiology and 

pathology of the central nervous system.124 The intracellular loops of GPCRs are also 

involved in the interaction with G proteins. Initially demonstrated through mutagenesis and 

chimeric exchange experiments,125 this has been further directly visualized in the cryoEM 

structures of the receptor:G protein complexes. Although the ICL3 loop is poorly resolved in 

some structures, direct contacts between the three intracellular loops and the G protein α and 

β subunits have been observed in essentially all these structures, as reviewed recently.126 In 
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the same way, hydrogen/deuterium exchange mass spectrometry experiments with the 

isolated β2-adrenergic receptor and Gs indicated a specific involvement of the receptor 

intracellular loops in the interaction with the G protein, with specific residues in the second 

loop playing a central role in the stabilization of the complex between the β2-adrenergic 

receptor and nucleotide free Gs.127 The intracellular loops and C-terminal end are also major 

players in the interaction with arrestins. As stated above, the GPCR C-terminus is selectively 

phosphorylated by GRKs, and this PTM is the starting point for recruitment of arrestin and 

further activation of this protein.  

Arrestins are briefly described here as, in contrast to G proteins, their structural features 

and conformational changes upon coupling to GPCRs may share some characteristics with 

IDPs. Arrestins are a family of increasing importance in GPCR signaling. This family is 

composed of four members (arrestin1128,129, arrestin2130, arrestin3131 and arrestin4132) that share 

a similar 3D structure (Fig. 4). Arrestins encompass a N- and C-terminal lobe around a polar 

core composed of charged amino acids: Asp26, Arg169, Lys170, Asp290, Asp297, and 

Arg393 (numbering based on arrestin2). Arrestin inactive conformation is maintained by a 

salt bridge between Arg169 and Asp290,133 and a ‘three-element’ (TE) interaction constituted 

of an α helix (H1), a β strand (BI) in the N-terminal lobe and a β strand (BXX) in the C-tail of 

arrestin (Fig. 4).134 The formation of a β-sheet between the two strands of the TE lays this 

inactive state in a ‘closed’ conformation. Upon binding of the phosphorylated GPCR C-

terminal domain, arrestin undergoes a conformational change to its active state135–139: (1) a 

twisting of the N and C-lobes (∼20°); (2) a movement of the finger loop (that can be inserted 

in the core of the receptor, see below) and of the middle loop; (3) a release of arrestin C-tail; 

(4) a disruption of the polar core and (5) a conformational change of HI, BI and BII. The 

release of the flexible arrestin C-tail during its transition from an inactive to an active form, 

allows an exposition of binding sites for its partner interactions that trigger downstream 

signaling pathways.140 More precisely, arrestin C-tail regions, which are present in the 

electron density of the inactive state X-ray structure (residues 354-357 and 383-393) (Fig. 4), 

are conversely absent in the active form X-ray structures (complex of arrestin2 cross-linked 

with a synthetic phosphorylated peptides mimicking the C-terminal domain of V2137 or 

GPCR-arrestin complexes71–73,141). Indeed, in this active ‘open’ state, the disruption of TE 

interactions and the release of the C-tail bring some disorder and flexibility in the complex. 

The aforementioned exposed arrestin C-tail’s binding sites allow the interaction with 

downstream effectors such as clathrin and AP2 (Fig. 4), which are important for the 
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internalization of GPCR.140,142 These binding sites are conserved motifs, where the AP2 

binding site is 391FARQRLK397,140,143 and the clathrin binding site motif is LøXø(D/E),142 

(where ø corresponds to a hydrophobic residue and X to any polar residue). A second clathrin 

binding motif (L/I)2GXL has been found in a flexible loop of the C-terminal lobe (Fig. 

4).142,144 It was suggested that this second clathrin binding site, which is overlapped with a 

membrane binding site, would enhance the stability of the interaction between the receptor 

and its partner arrestin.144 

 

 
 
Fig. 4 Common structural organization of arrestin family (PDB:1G4M/X-ray structure of arrestin2 inactive 
state of 130). Arrestin family shares similar elongated shape and present two concave lobes mostly composed of 
antiparallel ß-sheets: a N-terminal lobe (blue; residues 1-172) and a C-terminal lobe (light blue, residues 185-
353), linked by a hinge in green (residues 173-184); flexible loops: finger loop (brown), middle loop (orange) 
and lariat loop (light orange). The polar core is highlighted by a red circle, mostly composed of charged amino-
acid (in red, main and side chain of polar core residues) and the three-elements (TE) interaction highlighted by a 
grey circle involving β-strand 1 and 20 (BI and BXX) and α-helix 1 (HI). Arrestin C-tail (pink, residues 354-
418) encompasses β-strand 20 (BXX) (which interact with the N-terminal lobe in the ‘closed’ state). Concerning 
non-visual arrestin isoform, its C-tail contains AP2 binding site (391FARQRLK397; not present in the structure) 
and one clathrin binding site (376LIELD380; not present in the structure), the second clathrin binding site is 
localized in a flexible loop of C-terminal lobe (black circles).142 

 

With regard to regions of GPCRs involved in the interaction with arrestins, in the recent 

cryoEM structures of the neurotensin receptor in complex with arrestin, the receptor C-

terminus binds the N-terminal lobe of arrestin, a region that contains all the basic amino-acids 

that interact with phosphorylated residues of the receptor.71 In the same way, in the complex 

between the muscarinic receptor and arrestin, the arrestin N-lobe engages the phosphorylated 

