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aUniv lyon, ENTPE, LTDS UMR CNRS 5513, Rue Maurice Audin - F-69518
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Abstract

The Algebra is exploited to study approximated responses of nonlinear dynam-

ical systems leading to tracing solutions of approximated bifurcation diagrams

associated with polynomial equations resulting from search of approximated pe-

riodic solutions of nonlinear ordinary differential equations. In detail via using

the Gröbner basis, a polynomial with the smallest degree in term of the approx-

imated amplitude of the systems, here the L2 norm of coefficients of truncated

Fourier series, is extracted where its coefficients are parameters of the systems

such as the frequency. The presented methodology permits to detect maximal

number of solutions even those which belong to isola of the frequency response

curves of the system.

Keywords: Euclidean division, Gröbner basis, L2 norm, polynomial

1. Introduction

The real dynamical behaviours of mechanical and structural systems are rep-

resented by nonlinear differential equations. For system with smooth nonlinear-

ities (very often polynomial nonlinearities) perturbation methods have been de-

veloped to trace system responses, from them we can refer to Krilov-Bogoliubov-

Mitropolski (KBM) [1, 2, 3, 4, 5, 6, 7, 8, 9], Harmonic Balance Method (HBM)

[10, 11, 12], normal form [13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and multiple scale
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methods [6, 23, 24, 25, 26, 27]. Meanwhile, many other methods exists which

are omitted here [23]. Some various trends of applications of asymptotic tech-

niques to mechanical problems via presenting methods to be used in different

static and dynamics problems are reported in [28, 29]

Using these different techniques, one obtains approximations of periodic so-

lutions by solving systems of algebraic equations with unknown coefficients

(Fourier coefficients of truncated Fourier series for examples) and given pa-

rameters. Numerical techniques are used to solve these algebraic equations

at given parameters values such as Newton-Raphson methods, or continuation

approaches if solutions are tracked versus one (or several ones that is not usu-

ally the case in practice) parameter(s) [30, 31]. Nevertheless, finding all the

solutions, and especially the isolated branches of solutions is always challeng-

ing. Algebraic methods exist to obtain parametric representation of solutions

of polynomial equations with multi-variables such as Gröbner basis [32]. There

are many different algorithms for evaluation of Gröbner bases from them we can

name the one which is developed by Buchberger [33]. The Gröbner basis is used

in [34, 35] for obtaining parametrised solutions of polynomial system of equa-

tions. The current paper deals with solving of a bifurcation problem depending

on variables (e.g. components of L2 norms of the unknown component of the

vector variable of displacements) and parameters via solving a scalar polynomial

equations with coefficients depending on parameters. Organisation of the paper

is as it follows: In Section 2, we recall how to obtain algebraic equations and

some definitions and materials about rings of multivariate polynomials and the

Gröbner basis are provided. In Section 3 a basic algorithm without endowing

the Gröbner basis is described and illustrated on a simple example (Duffing

oscillator). In Section 4, the Gröbner basis is exploited and an algorithm is

provided for the case of a single-dof system. It is illustrated via the Duffing ex-

ample. The single unknown can be an approximation of L2 norm of a periodic

solution or of the Fourier coefficients of approximated Fourier series. Finally,

to illustrate the method for general cases (N-dof nonlinear system with forcing

or parametric nonlinearities) a two-dof case is examined. Finally, the paper is
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concluded in Section 5.

2. Basic ideas in rings of polynomials

Let us suppose that we have a set of nonlinear dynamical equations (e.g.

Duffing), with the variable x(t). For seeking periodic solutions in V = L2([0, T ])

with T = 2π
ω , x can be represented as:

x(t) =
a0
2

+

+∞∑
j=1

aj cos(jωt) + bj sin(jωt) (1)

or in the form of truncated series as:

x(t) ' F (X0, X1, X2, . . . , XN , t) =
a0
2

+

M∑
j=1

aj cos(jωt) + bj sin(jωt) (2)

with a0 → X0, a1 → X1, b1 → X2, . . . leading to Ej(X0, X1, . . . ) = 0, j =

0, 1, 2, . . . , 2M = N .

Let us suppose that there is a function space ∨ where x ∈ ∨ and we set the

norm of x as ‖x‖. For instance,

‖x‖2 = ‖x‖22 = (
a20
2
) +

+∞∑
j=1

a2j + b2j where x ∈ L2(
[
0, T = 2π

ω

]
) (3)

It should be mentioned that if there is not any constant term in the system,

then E0 and X0 can be omitted.

2.1. The problem

We are interested to perform bifurcation analyses with the parameter λ on

a nonlinear dynamical system. From x(t) ' F (X0, X1, X2, . . . , XN , t) we reach

to: 

E0(X0, X1, X2, ...., XN , λ) = 0

E1(X0, X1, X2, ...., XN , λ) = 0
...

EZ(X0, X1, X2, ...., XN , λ) = 0

(4)
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We would like to obtain from all Ej equations, a problem which is represented

as

P(‖x‖2 , λ) = 0 (5)

With

‖x‖ ' 1
2X

2
0 +X2

1 +X2
2 + · · ·+X2

N = X (6)

Equation 5 reads:

P(‖(X0, X1, X2, . . . , XN )‖ , λ) = P (X,λ) = 0 (7)

where P is a polynomial. In the following section we will clarify some definitions

and properties which are related to the demanded problem.

2.2. Some definitions and properties

• Let us suppose that K[X] is the polynomial ring of X over the field K and

ICK[X], ideals of the ring K[X].

• Given an ideal ICK[X], it is possible to generate quotient ring K[X]/I.

• In the ring K[X], division of the polynomial P by E is represented by

P = q︸︷︷︸
quotient

E + r︸︷︷︸
remainder

(8)

with degree(r)<degree(E).

• Let us suppose that there is not any constant term in the system so, E0

and X0 are omitted. Consider again E = {E1, E2, . . . , EZ} in the ring

K[X1, X2, . . . , XN ], the ideal produced by E is the set of linear combina-

tions of polynomials from E such that:

I = {
Z∑
j=1

hjEj , h1, h2, . . . hZ ∈ K[X1, X2, . . . , XN ]} (9)

• In the ringK[X1, X2, . . . , XN ], let us find Gröbner basesG = {g1, g2, . . . , gZ},

for the set E = {E1, E2, . . . , EZ}.

