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The Algebra is exploited to study approximated responses of nonlinear dynamical systems leading to tracing solutions of approximated bifurcation diagrams associated with polynomial equations resulting from search of approximated periodic solutions of nonlinear ordinary differential equations. In detail via using the Gröbner basis, a polynomial with the smallest degree in term of the approximated amplitude of the systems, here the L 2 norm of coefficients of truncated Fourier series, is extracted where its coefficients are parameters of the systems such as the frequency. The presented methodology permits to detect maximal number of solutions even those which belong to isola of the frequency response curves of the system.

Introduction

The real dynamical behaviours of mechanical and structural systems are represented by nonlinear differential equations. For system with smooth nonlinearities (very often polynomial nonlinearities) perturbation methods have been developed to trace system responses, from them we can refer to Krilov-Bogoliubov-Mitropolski (KBM) [START_REF] Krylov | Methodes approchees de la mecanique non-lineaire dans leurs application a l'étude de la perturbation des mouvements periodiques de divers phenomenes de resonance s'y rapportant[END_REF][START_REF] Krylov | Introduction to nonlinear mechanics[END_REF][START_REF] Kryloff | Introduction to Non-Linear Mechanics[END_REF][START_REF] Bogoliubov | Asymptotic Methods in the Theory of Non-Linear Oscillations[END_REF][START_REF] Hale | Oscillations in Nonlinear Systems[END_REF][START_REF] Nayfeh | Perturbation Methods[END_REF][START_REF] Coullet | Amplitude equations for systems with competing instabilities[END_REF][START_REF] Roseau | Vibrations in Mechanical Systems[END_REF][START_REF] Smith | Singular-Perturbation Theory: an Introduction with Applications[END_REF], Harmonic Balance Method (HBM) [START_REF] Hayashi | Forced oscillations in nonlinear systems[END_REF][START_REF] Cesari | Functional analysis and galerkin's method[END_REF][START_REF] Urabe | Galerkin's procedure for nonlinear periodic systems[END_REF], normal form [START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF][START_REF] Birkhoff | Dynamical systems[END_REF][START_REF] Elphick | A simple global characterization for normal forms of singular vector fields[END_REF][START_REF] Guckenheimer | Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[END_REF][START_REF] Gustavson | On constructing formal integrals of a hamiltonian system near ail equilibrium point[END_REF][START_REF] Iooss | Topics in Bifurcation Theory and Applications[END_REF][START_REF] Siegel | Lectures on Celestial Mechanics[END_REF][START_REF] Rand | Perturbation Methods, Bifurcation Theory and Computer Algebra[END_REF][START_REF] Zhuravlev | A new algorithm for birkhoff normalization of hamiltonian systems[END_REF][START_REF] Zhuravlev | The normal form of perturbations of non-linear oscillatory systems[END_REF] and multiple scale methods [START_REF] Nayfeh | Perturbation Methods[END_REF][START_REF] Nayfeh | Nonlinear Oscillations[END_REF][START_REF] Starosta | Parametric and external resonances in kinematically and externally excited nonlinear spring pendulum[END_REF][START_REF] Starosta | Asymptotic analysis of kinematically excited dynamical systems near resonances[END_REF][START_REF] Klimenko | Nonlinear normal modes in pendulum systems[END_REF][START_REF] Mikhlin | Resonance behavior of the system with a limited power supply having the mises girder as absorber[END_REF]. Meanwhile, many other methods exists which are omitted here [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. Some various trends of applications of asymptotic techniques to mechanical problems via presenting methods to be used in different static and dynamics problems are reported in [START_REF] Bruno | Power Geometry in Algebraic and Differential Equations[END_REF][START_REF] Andrianov | New Trends in Asymptotic Approaches: Summation and Interpolation Methods[END_REF] Using these different techniques, one obtains approximations of periodic solutions by solving systems of algebraic equations with unknown coefficients (Fourier coefficients of truncated Fourier series for examples) and given parameters. Numerical techniques are used to solve these algebraic equations at given parameters values such as Newton-Raphson methods, or continuation approaches if solutions are tracked versus one (or several ones that is not usually the case in practice) parameter(s) [START_REF] Guskov | Multi-dimensional harmonic balance applied to rotor dynamics[END_REF][START_REF] Grenat | A multi-parametric recursive continuation method for nonlinear dynamical systems[END_REF]. Nevertheless, finding all the solutions, and especially the isolated branches of solutions is always challenging. Algebraic methods exist to obtain parametric representation of solutions of polynomial equations with multi-variables such as Gröbner basis [START_REF] Becker | Gröbner Bases: A Computational Approach to Commutative Algebra[END_REF]. There are many different algorithms for evaluation of Gröbner bases from them we can name the one which is developed by Buchberger [START_REF] Buchberger | A theoretical basis for the reduction of polynomials to canonical forms[END_REF]. The Gröbner basis is used in [START_REF] Grolet | Dynamique non-linéaire des structures mécaniques : application aux systémes à symétrie cyclique, École doctorale MEGA[END_REF][START_REF] Grolet | Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and groebner bases[END_REF] for obtaining parametrised solutions of polynomial system of equations. The current paper deals with solving of a bifurcation problem depending on variables (e.g. components of L 2 norms of the unknown component of the vector variable of displacements) and parameters via solving a scalar polynomial equations with coefficients depending on parameters. Organisation of the paper is as it follows: In Section 2, we recall how to obtain algebraic equations and some definitions and materials about rings of multivariate polynomials and the Gröbner basis are provided. In Section 3 a basic algorithm without endowing the Gröbner basis is described and illustrated on a simple example (Duffing oscillator). In Section 4, the Gröbner basis is exploited and an algorithm is provided for the case of a single-dof system. It is illustrated via the Duffing example. The single unknown can be an approximation of L 2 norm of a periodic solution or of the Fourier coefficients of approximated Fourier series. Finally, to illustrate the method for general cases (N-dof nonlinear system with forcing or parametric nonlinearities) a two-dof case is examined. Finally, the paper is concluded in Section 5.