V2R C-terminal domain of the chimeric receptor, with critical phosphorylated residues of the 
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receptor in interaction with basic amino-acids of arrestin.72 These features are fully consistent 

with the previous crystal structure of arrestin associated to a phosphorylated peptide from the 

vasopressin V2 receptor C-terminal domain.137 In this structure also, the peptide phosphates 

directly interact with arrestin through charge-charge interactions. Of importance, in these 

cryo-EM structures, not only the C-terminus of the receptors is in interaction with arrestin, but 

also the intracellular loops participate to complex formation. In the case of the neurotensin 

receptor, arrestin engages the central core and third intracellular loop of the receptor in 

addition to its C-terminus.71 In the same way, arrestin interdomain loops engage the receptor 

core and its second intracellular loop in the complex with the muscarinic receptor.72 Such an 

interaction pattern is fully consistent with the model where arrestins were proposed to interact 

with GPCRs in a “two-site” manner, with a first binding site corresponding to phosphorylated 

C-terminus of the receptors and the other to the GPCR central core, including the intracellular 

loops.73,145 Importantly, each of these interactions could be associated to a distinct functional 

outcome, thus expanding the repertoire for modulating GPCR-mediated signaling. 

2.4  Therapeutic implications 
So far, most if not all therapeutic interventions targeting GPCR involved the ligand 

binding sites, either orthosteric or allosteric. However, the unstructured parts of GPCRs can 

also be responsible for disfunction of the signaling systems, as evidenced by the fact that 

several diseases are associated to mutations in the extra- or intracellular, unstructured parts of 

the receptors.146 It cannot be excluded that this effect is due to the impact of such mutations on 

the three-dimensional arrangement of the receptor, e.g. by affecting the relative arrangement 

of thee TM helices. However, these mutations could also alter the interaction pattern with 

specific signaling partners, as these are all regions that are responsible for protein:protein 

contacts in the signaling complexes. The extra-membrane regions of GPCRs are far less 

conserved than the transmembrane domains. Hence, this could pave the way for more specific 

interventions affecting protein:protein contacts in the signaling complexes. However, so far, if 

one excepts the pepducin approach that is based on peptides mimicking to intracellular loops 

of GPCRs and has been proposed for treating some physiological dysfunctions,147,148 the 

regions lying outside the membrane have been largely unused in terms of therapeutical 

applications. Hence, protein:protein interaction (PPI) inhibitor strategies aimed at exploiting 

the structural and sequence diversity of these regions to regulate the composition and 

functioning of the signaling complexes could constitute an original, alternate, avenue in drug 

discovery.  
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2.5  Conclusion 
In addition to many GPCR ligands where conformational disorder is an intrinsic feature 

of the binding process,122,149,150 receptors themselves include a substantial number of their 

residues outside the membrane that present many of the characteristic of intrinsically 

disordered regions (IDRs). These include lack of defined structure and high conformational 

dynamics, interaction with multiple protein components of the signaling complexes, and post-

translational modifications that specifically regulate these interactions. As such, they 

represent major players in the signaling processes. However, so far, their structural and 

functional properties are largely unexplored, in particular because of these conformational 

dynamics and labile structural and functional elements. Hence, future research in molecular 

pharmacology is also to be directed to illuminate our present understanding of the structural 

and functional relevance of GPCR loops and N- and C-terminal extensions in the context of 

signaling.  

3. Nuclear receptors and their transcriptional coregulators 

3.1 Biological context 
Human nuclear receptors (NRs) constitute a family of 48 transcription factors that plays 

an essential role in regulating the expression of a multitude of genes that control most of 

fundamental biological processes such as development, organ homeostasis, metabolism, 

immune function, or reproduction.151–153 This regulatory capacity of NRs occurs through their 

ability to recognize specific DNA sequences promoters of their target genes and their 

relationships with the general transcription machinery. NRs respond directly to a large variety 

of hormonal and metabolic substances that are hydrophobic, lipid soluble, and of small size 

(e.g. retinoic acid, estradiol, thyroid hormone, vitamin D3, etc.). They are also the target for 

numerous post-translational modifications including phosphorylation, SUMOylation, and 

acetylation.154 They have a conserved modular structure with a variable unstructured N-

terminal domain (NTD) that hosts the activation function 1 (AF-1), a well conserved zinc-

finger DNA-binding domain (DBD) and a C-terminal moderately conserved ligand-binding 

domain (LBD) (Fig. 5). This multifunctional C-terminal domain (CTD) is responsible for 

ligand binding or dimerization and contains a ligand-dependent activation function (AF-2), 

which corresponds to transcriptional coregulator interaction surfaces that can be modulated by 

natural, pharmacological or environmental ligands.155–157 The LBD also contributes to the 

modulation of the N-terminal AF-1 through interdomain crosstalk so that both NTD/AF-1 and 
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CTD/AF-2 domains can recruit a range of coregulatory proteins and act individually or in a 

synergistic manner.158–161 Most NRs bind to DNA as homodimers or as heterodimers with the 

retinoid X receptor (RXR), the obligate heterodimerization partner of more than one third of 

the NR family members (Fig. 5).   