4



• When the polynomial P belongs to the ideal produced by E, the remainder

of P with respect to G must be zero.

• In the ring K[X1, X2, . . . , XN ], we are generalizing division of polynomial

P by polynomials E = {E1, E2, . . . , EZ} so that:

– P = q1E1 + q1E1 + · · ·+ qZEZ + r

– Polynomials q1, q2, . . . qZ are quotients of K[X1, X2, . . . , XN ].

– Polynomial r is the remainder of K[X1, X2, . . . , XN ].

In fact
P = g1q1 + g2q2 + · · ·+ gz̃qz̃ + r̃

P C [g1, g2, . . . , gz̃] = [E1, E2, . . . , EZ ]⇒ r̃ = 0
(10)

3. A very basic algorithm without using the Gröbner basis

Let us consider N polynomial equations of N variables X1, ..., XN , repre-

sented as Ej(X1, . . . , XN ) = 0 for j = 1, . . . , N . Let us consider the degrees of

each equation versus one variable (successively X1, . . . , XN ).

• Let us keep the variable with the smallest maximal degree among the N

equations;

• Let us consider the equation with the smallest degree in this variable:

– If it is 0, let us choose the variable with the next smallest maximal

degree.

– If it is 1, we solve in that variable.

• Let us substitute in the other equations and go back to the beginning after

considering numerators of equations and we keep in memory the value of

denominator.

• If it is greater than 2, let us make the Euclidean division of the equation

(polynomial) with highest degree in the variable versus the equation with

the smallest degree in the same variable.
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• We obtain a quotient and a remainder:

– If the remainder is of degree 1, we solve it.

– If it is greater than 1, we divide again the equation with the smallest

degree in the variable by the remainder.

• We iterate the process till we find a remainder of degree 1.

• If the rest is of degree 0, we have eliminated one variable.

3.1. Application to the Duffing oscillator

Let us consider the Duffing example with approximation of the periodic

solution by one harmonic via HBM (see appendix A). We obtain two polynomials

in X1, X2 from Ej(X1, X2) = 0 for j = 1, 2. We can see that for X1 or X2

variables, the degrees of E1 and E2 are:

• degree(E1, X1) = 3

• degree(E2, X1) = 2

• degree(E1, X2) = 2

• degree(E2, X2) = 3

So we consider Euclidean division of E1 seen as a polynomial P1 of X1 by E2

also seen as a polynomial P2 of X1. The result is:

E1(X1, X2) = P1 = Q1P2 +R1 (11)

with

R1 =
1

3

(
4 a2w2 + 3X2 cf

)
X1

cX2
2 +

4

3

aw
(
X2 w

2 −X2 + f
)

cX2
2

(12)

The E1 = P1 = 0 is equivalent to P2 = R1 = 0. Solving R1 = 0 in X1 provides

X1 = −4
aw
(
X2 w

2 −X2 + f
)

4 a2w2 + 3X2 cf
(13)
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and by replacing in P2, we obtain a parametrization of the solutions: X1 is a

function of X2. And X2 verifies a scalar equation governed by:

12cX2

(
afw + aw3X2 − awX2

)
2

(4a2w2 + 3cfX2) 2
+

4aw
(
afw + aw3X2 − awX2

)
4a2w2 + 3cfX2

+
3b31c

4
− f − w2X2 +X2 = 0

(14)

Finding roots of this equation (and managing the denominator) is simple. So

since it can be checked that the latter is singular when the numerator is not zero

(for example if a = 0, the denominator is singular for X2 = 0 that is not a zero

of the numerator), it is possible to define the parametrization by a polynomial in

one variable (X2) expressed as the simplified first one of the previous equations

( since c 6= 0 and X2 6= 0):

16X2 a
4w4 + 16X2 a

2w6 + 24X_2 2a2cfw2 + 9X2
3c2f2 − 32X2 a

2w4+

16 a2fw4 − 12X2 cf
2w2 + 16X2 a

2w2 − 16 a2fw2 + 12X2 cf
2 − 12 cf3 = 0

(15)

Let us consider system parameters which are defined in Table 1. We consider

two values for w as w = 1.12 and w = 1.5. Corresponding numerical values for

X2, then X1 and finally X = X2
1 +X2

2 are given in Table 1. We name obtained

solutions via this method as “indirect solutions".

Table 1: Numerical solutions of polynomial Eqs. 15 and 13 (Indirect solutions).

a c f w X1 X2 X = X2
1 +X2

2

0 1
1

10

1.12 0 0.7235217920 0.523483783

1.5

0 -0.080310794277493 0.006449823678

0 -1.24896418571948 1.559911538

0 1.32927497999697 1.766971972
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4. Seeking periodic solutions via exploitation of Gröbner basis

For detailed information about Gröbner basis the reader is referred to refer-

ence [36] and to documentation of the Package Gröbner Basis of Maple© [37].

We do not intend to describe known results about Gröbner basis. We simply

provide the following basic idea:

• From given polynomials with given variables (and parameters), Gröbner

basis can be constructed to generate the same ideal of polynomials (in a

ring of polynomials with the given number of variables) than the ideal of

polynomials generate by initial equations. Grolet [34] used the idea to

eliminate all variables except one. From

E′1(X1, . . . , XM ), . . . , E′M (X1, . . . , XM ) (16)

One obtains:



Xσ(1) = e1(Xσ(M))
...

Xσ(M−1) = eM−1(Xσ(M))

E(Xσ(M)) = 0

(17)

where E is a polynomial in one variable only, σ is one-to-one from {1, . . . ,M}

to itself, and ej functions.

• With a chosen Gröbner basis, the following question can be replied: For a

given polynomial P in the ring of polynomial, does P belong to the Ideal

generated by the Gröbner basis?

– Yes → the normal form of P (it is similar to th reminder r in Eq. 8)

versus the Gröbner basis is 0.

– No→ a residual normal form collected versus monomials in the vari-

ables of the Ring of polynomials is obtained.
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The core idea of our method is:

• To look for a polynomial (with unknown coefficients) of an interesting aux-

iliary variable (typically the approximated L2 norm depending on variables

of the initial ring of polynomials) so that we could determine the unknown

coefficient to obtain a null normal form.

