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Dynamic event-triggered stabilization for
the Schrödinger equation ?

Florent Koudohode, Lucie Baudouin, Sophie Tarbouriech ∗

∗ LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
(e-mail: fkoudohode@laas.fr, baudouin@laas.fr, tarbour@laas.fr).

Abstract: The paper presents a dynamic event-triggering mechanism for the constant and the
localized damped linear Schrödinger equation. The following results are tackled: the existence
of solution to the closed-loop event-triggered control system; the avoidance of the Zeno behavior
due to the absence of any accumulation point of the sequence of time instants and the exponential
stability based on energy estimate through the observability inequality. A simulation example
based on the one-dimensional Schrödinger equation is presented to validate the theoretical
results.

Keywords: Schrödinger equation, Dynamic event-triggering mechanism, Exponential stability,
Observability inequality.

1. INTRODUCTION

1.1 Control of the linear Schrödinger equation

The Schrödinger equation is a partial differential equa-
tion (PDE) modeling the behavior of the wave func-
tion of a non-relativistic particle in quantum mechan-
ical systems (Sulem and Sulem (2007)) as laser beam
propagation (Andrews and Phillips (2005)) or Bose Ein-
stein condensation. Besides, the solutions to the lin-
ear Schrödinger equation also solve a plate equation
(Machtyngier and Zuazua (1994)), which models for in-
stance in one-dimension in space, the deflection of a beam
due to applied loads. All these applications justify the
extensive study of this equation in many aspects, includ-
ing the well-posedness (Cazenave et al. (1998)), the ex-
act controllability (Machtyngier (1994)), the observability
(Phung (2001),) and the stabilization or stability analysis
by multiplier techniques and constructing energy function-
als (Machtyngier and Zuazua (1994)) or by backstepping
approach via the boundary actuation and measurements
(Krstic et al. (2011)).

1.2 Event-triggering mechanism

Starting from a stabilized closed-loop system, where the
dynamic is described by a Schrödinger equation and a
control is applied as a continuous-in-time and localized
damping source term, we are interested in this article
by the effect of a digital implementation of this control.
The time sampling implementation of such a continuous-
in-time controller has to be designed efficiently in order
to avoid wasting communications, computational and ac-
tuating resources. The event-triggering strategy turned
out to be a powerful tool for this, since the events are
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planned to occur only when needed, while allowing stabil-
ity. Indeed, event-triggering strategies lead to a different
paradigm with respect to traditional periodic implementa-
tions since the use of event-triggering schemes enables to
update control inputs only when specific state-dependent
events occur. To the best of our knowledge, there is no
exponential stability proof on periodic sampling for the
Schrödinger equation. Another important feature of an
event-triggering approach is to ensure that there will not
be infinitely many updates of the control over a bounded
time interval, situation known as the Zeno behavior.

In event-triggered control theory, two approaches can be
considered: the emulation and the co-design. Concerning
the emulation method, the control is supposed to be a
priori known and only the event-triggering mechanism
is being designed, as in Postoyan et al. (2014); Espi-
tia et al. (2017, 2021) respectively for nonlinear finite
dimentional systems using hybrid systems tools; linear
hyperbolic systems of conservation laws and for constant-
parameters reaction-diffusion PDE systems. As far as the
co-design approach is concerned, both the controller and
the event-triggering mechanism are simultaneously de-
signed. This approach is addressed in some papers, see,
for example, Seuret et al. (2016) and reference therein
for LQ-stabilization of saturated linear systems. In the
current article, as described earlier, we adopt an emula-
tion approach, starting from the results in Machtyngier
and Zuazua (1994) and Phung (2001) where a stabiliz-
ing controller has been prescribed to stabilize the linear
Schrödinger equation.

With the goal of enriching the static event-triggering
mechanism (state-based triggering condition) designed in
Koudohode et al. (2022), we propose here a dynamic
event-triggering rule, similarly to the one introduced for
general framework of nonlinear finite-dimentional control
system in Girard (2015) and in Zhao et al. (2020); Peralez
et al. (2018) using small-gain and high gain methods. This
new dynamic rule consists in introducing an additional



internal dynamic variable to the static law. It is worthwhile
to mention that the dynamic event-triggering strategy
has already been extended to PDE framework in Espitia
(2020) for a coupled 2 × 2 linear hyperbolic system, in
Wang and Krstic (2021) for sandwich hyperbolic PDE
systems and in Rathnayake et al. (2021) for a class of
reaction-diffusion PDEs with Robin actuation.