 
Fig. 5 Common organization of nuclear receptors. (A) Functional organization of NRs. The N-terminal 

domain (NTD) contains a ligand-independent activation function (AF-1). The DNA-binding domain (DBD) 

mediates sequence-specific DNA recognition. The ligand-binding domain (LBD) mediates ligand binding, 

dimerization and a ligand-dependent transactivation function (AF-2). The hinge region corresponds to a linker 

allowing the proper orientation of the DBD and LBD within DNA-bound dimers. (B) Crystal structure of 

RARβ/RXRα heterodimer bound to DNA.162 LBDs (dark and light blue) and DBDs (dark and light green) are 

represented as ribbons. Helix H12 (AF-2) of each monomer is highlighted in purple. The coactivator peptides 

interacting with the heterodimer are drawn in yellow and the agonist ligands (9-cis-RA) in each subunit are 

drawn as pink sticks. Dotted lines denote regions with unresolved structures. 

 

The activity of NRs depends on a diverse group of proteins termed “coregulators” that 

affect the transcriptional machinery in different ways and more than 350 coregulators have 

been reported to date. NRs may act either as repressors or activators of gene transcription 

depending on their ligation status that in turn determines the ability of DNA-bound receptors 

to recruit so-called “corepressors” or “coactivators” to target gene promoters. Coactivators 

and corepressors are in fact general terms defining the components of high molecular weight 

coregulator complexes.163,164 They correspond to large groups of proteins with a diverse range 
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of protein activities and enzymatic functions whose interactions with NRs and many other 

transcription factors provide a complex regulatory framework for controlling the transcription 

of target genes. Coactivator complexes contribute to the enhancement of transcription by 

acetylating histones, a process that plays an important role in the opening of chromatin during 

transcription activation, whereas corepressors display the opposite activity by recruiting 

histone deacetylases. Coactivator recruitment is usually ligand dependent, whereas 

corepressors interact in most cases with unliganded receptors. Coactivators can be subdivided 

into two groups. Secondary coactivators represent a subgroup of molecules that are 

constituents of multisubunit coactivator complexes and that also contribute to the 

enhancement of NR-mediated transcription, but that do not directly contact the NRs. Primary 

coactivators, such as those of the SRC-1/TIF-2/RAC3 (p160) family, mediate the interaction 

of coactivator complexes with NRs. CBP, p300, P/CAF, and some p160 coactivators 

themselves are reported to act as histone acetyltransferases (HATs).165,166 The corepressors 

NCoR and SMRT have been shown to reside in, or recruit, large complexes with deacetylase 

activity that maintain histones in a deacetylated form, a status that is associated with silent 

regions of the genome.167,168 Therefore, histone acetylation and deacetylation shuffle 

nucleosomal targets between a condensed and relaxed chromatin configuration, the latter 

being requisite for transcriptional activation.   

In the absence of their cognate ligand, some NRs are located in the nucleus, bind to the 

DNA response elements of their target genes, and recruit corepressors, whereas others are 

located in the cytoplasm in an inactive complex with chaperones. Ligand binding induces 

major structural alterations of receptor LBDs leading to (1) destabilization of corepressor or 

chaperone interfaces, (2) exposure of nuclear localization signals allowing nuclear 

translocation and DNA binding of cytoplasmic receptors, and (3) recruitment of coactivators 

triggering gene transcription through chromatin remodeling and activation of the general 

transcription machinery. Both NRs and their coregulators have been shown to frequently 

contain large intrinsically disordered regions that mediate their mutual interaction and play a 

pivotal role in transcription regulation. These unstructured proteins or domains may be 

functional, undergoing transitions to more ordered states or folding into stable secondary or 

tertiary structures upon binding to DNA response elements and protein partners. Below we 

review recent studies that shed light on the mechanisms governing signaling by these flexible 

domains and how they can be exploited for the development of new endocrine-based 

therapies.         
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3.2 The NTD/AF-1 of NRs and its interactions with transcriptional 

coregulators 
The NTD of NRs harbors an autonomous transcriptional activation function termed AF-

1 that, when linked to a heterologous DNA-binding domain, can activate transcription in a 

constitutive manner, however, in the context of full-length receptors AF-1 is silent in the 

absence of ligand,169,170 suggesting an allosteric communication between the N- and C-termini 

of NRs. When comparing NRs from different sub-families, the sequence of NTDs is highly 

variable, revealing a very weak evolutionary conservation. Their variable length, from a few 

residues like in the constitutive androstane receptor (CAR, 10 amino acids) or the vitamin D 

receptor (VDR, 24 amino acids) up to more than 500 residues in steroid hormone receptors 

such as the glucocorticoid receptor (GR, 420 amino acids), the androgen receptor (AR, 558 

amino acids), the progesterone receptor (PR, 566 amino acids), and the mineralocorticoid 

receptor (MR, 602 amino acids), also suggests distinct transcriptional activities and biological 

roles.171 Interestingly, the length of this domain has been positively correlated with the 

activity of the AF-1 for different members of the NR superfamily,172 and logically, the NTD 

accounts for a major proportion of the total transcriptional activity of all steroid hormone 

receptors where AF-1 is the predominant activation domain over that of AF-2 lying in the C-

terminal LBD.161,173–176 Moreover, the NTD is subjected to alternative splicing and differential 

promoter usage so that the majority of NR isoforms differs in their N-terminal region. 