Basic ideas in rings of polynomials

Let us suppose that we have a set of nonlinear dynamical equations (e.g. Duffing), with the variable x(t). For seeking periodic solutions in

V = L 2 ([0, T ]) with T = 2π
ω , x can be represented as:

x(t) = a 0 2 + +∞ j=1 a j cos(jωt) + b j sin(jωt) (1) 
or in the form of truncated series as:

x(t) F (X 0 , X 1 , X 2 , . . . , X N , t) = a 0 2 + M j=1 a j cos(jωt) + b j sin(jωt) (2) with a 0 → X 0 , a 1 → X 1 , b 1 → X 2 , . . . leading to E j (X 0 , X 1 , . . . ) = 0, j = 0, 1, 2, . . . , 2M = N .
Let us suppose that there is a function space ∨ where x ∈ ∨ and we set the norm of x as x . For instance,

x 2 = x 2 2 = ( a 2 0 2 ) + +∞ j=1 a 2 j + b 2 j where x ∈ L 2 ( 0, T = 2π ω ) (3) 
It should be mentioned that if there is not any constant term in the system, then E 0 and X 0 can be omitted.

The problem

We are interested to perform bifurcation analyses with the parameter λ on a nonlinear dynamical system. From x(t) F (X 0 , X 1 , X 2 , . . . , X N , t) we reach to:

               E 0 (X 0 , X 1 , X 2 , ...., X N , λ) = 0 E 1 (X 0 , X 1 , X 2 , ...., X N , λ) = 0 . . . E Z (X 0 , X 1 , X 2 , ...., X N , λ) = 0 (4) 
We would like to obtain from all E j equations, a problem which is represented as

P( x 2 , λ) = 0 (5) 
With

x 1 2 X 2 0 + X 2 1 + X 2 2 + • • • + X 2 N = X (6) 
Equation 5 reads:

P( (X 0 , X 1 , X 2 , . . . , X N ) , λ) = P (X, λ) = 0 ( 7 
)
where P is a polynomial. In the following section we will clarify some definitions and properties which are related to the demanded problem.

Some definitions and properties

• Let us suppose that K[X] is the polynomial ring of X over the field K and

I K[X], ideals of the ring K[X].
• Given an ideal I K[X], it is possible to generate quotient ring K[X]/I.

• In the ring K[X], division of the polynomial P by E is represented by

P = q quotient E + r remainder (8) 
with degree(r)<degree(E).

• Let us suppose that there is not any constant term in the system so, E 0 and X 0 are omitted. Consider again

E = {E 1 , E 2 , . . . , E Z } in the ring K[X 1 , X 2 , . . . , X N ]
, the ideal produced by E is the set of linear combinations of polynomials from E such that:

I = { Z j=1 h j E j , h 1 , h 2 , . . . h Z ∈ K[X 1 , X 2 , . . . , X N ]} (9) 
• In the ring K[X 1 , X 2 , . . . , X N ], let us find Gröbner bases G = {g 1 , g 2 , . . . , g Z },

for the set E = {E 1 , E 2 , . . . , E Z }.

• When the polynomial P belongs to the ideal produced by E, the remainder of P with respect to G must be zero.

• In the ring K[X 1 , X 2 , . . . , X N ], we are generalizing division of polynomial P by polynomials E = {E 1 , E 2 , . . . , E Z } so that:

-P = q 1 E 1 + q 1 E 1 + • • • + q Z E Z + r -Polynomials q 1 , q 2 , . . . q Z are quotients of K[X 1 , X 2 , . . . , X N ].
-Polynomial r is the remainder of K[X 1 , X 2 , . . . , X N ].

In fact

P = g 1 q 1 + g 2 q 2 + • • • + g z q z + r P [g 1 , g 2 , . . . , g z ] = [E 1 , E 2 , . . . , E Z ] ⇒ r = 0 (10) 

A very basic algorithm without using the Gröbner basis

Let us consider N polynomial equations of N variables X 1 , ..., X N , represented as E j (X 1 , . . . , X N ) = 0 for j = 1, . . . , N . Let us consider the degrees of each equation versus one variable (successively X 1 , . . . , X N ).

• Let us keep the variable with the smallest maximal degree among the N equations;

• Let us consider the equation with the smallest degree in this variable:

-If it is 0, let us choose the variable with the next smallest maximal degree.

-If it is 1, we solve in that variable.

• Let us substitute in the other equations and go back to the beginning after considering numerators of equations and we keep in memory the value of denominator.

• If it is greater than 2, let us make the Euclidean division of the equation (polynomial) with highest degree in the variable versus the equation with the smallest degree in the same variable.

• We obtain a quotient and a remainder:

-If the remainder is of degree 1, we solve it.

-If it is greater than 1, we divide again the equation with the smallest degree in the variable by the remainder.

• We iterate the process till we find a remainder of degree 1.

• If the rest is of degree 0, we have eliminated one variable.

