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ABSTRACT
One major industrial challenge is to consider the detun-

ing as a technological means to reduce the dynamical amplifi-
cations induced by mistuning. Due to technological evolutions,
the nonlinear geometrical effects induced by the large displace-
ments cannot longer be neglected. Recently, methodologies for
the robust analysis of detuned/mistuned bladed-disks in presence
of geometrical nonlinearities have been developed. A full anal-
ysis of the detuning optimization of mistuned bladed-disks with
finite displacements is carried out on a 12 bladed-disk finite ele-
ment model. The paper is based on a computational methodology
previously developed by the authors. It insists on the necessity
to carefully optimize all the involved numerical parameters to
get the nonlinear mistuned response of each considered detuned
configuration with an optimal balance between response accu-
racy and computational costs. We then have to be very careful
with the construction of an adapted scalar quantity of interest
for defining the detuning optimization problem. Direct compu-
tations allowing for all possible detuned configurations to be
considered allow for obtaining a full data basis. A meticulous
post-processing shows the existence of a few detuned configura-
tions, that inhibits the mistuning amplification effects of the pure
mistuned bladed-disk.

NOMENCLATURE
nb1 number of blades of type 1
nb2 number of blades of type 2
aℓM deterministic observation characterizing the most important

∗Address all correspondence to this author.

values taken by Aℓ(θk) = aℓ,k

ℓ numbering of a given detuned configuration.
nc number of all the possible configurations.
nsim number of Monte Carlo realizations.
nw number of blades.
qc,ℓ amplification factor computed with HFCM from wc,ℓ.
wc,ℓ

j = 0 if j of type 1, = 1 if j of type 2.
wc,ℓ vector defining detuned configuration ℓ.
M order of the reduced-order model.
N order of the cyclic symmetry
Q order of the random matrices
Aℓ(θk)= aℓ,k Realization θk of the maximal displacement norm

over the blades and the frequency band of anal-
ysis related to detuned configuration ℓ

Jℓmax(θk) = jℓ,kmax Realization θk of the most responding blade
over the frequency band of analysis and re-
lated to detuned configuration ℓ

Y ℓ( j,2πνi,θk) Realization θk of the displacement norm related
to blade j, at frequency νi and related to de-
tuned configuration ℓ

Y ℓ
max(2πνi,θk) Realization θk of the displacement norm over

the blades, at frequency νi and related to de-
tuned configuration ℓ

Xℓ( j,2πνi,θk) Realization θk of the displacement vector of
blade j, at frequency νi and related to detuned
configuration ℓ

B frequency band of analysis
νi given frequency
θk given realization
HFCM High-Fidelity Computational Model.
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NL-SROM NonLinear Stochastic Reduced Order Model.

INTRODUCTION
The vibrational behavior of turbomachines is known to be

particularly complex, requiring the construction of predictive
computational models that have also to be efficient in terms of
numerical costs. One of the issues concerns the mistuning caused
by the small variations of the mechanical properties from one
sector to another one, induced by the manufacturing tolerances
or by the wear and tear of the structure. Such phenomenon can
generate strong localization effects yielding subsequent dynami-
cal amplifications of the forced response with respect to the per-
fect cyclic symmetry case [1–3]. This amplification strongly af-
fects the fatigue life of the blades, which can cause safety prob-
lems and impair the proper operation of turbomachines. Many
research have been carried out on this subject, requiring the
use of probabilistic approaches for modeling the random char-
acter of the mistuning combined to the construction of reduced-
order models [4–8] when linear assumption is considered. There
also exist other phenomena that can strongly affect the vibra-
tional behavior of the bladed disk and that have to be the sub-
ject of a dedicated modeling. The presence of nonlinearities in-
creases the complexity of the forced response analysis because
couplings and energy transfers can strongly modify the position
and the nature of the resonances of the bladed disk. In particu-
lar, due to technological evolutions that involve lighter materials
and thinner blades, the nonlinear geometrical effects induced by
finite displacements cannot longer be neglected. The main dif-
ficulties concerning the modeling of these nonlinear geometrical
effects concern the construction of adapted nonlinear reduced-
order models that have to be efficient not only in terms of com-
putational costs but also in terms of predictability. These aspects
have also been investigated in the more general context of thin
and slender structures [9–12]. Concerning the context of turbo-
machines, various research can be found for the deterministic
case [13, 14], but also in presence of contact nonlinearities [15]
or in presence of mistuning [16].