• With increasing the degree and the number of unknown coefficients, we

stop when finding the lowest degree of the unknown polynomial leads to

a null normal form.

This is detailed in a given example which is provided in next section.

4.1. Presentation of the algorithm for a single degree of freedom system

Let us suppose that we haveN polynomial equations of N variablesX1, ..., XN

reading as:

Ej(X1, . . . , XN ) = 0, j = 1, 2, . . . , N (18)

Our proposed algorithm is summarized as it follows:

• We consider the Gröbner basis generated by the polynomials E1, . . . , EN

(with parameters of the problem appearing in the coefficients of the equa-

tions).

• We introduce a new variable that is the approximation of the L2 norm of

the searched periodic solution, reading as

X = X2
1 + · · ·+X2

N
(19)

• We introduce successively the polynomials:

Pj = Xj + sj−1X
j−1 + · · ·+ s1X + s0 (20)

for j = 1, 2, . . .

9



• We test to see if Pj belongs to the ideal generated by the Gröbner basis

produced by the N polynomial equations. The polynomials Pj are splitted

on the Gröbner basis generated by the equations:

– If Pj belongs to the generated ideal, the normal form of Pj should be

0.

• The normal form of Pj is examined.

– It is splitted on polynomials of variables X1, . . . , XN with coefficients

depending on initial parameters and depending linearly on the un-

known parameters s0, s1, . . . , sj−1.

– Expression of each coefficient of the normal form provides a linear

equation in s0, s1, . . . , sj1 .

– We stop the algorithm when we can solve the system of linear equa-

tions so that the normal form of Pj is zero.

The result provides a polynomial equation with one variable governing the

amplitude-frequency response. Parameters of the problem appear in the

final equation. This algorithm converges in finite number of iterations.

4.2. A few results for Duffing equation

Using Maple© software, we generate the Gröbner basis and we test polyno-

mials Pj from j = 1 to j = 3. For j = 1 and j = 2 it is not possible to choose the

coefficients sj so that Pj belongs to the ideal generated by the Gröbner basis.

To be more accurate, let us give the results.

4.2.1. Polynomial P1

For polynomial P1, the normal form via Gröbner basis defined by the two al-

gebraic equations obtained by HBM taking into account only the first harmonic

in cosine and sine is:

−X1fs1 + as0w = 0 (21)

To get rid of the residual monomials X1 and 1 we have to demand s1 = 0 and

s0 = 0. Consequently P1 = 0 that is not admissible solution.
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4.2.2. Polynomial P2

For P2 the normal form is

−4X1fs2 w
2 + 4 afs2 wX2 − 3 cfs1X1 + 3 acs0 w + 4X1fs2 (22)

Again to get rid of all the residual monomials in X1, X2 and 1, we must demand



3 acs0 w = 0

−4 fs2 w2 − 3 cfs1 + 4 fs2 = 0

4 afs2 w = 0

(23)

Finally the solution is s0 = s1 = s2 = 0, and consequently P2 = 0 that is again

not admissible.

4.2.3. Polynomial P3

For j = 3, the result of the test for Pj belonging to this ideal provides the

following polynomial:

1

243c5f5
e1X1 +

1

243c5f5
e2X2 +

1

243c5f5
e3 = 0 (24)
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with

e1 = −5120 a9w11 + 10240 a7w13 − 1024 a5w15 + 5120 a9w9

−30720 a7w11 + 5120 a5w13 + 1536 a7cf2w7 + 1728 a5c2f2s1 w
7

−4608 a5cf2w9 − 576 a3c2f2s1 w
9 + 30720 a7w9 − 10240 a5w11

−1728 a5c2f2s1 w5 + 9216 a5cf2w7 + 1728 a3c2f2s1 w
7 − 10240 a7w7

+10240 a5w9 − 432 a3c3f4s1 w
3 − 4608 a5cf2w5 − 1728 a3c2f2s1 w

5

−324 ac4f4s2 w3 − 5120 a5w7 + 576 a3c2f2s1 w
3 + 324 ac4f4s2 w

+1024 a5w5

e2 = 1024 a10w10 − 10240 a8w12 + 5120 a6w14 + 20480 a8w10

−20480 a6w12 − 576 a6c2f2s1 w
6 + 3072 a6cf2w8+

1728 a4c2f2s1 w
8 − 10240 a8w8 + 30720 a6w10 − 3072 a6cf2w6

−3456 a4c2f2s1 w6 − 20480 a6w8 + 1728 a4c2f2s1 w
4

+324 a2c4f4s2 w
2 + 5120 a6w6

e3 = −4096 a8fw10 + 4096 a6fw12 + 4096 a8fw8 − 12288 a6fw10

+768 a6cf3w6 + 1152 a4c2f3s1 w
6 + 12288 a6fw8

−1152 a4c2f3s1 w4 − 4096 a6fw6 + 243 c5f5s3
(25)

We can see that choosing the sj coefficients to be zero, then all the coefficients

of the residual monomials are possible. In that case, Pj belongs to the ideal.

The choice of the sj coefficients is done by solving the three following equations

versus s0, s1, s2: 
e1 = 0

e2 = 0

e3 = 0

(26)

The polynomial P3 becomes:

X3 +
32

9c2f2
C2X

2 +
256

81c4f4
C1X − C0 (27)
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with

C2 = a2w2
(
a2w2 − w4 + 2w2 − 1

)
C1 = a4w4

(
a4w4 + 2 a2w6 + w8 − 4 a2w4 − 4w6 − 3 cf2w2

+2 a2w2 + 6w4 + 3 cf2 − 4w2 + 1
)

C0 =
256

81

a6w6

c4f2

(28)

4.2.4. Polynomials P4, P5 and higher

It can be proven that if K > 3

PK = QK−3P3(X) (29)

where QK−3 is a polynomial depending on undetermined coefficients S4, . . . , sK

and X. For instance,

P4(X) = Q1(X, s4)P3(X) (30)

with

X3 +
32

9c2f2
C2X

2 +
256

81c4f4
C1X − C0 (31)

and

Q1(X, s4) = s4(X +
8(1− w2)

3c
) (32)

which introduces spurious solutions due to the fact that the polynomials in X

that are becoming 0 belongs to an ideal generated by P3.