Notably, the production of translational isoforms differing only in the length of the disordered 

region was recently proposed as a mechanism by which NRs such as the GR can tune their 

transcriptional activity.177,178 The NTD through its activation function AF-1 is involved in 

multiple protein-protein interactions that are critical for the modulation of the transcriptional 

activation of target genes in a cell-specific and promoter dependent manner.171,179–182 As with 

the AF-2 domain, coactivators such as CREB-binding protein (CBP) or the p160 proteins 

SRC-1 and TIF-2 can also interact with and increase the transcriptional activity of the AF-1 

domain.183–185 However, unlike the LXXLL (X stands for any amino acid) binding motif for 

AF-2 interactions (see below for more details), no such conserved motif is known for the AF-

1 binding. Note however that the NTD of AR contains the FXXLF motif (amino acids 23–27) 

which was shown to mediate a physical interaction between the AF-1 and the AF-2.172 In the 

majority of NRs, the NTD is subjected to post-translational modifications, such as 

phosphorylation and sumoylation, that play essential roles in regulating the receptor 

transcriptional activities.186–188 
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In contrast to the DBD and the LBD bearing the C-terminal AF-2, and due to the 

intrinsically disordered nature of the NTD, the structural basis for AF-1 activity are not very 

well defined and only now begin to be revealed. Structural disorder is a key structural feature 

for transactivation domains in members of the NR superfamily50,176,178,187,189,190 as well as many 

other transcription factors191 so that their interactions with transcriptional coregulators are 

among the best characterized examples of complexes involving IDPs.192–194 The structural 

plasticity of these domains is thought to allow (1) sampling the environment until appropriate 

binding partners are found and (2) specific interactions through induced conformational 

changes upon binding to targets, to (3) result in transient/low affinity complex formation and 

dynamic signaling regulation and (4) facilitate post-translational modifications.45,195 

Knowledge about NR NTDs was hampered by the technical challenges of characterizing 

IDPs.196,197 Only limited structural information was available from circular dichroism (CD) 

spectra and chemical shifts from nuclear magnetic resonance (NMR) spectroscopy showing 

that isolated NTDs are largely unstructured with poorly resolved chemical shifts, and with a 

high random coil content and minimal secondary structural elements.182,198–200 In the last 

decade, complementary biophysical techniques such as small-angle X-ray scattering (SAXS), 

fluorescence resonance energy transfer (FRET), and hydrogen exchange mass spectrometry 

(HDX-MS) in combination with computational approaches such as molecular dynamics (MD) 

simulations have confirmed the previous observations and allowed studies in the context of 

full-length receptors, thereby revealing unforeseen structural features of NR NTDs. 

Such analyzes of full-length peroxisome proliferator-activated receptor gamma 

(PPARɣ),202 PR189 and retinoid X receptor alpha (RXRα)203,204 have further revealed that the 

disordered nature observed for the isolated NTDs is also exhibited in the context of intact 

NRs, indicating that this property is not abrogated via interdomain interactions. Experiments 

performed in the presence of secondary structure (α-helices and β-strands) stabilizing agents 

such as the osmolyte trimethylamine-N-oxide (TMAO) or the hydrophobic solvent 

trifluoroethanol (TFE),198,200,205–208 interacting proteins,161,182,184,189,206,208–210 or DNA50,199,211,212 

clearly demonstrated that the NTDs undergo partial folding under these circumstances and 

adopt some degree of α-helical conformation. Furthermore, these conformational alterations 

were shown to have functional consequences since when residues involved in the formation 

of putative α-helices were mutated, the ability of the AF-1 to form such secondary structures 

was remarkably reduced and the transactivation activity of this domain decreased, suggesting 

that the formation of α-helices is important for AF-1 to mediate gene activation172,200,206,213,214 

(Fig. 6). This was best illustrated for the case of PR whose NTD contains a large content of 
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random coil and is capable of adopting secondary helical structure in the presence of TMAO. 

HDX-MS confirmed the high disorder in the NTD within the context of full-length PR, but 

also showed that it can adopt a more stable tertiary folding through a direct interaction with 

the TATA-binding protein (TBP).189 Mapping experiments and point mutation analysis 

revealed that a central region of the NTD between residues 350 and 428 appeared to be 

sufficient for inducing secondary structure in the presence of TBP. These data suggested that 

short helical element(s) embedded within the larger disordered NTD may constitute a 

recognition site for TBP that can induce its folding upon binding. Beyond the formation of 

secondary structures upon interaction, it was further shown that while mostly disordered, the 

NTD of NRs might be more compact than expected for an IDP and exist in a premolten 

globule conformation,215,216 and that long-range metastable contacts could explain this 

compactness. A recent study of the estrogen receptor alpha (ERα) using SAXS, hydroxyl 

radical footprinting and MD simulations to generate a representative ensemble of structures 

identified a constitutive intra-domain interaction between two small 5-residue motifs centered 

around residues L33 and S118 in the NTD of this receptor.217 In full agreement, the addition 

of a chemical denaturant induced a structural expansion as indicated by the significant 

increase of the radius of gyration of the ERα NTD monitored by SAXS.   

 
Fig. 6 NR NTDs respond to various stimuli. The non-conserved NTD of NRs is disordered but can acquire 

higher order structure in response to coregulator interaction, DNA binding, ligand binding to LBD, post-

translational modifications (PTMs) and inhibitor binding. The NTD can adopt a multitude of conformations in 

response to these different signals, which ultimately translates into NTD-dependent transactivation of target 

genes specific of each receptor (adapted from 201).  
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Post-translational modifications such as phosphorylation elicit diverse effects on the 

biological functions of IDPs by altering the energetics of their conformational landscape and 

by modulating interactions with other cellular components191,218 through stabilization and/or 

induction of secondary structural elements219–221 (Fig. 6). Accordingly, most of the 

functionally known sites subjected to post-translational modifications in NRs are located in 

their NTDs, as for example in GR whose five phosphorylable serine residues are found in the 

NTD. In full agreement, the phosphorylation on S203, S211 and S226 of GR has been shown 

to induce conformational rearrangements leading to significantly enhanced AF-1-mediated 

transcriptional activity in a phosphorylation site-dependent manner.209,222,223 Along this line, 