Application to the Duffing oscillator

Let us consider the Duffing example with approximation of the periodic solution by one harmonic via HBM (see appendix A). We obtain two polynomials in X 1 , X 2 from E j (X 1 , X 2 ) = 0 for j = 1, 2. We can see that for X 1 or X 2 variables, the degrees of E 1 and E 2 are:

• degree(E 1 , X 1 ) = 3

• degree(E 2 , X 1 ) = 2 • degree(E 1 , X 2 ) = 2 • degree(E 2 , X 2 ) = 3
So we consider Euclidean division of E 1 seen as a polynomial P 1 of X 1 by E 2 also seen as a polynomial P 2 of X 1 . The result is:

E 1 (X 1 , X 2 ) = P 1 = Q 1 P 2 + R 1 (11) 
with

R 1 = 1 3 4 a 2 w 2 + 3 X 2 cf X 1 cX 2 2 + 4 3 aw X 2 w 2 -X 2 + f cX 2 2 ( 12 
)
The E 1 = P 1 = 0 is equivalent to

P 2 = R 1 = 0. Solving R 1 = 0 in X 1 provides X 1 = -4 aw X 2 w 2 -X 2 + f 4 a 2 w 2 + 3 X 2 cf (13) 
and by replacing in P 2 , we obtain a parametrization of the solutions: X 1 is a function of X 2 . And X 2 verifies a scalar equation governed by:

12cX 2 af w + aw 3 X 2 -awX 2 2 (4a 2 w 2 + 3cf X 2 ) 2 + 4aw af w + aw 3 X 2 -awX 2 4a 2 w 2 + 3cf X 2 + 3b 3 1 c 4 -f -w 2 X 2 + X 2 = 0 (14) 
Finding roots of this equation (and managing the denominator) is simple. So since it can be checked that the latter is singular when the numerator is not zero (for example if a = 0, the denominator is singular for X 2 = 0 that is not a zero of the numerator), it is possible to define the parametrization by a polynomial in one variable (X 2 ) expressed as the simplified first one of the previous equations

( since c = 0 and X 2 = 0): 16 X 2 a 4 w 4 + 16 X 2 a 2 w 6 + 24 X _2 2 a 2 cf w 2 + 9 X 2 3 c 2 f 2 -32 X 2 a 2 w 4 + 16 a 2 f w 4 -12 X 2 cf 2 w 2 + 16 X 2 a 2 w 2 -16 a 2 f w 2 + 12 X 2 cf 2 -12 cf 3 = 0 (15) 
Let us consider system parameters which are defined in Table 1. We consider two values for w as w = 1.12 and w = 1.5. Corresponding numerical values for X 2 , then X 1 and finally X = X 2 1 + X 2 2 are given in Table 1. We name obtained solutions via this method as "indirect solutions". 

a c f w X 1 X 2 X = X 2 1 + X 2 2 0 1 1 10 
1.12 0 0.7235217920 0.523483783 

Seeking periodic solutions via exploitation of Gröbner basis

For detailed information about Gröbner basis the reader is referred to reference [START_REF] Bostan | Algorithmes Efficaces en Calcul Formel[END_REF] and to documentation of the Package Gröbner Basis of Maple © [START_REF]Maple[END_REF].

We do not intend to describe known results about Gröbner basis. We simply provide the following basic idea:

• From given polynomials with given variables (and parameters), Gröbner basis can be constructed to generate the same ideal of polynomials (in a ring of polynomials with the given number of variables) than the ideal of polynomials generate by initial equations. Grolet [START_REF] Grolet | Dynamique non-linéaire des structures mécaniques : application aux systémes à symétrie cyclique, École doctorale MEGA[END_REF] used the idea to eliminate all variables except one. From

E 1 (X 1 , . . . , X M ), . . . , E M (X 1 , . . . , X M ) (16) 
One obtains:

                     X σ(1) = e 1 (X σ(M ) ) . . . X σ(M -1) = e M -1 (X σ(M ) ) E(X σ(M ) ) = 0 ( 17 
)
where E is a polynomial in one variable only, σ is one-to-one from {1, . . . , M } to itself, and e j functions.

• With a chosen Gröbner basis, the following question can be replied: For a given polynomial P in the ring of polynomial, does P belong to the Ideal generated by the Gröbner basis?

-Yes → the normal form of P (it is similar to th reminder r in Eq. 8)

versus the Gröbner basis is 0.

-No → a residual normal form collected versus monomials in the variables of the Ring of polynomials is obtained.

The core idea of our method is:

• To look for a polynomial (with unknown coefficients) of an interesting auxiliary variable (typically the approximated L 2 norm depending on variables of the initial ring of polynomials) so that we could determine the unknown coefficient to obtain a null normal form.

• With increasing the degree and the number of unknown coefficients, we stop when finding the lowest degree of the unknown polynomial leads to a null normal form. This is detailed in a given example which is provided in next section.

Presentation of the algorithm for a single degree of freedom system

Let us suppose that we have N polynomial equations of N variables X 1 , ..., X N reading as:

E j (X 1 , . . . , X N ) = 0, j = 1, 2, . . . , N (18) 
Our proposed algorithm is summarized as it follows:

• We consider the Gröbner basis generated by the polynomials E 1 , . . . , E N (with parameters of the problem appearing in the coefficients of the equations).

• We introduce a new variable that is the approximation of the L 2 norm of the searched periodic solution, reading as

X = X 2 1 + • • • + X 2 N ( 19 
)
• We introduce successively the polynomials:

P j = X j + s j-1 X j-1 + • • • + s 1 X + s 0 (20) 
for j = 1, 2, . . .

• We test to see if P j belongs to the ideal generated by the Gröbner basis produced by the N polynomial equations. The polynomials P j are splitted on the Gröbner basis generated by the equations:

-If P j belongs to the generated ideal, the normal form of P j should be 0.

• The normal form of P j is examined.

-It is splitted on polynomials of variables X 1 , . . . , X N with coefficients depending on initial parameters and depending linearly on the unknown parameters s 0 , s 1 , . . . , s j-1 .

-Expression of each coefficient of the normal form provides a linear equation in s 0 , s 1 , . . . , s j1 .

-We stop the algorithm when we can solve the system of linear equations so that the normal form of P j is zero.