4.3. A transversal application

One of transversal applications of explained methodology is identification of

system parameters, e.g. nonlinearities of the system. The frequency curves of

the system can be detected by experimental tests. Then via consideration of

general form of Eq. 27, expressed as:

A3X
3 +A2X

2 +A1X +A0 (33)

it will be possible to detect and to identify Aj(a, c, f, ω) by one of minimisation

techniques.
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4.4. Numerical examples: direct and indirect solutions

Let us consider the same system parameters which are reported in Table 1:

The results obtained by solving directly P3(X) = 0 in Eq. 27 (direct solution)

are reported in see Table 2. Comparing these results with indirect solutions (see

Table 1) shows that there are good agreements between them.

Table 2: System parameters and obtained results from “direct solution".

a c f w X

0 1
1

10

1.12 0.5234837835

1.5

0.006449823678

1.559911538

1.766971972

It should be mentioned that other choices can be made as well; for example

rather than looking for P (X) one could look for P (Xj) with Xj to be any of

the variables, or successively all the variables. Similar results are obtained:

polynomials are obtained by solving a linear system. This fact is explained in

detail in Sect. 4.5.

4.5. Duffing oscillator: Polynomials of a single coefficient of Fourier series

In this Section, we show that it is possible to obtain a polynomial equation

only in one coefficient of the truncated Fourier series, for example in variable

X1 (or X2, or X1/X2 corresponding to tangent of the unknown phase). For

this, let us consider again the Duffing oscillator which is described in Eq. 57.

Let us look for approximated periodic solution as:

x(t) = X1 cos(wt) +X2 sin(wt) (34)

14



The HBM method provides following two algebraic equations:

3

4
X1

3c+
3

4
X1 X2

2c− w2X1 +X2 aw +X1 = 0

3

4
X1

2X2 c+
3

4
X2

3c−X1 aw −X2 w
2 +X2 − f = 0

(35)

Looking for a polynomial in X1 belonging to the ideal generated by these equa-

tions via the approach leaned on Gröbner basis in the form

s0 + s1X1 + s2X
2
1 + s3X

3 (36)

we obtain the normal form as

1

9

1

c2f2
(
− 16 a4s3 w

4 + 16 a2s3 w
6 − 32 a2s3 w

4 − 12 acfs2 w
3

+16 a2s3 w
2 + 12 acfs2 w + 9 c2f2s1

)
X1+

1

9

1

c2f2
(
− 32 a3s3 w

5 + 32w3s3 a
3 + 12 a2cfs2 w

2
)
X2+

1

9

1

c2f2
(
− 16 a3fs3 w

3 + 9 c2f2s0
)

(37)

Then via setting s0 = 1, we solve the linear equations obtained for s1, s2, s3 by

demanding elimination of the coefficients of the monomials of the normal form

(1, X1 and X2). We obtain:

s1 =
a2w2 + w4 − 2w2 + 1

awf

s2 =
3

2

c
(
w2 − 1

)
a2w2

s3 =
9

16

c2f

w3a3

(38)

Without giving details, similar methodology provides for X2:

16X2 a
4w4 + 16X2 a

2w6 + 24 ca2w2X2
2f + 9 c2f2X2

3

−32X2 a
2w4 + 16 a2fw4 − 12X2 cf

2w2 + 16 a2w2X2

−16 a2fw2 + 12X2 cf
2 − 12 cf3 = 0

(39)
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and for phase tangent (in fact in Y = X1/X2) following polynomial relation is

obtained:

−4Y 3a2w4 + 4Y 2a3w3 + 4Y 3a2w2 − 4Y a2w4 + 3Y 3cf2

+4 a3w3 + 4Y a2w2 = 0
(40)

Let us consider an academic numerical example: a = 3/100, f = 1/100, c = 1.

In Fig. 1 values for X1, X2 and X1/X2 are plotted versus w (respectively red,

blue and green curve).

Figure 1: Curves of approximated L2-norms of x (solid line) and z (dashed line) versus w for

the system with ω1 = 1, ω2 = 1.10. Definitions of x are z are presented in Eq. 44.

4.6. Two examples of two dof systems

Here, we will two examples of coupled two dof nonlinear systems and we will

find equilibrium points of systems via explained methodology in this paper.
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4.6.1. Example 1

Let us consider following system:
d2x
dt2

+ ω1
2x+ c1 x

3 + a1
dx
dt
− f1 sin (wt) + d (x− z)3 = 0

d2z
dt2

+ ω2
2z + c2 z

3 + a2
dz
dt
− f2 sin (wt)− d (x− z)3 = 0

(41)

We consider rough approximations of system variables which are described as: x = X1 cos (wt) +X2 sin (wt)

z = Z1 cos (wt) + Z2 sin (wt)
(42)

System parameters which are collected in Table 3. We obtain four equations

Table 3: System parameters of the 2 dof system

c1 d c2 a1 a2 f1 f2

1 1/2 1/3 1/50 1/50 1/100 1/50

17



generating Gröbner basis:

E1(X1, X2, Z1, Z2) = 9/2X1
3 − 9/2X1

2Z1 + 9/2X1 X2
2 − 3X1 X2 Z2+

9/2X1 Z1
2 + 3/2X1 Z2

2 − 4X1 w
2 − 3/2X2

2Z1 + 3X2 Z1 Z2 − 3/2Z1
3−

3/2Z1 Z2
2 + 2

25 X2 w + 4X1 = 0

E2(X1, X2, Z1, Z2) = 9/2X1
2X2 − 3/2X1

2Z2 − 3X1 X2 Z1 + 3X1 Z1 Z2+

9/2X2
3 − 9/2X2

2Z2 + 3/2X2 Z1
2 + 9/2X2 Z2

2 − 4X2 w
2−

3/2Z1
2Z2 − 3/2Z2

3 − 2
25 X1 w + 4X2 = 0

E3(X1, X2, Z1, Z2) = −3/2X1
3 + 9/2X1

2Z1 − 3/2X1 X2
2 + 3X1 X2 Z2−

9/2X1 Z1
2 − 3/2X1 Z2

2 + 3/2X2
2Z1 − 3X2 Z1 Z2 + 5/2Z1

3+

5/2Z1 Z2
2 − 4Z1 w

2 + 2
25 Z2 w + 9Z1 = 0

E4(X1, X2, Z1, Z2) = −3/2X1
2X2 + 3/2X1

2Z2 + 3X1 X2 Z1−

3X1 Z1 Z2 − 3/2X2
3 + 9/2X2

2Z2 − 3/2X2 Z1
2 − 9/2X2 Z2

2 + 5/2Z1
2Z2+

5/2Z2
3 − 4Z2 w

2 − 2
25 Z1 w + 9Z2 = 0

(43)

Let us introduce the approximated L2-norms for x and z respectively:

X = X2
1 +X2

2 ' ‖x‖
2

Z = Z2
1 + Z2

2 ' ‖z‖
2

(44)

Let us call G2 as the Gröbner basis obtained from the 4 equations E1, . . . , E4.