The intentional mistuning, also called detuning, consists in
voluntarily breaking the cyclic symmetry of the structure by us-
ing partial or alternating patterns of different sector types. The
detuning allows for spreading the frequencies of adjacent blades
and thus for reducing the interaction between them. As a conse-
quence, the drastic amplification and localization effects caused
by the random mistuning can be greatly reduced. Such technol-
ogy is particularly relevant because it is a way for reducing the
response amplification levels that are induced by the unavoidable
random mistuning while increasing its robustness. It has been
thoroughly studied in the framework of linear dynamics [17–21].

In a context of sustainable development, technological
innovations have to be compatible with energy and environ-
mental issues. This gives rise to the development and to the

use of lighter materials, that have to be capable of high thermo-
mechanical resistance and of long durability, so that it may be
possible that the blade displacements respond in its nonlinear
vibration range. In this context, a computational methodology
and a robust analysis of the geometrical nonlinear effects on sev-
eral detuned configurations of mistuned bladed disk have been
proposed in [22]. The results underline a complex nonlinear
dynamical behavior and highlight a sensitivity of the nonlinear
response to the detuning in presence of mistuning. Nevertheless,
a too few number of detuned configurations is available and
is not sufficient to perform a full optimization analysis with
respect to the set of all possible detuned configurations of
mistuned structures. Indeed, this latter one has a huge dimension
that increases exponentially with respect to the number of blades.

The manuscript presents a numerical validation concerning
the detuning optimization of a mistuned 12 bladed-disk struc-
ture in presence of geometrical nonlinearities. The theoreti-
cal background that concerns the formulation, the methodology,
the computational model including the construction of the NL-
SROM (NonLinear Stochastic Reduced-Order Model) and the
use of the nonparametric probabilistic approach for the mistun-
ing modeling [23, 24] and all the dedicated algorithms can be
found in [16, 22, 25, 26].

In a first part, the computational analysis of a full data ba-
sis constituted of the set of all possible detuned configurations
using a representative computational model of a 12-bladed-disk
structure is carried out. The post-processing analysis then allows
for constructing the exact solution of the detuning optimization
problem.

COMPUTATIONAL METHODOLOGY TO GET A FULL
DATA BASIS FOR THE MISTUNED STRUCTURE IN A
NONLINEAR DETUNING OPTIMIZATION CONTEXT

In this Section, the computational model of the tuned struc-
ture is described in details. Note that the detuning optimization
of the mistuned structure in presence of geometrical nonlinear-
ities is then performed from such deterministic computational
model. The numerical parameters are adjusted through conver-
gence analyses related to the undetuned/mistuned blisk in order
to optimize for the best the computational costs.

Nonlinear boundary value problem of a detuned sys-
tem

In this paragraph, the nonlinear boundary value problem
concerning any given detuned configuration is quickly described.
The upperscript ℓ that will be used for describing a given detuned
configuration is removed for a better readability.