The result provides a polynomial equation with one variable governing the amplitude-frequency response. Parameters of the problem appear in the final equation. This algorithm converges in finite number of iterations.

A few results for Duffing equation

Using Maple © software, we generate the Gröbner basis and we test polynomials P j from j = 1 to j = 3. For j = 1 and j = 2 it is not possible to choose the coefficients s j so that P j belongs to the ideal generated by the Gröbner basis.

To be more accurate, let us give the results.

Polynomial P 1

For polynomial P 1 , the normal form via Gröbner basis defined by the two algebraic equations obtained by HBM taking into account only the first harmonic in cosine and sine is:

-X 1 f s 1 + as 0 w = 0 (21) 
To get rid of the residual monomials X 1 and 1 we have to demand s 1 = 0 and s 0 = 0. Consequently P 1 = 0 that is not admissible solution.

Polynomial P 2

For P 2 the normal form is

-4 X 1 f s 2 w 2 + 4 af s 2 wX 2 -3 cf s 1 X 1 + 3 acs 0 w + 4X 1 f s 2 (22) 
Again to get rid of all the residual monomials in X 1 , X 2 and 1, we must demand

                     3 acs 0 w = 0 -4 f s 2 w 2 -3 cf s 1 + 4 f s 2 = 0 4 af s 2 w = 0 (23) 
Finally the solution is s 0 = s 1 = s 2 = 0, and consequently P 2 = 0 that is again not admissible.

Polynomial P 3

For j = 3, the result of the test for P j belonging to this ideal provides the following polynomial:

1 243c 5 f 5 e 1 X 1 + 1 243c 5 f 5 e 2 X 2 + 1 243c 5 f 5 e 3 = 0 (24) 
with e 1 = -5120 a 9 w 11 + 10240 a 7 w 13 -1024 a 5 w 15 + 5120 a 9 w 9

-30720 a 7 w 11 + 5120 a 5 w 13 + 1536 a 7 cf 2 w 7 + 1728 a 5 c 2 f 2 s 1 w 7

-4608 a 5 cf 2 w 9 -576 a 3 c 2 f 2 s 1 w 9 + 30720 a 7 w 9 -10240 a 5 w 11

-1728 a 5 c 2 f 2 s 1 w 5 + 9216 a 5 cf 2 w 7 + 1728 a 3 c 2 f 2 s 1 w 7 -10240 a 7 w 7 +10240 a 5 w 9 -432 a 3 c 3 f 4 s 1 w 3 -4608 a 5 cf 2 w 5 -1728 a 3 c 2 f 2 s 1 w 5

-324 ac 4 f 4 s 2 w 3 -5120 a 5 w 7 + 576 a 3 c 2 f 2 s 1 w 3 + 324 ac 

We can see that choosing the s j coefficients to be zero, then all the coefficients of the residual monomials are possible. In that case, P j belongs to the ideal.

The choice of the s j coefficients is done by solving the three following equations

versus s 0 , s 1 , s 2 :          e 1 = 0 e 2 = 0 e 3 = 0 (26) 
The polynomial P 3 becomes:

X 3 + 32 9c 2 f 2 C 2 X 2 + 256 81c 4 f 4 C 1 X -C 0 (27) 
with

C 2 = a 2 w 2 a 2 w 2 -w 4 + 2 w 2 -1 C 1 = a 4 w 4 a 4 w 4 + 2 a 2 w 6 + w 8 -4 a 2 w 4 -4 w 6 -3 cf 2 w 2 +2 a 2 w 2 + 6 w 4 + 3 cf 2 -4 w 2 + 1 C 0 = 256 81 a 6 w 6 c 4 f 2 (28) 
4.2.4. Polynomials P 4 , P 5 and higher

It can be proven that if K > 3

P K = Q K-3 P 3 (X) (29) 
where Q K-3 is a polynomial depending on undetermined coefficients S 4 , . . . , s K and X. For instance,

P 4 (X) = Q 1 (X, s 4 )P 3 (X) (30) 
with

X 3 + 32 9c 2 f 2 C 2 X 2 + 256 81c 4 f 4 C 1 X -C 0 (31) 
and

Q 1 (X, s 4 ) = s 4 (X + 8(1 -w 2 ) 3c ) (32) 
which introduces spurious solutions due to the fact that the polynomials in X that are becoming 0 belongs to an ideal generated by P 3 .

A transversal application

One of transversal applications of explained methodology is identification of system parameters, e.g. nonlinearities of the system. The frequency curves of the system can be detected by experimental tests. Then via consideration of general form of Eq. 27, expressed as:

A 3 X 3 + A 2 X 2 + A 1 X + A 0 (33) 
it will be possible to detect and to identify A j (a, c, f, ω) by one of minimisation techniques.

Numerical examples: direct and indirect solutions

Let us consider the same system parameters which are reported in Table 1:

The results obtained by solving directly P 3 (X) = 0 in Eq. 27 (direct solution)

are reported in see Table 2. Comparing these results with indirect solutions (see Table 1) shows that there are good agreements between them. It should be mentioned that other choices can be made as well; for example rather than looking for P (X) one could look for P (X j ) with X j to be any of the variables, or successively all the variables. Similar results are obtained: polynomials are obtained by solving a linear system. This fact is explained in detail in Sect. 4.5.

Duffing oscillator: Polynomials of a single coefficient of Fourier series

In this Section, we show that it is possible to obtain a polynomial equation only in one coefficient of the truncated Fourier series, for example in variable X 1 (or X 2 , or X 1 /X 2 corresponding to tangent of the unknown phase). For this, let us consider again the Duffing oscillator which is described in Eq. 57.