4.6.2. An example of polynomial in Z

We look for polynomial P (X) (and Q(Z)) where X (and Z) is defined in

Eq. 44. The process explained for the single dof system runs. By solving linear

systems to nullify the remainder of unknown polynomials in X (respectively Z)

versus the Gröbner basis G2 we obtain that: the minimum degree in X (and Z)

is 15. For example, the polynomial in Z is defined in Appendix B. Let us detect

the frequency-response curves for closely- and not closely-spaced frequencies. As

the first example, we consider a system where its frequencies are closely-spaced
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frequencies, e.g. ω1 = 1 and ω2 = 1.10. Figure 2 collects obtained results for

L2-norms of x and z. The same results for the system with ω1 = 1 and ω2 = 25
17 ,

i.e. considered as not closely-spaced frequencies, are represents in Fig. 3.

Figure 2: Curves of approximated L2-norms of x (solid line) and z (dashed line) versus w for

the system with ω1 = 1, ω2 = 1.10. Definitions of x are z are presented in Eq. 44.

4.6.3. Example 2

Let us consider a model of a linear master system which is coupled to a

nonlinear energy sink. We start from
d2x

dt2
+ a

dx

dt
+ x+ εα(x− y)3 − εf sin (wt) = 0

ε
d2y

dt2
+ ελ

dy

dt
+ εα(y − x)3 = 0

(45)

By introducing
u = x+ εy

v = x− y
(46)
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Figure 3: Curves of approximated L2-norms of x (solid line) and z (dashed line) versus w for

the system with ω1 = 1, ω2 = 25
17

. Definitions of x are z are presented in Eq. 44.

which is equivalent to
x =

u+ εv

1 + ε

y =
u− v
1 + ε

(47)

and µ = 1
(1+ε) , p = (ελ + a)µ, q = (aε − λ)µ, r = (a − λ)µ, s = (aε + λ)µ, g =

εf, β = (1 + ε)α we obtain the next two differential equations:

equ = d2u
dt2 + pdudt + q dvdt + µ (ε v + u)− g sin (wt)

eqv = d2v
dt2 + r dudt + sdvdt + µ (ε v + u)− g sin (wt) + β v3

(48)

Let us name these two equations as equ and eqv . Looking for a rough approxi-

mation of periodic solutions for u and v, let us introduce:

u ' X1 cos (wt) +X2 sin (wt)

v ' Z1 cos (wt) + Z2 sin (wt)
(49)
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Using Harmonic Balance Method, we obtain four algebraic equations writing

1

T

∫ T

0

equ cos (wt) dt = 0

1

T

∫ T

0

equ sin (wt) dt = 0

1

T

∫ T

0

eqv cos (wt) = 0

1

T

∫ T

0

eqv sin (wt) = 0

(50)

Solving the first and second equations, X1, X2 are obtained as functions of

Z1, Z2:

X1 = −−Z1 ε µw
2+Z1 pqw

2−Z_2 ε µ pw−Z2 qw
3+Z1 ε µ

2+Z2 µ qw+gpw
p2w2+w4−2µw2+µ2

X2 = −Z1 ε µ pw+Z1 qw
3−Z2 ε µw

2+Z2 pqw
2−Z1 µ qw+Z2 ε µ

2+gw2−gµ
p2w2+w4−2µw2+µ2

(51)

So two algebraic equations in Z1, Z2 are obtained by considering numerators of

third and fourth previous equations when replacing X1, X2. These equations

can be written as:

AZ3
1 +AZ1Z

2
2 +BZ1 + CZ2 + E

AZ2Z
2
1 +AZ3

2 +BZ2 − CZ1 + F
(52)

where A,B,C,E, F are given in Appendix C.

Let us build a Gröbner basis from this 2 equations in Z1, Z2. We obtain:

[
(
−AF 3 −BC2F + C3E

)
Z1 +

(
AE2C +ACF 2

)
Z2

2+(
AEF 2 −BC2E − C3F

)
Z2 − 2C2EF

(
AE2C +ACF 2

)
Z1 Z2+(

−AEF 2 −BC2E − C3F
)
Z1+(

AE2F +BC2F − C3E
)
Z2 − C2E2 + C2F 2(

AE2C +ACF 2
)
Z1

2 +
(
−AE2F +BC2F − C3E

)
Z1+(

AE3 +BC2E + C3F
)
Z2 + 2C2EF ]

(53)

Then we introduce the approximation of square of L2−norm of v:

Z = Z2
1 + Z2

2
(54)

We look for coefficients of a polynomial in Z of minimal degree so that this

polynomial belongs to the ideal generated by the Groebner basis. We obtain a
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polynomial of degree 3:

s0 + s1Z + s2Z
2 + s3Z

3 = 0 (55)

with:
s3 = 1

s2 = 2 B
A

s1 = B2+C2

A2

s0 = −E
2+F 2

A2

(56)

We obtain approximate periodic solutions. It is simple to analyze the behavior

of the frequency - norm curve versus parameters of the problem and occurrence

of potential isola.

Let us give an example. We choose ε = 1
100 , a = 1

100 , λ = 2, α = 10.. We keep

two free parameters: w and f . Plotting Z versus w and f provides occurrence of

multiple solutions and especially potential occurrence of isolas. This is presented

in Fig. (4).

5. Conclusion

Smooth nonlinear differential equations treated by perturbation methods,

e.g. harmonic balance method, yield to a set of polynomial equations. The

proposed methodology in this paper, leads to potential solution of a bifurcation

problem depending on X, standing for any component of the approximated L2

norms (or any components of truncated Fourier series) of the unknown compo-

nent of the vector variable of generalized displacements and system parameters.