Let Ω be the three-dimensional bounded domain of the phys-
ical space R3 corresponding to the steady configuration of a de-
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tuned structure observed in the rotating frame that is defined as
the reference configuration of the boundary value problem [27].
The boundary ∂Ω is such that ∂Ω = Γ0 ∪ΓE with Γ0 ∩ΓE = /0
and the external unit normal to boundary ∂Ω is denoted by
n = (n1,n2,n3). The boundary part Γ0 corresponds to the fixed
part (in the rotating frame) of the structure whereas the boundary
part ΓE is submitted to an external surface force field. A total
Lagrangian formulation is chosen. Consequently, the mechani-
cal equations are written with respect to the reference configu-
ration in the rotating frame. Let x = (x1,x2,x3) be the position
of a point belonging to domain Ω. The displacement field ex-
pressed with respect to the reference configuration is denoted
as x(x, t) =

(
x1(x, t),x2(x, t),x3(x, t)

)
. It should be noted that

the surface force field G(x, t)) =
(
G1(x, t)),G2(x, t)),G3(x, t)

)
acting on boundary ΓE and the body force field g(x, t)) =(
g1(x, t)),g2(x, t)),g3(x, t)

)
acting on domain Ω correspond to

the Lagrangian transport into the reference configuration of the
physical surface force field and to the physical body force field
applied on the deformed configuration.

The nonlinear boundary value problem is written, for i =
1,2,3 and using the classical convention for summations over
repeated indices, as

ρ
∂ 2xi

∂ t2 +2ρ rik
∂xk

∂ t
+ρ rik rkℓ(xℓ+xℓ) = (1)

∂
(
Fi jS jk

)
∂xk

+gi(t) in Ω (2)

xi = 0 on Γ0 , (3)
Fi jS jknk = Gi(t) on ΓE , (4)

in which ρ > 0 is the mass density expressed in the reference
configuration, where the (3 × 3) matrix [r(Ω)] whose compo-
nent [r(Ω)]i j is denoted as ri j for the sake of clarity, is such that
[r(Ω)]i j = ri j = −Ωεi j3, where εi jk is the Levi-Civita symbol
such that εi jk = ±1 for an even or odd permutation and εi jk = 0
otherwise. In Eq. (4), {Fi j}i j is the deformation gradient tensor
whose components Fi j are defined by Fi j = xi, j + δi j, in which
δi j is the Kronecker symbol such that δi j = 1 if i = j and δi j = 0
otherwise and where xi, j denotes the partial derivative ∂xi/∂x j.
For a linear elastic material, the second Piola-Kirchoff symmet-
ric stress tensor {Si j}i j is written as Si j = σ

(g)
i j + ai jkℓ Ekℓ, in

which {σ
(g)
i j }i j is the symmetric Cauchy stress tensor acting on

the reference configuration observed in the rotating frame. The
fourth-order elasticity tensor {ai jkℓ}i jkℓ satisfies the usual sym-
metry and positive-definiteness properties. The Green strain ten-
sor {Ei j}i j is written as the sum of linear and nonlinear terms
such that Ei j = εi j +ηi j, in which εi j = (xi, j +x j,i)/2 and where
ηi j = xs,i xs, j/2.

Description of the finite element model
In this paragraph, the finite element model of the tuned struc-

ture of the blisk is described.
The structure under consideration is a blisk with order N =

12 and with nw =N =12 blades whose finite element computa-
tional model is constructed with hexahedral solid finite elements
with 8 nodes. The finite element mesh is issued from [28] for
which the order of the cyclic symmetry has been modified from
24 to 12 as also used in [21]. The main motivation of such re-
duction of the number of blades is to decrease the number of
possible detuning patterns in order to have a reasonable num-
ber of detuning possibilities, as previously explained. In the
present case, the aim is to constitute a full reference data basis
in the nonlinear mistuned/detuned context. Indeed, when the de-
tuning concept is approached with 2 possible types of blades,
there are 352 possible detuned configurations when N = 12
that reduces the number of possibilities by a factor of almost
2N−1 ≃ 2000 with respect to a structure with cyclic symmetry
of order 2N = 24. Let (0,X,Y,Z) be the Cartesian reference
coordinate system for which (0,Z) coincides with the rotational
axis for the blisk. Fig. 1 shows the finite element mesh of the
blisk whose computational characteristics are summarized in Ta-
ble 1. There are n = 27108 degrees of freedom (dof). The blisk
is made up of a homogeneous and isotropic material with mass
density 7860Kg/m3, Poisson ratio 0.25, and Young modulus
2×1011N/m2. A Dirichlet condition is applied along the inter-
faces toward adjacent stages [28]. The fundamental frequency of
the blisk is ν0 = 977.32Hz. A Rayleigh damping model is added
for the blisk, with parameters α= 78.67s−1 and β= 3.69×10−7 s
chosen such that the critical damping rate ξ (2πν) belongs to
[0.0054,0.008] for ν ∈ [900 ,6000]Hz.