Peng and collaborators showed that mutation of S118, involved in a metastable contact with 

L33 in the NTD of ERα (see above), by the phosphomimetic aspartate residue (ERαS118D 

mutant) induced an expansion of the protein and increased the binding affinity to TBP, thus 

suggesting possible disruption of the long-range contact and a possible link between 

phosphorylation, conformational change of the AF-1 and transcription.217 Interestingly, 

phosphorylation of ERα at S118 was previously shown to induce chemical shifts that 

propagate throughout the NTD and allows recruitment of the peptidyl prolyl cis/trans 

isomerase Pin1. Subsequently, the cis-trans isomerization of P119 caused by Pin1 was found 

to create additional local structural changes, as revealed by NMR, leading to the enhancement 

of ERα transcriptional function.180 Another recent study on the NTD of AR revealed that its 

interaction with the subunit 1 (RAP74) of the general transcription factor TFIIF is mediated 

by the sequence 423-446 within the AF-1.224 Interestingly, further stabilization of the α-

helical structure of the motif by using stapled peptides, together with phosphorylation of 

residue S424 dramatically increased the binding affinity to RAP74. Reminiscent of 

observations made on other IDP systems, phosphorylation may thus regulate NR functions by 

affecting the conformational dynamics of the NTD, leading to enhanced transcriptional 

activity.225,226 In this respect, a mechanism for the interaction of disordered domains such as 

the NTD of NRs has been proposed according to which, in a first step, post-translational 

modifications such as phosphorylation would change their net charge thereby allowing weak 

polyelectrostatic interactions and, in a second step, hydrophobic interactions would direct the 

formation of a more stable complex where the activation domain would adopt a folded 

conformation for optimal interaction.227,228 
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3.3 Transcriptional coregulators and their interaction with the CTD/AF-2 

of NRs 
Like many proteins in signaling pathways, coregulators are large proteins belonging to 

the class of intrinsically disordered proteins that are functional despite a lack of stable three-

dimensional structure. They act as platforms where multiple proteins attach to perform 

activities linked to gene transcription.229,230 They interact with NRs through their Nuclear 

Receptor Interaction Domain (NRID) and recruit additional proteins to form either coactivator 

or corepressor complexes231 (Fig. 7). Strikingly the intrinsic disorder of NRIDs is common to 

many other transcription factor interaction motifs located in these coregulator proteins.232,233  

 

 
 

Fig. 7 Schematic representation of main transcriptional coregulators in interaction with nuclear receptors. 

(A) SRC-1, SRC-2/TIF-2 and SRC-3/RAC3 share a common organization. They have a basic helix-loop-

helix/Per-ARNT-Sim homologous domain (bHLH/PAS), and a nuclear receptor (NR) interacting domain 

(NRID) with three LXXLL motifs critical for ligand-dependent interaction with NRs. The two activation 

domains AD1 and AD2 are located in the C-terminus where AD1 is responsible for interaction with the general 

transcriptional machinery through CBP and p300, and AD2 interacts with the histone methyltransferases 

coactivator-associated arginine methyltransferase 1 (CARM1). MED1/TRAP220 contains two NR boxes in its 

central NRID. PGC-1 contains three LXXLL motifs responsible for specific interaction with NRs. Other 

domains are an activation domain (AD) involved in binding to other coactivators, a repression domain (RD), an 

arginine-serine-rich domain (RS) and a RNA recognition motif (RRM). (B) The two corepressors NCoR and 

SMRT have common functional domains: C-terminal CoRNR boxes 1, 2 and 3 included in the NRID; the three 

repression domains (RDI, RDII and RDIII) that harbor intrinsic repression activity when tethered to the DNA-

binding domain of GAL4 and two SANT domains.  
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Most of the coactivator complexes recruited by NRs do so through a conserved motif 

with the sequence LXXLL (the so-called NR box).44 These LXXLL motifs form amphipathic 

α-helices that are responsible for direct association with NRs by recognizing a hydrophobic 

patch on the surface of their LBD, the structure of which is stabilized by the binding of 

agonist ligands. Shortly after the identification of the NR box, an analogous sequence motif 

(L/IXXI/VI or LXXXI/LXXXI/L) was identified in corepressor proteins.234,235 This motif has 

been termed the CoRNR box and adopts a longer amphipathic helical conformation than the 

LXXLL motif. Crystal structures have demonstrated that peptides corresponding to NR or 

CoRNR boxes bind to the same hydrophobic groove on LBDs and therefore their recruitment 

is mutually exclusive.236–239 The disordered NRID of coactivators and corepressors typically 

contains multiple NR and CoRNR boxes, respectively, connected by disordered linker regions 

(Fig. 7). These regions are thought to be important for NR interaction, NR selectivity, 

binding, and a full transcriptional response.240–242 Secondary structure and disorder prediction 

combined with computational data and in-depth biophysical and structural characterization by 

Size Exclusion Chromatography - Multi-Angle Light Scattering (SEC-MALS), CD, NMR 

and SAXS of various coactivator and corepressor NRIDs confirmed the intrinsic disorder of 

these regions34,243,244 (our unpublished results). In addition, these studies showed the existence 

of pre-formed secondary structure elements localized in evolutionary conserved regions 

corresponding to NR and CoRNR boxes34,243,244 (our unpublished results). These types of 

preformed secondary structures are usually important determinants for molecular recognition 

in IDPs.245,246 Of note, these transient secondary structures in the unbound states resemble the 

secondary structures in the complexes with NRs. In addition, partial structures have been 

observed in flanking regions of these motifs that could play a role in NR specificity237,247,248 
and transient intramolecular contacts could exist within these NRIDs.249 