It is shown that

• Either computer algebra could be used (if the size is not too large) to keep

X and one or two parameters.

• Or a full numerical method can be designed to solve a polynomial equation

in X with numerical values of parameters and loops to manage the values

of parameters.
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Figure 4: Curves of approximated L2-norms of v (Z2
1 + Z2

2 ) versus w and f for ε = 1
100

, a =

1
100

, λ = 2, α = 10.

The key point of our developments is to built Gröbner bases from the set of

polynomial equations. Then, the remainders should be evaluated which could

be splitted via computing the remainder of each monomials Xk, k = 0, 1, . . . .

Evaluation of Gröbner bases via softwares such as Maple©, Mathematica©, etc

are straightforward. The explained methodology is general and theoretically

can be applied to any (smooth) nonlinear dynamical systems, but creation of

Gröbner bases and/or considerations of number of parameters depend on the

characteristics of the computer. If the system possesses non polynomial terms,

then they can be treated by introducing new variables in polynomials as the

MANLAB software [38] does.
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Appendix A

Let us consider the Duffing equation

E(x(t)) =
d2x
dt2

(t) + a
dx
dt

(t) + ω2
0x(t) + cx3(t)− f sin(wt) = 0 (57)

where t denotes the time, and a, c, f are given parameters. We assume (up

to a change of time variable) ω0 = 1. ω gives external basic frequency for

searching periodic solution. We look for approximated periodic solutions of

Duffing equation using a truncated Fourier series of the form:

x(t) ' a0
2

+

N∑
j=1

aj cos(jωt) + bj sin(jωt) (58)

Let us set T =
2π

w
. Algebraic equation are obtained by harmonic balance

method as results of the following calculations:

1

T

∫ T

0

E(x(t))dt = 0 (59)

and for j = 1, . . . , N ,

1

T

∫ T

0

E(x(t)) cos(jwt)dt = 0 (60)

and
1

T

∫ T

0

E(x(t)) sin(jwt)dt = 0 (61)

Coefficients a0, . . . , bN are the 2N + 1 unknowns.

The first equation determines static equilibrium position around which oscilla-

tions are examined. In general, it could be omitted via assuming a0 = 0. For

example, assuming a0 = 0 and N = 1, two polynomial equations in a1 and b1

are obtained:

E1(a1, b1) =
3

4
a1

3c+
3

4
a1b1

2c− a1w2 + b1aw + a1 = 0

E2(a1, b1) =
3

4
a1

2b1c+
3

4
b1

3c− awa1 − b1w2 + b1 − f = 0

(62)
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Renaming aj by Xj , for j = 1, 2, we obtain the corresponding equation to start

Euclidean division or Gröbner approach. Let us notice that these equations can

be written in the following form

E1 =
3c

4
a1N − a1w2 + b1aw + a1 = 0

E2 =
3c

4
b1N − awa1 − b1w2 + b1 − f = 0

(63)

where N = a21 + b21, leading to a linear system in a1, b1. Solving this linear

system provides an expression of a1 and b1 versus N . Recalling the relation

N − a21 − b21 = 0 leads to a polynomial equation in N that corresponds to

approximation of || x ||22. This polynomial is expressed as:

9N3c2 − 24N2cw2 + 16Na2w2 + 16Nw4 + 24N2c

−32Nw2 − 16 f2 + 16N = 0
(64)

It is similar to the result obtained by euclidean division or Gröbner approach.
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Appendix B

−1378169306088554230448128

3154182529449462890625
w16 + (

908148539392

33074001
w16 − 1795245925597184

6890416875
w14+

925288206189068288

861302109375
w12 − 20303937659080428419072

8074707275390625
w10+

1229727953729482810564864

336446136474609375
w8 − 3411410189342633673711232

1009338409423828125
w6+

653616148882221825936344

336446136474609375
w4 − 1068477874238692629147146

1682230682373046875
w2+

1827943346824919744518657

20186768188476562500
)Z7 + (−1134053163008

33074001w14 +
5887718468780032

20671250625
w12−

4362555462584717312

4306510546875
w10 +

5384114551457063507968

2691569091796875
w8 − 10629871028983174135616

4485948486328125
w6+

113367363707739767193776

67289227294921875
w4 − 134473665141617001115444

201867681884765625
w2+

91308017871954880257533

807470727539062500
)Z8 + (

51252330496

33074001
w12 − 22683650711552

2296805625
w10+

38475728778145792

1435503515625
w8 − 325127784501945935872

8074707275390625
w6 +

32176760582720770288

897189697265625
w4−

16267166582808973592

897189697265625
w2 +

131152668984318128389

32298829101562500
)Z9 + (

6399029248

1224963
w10−

4766769442816

153120375
w8 +

11748956511902464

159500390625
w6 − 344605556432115472

3987509765625
w4+

120124244975725096

2392505859375
w2 − 137993592668846662

11962529296875
)Z10 + (−

523905280
408321w8+

1493761338368

255200625
w6 − 1573245655526528

159500390625
w4 +

1156202316118244

159500390625
w2−

310850797475104

159500390625
)Z11 + (−78814976

408321
w6 +

22315262528

28355625
w4 − 757496789528

708890625
w2+

3080599852667

6380015625
)Z12 + (

265855600406687329291500272063552

657121360301971435546875
w8−

87095193364126415138763814569952

394272816181182861328125
w6 +

132288258862375468329763133764

1622521877288818359375
w4−

36005186115362658082043360745472

1971364080905914306640625
w2 +

5512741519360

33074001
w24 − 3343050977837056

1378083375
w22+

209421832285824483328

12919531640625
w20 − 530952793350881590116352

8074707275390625
w18+

910149056368918877845651456

5046692047119140625
w16 − 1111252296156390035946564026368

3154182529449462890625
w14+

330301481418404569761234594230272

657121360301971435546875
w12 − 1040290862758469027093870159240192

1971364080905914306640625
w10+

3701844637451132472050108936009

1971364080905914306640625
)Z3 + (−2462811422720

33074001
w22 +

282938851721216

275616675
w20−
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83469735214580236288