FIGURE 1. Finite element mesh of the blisk: blade sector (left fig-
ure), full blisk (right figure)

Modal characteristics of the tuned blisk
The eigenfrequencies (natural frequencies) of the structure

are computed using the cyclic symmetry. Fig. 2 displays the
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Elements Nodes dof

Sector 476 846 2151

Full model 5712 9036 27108

TABLE 1. Computational characteristics of the finite element model
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FIGURE 2. Graph of the eigenfrequencies ν of the tuned blisk with
respect to its circumferential wave number h

eigenfrequencies of the tuned blisk with respect to its circum-
ferential wave number. The graph exhibits several veerings. Let
νh,i be the eigenfrequency number i related to the number h of
nodal diameters. In the present case, the veering corresponding
to h = 2 nodal diameters corresponds to (double) eigenfrequency
ν2,4 = 4845.18Hz that is related to a dominant blade motion and
to (double) eigenfrequency ν2,5 = 5091.09Hz that is related to a
blisk global motion.

Choice of the external excitation and time-frequency
sampling

Since we are interested in the forced response of the struc-
ture, the presence of geometrical nonlinearities requires to solve
the nonlinear dynamical equations in the time domain. The time-
dependent external excitation is modeled by the Rn-vector F(t)
whose block decomposition according to each sector is given by
F(t) =

(
F0(t), . . . ,FN−1(t)

)
such that

F j(t) = s0 g j(t)F , j ∈ {0,1, . . . ,N−1} ,

in which s0 is the load intensity that allows the nonlinearity rate
to be calibrated, t 7→ g j(t) is a square integrable real-valued
function on R, which characterizes the time evolution of the
load, and where F is a Rn-vector describing the space localiza-
tion of the load related to a given sector, in which integer n is

equal to n/N. Time function g j differs from one sector to an-
other one by a constant phase shift ϕ j = (4π j)/N. This choice
of the phase allows the modes with h = 2 nodal diameters to
be excited for the linearized dynamical system. Function g j(t)
is then defined so that its Fourier transform ν 7→ g j(2πν) is
such that |g j(2πν)| = 1 if ν belongs to Be = [νmin;νmax], with
νmin = 4700Hz, νmax = 5200Hz and which allows for uniformly
exciting the structure in band Be [16,22]. From a numerical point
of view, the computation is carried out on a truncated time do-
main T= [tini, tini+T ]. The initial time is chosen as tini =−0.06s
yielding a null initial load. The time duration T = 0.128s is then
adjusted so that the system be returned at its equilibrium state
within a given numerical tolerance for both linear and nonlinear
computations.The sample frequency νe and the number of time
steps are then chosen as νe = 64000Hz and nt = 8192 yielding
a constant sampling time step δ t = 15.6×10−6 s and a constant
sampling frequency step δν = 7.8125Hz. The spatial repartition
of the external load described by the normalized vector F is such
that an external point load is applied along all directions at the
excitation nodes located at the tip of each blade with a constant
phase shift π/3. The load intensity s0 is adjusted to get sufficient
geometrical nonlinear effects that modify the vibrational behav-
ior of the blisk.