Let us look for approximated periodic solution as:

x(t) = X 1 cos(wt) + X 2 sin(wt) (34) 
The HBM method provides following two algebraic equations:

3 4 X 1 3 c + 3 4 X 1 X 2 2 c -w 2 X 1 + X 2 aw + X 1 = 0 3 4 X 1 2 X 2 c + 3 4 X 2 3 c -X 1 aw -X 2 w 2 + X 2 -f = 0 (35) 
Looking for a polynomial in X 1 belonging to the ideal generated by these equations via the approach leaned on Gröbner basis in the form

s 0 + s 1 X 1 + s 2 X 2 1 + s 3 X 3 (36) 
we obtain the normal form as

1 9 1 c 2 f 2 -16 a 4 s 3 w 4 + 16 a 2 s 3 w 6 -32 a 2 s 3 w 4 -12 acf s 2 w 3 +16 a 2 s 3 w 2 + 12 acf s 2 w + 9 c 2 f 2 s1 X 1 + 1 9 1 c 2 f 2 -32 a 3 s 3 w 5 + 32 w 3 s 3 a 3 + 12 a 2 cf s 2 w 2 X 2 + 1 9 1 c 2 f 2 -16 a 3 f s 3 w 3 + 9 c 2 f 2 s 0 (37) 
Then via setting s 0 = 1, we solve the linear equations obtained for s 1 , s 2 , s 3 by demanding elimination of the coefficients of the monomials of the normal form (1, X 1 and X 2 ). We obtain:

s 1 = a 2 w 2 + w 4 -2 w 2 + 1 awf s 2 = 3 2 c w 2 -1 a 2 w 2 s 3 = 9 16 c 2 f w 3 a 3 (38) 
Without giving details, similar methodology provides for X 2 :

16 X 2 a 4 w 4 + 16 X 2 a 2 w 6 + 24 ca 2 w 2 X 2 2 f + 9 c 2 f 2 X 2 3 -32 X 2 a 2 w 4 + 16 a 2 f w 4 -12 X 2 cf 2 w 2 + 16 a 2 w 2 X 2 -16 a 2 f w 2 + 12 X 2 cf 2 -12 cf 3 = 0 (39) 
and for phase tangent (in fact in Y = X 1 /X 2 ) following polynomial relation is obtained:

-4 Y 3 a 2 w 4 + 4 Y 2 a 3 w 3 + 4 Y 3 a 2 w 2 -4 Y a 2 w 4 + 3 Y 3 cf 2 +4 a 3 w 3 + 4 Y a 2 w 2 = 0 (40) 
Let us consider an academic numerical example: a = 3/100, f = 1/100, c = 1.

In Fig. 1 values for X 1 , X 2 and X 1 /X 2 are plotted versus w (respectively red, blue and green curve). 

Two examples of two dof systems

Here, we will two examples of coupled two dof nonlinear systems and we will find equilibrium points of systems via explained methodology in this paper.

Example 1

Let us consider following system:

           d 2 x dt 2 + ω 1 2 x + c 1 x 3 + a 1 dx dt -f 1 sin (wt) + d (x -z) 3 = 0 d 2 z dt 2 + ω 2 2 z + c 2 z 3 + a 2 dz dt -f 2 sin (wt) -d (x -z) 3 = 0 (41)
We consider rough approximations of system variables which are described as:

   x = X 1 cos (wt) + X 2 sin (wt) z = Z 1 cos (wt) + Z 2 sin (wt) (42) 
System parameters which are collected in Table 3. We obtain four equations 

c 1 d c 2 a 1 a 2 f 1 f 2 1 1/2 1/3 1/50 1/50 1/100 1/50
generating Gröbner basis:

E 1 (X 1 , X 2 , Z 1 , Z 2 ) = 9/2 X 1 3 -9/2 X 1 2 Z 1 + 9/2 X 1 X 2 2 -3 X 1 X 2 Z 2 + 9/2 X 1 Z 1 2 + 3/2 X 1 Z 2 2 -4 X 1 w 2 -3/2 X 2 2 Z 1 + 3 X 2 Z 1 Z 2 -3/2 Z 1 3 - 3/2 Z 1 Z 2 2 + 2 25 X 2 w + 4 X 1 = 0 E 2 (X 1 , X 2 , Z 1 , Z 2 ) = 9/2 X 1 2 X 2 -3/2 X 1 2 Z 2 -3 X 1 X 2 Z 1 + 3 X 1 Z 1 Z 2 + 9/2 X 2 3 -9/2 X 2 2 Z 2 + 3/2 X 2 Z 1 2 + 9/2 X 2 Z 2 2 -4 X 2 w 2 - 3/2 Z 1 2 Z 2 -3/2 Z 2 3 -2 25 X 1 w + 4 X 2 = 0 E 3 (X 1 , X 2 , Z 1 , Z 2 ) = -3/2 X 1 3 + 9/2 X 1 2 Z 1 -3/2 X 1 X 2 2 + 3 X 1 X 2 Z 2 - 9/2 X 1 Z 1 2 -3/2 X 1 Z 2 2 + 3/2 X 2 2 Z 1 -3 X 2 Z 1 Z 2 + 5/2 Z 1 3 + 5/2 Z 1 Z 2 2 -4 Z 1 w 2 + 2 25 Z 2 w + 9 Z 1 = 0 E 4 (X 1 , X 2 , Z 1 , Z 2 ) = -3/2 X 1 2 X 2 + 3/2 X 1 2 Z 2 + 3 X 1 X 2 Z 1 - 3 X 1 Z 1 Z 2 -3/2 X 2 3 + 9/2 X 2 2 Z 2 -3/2 X 2 Z 1 2 -9/2 X 2 Z 2 2 + 5/2 Z 1 2 Z 2 + 5/2 Z 2 3 -4 Z 2 w 2 -2 25 Z 1 w + 9 Z 2 = 0 (43)
Let us introduce the approximated L 2 -norms for x and z respectively:

X = X 2 1 + X 2 2 x 2 Z = Z 2 1 + Z 2 2 z 2 (44) 
Let us call G2 as the Gröbner basis obtained from the 4 equations E 1 , . . . , E 4 .