Event-based control strategies were also considered for
parabolic PDE in Espitia et al. (2021) (with small gain
approach), Selivanov and Fridman (2016) (for distributed
event-triggered control) and for hyperbolic PDE in Bau-
douin et al. (2019) (damped wave equation), Espitia
et al. (2017) (via Lyapunov-based event triggered sampling
and quantization), Davo et al. (2018) (via backstepping
method and looped-functionals) and for abstract infinite-
dimensional systems in Wakaiki and Sano (2020) and
Wakaiki and Sano (2019) (under Lipschitz perturbations).

1.3 Contributions

The contributions of the paper can be summarized as
follows:

• We design a novel and dynamic event-triggering
mechanism for a locally damped linear Schrödinger
equation different from the static rule proposed in
Koudohode et al. (2022) and we ensure the avoidance
of Zeno phenomenon.
• Thanks to an energy estimate and an observability

inequality we prove global exponential stability of the
energy of the closed-loop system under the designed
dynamic event-triggering rule.

1.4 Outline

The damped linear Schrödinger equation under consider-
ation is introduced in Section 2 and some existing results
on well-posedness and stability are presented. Section 3
proposes the design of the dynamic event-triggering mech-
anism, the proof of the well-posedness and of the avoidance
of the Zeno phenomenon. The main event-based stabiliza-
tion results are provided in Section 4. Finally, Section 5
gives some numerical illustrations of the theoretical re-
sults. Concluding remarks and perspectives are given in
Section 6.

1.5 Notation

Given an open set Ω ⊂ RN , L2(Ω) is the Hilbert
space of square integrable scalar functions endowed with
norm ‖z‖ = (

∫
Ω
|z(x)|2dx)

1
2 . The gradient and Lapla-

cian of z are denoted ∇z = (∂x1
z, . . . ∂xN

z) and ∆z =∑N
i=1 ∂

2
xi
z. We define the Sobolev spaces H1

0 (Ω) =

{z ∈ L2(Ω),∇z ∈
(
L2(Ω)

)N
, z|∂Ω = 0}, with norm

‖z‖H1
0 (Ω) = ‖∇z‖ and H2(Ω) = {z ∈ L2(Ω),∇z ∈(

L2(Ω)
)N

, ∂xj
∂xi

z ∈ L2(Ω)}, the set of all function such

that
∫

Ω

(
|z|2 + |∇z|2 + |∆z|2

)
dx is finite. The dual space

of a Sobolev space H is denoted H ′. We will often write∫
Ω
g(t) instead of

∫
Ω
g(x, t)dx to ease the reading. Im(z)

and Re(z) are respectively the imaginary part and real
part of z ∈ C and its complex conjugate is denoted z̄.

2. PRELIMINARY AND PROBLEM DESCRIPTION

This paper deals with the stabilization of a damped linear
Schrödinger equation under event-triggered control. Let Ω
be an open bounded domain in RN , N ∈ N∗ with smooth
boundary ∂Ω. Let us consider the following control systemi∂tz(x, t) + ∆z(x, t) = −iα(x)z(x, t) (x, t) ∈ Ω× R+,
z(x, t) = 0 (x, t) ∈ ∂Ω× R+

z(x, 0) = z0(x) x ∈ Ω.

(1)
In system (1), α ∈ L∞(Ω;R) is the damping coefficient
and is such that there exist ω ⊂ Ω, α0 and α1 ∈ R+ such
that {

0 < α < α1 = ‖α‖L∞(Ω) a.e. in Ω
∃α0 > 0 : α ≥ α0 a.e. in ω ⊂ Ω.

(2)

This means that the damping will not necessarily act on
the whole domain Ω. The well-posedness and exponential
stability of system (1) are already documented in the
literature. For instance, it has been proved in Cazenave
et al. (1998); Machtyngier and Zuazua (1994) the following
theorem.

Theorem 2.1. Well-posedness and stabilization (Cazenave
et al. (1998); Machtyngier and Zuazua (1994))

(1) For any initial conditions z0 ∈ L2(Ω), there exists a
unique weak solution to (1) satisfying

z ∈ C0(R+;L2(Ω)) ∩ C1([0, T ]; (H2(Ω) ∩H1
0 (Ω))′).

(3)

Moreover, for any initial data z0 ∈ H2(Ω) ∩ H1
0 (Ω),

the unique solution to (1) satisfies

z ∈ C0(R+;H2(Ω) ∩H1
0 (Ω)) ∩ C1(R+;L2(Ω)). (4)

(2) For any initial condition in L2(Ω), there exist C > 0
and δ > 0 such that the weak solution z to (1) verifies
for all t > 0

E(t) :=
1

2
‖z(t)‖2 ≤ CE(0)e−2δt. (5)

We address the problem of event-triggered implementation
of a state-feedback stabilizing law for the control system
such that i∂tz + ∆z = −iα(x)z(tk), in Ω× [tk, tk+1), k ∈ N

z = 0, on ∂Ω× R+,
z(·, 0) = z0 in Ω

(6)

where 0 = t0 < t1 < · · · < tk < tk+1. In this system,
{tk}k∈N, is the sequence of updates according to the event-
triggering algorithm presented in Section 3.