The fact that coregulators contain multiple NR interaction motifs in a relatively close 

proximity, most of which appearing to be functional in terms of NR binding in vitro, brings 

up the still unsolved question of whether this multiplicity reflects redundancy or confers some 

specificity to the interface. Different structural studies showed that NR and CoRNR boxes are 

not equivalent in terms of NR affinity and specificity, which provide diversity and selectivity 

in the spectrum of NR/coregulator interactions for NR-specific responses upon specific ligand 

binding. For example, the crystal structure of PPARγ-LBD with a PGC-1 construct bearing 

both NR2 and NR3 boxes showed only one LXXLL motif (exclusively NR2) bound to 

PPARγ and the remaining portion of PGC-1 disordered.213 This NR2 motif is also the major 

PGC-1 binding site to ER and RXR.250,251 On the contrary, another study showed that the 
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hepatocyte nuclear factor-4 alpha (HNF4α) might present a lack of strict selectivity in the 

interaction with the coactivator PGC-1 since the crystal structure of HNF4α-LBD in complex 

with the NRID of PGC-1 comprising all three LXXLL motifs revealed that only one LXXLL 

motif is bound to the canonical binding pocket and does not correspond to a single sequence 

but to an averaged structure of the different LXXLL motifs.252 It was also discovered that two 

NRs, the retinoic acid receptor alpha (RARα) and Rev-erbα, that exhibit strong basal 

repressive activity, interact strongly with CoRNR1 but very weakly with CoRNR2, thanks to 

the formation of an antiparallel β-sheet of N-terminal residues of CoRNR1 with an extended 

β-strand of RARα and Rev-erbα.239,253 In addition, the differences in binding affinity of the 

different coregulator motifs to NRs induce directionality in the interaction of coregulators 

with NR heterodimers. Both receptors usually contribute to the interaction of the heterodimer 

with the coregulator through different thermodynamic mechanisms and to a different extent. 

Using a large set of biophysical and computational methods to study the interaction of 

RARα/RXRα heterodimer with the corepressor NCoR, we were able to show that although 

both NRs contribute to the interaction with the NRID in a cooperative manner, RARα plays a 

dominant role over RXRα.249 The HDX-MS analysis on the complex between the heterodimer 

VDR/RXR and the coactivator SRC-1 supported a model of synergistic binding of one 

molecule of SRC-1 spanning both NRs, facilitated in the presence of agonist ligands of each 

subunit.203 A combined NMR and HDX-MS analysis showed that all three LXXLL motifs 

within the SRC-2 NRID are involved or affected in the interaction with PPARγ/RXRα. One 

of the LXXLL motifs would bind to the RXRα AF-2 surface, most likely NR2 as it has the 

highest affinity for RXRα, while a second LXXLL motif would interact more weakly with the 

PPARγ AF-2 surface, and the third LXXLL motif could interact transiently with a region 

somewhere on the heterodimer LBD surface. Moreover, the conclusions drawn from this 

study suggested that ligand binding to RXRα would be the primary driver of SRC-2 NRID 

recruitment, even if both RXR and PPARγ agonist ligands contribute to enhance the SRC-2 

NRID interaction through different thermodynamic mechanisms.244 The observation that 

multiple NR interaction motifs within coregulators mediate cooperative binding to NR dimers 

was also made for homodimers, as exemplified by the interaction of SRC-1 with PPARγ 

homodimer where two motifs of SRC-1 make simultaneous contacts with both PPARγ 

LBDs.236 Moreover, a SAXS analysis showed how the binding of a single PGC-1 molecule to 

the coactivator groove on both LBD units of estrogen-related receptor gamma (ERRγ) 

homodimer and the induced stabilization of the dimerization interface within the homodimer 

are facilitated by the intrinsic disorder in the coactivator.243 In other cases, the binding mode 



 27 

observed for different coactivators to heterodimers is in favor of a fully asymmetric 

interaction where binding occurs to a single LBD. SAXS studies showed that RARα/RXRα 

and VDR/RXRα heterodimers recruit one coactivator molecule (MED1 or SRC-1 NRID) 

asymmetrically by a only binding the partner of RXRα, the higher affinity of the coactivators 

for RARα or VDR rather than RXRα promoting this selective binding.254 A low-resolution 

SAXS analysis suggested also the same asymmetric binding of the entire NRID of SRC-2 to 

PPARγ/RXRα where the coactivator flexibly interacts only with PPARγ using one LXXLL 

motif,255 even if these data appear to be contradicted by de Vera and collaborators244. Several 

structural studies on the interaction of coactivators with homodimers revealed also an 

asymmetric binding, suggesting that negative cooperativity could be an essential mechanism 

controlling the binding of coregulators to NR homodimers. The coactivator SRC-1 seems to 

bind only to one monomer in RAR and ER homodimers,255 similarly as the one-monomer 

interaction of PGC-1 in the complex with ERRα and ERRγ homodimers,256 even if this last 

study appeared contradictory to 243. A recent study249 integrating information from different 

techniques into computational tool gave a new view on complexes between coregulator and 