An example of polynomial in Z

We look for polynomial P (X) (and Q(Z)) where X (and Z) is defined in Eq. 44. The process explained for the single dof system runs. By solving linear systems to nullify the remainder of unknown polynomials in X (respectively Z)

versus the Gröbner basis G2 we obtain that: the minimum degree in X (and Z) is 15. For example, the polynomial in Z is defined in Appendix B. Let us detect the frequency-response curves for closely-and not closely-spaced frequencies. As the first example, we consider a system where its frequencies are closely-spaced frequencies, e.g. ω 1 = 1 and ω 2 = 1.10. Figure 2 collects obtained results for L 2 -norms of x and z. The same results for the system with ω 1 = 1 and ω 2 = 25 17 , i.e. considered as not closely-spaced frequencies, are represents in Fig. 3. 

Example 2

Let us consider a model of a linear master system which is coupled to a nonlinear energy sink. We start from

     d 2 x dt 2 + a dx dt + x + α(x -y) 3 -f sin (wt) = 0 d 2 y dt 2 + λ dy dt + α(y -x) 3 = 0 (45) 
By introducing which is equivalent to

u = x + y v = x -y (46) 
x = u + v 1 + y = u -v 1 + (47) 
and µ = 1 (1+ ) , p = ( λ + a)µ, q = (a -λ)µ, r = (a -λ)µ, s = (a + λ)µ, g = f, β = (1 + )α we obtain the next two differential equations:

equ = d 2 u dt 2 + p du dt + q dv dt + µ ( v + u) -g sin (wt) eqv = d 2 v dt 2 + r du dt + s dv dt + µ ( v + u) -g sin (wt) + β v 3 (48) 
Let us name these two equations as equ and eqv . Looking for a rough approximation of periodic solutions for u and v, let us introduce:

u X 1 cos (wt) + X 2 sin (wt) v Z 1 cos (wt) + Z 2 sin (wt) (49) 
Using Harmonic Balance Method, we obtain four algebraic equations writing

1 T T 0 equ cos (wt) dt = 0 1 T T 0 equ sin (wt) dt = 0 1 T T 0 eqv cos (wt) = 0 1 T T 0 eqv sin (wt) = 0 (50) 
Solving the first and second equations, X 1 , X 2 are obtained as functions of

Z 1 , Z 2 : X 1 = - -Z1 µ w 2 +Z1 pqw 2 -Z _2 µ pw-Z2 qw 3 +Z1 µ 2 +Z2 µ qw+gpw p 2 w 2 +w 4 -2 µ w 2 +µ 2 X 2 = -Z1 µ pw+Z1 qw 3 -Z2 µ w 2 +Z2 pqw 2 -Z1 µ qw+Z2 µ 2 +gw 2 -gµ p 2 w 2 +w 4 -2 µ w 2 +µ 2 (51) 
So two algebraic equations in Z 1 , Z 2 are obtained by considering numerators of third and fourth previous equations when replacing X 1 , X 2 . These equations can be written as:

AZ 3 1 + AZ 1 Z 2 2 + BZ 1 + CZ 2 + E AZ 2 Z 2 1 + AZ 3 2 + BZ 2 -CZ 1 + F (52) 
where A, B, C, E, F are given in Appendix C.

Let us build a Gröbner basis from this 2 equations in Z 1 , Z 2 . We obtain:

[ -AF 3 -BC 2 F + C 3 E Z 1 + AE 2 C + ACF 2 Z 2 2 + AEF 2 -BC 2 E -C 3 F Z 2 -2 C 2 EF AE 2 C + ACF 2 Z 1 Z 2 + -AEF 2 -BC 2 E -C 3 F Z 1 + AE 2 F + BC 2 F -C 3 E Z 2 -C 2 E 2 + C 2 F 2 AE 2 C + ACF 2 Z 1 2 + -AE 2 F + BC 2 F -C 3 E Z 1 + AE 3 + BC 2 E + C 3 F Z 2 + 2 C 2 EF ] (53) 
Then we introduce the approximation of square of L 2 -norm of v:

Z = Z 2 1 + Z 2 2 (54) 
We look for coefficients of a polynomial in Z of minimal degree so that this polynomial belongs to the ideal generated by the Groebner basis. We obtain a polynomial of degree 3:

s 0 + s 1 Z + s 2 Z 2 + s 3 Z 3 = 0 (55) 
with:

s 3 = 1 s2 = 2 B A s 1 = B 2 +C 2 A 2 s 0 = -E 2 +F 2 A 2 (56) 
We obtain approximate periodic solutions. It is simple to analyze the behavior of the frequency -norm curve versus parameters of the problem and occurrence of potential isola. Let us give an example. We choose = 1 100 , a = 1 100 , λ = 2, α = 10.. We keep two free parameters: w and f . Plotting Z versus w and f provides occurrence of multiple solutions and especially potential occurrence of isolas. This is presented in Fig. [START_REF] Bogoliubov | Asymptotic Methods in the Theory of Non-Linear Oscillations[END_REF].

Conclusion

Smooth nonlinear differential equations treated by perturbation methods, e.g. harmonic balance method, yield to a set of polynomial equations. The proposed methodology in this paper, leads to potential solution of a bifurcation problem depending on X, standing for any component of the approximated L 2 norms (or any components of truncated Fourier series) of the unknown component of the vector variable of generalized displacements and system parameters.

It is shown that

• Either computer algebra could be used (if the size is not too large) to keep X and one or two parameters.