Let us define the following time T corresponding to the
maximal time under which the event-triggered control
system (6) has a unique solution:{

T = +∞ if (tk) is a finite sequence,
T = lim sup

k→+∞
tk if not. (7)

Proving that T = +∞ will ensures that there will not be
accumulation point of the sequence {tk}k∈N. This will be
proved in Theorem 3.1 in order to avoid Zeno behavior.

3. DYNAMIC EVENT-TRIGGERING STRATEGY

We introduce in this section, the event-triggering algo-
rithm, which determines the time instant at which the



controller −αz needs to be updated. Some results on the
well-posedness and the absence of Zeno behavior will be
also presented.

3.1 Definition of the event-triggering mechanism

Inspired by the emulation approach introduced in the con-
text of ordinary differential equation in Tabuada (2007);
Postoyan et al. (2014); Girard (2015), the following state-
dependent criterion was proposed in Koudohode et al.
(2022). Starting from t0 = 0, then ∀k > 0

tk+1 = inf
{
t ≥ tk, ‖z(t)− z(tk)‖2 > γ‖z(t)‖2

}
. (8)

where γ > 0 is a design parameter. Hence, an event is
generated when the error term ek

ek(x, t) = z(x, t)− z(x, tk), (9)

becomes larger than a proportion of the energy. In this
paper, we propose to enrich our event-triggering mecha-
nism (8) by adding an internal scalar dynamic variable m
satisfying the following differential equation

ṁ(t) = −ηm(t) + 2γE(t)− ‖ek(t)‖2, for t ≥ tk (10)

with m(tk) = 0 and η > 0 a design parameter.

Then, we can describe the event-triggering law under
consideration in the paper. Starting from t0 = 0

tk+1 = inf
{
t ≥ tk, ‖ek(t)‖2 − 2γE(t) >

1

θ
m(t)

}
(11)

where γ > 0 and θ > 0 are design parameters.

Remark 3.1. When the design parameter θ tends to +∞
in the dynamic rule (11), we obtain the static rule (8).
Note that the signal m(t) can be considered as a filtered
value of 2γE(t)− ‖ek(t)‖2.

Similarly to Girard (2015), one gets the following result.

Lemma 3.1. Using the definition of the event-triggering
mechanism (11), it follows, for all t ∈ [tk, tk+1), k ≥ 0:

m(t) ≥ 0 and ‖ek(t)‖2 ≤ 1

θ
m(t) + 2γE(t) (12)

Proof. Indeed, between two triggering instants tk, tk+1,
from (11), we have 1

θm(t) + 2γE(t) − ‖ek(t)‖2 ≥ 0.
Combined to (10), this inequality brings

1

θ
m(t) + 2ṁ(t) + ηm(t) ≥ 0, i.e ṁ(t) ≥ −

(
1

θ
+ η

)
m(t)

for which the comparison principle can be applied to
guarantee m(t) ≥ 0, for all t ∈ [tk, tk+1), k ≥ 0. 2

Remark 3.2. The dynamic event-triggering mechanism is
usually constructed with m(t) ≤ 0 as in Espitia et al.
(2017); Espitia (2020); Rathnayake et al. (2021); Wang and
Krstic (2021) but this paper follows the same approach as
in Girard (2015); Karafyllis et al. (2021) where m(t) is
positive.

Remark 3.3. For a given state z(tk) of the event-triggered
control system (6), since m(t) ≥ 0, the next execution time
tk+1 given by the dynamic rule (11) comes later than the
one given by the static rule (8).

3.2 Well-posedness and absence of Zeno behavior

Leveraging on some regularity of the classical solutions to
the Schrödinger equation we get the following lemma.

Lemma 3.2. Let Ω be an open bounded domain of class
C2. For any initial conditions z0 ∈ H2(Ω) ∩H1

0 (Ω), there
exists a unique solution to (6) under the event-triggering
mechanism (11), satisfying

z ∈ C0([0, T ];H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)). (13)

Proof. The proof is constructed by induction and is
similar to the one that has been presented in Koudohode
et al. (2022) for the static event-triggering law (8). 2

Let us now notice that from (9), the event-triggered closed-
loop system also reads: i∂tz + ∆z = −iαz + iαek, in Ω× [tk, tk+1),

z = 0, on ∂Ω× R+,
z(·, 0) = z0, in Ω.