12919531640625
w18 +

197758922084693295824896

8074707275390625
w16−

313435647881896438249078784

5046692047119140625
w14 +

348807083000509485867592216576

3154182529449462890625
w12−

3706857255637949525597361077248

26284854412078857421875
w10 +

2030801564587105529363588216128

15770912647247314453125
w8−

6503741754449884086254164046048

78854563236236572265625
w6 +

185490219365537888065035581348

5256970882415771484375
w4−

715383594036407656829198137946

78854563236236572265625
w2 +

334930554784032922352555921327

315418252944946289062500
)Z4+

(−4145241128960

33074001
w20 +

6169415905181696

4134250125
w18 − 4124918675357433856

516781265625
w16+

40781055576003251142656

1614941455078125
w14 − 52802737470560161361604608

1009338409423828125
w12+

233811739938965398616669913088

3154182529449462890625
w10 − 1699130128334449594721506112

23364315032958984375
w8+

153757562975591585094666167456

3154182529449462890625
w6 − 67342870089939159963999879004

3154182529449462890625
w4+

5795218416971835320518889324

1051394176483154296875
w2 − 113043846351105662544097141

177700424194335937500
)Z5+

(
3054172635136

33074001
w18 − 6888025348636672

6890416875
w16 +

12448522917675139072

2583906328125
w14−

4056662303141916557312

299063232421875
w12 +

124062764458015971484742656

5046692047119140625
w10−

3750859833805571136464068096

126167301177978515625
w8 +

1008580232405190022172262976
42055767059326171875w6−

313847852654861086953748024
25233460235595703125w4 +

31635974345722301381951678

8411153411865234375
w2−

50968862889420126267899257

100933840942382812500
)Z6 − 371735497963208704

8074707275390625
w20+

1547811610857618971615166464

1971364080905914306640625
w14 − 1100528098786680305569

504669204711914062500
− 11341398016

20671250625
w24−

16883352779491959714151604224

16428034007549285888671875
w12 + (

1870496

15123
w4 − 584129312

1890375
w2 +

1827186602

9451875
)Z13+

95966531158016

12919531640625
w22 +

871685003677524819968

5046692047119140625
w18+

1216565315255726119030038846464

1232102550566196441650390625
w10 − 851522177212674164034359093248

1232102550566196441650390625
w8+

(−1344

71
w2 +

41412

1775
)Z14 + (

181462368256

33074001
w28 − 67032628330496

765601875
w26+

334942201421234176

516781265625
w24 − 23819578878102415081472

8074707275390625
w22+

5171470074499997697572864

560743560791015625
w20 − 66086231935138517144685248512

3154182529449462890625
w18+

7813210067145962903477966012416

219040453433990478515625
w16 − 2278510610280936959236919410982912

49284102022647857666015625
w14+

27



56482922746171457535692562038431744

1232102550566196441650390625
w12 − 14213757254597023392992218194694144

410700850188732147216796875
w10+

24127235897828715075885994451039744

1232102550566196441650390625
w8 − 9922114788423397338736265850082496

1232102550566196441650390625
w6+

37381352907555242865961626841448

16428034007549285888671875
w4 − 155915865836905718017344659566

394272816181182861328125
w2+

402383315056822591565148793

12616730117797851562500
)Z + (

8628331889513769041957610278172608

49284102022647857666015625
w8−

4053557152868564285713095549258656

49284102022647857666015625
w6 +

1297687189155867463789643378703548

49284102022647857666015625
w4−

2029650382567565733103442318956

394272816181182861328125
w2 − 1880927240192

33074001
w26 +

17981852455272448

20671250625
w24−

79340727352602656768

12919531640625
w22 +

213923019999400703295488

8074707275390625
w20−

78646943003392452712988672

1009338409423828125
w18 +

104077022971241060071581679616

630836505889892578125
w16−

510021699746424067943739988688896

1971364080905914306640625
w14 +

4997487074654034102224839458234368

16428034007549285888671875
w12−

2643494904566063655125361759107072

9856820404529571533203125
w10 +

73198695034948774671932113819

157709126472473144531250
)Z2+

369484831146012933221404

15770912647247314453125
w2 +

423493498330136981072144320256

1232102550566196441650390625
w6−

227306693537749813312275616

1971364080905914306640625
w4 + Z15
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Appendix C

A = 3β p2w2 + 3β w4 − 6β µw2 + 3β µ2

B = 4 ε µ p2w2 − 4 ε µ prw2 + 4 ε µw4 − 4 p2w4 − 4 qrw4 − 4w6 − 4 ε µ2w2

−4µ pqw2 + 4µ qrw2 + 8µw4 − 4µ2w2

C = 4 ε µ rw3 + 4 p2sw3 − 4 pqrw3 + 4 sw5 + 4 ε µ2pw − 4 ε µ2rw + 4µ qw3

−8µ sw3 − 4µ2qw + 4µ2sw

E = −4 grw3 − 4 gµ pw + 4 gµ rw

F = −4 gp2w2 + 4 gprw2 − 4 gw4 + 4 gµw2

References

References

[1] N. M. Krylov, N. N. Bogolyubov, Methodes approchees de la mecanique

non-lineaire dans leurs application a l’étude de la perturbation des mou-

vements periodiques de divers phenomenes de resonance s’y rapportant,

Académie des Sciences d’Ukraine, Kiev, 1935, 114 pages.

[2] N. M. Krylov, N. N. Bogolyubov, Introduction to nonlinear mechanics.,

Izd-vo AN USSR, Kiev, 1937, 367 pages.

[3] N. Kryloff, N. Bogoliuboff, Introduction to Non-Linear Mechanics. (AM-

11), Princeton University Press, 1943, 106 pages.

[4] N. N. Bogoliubov, Y. A. Mitropolski, Asymptotic Methods in the Theory

of Non-Linear Oscillations., Gordon & Breach, New York, 1961, 520 pages.

[5] J. Hale, Oscillations in Nonlinear Systems, McGraw-Hil, 1963, 180 pages.

[6] A. H. Nayfeh, Perturbation Methods, John Wiley & Sons Inc, New York,

1973, 448 pages.

29



[7] P. Coullet, E. Spiegel, Amplitude equations for systems with competing

instabilities, SIAM Journal on Applied Mathematics 43 (4) (1983) 776–

821. arXiv:https://doi.org/10.1137/0143052, doi:10.1137/0143052.

URL https://doi.org/10.1137/0143052

[8] M. Roseau, Vibrations in Mechanical Systems, Springer-Verlag Berlin Hei-

delberg, 1984, 515 pages.