• Or a full numerical method can be designed to solve a polynomial equation in X with numerical values of parameters and loops to manage the values of parameters. The key point of our developments is to built Gröbner bases from the set of polynomial equations. Then, the remainders should be evaluated which could be splitted via computing the remainder of each monomials X k , k = 0, 1, . . . . 

Evaluation of

Figure 1 :

 1 Figure 1: Curves of approximated L 2 -norms of x (solid line) and z (dashed line) versus w for the system with ω 1 = 1, ω 2 = 1.10. Definitions of x are z are presented in Eq. 44.

Figure 2 :

 2 Figure 2: Curves of approximated L 2 -norms of x (solid line) and z (dashed line) versus w for the system with ω 1 = 1, ω 2 = 1.10. Definitions of x are z are presented in Eq. 44.

Figure 3 :

 3 Figure 3: Curves of approximated L 2 -norms of x (solid line) and z (dashed line) versus w for the system with ω 1 = 1, ω 2 = 25 17 . Definitions of x are z are presented in Eq. 44.

Figure 4 :

 4 Figure 4: Curves of approximated L 2 -norms of v (Z 2 1 + Z 2 2 ) versus w and f for = 1 100 , a = 1 100 , λ = 2, α = 10.

Table 1 :

 1 Numerical solutions of polynomial Eqs. 15 and 13 (Indirect solutions).

  4 f 4 s 2 w +1024 a 5 w 5 e 2 = 1024 a 10 w 10 -10240 a 8 w 12 + 5120 a 6 w 14 + 20480 a 8 w 10 -20480 a 6 w 12 -576 a 6 c 2 f 2 s 1 w 6 + 3072 a 6 cf 2 w 8 + 1728 a 4 c 2 f 2 s 1 w 8 -10240 a 8 w 8 + 30720 a 6 w 10 -3072 a 6 cf 2 w 6 -3456 a 4 c 2 f 2 s 1 w 6 -20480 a 6 w 8 + 1728 a 4 c 2 f 2 s 1 w 4 +324 a 2 c 4 f 4 s 2 w 2 + 5120 a 6 w 6 e 3 = -4096 a 8 f w 10 + 4096 a 6 f w 12 + 4096 a 8 f w 8 -12288 a 6 f w 10 +768 a 6 cf 3 w 6 + 1152 a 4 c 2 f 3 s 1 w 6 + 12288 a 6 f w 8 -1152 a 4 c 2 f 3 s 1 w 4 -4096 a 6 f w 6 + 243 c 5 f 5 s 3

Table 2 :

 2 System parameters and obtained results from "direct solution".

	a c	f	w	X
			1.12	0.5234837835
	0 1	1 10	1.5	0.006449823678 1.559911538
				1.766971972

Table 3 :