(14)

Before proving that the Zeno phenomenon cannot occur,
let us state the following intermediate result.

Lemma 3.3. Under the event-triggering law (11), for all
t ∈ [0, T ) one has:

2γθE(0)e−2Kt ≤ 2γθE(t) +m(t), (15)

with

K =
1

2
max

{
3α1 +

2

θ
+ α1γ ; α1γ +

1

θ
+ η

}
. (16)

Proof. Performing the Green formula with z = 0 on ∂Ω,
the time-derivative of E(t) along the trajectories of system
(14) is given by:

Ė(t) = Re
(∫

Ω

z̄(t)∂tz(t)

)
= Im

(
−
∫

Ω

z̄(t)∆z(t)

)
− Im

(∫
Ω

iα(x)|z(t)|2
)

+ Im
(
i

∫
Ω

α(x)ek(t)z̄(t)

)
Ė(t) = −

∫
Ω

α(x)|z(t)|2 +Re
(∫

Ω

α(x)ēk(t)z(t)

)
(17)

Then, we use (2), along with Cauchy-Schwarz and Young’s
inequalities, to obtain∣∣∣Ė(t)

∣∣∣ ≤ α1‖z(t)‖2 + α1‖ek(t)‖‖z(t)‖

≤ 3α1

2
‖z(t)‖2 +

α1

2
‖ek(t)‖2. (18)

Hence, |2γθĖ(t) + ṁ(t)| ≤ γθ
(
3α1‖z(t)‖2 + α1‖ek(t)‖2

)
+ ηm(t) + 2γE(t) + ‖ek(t)‖2.
From (12) and using ‖z(t)‖2 = 2E(t), we get

|2γθĖ(t) + ṁ(t)| ≤ 6α1θγE(t) + ηm(t) + 2γE(t)

+ (α1θγ + 1)

(
1

θ
m(t) + 2γE(t)

)
≤
(
6α1θγ + 4γ + 2α1θγ

2
)
E(t) +

(
α1γ +

1

θ
+ η

)
m(t),

so that with K defined by (16), we can write

|2γθĖ(t) + ṁ(t)| ≤ 2K (2γθE(t) +m(t)) .

From there, −2K (2γθE(t) +m(t)) ≤ 2γθĖ(t) + ṁ(t)
and one gets that F (t) = e2Kt(2γθE(t) + m(t)) satisfies

Ḟ (t) ≤ 0 so that for any t ∈ [tk, tk+1], using m(tk) = 0,

2γθE(tk)e−2K(t−tk) ≤ 2γθE(t) +m(t).

Inferring this inequality for E(tk−1) up to t0 = 0, by
induction we get (15) for all t ∈ [0, T ) and the lemma
is proved. 2



We can now provide the main result on the fact that our
event-triggering law does not generate some infinite se-
quence of updates in finite time, proving thus the absence
of Zeno behavior.

Theorem 3.1. There is no Zeno phenomenon for the sys-
tem (6) under the event-triggering mechanism (11). In
other words, following (11), there will not be infinitely
many updates of the control of system (6) over any
bounded time interval.

Proof. The proof is done by contradiction. Let us assume
that T defined by (7) is such that T < +∞. Let us also
define and study the evolution of the following function :

ϕ(t) =
θ‖ek(t)‖2

2γθE(t) +m(t)
(19)

As in Girard (2015); Koudohode et al. (2022), the proof is
based on the study of ϕ in the interval [0, T ]. This function
ϕ is non negative and satisfies, ∀k ∈ N, ϕ(t+k ) = 0 and

jumps from ϕ(t+k+1) = 1 to ϕ(t+k+1) = 0, where ϕ(t−k+1) is

the value of ϕ before the update in time tk ϕ(t+k+1) is the
one after the update k+1. The time-derivative of ϕ reads:

ϕ̇(t) =
θ ddt‖ek(t)‖2

2γθE(t) +m(t)
− ϕ(t)

2γθĖ + ṁ(t)

2γθE(t) +m(t)
(20)

On the one hand, (9) and (6) imply that i∂tek(t) =
i∂tz(t) = −∆z(t)− iα(x)z(t) + iα(x)ek(t) so that we have
by Cauchy-Schwarz’s inequality:

1

2

d

dt
‖ek(t)‖2 = Im

∫
Ω

iēk(t)∂tek(t)

= Im
∫

Ω

ēk(t) (−∆z(t)− iα(x)z(t) + iα(x)ek)

≤ ‖∆z(t)‖‖ek(t)‖+ α1‖ek(t)‖‖z(t)‖+ α1‖ek(t)‖2 (21)

From Theorem 2.1, for all z0 ∈ H2∩H1
0 (Ω), the closed-loop

system (14) under the event-triggering mechanism (11) has
a unique solution z ∈ C0([0, T ];H2∩H1

0 (Ω)) so that there
exists a constant C0 = C0(T, ‖z0‖H2(Ω)∩H1(Ω)) > 0 such
that ∀t ∈ [0, T ],

‖∆z(t)‖ ≤ ‖∆z‖L∞(0,T ;L2(Ω)) ≤ C0. (22)

By Young’s inequality and (2) it follows:

1

2

d

dt
‖ek(t)‖2 ≤ C0‖ek(t)‖+

3α1

2
‖ek(t)‖2 +

α1

2
‖z(t)‖2.