NRs by showing that it exists an equilibrium between several conformational states of the 

complex formed by NCoR NRID and the heterodimer RARα/RXRα and that this equilibrium 

can be tuned by cognate ligands (Fig. 8). Such an approach could permit to reconcile the 

different views of complexes between coregulators and NR homo- and hetero-dimers and is 

the most promising strategy for the structural characterization of highly dynamic proteins and 

complexes in solution. Even if it is possible to define 3D molecular envelopes describing the 

low-resolution structures of flexible macromolecular assemblies involving IDPs,243,254,255,257–259 

such a structural description is probably not the most appropriate for a disordered protein or a 

dynamic complex with multiple conformations and orientations. Ensemble analysis of explicit 

or coarse-grained models provide a more accurate characterization of flexible macromolecular 

assemblies, particularly when combined with available structure coordinates of folded-

domains determined by X-ray crystallography and data affordable by NMR or by biochemical 

assays.34 

Various HDX-MS analyses of complexes between coregulators and NRs showed 

significant changes in the conformational mobility of both partners during complexation. 

There is not only a stabilization of the conformational mobility of NR LBDs243 but a disorder-

to-order transition is also often observed for the coregulator.243,249,255 Therefore, as for the AF-

1, complex formation induces an increase in total secondary structure or a ternary folding of 

the coregulator often leading to its compaction260 (Fig. 8). DNA may play a role in the 
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allosteric control of coregulator binding and dimerization in NR heterodimers. Differences in 

NR DNA response element sequences coming from different target gene promoters are 

thought to propagate an allosteric conformational change, initiating in the NR DBD and 

functionally transmitted to other domains of full-length NRs, affecting coregulator-NR 

interactions, in a ligand-specific manner.261 For example, DNA binding to VDR/RXRα 

significantly impacts the conformation of the AF-2 surface in the LBDs of both components 

of the heterodimer,203 modifying coregulator-NR interactions. DNA binding to PPARγ/RXRα 

stabilizes the conformation of the PPARγ LBD dimerization surface that interacts with the 

RXRα LBD, reduces the interaction conformational entropy of the complex to afford higher-

affinity binding of SRC-2 NRID, and affects ligand potency for SRC-2 recruitment.244 In 

addition, ligand binding to PPARγ/RXRα can allosterically affect the conformation of SRC-2 

loop regions between interacting LXXLL motifs, as well as the C-terminal extended region 

that does not directly interact with PPARγ/RXRα. Quantitative studies on other NRs provide 

support for this, where the binding of the SRC-1 NRID to TR/RXR is influenced by the 

nature of the DNA response elements,262–264 and where DNA and coregulator (SRC-2) 

cooperatively bind to the dimer of PR.265 However, the structural mechanisms by which 

ligand and DNA binding to NRs may synergize to bind coregulator proteins require more 

studies. 

 
Fig. 8 Model of interaction of coregulator NRID with NR homo- and heterodimers bound to DNA. The 

NRID of coregulators exists as an ensemble of conformers in equilibrium with each other, which are mainly 

unstructured with transient secondary structures corresponding to NR interaction motifs. In interaction with NRs, 

the NRID undergoes disorder-to-order transition and a dynamic complex with multiple conformations and 

orientations is formed and equilibrium between the different states of the complex can be influenced by ligands, 

NR mutations and other coregulators.  
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3.4 Importance of NR-NTDs in diseases and as pharmaceutical targets 
NRs are well-validated drug targets against cancers and metabolic diseases. The most 

widely used drugs target the structured pocket of the LBD to modulate coregulator interaction 

with the activation function AF-2. A number of studies has shown that the NTD of NRs is not 

only critical for several aspects of NR action but also can be exploited as drug targets, thereby 

opening new opportunities for endocrine-based therapies.266,267 Lack of significant sequence 

homology between NRs within the NTD also suggests that targeting this domain could give 

selective modulators of NRs, yielding fewer side effects. Traditional views of structural drug 

discovery would tend to consider such intrinsically disordered regions as unattractive targets 

due to their lack of structure and the concomitant lack of binding pockets for small molecules 

to interact. However, an analysis based on the structures of intrinsically disordered proteins 

when folded and bound to their partners suggests they actually have a higher proportion of 

potential cavities where a small molecule could bind than their folded counterparts.268 In 

addition, their inherent flexibility may allow them to conformationally adapt to complement a 

small molecule. Interestingly, the development of drugs that target disordered regions to block 

protein-protein interactions is evolving and has provided potential for small molecules to have 

a sustained therapeutic effect.269,270 Recent studies have shown that highly flexible and 

structurally dynamic NTD/AF-1 of steroid hormone receptors can be exploited as drug targets 

for endocrine-related cancers, thereby opening opportunities for development of novel small 

molecules that could block their interactions with coregulatory proteins outside the LBD/AF-

2.271 

Accordingly, few compounds that could find their application in the treatment of NTD-

related diseases have been recently identified. The osmolyte trehalose has been shown to 

induce compaction or structure formation in the intrinsically disordered NTD of GR and to 

promote functionally ordered conformation of this domain, with potential clinical 

implications for human diseases involving disordered GR NTD.223 A bisphenol A ester 

derivative (EPI-100) that specifically and covalently binds to the NTD of AR was shown to 

inhibit the constitutive activity of AR splice variants that lack the LBD and are suspected to 

be a cause of resistance in castration-recurrent prostate cancers (CRPC).224,272,273 EPI-100 is the 

first small molecule inhibitor that directly binds to an intrinsically disordered region of a NR 

to enter clinical trials. Biophysical analysis revealed that EPI-001 alters folding of AR-NTD, 

thereby blocking the interaction of the AF-1 with specific coregulatory proteins. Other 