 3 System parameters of the 2 dof system

  Gröbner bases via softwares such as Maple © , Mathematica © , etc

	Appendix B 56482922746171457535692562038431744 83469735214580236288 12919531640625 1232102550566196441650390625 w 12 -14213757254597023392992218194694144 w 18 + 197758922084693295824896 8074707275390625 410700850188732147216796875	w 16 -w 10 +
	313435647881896438249078784 5046692047119140625 24127235897828715075885994451039744 1232102550566196441650390625 w 8 -w 14 + 9922114788423397338736265850082496 348807083000509485867592216576 3154182529449462890625 w 12 -1232102550566196441650390625 w 6 +
	are straightforward. The explained methodology is general and theoretically can be applied to any (smooth) nonlinear dynamical systems, but creation of Gröbner bases and/or considerations of number of parameters depend on the characteristics of the computer. If the system possesses non polynomial terms, then they can be treated by introducing new variables in polynomials as the MANLAB software [38] does. -1378169306088554230448128 3154182529449462890625 w 16 + ( 908148539392 33074001 w 16 -1795245925597184 3706857255637949525597361077248 26284854412078857421875 w 10 + 2030801564587105529363588216128 w 14 + 15770912647247314453125 w 8 -37381352907555242865961626841448 16428034007549285888671875 w 4 -155915865836905718017344659566 w 2 + 394272816181182861328125 6890416875 925288206189068288 861302109375 w 12 -20303937659080428419072 w 10 + 6503741754449884086254164046048 78854563236236572265625 w 6 + 185490219365537888065035581348 5256970882415771484375 w 4 -402383315056822591565148793 12616730117797851562500 )Z + ( 8628331889513769041957610278172608 w 8 -49284102022647857666015625 8074707275390625 1229727953729482810564864 336446136474609375 w 8 -3411410189342633673711232 w 6 + 715383594036407656829198137946 78854563236236572265625 w 2 + 334930554784032922352555921327 315418252944946289062500 )Z 4 + 4053557152868564285713095549258656 49284102022647857666015625 w 6 + 1297687189155867463789643378703548 w 4 -49284102022647857666015625 1009338409423828125 653616148882221825936344 336446136474609375 w 4 -1068477874238692629147146 w 2 + (-4145241128960 33074001 w 20 + 6169415905181696 4134250125 w 18 4124918675357433856 516781265625 w 16 + 2029650382567565733103442318956 394272816181182861328125 w 2 -1880927240192 33074001 w 26 + 17981852455272448 w 24 -20671250625 1682230682373046875 1827943346824919744518657 20186768188476562500 )Z 7 + (-1134053163008 33074001 w 14 + 5887718468780032 w 12 -40781055576003251142656 1614941455078125 w 14 -52802737470560161361604608 1009338409423828125 w 12 + 79340727352602656768 12919531640625 w 22 + 213923019999400703295488 w 20 -8074707275390625 20671250625 4362555462584717312 4306510546875 w 10 + 5384114551457063507968 2691569091796875 w 8 -10629871028983174135616 w 6 + 233811739938965398616669913088 3154182529449462890625 w 10 -1699130128334449594721506112 23364315032958984375 w 8 + 78646943003392452712988672 1009338409423828125 w 18 + 104077022971241060071581679616 w 16 -630836505889892578125 4485948486328125 113367363707739767193776 67289227294921875 w 4 -134473665141617001115444 w 2 + 153757562975591585094666167456 3154182529449462890625 w 6 -67342870089939159963999879004 3154182529449462890625 w 4 + 510021699746424067943739988688896 1971364080905914306640625 w 14 + 4997487074654034102224839458234368 w 12 -16428034007549285888671875 201867681884765625 91308017871954880257533 807470727539062500 )Z 8 + ( 51252330496 33074001 w 12 -22683650711552 w 10 + 5795218416971835320518889324 1051394176483154296875 w 2 -113043846351105662544097141 177700424194335937500 )Z 5 + 2643494904566063655125361759107072 9856820404529571533203125 w 10 + 73198695034948774671932113819 )Z 2 + 157709126472473144531250 2296805625 38475728778145792 1435503515625 w 8 -325127784501945935872 8074707275390625 w 6 + 32176760582720770288 w 4 -( 3054172635136 33074001 w 18 -6888025348636672 6890416875 w 16 + 12448522917675139072 2583906328125 w 14 -369484831146012933221404 15770912647247314453125 w 2 + 423493498330136981072144320256 w 6 -1232102550566196441650390625 897189697265625 16267166582808973592 897189697265625 w 2 + 131152668984318128389 32298829101562500 )Z 9 + ( 6399029248 4766769442816 153120375 w 8 + 11748956511902464 159500390625 w 6 -344605556432115472 120124244975725096 2392505859375 w 2 -137993592668846662 11962529296875 )Z 10 + (-1493761338368 255200625 w 6 -1573245655526528 159500390625 w 4 + 1156202316118244 310850797475104 159500390625 )Z 11 + (-78814976 408321 w 6 + 22315262528 28355625 w 4 -757496789528 3080599852667 6380015625 )Z 12 + ( 265855600406687329291500272063552 87095193364126415138763814569952 394272816181182861328125 w 6 + 132288258862375468329763133764 36005186115362658082043360745472 1971364080905914306640625 w 2 + 5512741519360 33074001 w 24 -3343050977837056 209421832285824483328 12919531640625 w 20 -530952793350881590116352 910149056368918877845651456 5046692047119140625 w 16 -1111252296156390035946564026368 330301481418404569761234594230272 657121360301971435546875 w 12 -1040290862758469027093870159240192 3701844637451132472050108936009 1971364080905914306640625 )Z 3 + (-2462811422720 33074001 w 22 + 282938851721216 275616675 w 20 -7813210067145962903477966012416 219040453433990478515625 w 16 -49284102022647857666015625 w 14 + 2278510610280936959236919410982912 1971364080905914306640625 w 10 + 5171470074499997697572864 560743560791015625 w 20 -3154182529449462890625 w 18 + 66086231935138517144685248512 3154182529449462890625 w 14 + 334942201421234176 516781265625 w 24 -8074707275390625 w 22 + 23819578878102415081472 8074707275390625 w 18 + (-1344 71 w 2 + 41412 1775 )Z 14 + ( 181462368256 33074001 w 28 -765601875 w 26 + 67032628330496 1378083375 w 22 + 1216565315255726119030038846464 1232102550566196441650390625 w 10 -1232102550566196441650390625 w 8 + 851522177212674164034359093248 1622521877288818359375 w 4 -95966531158016 12919531640625 w 22 + 5046692047119140625 w 18 + 871685003677524819968 657121360301971435546875 w 8 -16883352779491959714151604224 16428034007549285888671875 w 12 + ( 1870496 15123 w 4 -584129312 1890375 w 2 + 9451875 )Z 13 + 1827186602 708890625 w 2 + 1547811610857618971615166464 1971364080905914306640625 w 14 -1100528098786680305569 504669204711914062500 -20671250625 w 24 -11341398016 159500390625 w 2 -50968862889420126267899257 100933840942382812500 )Z 6 -8074707275390625 w 20 + 371735497963208704 523905280 408321 w 8 + 313847852654861086953748024 25233460235595703125 w 4 + 8411153411865234375 w 2 -31635974345722301381951678 3987509765625 w 4 + 126167301177978515625 w 8 + 1008580232405190022172262976 42055767059326171875 w 6 -3750859833805571136464068096 1224963 w 10 -4056662303141916557312 299063232421875 w 12 + 124062764458015971484742656 5046692047119140625 w 10 -227306693537749813312275616 1971364080905914306640625 w 4 + Z 15

Appendix A

Let us consider the Duffing equation

where t denotes the time, and a, c, f are given parameters. We assume (up to a change of time variable) ω 0 = 1. ω gives external basic frequency for searching periodic solution. We look for approximated periodic solutions of Duffing equation using a truncated Fourier series of the form:

Let us set T = 2π w . Algebraic equation are obtained by harmonic balance method as results of the following calculations:

and for j = 1, . . . , N ,

Coefficients a 0 , . . . , b N are the 2N + 1 unknowns.

The first equation determines static equilibrium position around which oscillations are examined. In general, it could be omitted via assuming a 0 = 0. For example, assuming a 0 = 0 and N = 1, two polynomial equations in a 1 and b 1 are obtained:

Renaming a j by X j , for j = 1, 2, we obtain the corresponding equation to start

Euclidean division or Gröbner approach. Let us notice that these equations can be written in the following form

where

, leading to a linear system in a 1 , b 1 . Solving this linear system provides an expression of a 1 and b 1 versus N . Recalling the relation

2 . This polynomial is expressed as:

It is similar to the result obtained by euclidean division or Gröbner approach.