On the other hand, dealing with the numerator of the
second term of (20), we have from (18) and (10),

| − 2γθĖ − ṁ| ≤ 2θγ

(
3α1

2
‖z(t)‖2 +

α1

2
‖ek(t)‖2

)
+ ηm(t) + 2γE(t) + ‖ek(t)‖2. (23)

Re-organizing terms in (20), we get

(2γθE(t) +m(t))ϕ̇(t) ≤ 2C0θ‖ek(t)‖+ 3α1θ‖ek(t)‖2

+ 2α1θE(t) + ϕ(t) (6θγα1 + 2γ)E(t)

+ ϕ(t)(θα1γ + 1)‖ek(t)‖2 + ϕ(t)ηm(t). (24)

In (24), several terms have to be handled. First, from (12)

we have θ‖ek(t)‖ ≤
√
θ
√

(2θγE(t) +m(t)) so that using
Lemma 3.3 we can write, for all t ∈ [0, T ],

θ‖ek(t)‖
2γθE(t) +m(t)

≤
√
θ√

2γθE(t) +m(t)

≤
√
θ√

2γθE(0)e−2Kt
≤ eKT√

2γE(0)
. (25)

Moreover, one should notice that aE(t)
2γθE(t)+m(t) ≤

a
2γθ and

bm(t)
2γθE(t)+m(t) ≤ b, for any nonnegative scalars a and b.

Therefore, back to (24), deviding by (2γθE(t) + m(t)),

recalling ϕ(t) = θ‖ek(t)‖2
2γθE(t)+m(t) and using (25), we obtain

ϕ̇(t) ≤ 2C0e
KT√

2γE(0)
+ 3α1ϕ(t) +

α1

γ

+

(
3α1 +

1

θ

)
ϕ(t) +

θα1γ + 1

θ
ϕ2(t) + ηϕ(t).

Finally, denoting by

a0 =
2C0e

KT√
2γE(0)

+
α1

γ
, a1 = 6α1 + η +

1

θ
, a2 = α1γ +

1

θ

we obtain ϕ̇(t) ≤ a0 + a1ϕ(t) + a2ϕ
2(t). Integrating on

[tk, tk+1), recalling ϕ(tk) = 0, ϕ(tk+1) = 1, one gets

1 ≤ 1

A
(tk+1 − tk) (26)

where A =

∫ 1

0

ds

a0 + a1s+ a2s2
> 0 since a0, a1, a2 > 0.

Since we assumed that T < +∞, passing to the limit
tk → T as k → +∞ in (26) leads to a contradiction. We
therefore obtained T = +∞, ensuring the absence of any
accumulation points and the avoidance of Zeno behavior.
2

Remark 3.4. Differently from the usual literature deal-
ing with event-triggered control for finite-time dimension
systems, the proof of Theorem 3.1 is not based on the
existence of a dwell-time. Taking another route, the main
idea consists in proving that there exisit no accumulation
point for the sequence (tk)k≥0.

4. EXPONENTIAL STABILITY ANALYSIS

This section addresses the problem of the exponential
stability of system (6)-(11).

In order to prove the stability of the closed loop, we
consider the Lyapunov candidate function:

W (t) = E(t) +m(t), (27)

with the energy E defined in (5) and the internal state m
defined in (10).

Next, we can first take inspiration from Machtyngier
(1994); Machtyngier and Zuazua (1994) in order to upper-
bound the functional W , defined in (27). This is reported
in the following intermediate Lemma.

Lemma 4.1. Consider the solution z to system (14). For
any τ > 0 there exist some constant K1 and K2 > 0 such
that W (t) = E(t) +m(t), satisfies:

W (τ) ≤ K1

∫ τ

0

∫
Ω

α(x)|z(t)|2dxdt+K2

∫ τ

0

W (t)dt. (28)

Proof. Let τ > 0 and let us recall that from the time-
derivative of E(t) in (18) we have, since m(t) ≥ 0,



Ẇ (t) =−
∫

Ω

α(x)|z(t)|2 + Re

(∫
Ω

α(x)ēk(t)z(t)

)
− ηm(t) + 2γE(t)− ‖ek(t)‖2 (29)

≤ Re

(∫
Ω

α(x)ēk(t)z(t)

)
+ 2γE(t).