[9] D. R. Smith, Singular-Perturbation Theory: an Introduction with Appli-

cations, Cambridge University Press, Cambridge, 1985, 520 pages.

[10] C. Hayashi, Forced oscillations in nonlinear systems, Nippon Print. and

Pub. Co, Osaka, 1953, 164 pages.

[11] L. Cesari, Functional analysis and galerkin’s method, The Michigan Math-

ematical Journal 11 (4) (1964) 385–414.

[12] M. Urabe, Galerkin’s procedure for nonlinear periodic systems, Archive for

Rational Mechanics and Analysis 20 (2) (1965) 120–152.

[13] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Volume 2,

Gauthier-Villars, Paris, 1893.

[14] G. Birkhoff, Dynamical systems, vol. 9, Colloquium publications (Ameri-

can Mathematical Society), New York, 1927.

[15] C. Elphick, E. Tirapegui, M. Brachet, P. Coullet, G. Iooss, A simple global

characterization for normal forms of singular vector fields, Physica D: Non-

linear Phenomena 29 (1) (1987) 95 – 127.

[16] J. Guckenheimer, P. J. Holmes, Nonlinear Oscillations, Dynamical Sys-

tems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

[17] F. G. Gustavson, On constructing formal integrals of a hamiltonian system

near ail equilibrium point, Astronomical Journal 71 (8) (1966) 670–686.

30

https://doi.org/10.1137/0143052
https://doi.org/10.1137/0143052
http://arxiv.org/abs/https://doi.org/10.1137/0143052
https://doi.org/10.1137/0143052
https://doi.org/10.1137/0143052


[18] G. Iooss, M. Adelmeyer, Topics in Bifurcation Theory and Applications,

2nd Edition, World Scientific, 1999.

[19] C. L. Siegel, J. K. Moser, Lectures on Celestial Mechanics, Springer-Verlag

Berlin Heidelberg, 1995.

[20] R. Rand, D. Armbruster, Perturbation Methods, Bifurcation Theory and

Computer Algebra, Springer-Verlag New York, 1987.

[21] V. Zhuravlev, A new algorithm for birkhoff normalization of hamiltonian

systems, Journal of Applied Mathematics and Mechanics 61 (1) (1997) 9–

13.

[22] V. Zhuravlev, The normal form of perturbations of non-linear oscillatory

systems, Journal of Applied Mathematics and Mechanics 66 (6) (2002)

881–887.

[23] A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations, Wiley, 1995.

[24] R. Starosta, G. Sypniewska-Kamińska, J. Awrejcewicz, Parametric and ex-

ternal resonances in kinematically and externally excited nonlinear spring

pendulum, International Journal of Bifurcation and Chaos 21 (10) (2011)

3013–3021.

[25] R. Starosta, G. Sypniewska-Kamińska, J. Awrejcewicz, Asymptotic analy-

sis of kinematically excited dynamical systems near resonances, Nonlinear

Dynamics 68 (4) (2012) 459 – 469.

[26] A. A. Klimenko, Y. V. Mikhlin, J. Awrejcewicz, Nonlinear normal modes

in pendulum systems, Nonlinear Dynamics 70 (1) (2012) 797–813.

[27] Y. Mikhlin, A. Onizhuk, J. Awrejcewicz, Resonance behavior of the system

with a limited power supply having the mises girder as absorber, Nonlinear

Dynamics 99 (1) (2020) 519–536.

[28] A. Bruno, Power Geometry in Algebraic and Differential Equations, Else-

vier Science, 2000.

31



[29] I. V. Andrianov, J. Awrejcewicz, New Trends in Asymptotic Approaches:

Summation and Interpolation Methods, Applied Mechanics Reviews 54 (1)

(2001) 69–92.

[30] M. Guskov, J.-J. Sinou, F. Thouverez, Multi-dimensional harmonic balance

applied to rotor dynamics, Mechanics Research Communications 35 (8)

(2008) 537 – 545.

[31] C. Grenat, S. Baguet, C.-H. Lamarque, R. Dufour, A multi-parametric

recursive continuation method for nonlinear dynamical systems, Mechanical

Systems and Signal Processing 127 (2019) 276 – 289.

[32] T. Becker, V. Weispfenning, Gröbner Bases: A Computational Approach

to Commutative Algebra, Springer, New York, 1993, 574 pages.

[33] B. Buchberger, A theoretical basis for the reduction of polynomials to

canonical forms, SIGSAM Bull. 10 (3) (1976) 19–29.

[34] A. Grolet, Dynamique non-linéaire des structures mécaniques : application

aux systémes à symétrie cyclique, École doctorale MEGA, Ecole Centrale

de Lyon, 2013.

[35] A. Grolet, F. Thouverez, Computing multiple periodic solutions of nonlin-

ear vibration problems using the harmonic balance method and groebner

bases, Mechanical Systems and Signal Processing 52-53 (2015) 529 – 547.

[36] A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy,

E. Schost, Algorithmes Efficaces en Calcul Formel, Frédéric Chyzak (auto-

édit.), Palaiseau, 2017, 686 pages. Printed by CreateSpace. Also available

in electronic version.

URL https://hal.archives-ouvertes.fr/AECF/

[37] Maplesoft, a division of Waterloo Maple Inc.., Maple.

URL https://www.maplesoft.com

[38] MANLAB, An interactive path-following and bifurcation analysis software,

LMA, CNRS, France, 2019.

32

https://hal.archives-ouvertes.fr/AECF/
https://hal.archives-ouvertes.fr/AECF/
https://www.maplesoft.com
https://www.maplesoft.com

	Introduction
	Basic ideas in rings of polynomials
	The problem
	Some definitions and properties

	A very basic algorithm without using the Gröbner basis
	Application to the Duffing oscillator

	Seeking periodic solutions via exploitation of Gröbner basis 
	Presentation of the algorithm for a single degree of freedom system 
	A few results for Duffing equation 
	Polynomial P1
	Polynomial P2
	Polynomial P3
	Polynomials P4, P5 and higher

	A transversal application
	Numerical examples: direct and indirect solutions
	Duffing oscillator: Polynomials of a single coefficient of Fourier series 
	Two examples of two dof systems
	Example 1
	An example of polynomial in Z
	Example 2


	Conclusion