molecules, such as niphatenones and sintokamides, targeting AR NTD have also high 
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potential as “selective androgen receptor modulators” to overcome drug resistance.266 More 

generally, exploration of the druggability of disordered regions of NRs and coregulators, 

although challenging since it precluded high throughput screening of small molecules, is 

highly promising.274 

The AR-NTD also plays a direct role in the pathogenesis of spinal and bulbar muscular 

atrophy (SBMA), a late-onset neuromuscular disorder which is caused by expansion of the 

polyglutamine repeat (polyQ) in this domain.275 The mechanistic basis of this phenomenon is 

a matter of intense debate, but it is widely admitted that polyQ expansion cause neurotoxicity 

because it decreases protein solubility and leads to the formation of aggregates.276 Later on, it 

has been shown that polyQ repeats undergo a length-dependent conformational change 

producing a highly insoluble structure when their lengths reach a threshold. In the AR, 

biophysical analyses have revealed that the helical propensity of polyQ tracts increases upon 

expansion, and above 37 residues, the AR variants form fibrillar cytotoxic aggregates.277,278 

Using an approach combining MD simulations, NMR, CD and quantum mechanics, it has 

been recently shown that the helicity of the repeat correlates with its length as a result of the 

accumulation of unconventional interactions where glutamine side chains are involved in a 

hydrogen bond with the main chain carbonyl of the residue at position i-4. In addition, the 

study revealed that the strength of these interactions depends on the nature the acceptor 

residue and on its propensity to form a hydrogen bond that is strongly influenced by its side 

chain. Thus, the secondary structure of polyQ tracts appears to depend on their local 

environment.279 These data provide a mechanistic basis of SBMA and a rationale for the 

development of therapeutic strategies to cure this disease.  

3.5 Liquid-Liquid Phase Separation (LLPS) in NRs 
Equivalently to other transcription factors, a recent report linked the ER NTD to the 

liquid-liquid phase separation (LLPS) phenomenon observed for this NR and provides a 

potential functional role for this domain.280 LLPS has emerged in the recent years as a key 

cellular mechanism to regulate multiple processes, including gene transcription.281 The 

formation of liquid droplets brings together many constituents through cooperative 

interactions of multivalent biomolecules, such as disordered proteins and nucleic acids, 

constituting membrane less compartments.282 Examples of such organelles in the nucleus 

include nucleoli, Cajal bodies and nuclear speckles.283 These organelles display properties of 

liquid droplets, such as fusion and fission, and their formation can be formally described as a 

LLPS normally used soft-matter studies. To our knowledge, only the NTD of the human 
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RXRγ has been described to form liquid droplets in vitro in the absence of other proteins.284 

For the previously mentioned ER case, liquid droplets were observed in the presence of the 

coactivator MED1 NRID, containing the LXXLL motifs. Interestingly, in the presence of the 

agonist (estrogen) the incorporation of the ER into the MED1 droplets is enhanced. These 

results suggest that transcription and incorporation into liquid droplets can be two facets of 

the same phenomenon.280 Taking into account that NTDs and coregulators are low-complexity 

disordered proteins, which can form multivalent interactions, it is tempting to hypothesize that 

NRs can be part of liquid droplets that compartmentalize the transcription machinery and 

enhance its efficiency. Notice that the RNA polymerase II can also phase separate in vivo 

through its C-terminal domain.285 In fact, these multiprotein condensates could explain the co-

localization of multiple enhancers, enabling the simultaneous activation of multiple genes and 

their concerted regulation.286 

4. Conclusions & Perspectives 
The first 3D structure determination of myoglobin in 1958 by Kendrew and 

collaborators287 in 1958 initiated the era of structural biology. A established paradigm 

defining that only well-structured proteins were functional had to be redefined when it was 

predicted that many proteins in eukaryotes were devoid of a globular form.31,288 The 

characterization of the first partly unfolded protein under normal condition in the cell by 

Kriwacki and collaborators,289 and the transcriptional coactivator, CPB and its paralog 

p300290,291 were the demonstration of the relevance of IDPs. 

In this chapter, the relevance of disorder is exemplified with two prototypical biological 

systems where the coordinated action of several players with different degrees of structuration 

is crucial for signaling and regulation. In these two biological machineries, GPCRs and NRs, 

we see the importance of disorder in orchestrating and modulating in a highly precise manner 

very complex biological processes. Indeed, the diversity of actions and outputs enabled by 

disorder is further increased thanks to PTMs and alternative splicing that widely occurs in 

these regions. These modifications modulate molecular recognition and specificity as well as 

define the cell type where their action should take place. 

GPCRs and NRs are major players in cellular communication activities. As such, they 

represent targets of paramount interest for drug candidates, with applications in many 

different physiopathological processes. Mainly organized as a globular core with disordered 

appendices, most pharmacological and structural analyses have focused so far on the globular 

domains, while disordered regions are far less well characterized despite the fact that they are 
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pivotal in coupling the signaling partners and regulating transcription. Further 

characterization of these domains is thus required to understand signaling and fully exploit 

their therapeutic potential. However, the structural characterization is still obscured by 

intrinsic properties of these disordered domains, including the absence of stable secondary 

structure elements, high conformational dynamics, the occurrence of tightly regulated PTMs 

and the interaction with many different proteins. In this chapter we have highlighted the 

importance of a better description of the disordered parts of these complex machineries to 

design better modulators/inhibitors of ordered/disordered interacting surfaces to target 

specific pathway and decrease deleterious side effects of pharmacologic drugs. 
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