From (2), (12), Cauchy-Schwarz and Young’s inequalities
we get

Ẇ (t) ≤ α1

(
‖ek(t)‖2

2
√
γ

+

√
γ‖z(t)‖2

2

)
+ 2γE(t)

≤ α1
1

2
√
γ

(
2γE(t) +

1

θ
m(t)

)
+ α1

√
γE(t) + 2γE(t),

yielding, Ẇ (t) ≤ C1W (t), with

C1 = max{2α1
√
γ + 2γ ; α1/(2θ

√
γ)} (30)

Integrating on [0, τ ], and knowing that W (0) = E(0) since
m(0) = 0 we get

W (τ) ≤ E(0) + C1

∫ τ

0

W (t)dt. (31)

Let us now consider the solution z to (14) as the sum of
two variables y = y(x, t) and φ = φ(x, t) satisfying i∂ty + ∆y = −iαz + iαek in Ω× [tk, tk+1),
y = 0 on ∂Ω× R+,
y(·, 0) = 0 in Ω,

(32)

and  i∂tφ+ ∆φ = 0 in Ω× R+,
φ = 0 on ∂Ω× R+,
φ(·, 0) = z0 in Ω.

(33)

As proved, for example, in Machtyngier (1994); Phung
(2001), the solution to system (33) satisfies the following
property:

Lemma 4.2. (Observability inequality). Let ω ⊂ Ω and
τ > 0 be given. There exists Cobs > 0 such that the
solution to (33) satisfies

‖φ(0)‖2 ≤ Cobs
∫ τ

0

∫
ω

|φ(x, t)|2dxdt.

Taking advantage of this important result, from (31),
under assumption (2) and the fact that φ = z−y, recalling
that for any a, b ∈ R, |a− b|2 ≤ 2(a2 + b2), we can write:

W (τ) ≤ 1

2
‖φ(0)‖2 + C1

∫ τ

0

W (t)dt

≤ Cobs
2α0

∫ τ

0

∫
ω

α(x)|φ(x, t)|2dxdt+ C1

∫ τ

0

W (t)dt

≤ Cobs
α0

∫ τ

0

∫
Ω

α(x)|z(t)|2dt

+
Cobsα1

α0
‖y‖2L∞(0,τ ;L2(ω)) + C1

∫ τ

0

W (t)dt. (34)

Using classical energy estimate (see Cazenave et al.
(1998)), on the Schrödinger equation (32), for a L2((0, τ)×
Ω)-source term −iαz + iαek, there exists C > 0 such that

‖y‖2L∞(0,τ ;L2(ω) ≤ C‖α(ek − z)‖2L2(0,τ ;L2(Ω))

≤ Cα2
1

∫ τ

0

‖ek(t)‖2dt+ Cα1

∫ τ

0

∫
Ω

α(x)|z(t)|2dt.

From (12), we have ∀t ∈ [tk, tk+1), ‖ek(t)‖2 ≤ C2W (t)
with C2 = max{2γ; 1

θ}, thus

‖y‖2L2(0,τ ;L2(ω)) ≤ Cα
2
1C2

∫ τ

0

W (t)dt

+Cα1

∫ τ

0

∫
Ω

α(x)|z(t)|2dt

Hence, W (τ) ≤
(
Cobs
α0

+
CobsCα

2
1

α0

)∫ τ

0

∫
Ω

α(x)|z(t)|2dt

+

(
C1 +

CobsCα
3
1C2

α0

)∫ τ

0

W (t)dt.

Therefore we get inequality (28) with

K1 =
Cobs
α0

(
1 + Cα2

1

)
;K2 = C1 +

CobsCα
3
1C2

α0
. (35)

2

Then, the main exponential stability result is proven by
using the Lyapunov functional candidateW defined in (27)
and by studying its time-derivative along the closed-loop
system. The result is reported in the theorem below.

Theorem 4.1. There exists γ > 0 such that for any initial
condition z0 ∈ H2(Ω) ∩ H1

0 (Ω), the closed-loop system
(6) under the event-triggering mechanism (11) is exponen-
tially stable with decay rate δ > 0. In other words, there
exist K > 0 and δ > 0 such that

E(t) ≤ KE(0)e−2δt, ∀t > 0. (36)

Proof. We use the following Lyapunov functional candi-
date W (t) = E(t) +m(t), defined in (27). In the proof we
consider two cases depending on the damping.
• Globally non-vanishing damping. Let us discuss the case
where the damping does not vanish in Ω (corresponding
to ω = Ω). Performing the Cauchy-Schwarz and Young’s
inequalities and using (2) we get from (12) and (29)

Ẇ (t) ≤ −α0‖z(t)‖2 + α1‖z(t)‖‖ek(t)‖
−ηm(t) + 2γE(t)− ‖ek(t)‖2

≤ (2γ − 2α0)E(t) +
α1

2ε
‖z(t)‖2 +

(α1ε

2
− 1
)
‖ek(t)‖2

−ηm(t)

≤
(
−2α0 + α1εγ +

α1

ε

)
E(t) +

(
−η +

α1ε

2θ
− 1

θ

)
m(t).

Setting δ1 =
1

2
min

{
2α0 − α1εγ −

α1

ε
; η − α1ε

2θ
+

1

θ

}
we obtain

Ẇ (t) ≤ −2δ1W (t). (37)

Choosing ε = 1/
√
γ, and in order to have δ1 > 0, easy

calculations prove that we can pick the tuning parameters
γ, η and θ such that

0 < γ <
α2

0

α2
1

and ηθ >
α2

1

2α0
− 1. (38)

Remarking that (12) gives E(t) ≤ W (t) and performing
the usual integration calculations, we obtain that for all
t ≥ 0, E(t) ≤ e−2δ1tW (0). Finally, since m(0) = 0, we get
E(t) ≤ e−2δ1tE(0) proving that (36) holds with K = 1 and
δ = δ1 in the case of non-vanishing damping in ω = Ω.

• Locally non-vanishing damping. In the general case, one
has ω ( Ω and the damping may vanish outside ω. We



will thus need to use Lemma 4.1. Let τ > 0. Integrating
(29) on [0, τ ], we can write :

W (τ)−W (0) = −
∫ τ

0

∫
Ω

α(x)|z(t)|2dx

+Re
(∫ τ

0

∫
Ω

α(x)ēk(t)z(t)

)
− η

∫ τ

0

m(t)

+ 2γ

∫ τ

0

E(t)−
∫ τ

0

‖ek(t)‖2 (39)

We can rewrite (28) of Lemma 4.1 as follows

−
∫ τ

0

∫
Ω

α(x)|z(t)|2dxdt ≤ − 1

K1
W (τ) +

K2

K1

∫ τ

0

W (t)dt.

Combining this inequality with (39), and using the usual
tricks, we get(

1 +
1

K1

)
W (τ) ≤W (0) +

K2

K1

∫ τ

0

W (t)dt− η
∫ τ

0

m(t)

+
(α1ε

2
− 1
)∫ τ

0

‖ek(t)‖2 +
(

2γ +
α1

ε

)∫ τ

0

E(t)

so that using (12),(
1 +

1

K1

)
W (τ) ≤W (0) +

K2

K1

∫ τ

0

W (t)

+
(
α1γε+

α1

ε

)∫ τ

0

E(t) +

(
−η +

α1ε

2θ
− 1

θ

)∫ τ

0

m(t).

Since W (0) = E(0) and assuming

ηθ >
α1

2
√
γ
− 1

we can write :(
1 +

1

K1

)
W (τ) ≤ E(0) +

(
K2

K1
+K3

)∫ τ

0

W (t) (40)

where we have considered (35), ε = 1/
√
γ and K3 =

2α1
√
γ.

It brings by Gronwall’s Lemma,

W (τ) ≤ K1

K1 + 1
exp

[
K1

K1 + 1

(
K3 +

K2

K1

)
τ

]
E(0),

that can be written as

W (τ) ≤ pecτE(0)

with p = K1

K1+1 , c = K1

K1+1

(
K3 + K2

K1

)
= K1K3+K2

K1+1 .

Next, we apply the invariance by translation in time of the
linear Schrödinger equation on the interval [(n− 1)τ, nτ ],
for n = 1, 2, . . . , to get (denoting a = pecτ ):

W (nτ) ≤ aW ((n− 1)τ) ≤ · · · ≤ anE(0) = e−nτκE(0),

where we set an = exp (−nτ 1
τ ln

(
1
a

)
) and κ = 1

τ ln
(

1
a

)
.

Note that κ > 0 if and only if a < 1, so that we must have
peτc < 1 which is equivalent to

τ < − ln p

c
=

(K1 + 1) ln
(
K1+1
K1

)
(K1K3 +K2)

. (41)

Now, for every positive time t, there exists n ∈ N∗ such
that (n − 1)τ < t ≤ nτ. Using (30) and integration on
[(n− 1)τ, t] we have:

W (t) ≤W ((n− 1)τ) + C1

∫ t

(n−1)τ

W (s)ds

≤ e−nτκeτκE(0) + C1

∫ t

0

W (s)ds. (42)

Since e−nτκ ≤ e−κt for t ≤ nτ , and eτκ = 1/a, we get

W (t) ≤ 1

a
e−κtE(0) + C1

∫ t

0

W (s)ds.

Then by Gronwall’s Lemma, it follows, for 2δ = κ − C1,
E(t) ≤ W (t) ≤ 1

ae
−2δtE(0), and some calculations prove

that we can insure δ > 0 if
1

τ
ln

(
K1 + 1

K1

)
− K1K3 +K2

K1 + 1
> C1 (43)

where K1 and K2 given by (35) and K3 in (40).
The proof of Theorem 4.1 is complete as soon as we can
ensure that (43) can be obtained for a good choice of the
tuning parameters γ, η and θ of the event-triggering law.

Notice first that (41) gives 1
τ ln

(
K1+1
K1

)
> (K1K3+K2)

K1+1 so

that (43) becomes true if C1 can be chosen small enough.
Then let us take θ > 0 large enough to have (30) yielding
C1 = 2α1

√
γ + 2γ, positive constant that can be as small

as needed when choosing γ > 0 small enough. 2

Remark 4.1. Theorem 4.1 is valid not only in the case
ω = Ω (which corresponds to the fact that the damping
does not vanish in Ω), but also in the case ω ( Ω (which
corresponds to the fact that the damping may vanish
outside ω). Of course the values of K and δ will be different
in the two cases.

5. NUMERICAL EXAMPLE

Consider as in Koudohode et al. (2022), the one-dimensional
Schrödinger equation (6) under the event-triggering mech-
anism (11) on Ω = (0, π) with initial condition

z0(x) = sin(x), x ∈ [0, π].

We use the divided differences on a uniform grid for the
space variable and the discretization with respect to time
through Crank Nicolson scheme is performed.

With respect to (2), we select the damping coefficient as
follows:

α(x) =

{
0 if x < π/6 or x > 2π/3
3.14 if π/6 ≤ x ≤ 2π/3

Hence, we can take

α0 = π/6, α1 = π and ω = (π/6, 2π/3) .

We use (Phung, 2001, Theorem 2.2) to select the constants
Cobs and C as:

Cobs = 2.8 and C = 0.18.

From equation (35) one gets

K1 = 9.8343 and K2 = 8.1460.

With γ = 0.1 and C1 = 2.1859, using the proof of Theorem
4.1 two inequalities depending on the damping can be
satisfied as reported below:

• In the case of a globally non-vanishing damping
(corresponding to ω = Ω and the damping does not
vanish in Ω), the inequality (38) is verified:

0 < γ <
α2

0

α2
1

and ηθ >
α2

1

2α0
− 1.

• In the case of a locally non-vanishing damping (cor-
responding to ω ( Ω and the damping may vanish
outside ω), the inequality (43) is verified:



1

τ
ln

(
K1 + 1

K1

)
− K1K3 +K2

K1 + 1
> C1

for η = 0.7, θ = 15, τ < 0.020429, and K3 = 1.9859.

In Figure 1 we compare the imaginary part Imz of the
numerical solution z to the continuous-in-time closed-loop
systems (1) (top) and the dynamic event-triggered one
(6)-(11) (bottom). It also illustrates the guarantee of the
exponential stability of the solution as studied in Theorem
4.1.

Fig. 1. Imaginary part of the solution to the closed-loop
system (6) under the event-triggering mechanism (11)
(bottom), and to the continuous-in-time closed-loop
system (1) (top).

The guarantee of the exponential stability of the solution
is confirmed even more clearly with Figure 2 where we
depicted the time-evolution of the energy of the solution
to systems (6) under the static (8) and dynamic (11) event-
triggering mechanism (ETM).

Fig. 2. Time-evolution of the energy E(t) and the Lya-
punov function W (t).

Finally, Figure 3 depicts the sampling time tk and the
time-evolution of the dynamic signal m(t).

Fig. 3. Time evolution of the internal variable m(t) in the
dynamic event-triggering mechanism (bottom), and
of the sampling time tk (top).

6. CONCLUSION AND PERSPECTIVE

A dynamic event-triggering mechanism is proposed to
determine when the stabilizing control of the linear
Schrödinger equation needs to be updated in digital im-
plementations, while reducing the using of computational
resources. The event-triggering condition is such that the
exponential stability and well-posedness are maintained
while the occurence of Zeno behavior is avoided.

In our future work, we may look into event-triggered
boundary control of Schrödinger equation by considered
observer-based control law. We may also study the pres-
ence of input nonlinearity, as saturation, for example.
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