About the convergence analyses
Each detuned configuration of the blisk in presence of ran-

dom mistuning is modeled by a nonlinear stochastic reduced-
order model (NL-SROM) whose methodology of construction
is not given in this paper. For a given detuned configuration,
the NL-SROM is obtained from the finite discretization of the
nonlinear equations (1-4), for which the physical displacements
are projected on a vector basis [16, 22] that allows for obtaining
a deterministic nonlinear reduced-order model [25]. The mis-
tuning is assumed to only affect the linear elastic internal force
and the nonlinear forces, which are therefore uncertain. Note
that the nonlinear internal forces are directly evaluated in the re-
duced space, by direct numerical evaluation from the finite ele-
ment model [25]. Uncertainties are implemented from the deter-
ministic nonlinear reduced-order model using the nonparametric
probabilistic approach [23, 24, 26]. As a consequence, there are
several numerical parameters that are involved in the construc-
tion of the nonlinear mistuned forced response of the blisk.

It is essential to underline that a series of convergence analy-
ses has to be carefully performed with respect to all the numerical
parameters that are involved in the construction of the nonlin-
ear mistuned response of the blisk. These convergence analyses
have been made for the tuned configuration of the blisk, in pres-
ence of mistuning and are briefly summarized. The frequency
band of analysis B is chosen as B = [300 ,6000]Hz. A sensitiv-
ity analysis with respect to the load intensity s0 yields s0 =10N
that corresponds to a situation for which nonlinear effects occurs,
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meaning that the structure responds outside the frequency band
of excitation Be. The efficiency and the accuracy of the New-
mark time integration scheme coupled with a Newton-Raphson
procedure is investigated with respect to time step δ t. If the con-
vergence is relatively quick when analyzing the structure in the
excitation frequency band, it is shown that a stability is obtained
on the whole frequency band of analysis B for time steps lower
than δ t = 15.6×10−6 s. A convergence analysis is also set with
respect to the order M of the NL-SROM, to the order Q of the
random matrices corresponding to an uncertainty level δK =0.1
and to the number nsim of realizations yielding a good approxi-
mation for M=72, Q=440 and nsim =400. All these numerical
computations are essential (1) to better understand the dynamic
behavior of the blisk and (2) to optimize for the best the computa-
tional costs while keeping a predictive computational model that
ensures a good accuracy on the nonlinear dynamical response. It
is essential to underline that all these convergence analyses have
to be carried out meticulously. Indeed the aim of this work con-
cerns the optimization of the detuning of the blisk in presence of
mistuning.

COMPUTATIONAL RESULTS CONCERNING THE NON-
LINEAR DETUNING OPTIMIZATION OF THE MISTUNED
STRUCTURE

In this Section, after defining the modeling of the detuning,
the observation of interest denoted by qc,ℓ is obtained from a di-
rect optimized computational approach as a function of a detuned
configuration denoted by wc,ℓ. Note that quantity qc,ℓ represents
the amplification factor of a detuned structure (represented by
upperscript ℓ) with respect to its tuned counterpart. It should
also be noted that a careful optimization of the computational
model of the tuned structure called HFCM (High Fidelity Com-
putational Model) have been previously carried out with respect
to all the parameters controlling the numerical algorithms .

The detuning optimization is carried out as a post-processing
analysis of the full data basis. In the present numerical study, all
the computations are distributed according to the number nsim
of Monte Carlo realizations and are made on workstations with
1536 GB RAM and 30 cores (Intel(R) Xeon(R) Platinum 8168
CPU@2.9Ghz). The generated elapsed time is about 6 hours to
perform 1 computation corresponding to the nonlinear analysis
of 1 detuned pattern in presence of mistuning, which means that
the construction of the full data basis requires an elapsed time of
about 88 days of computations.

About the modeling of the detuning
The computational model of the detuned blisk is constructed

from the knowledge of two identical meshes of two different sec-
tor types denoted as 1 and 2. The reference sector 2 is obtained
from sector 1 by decreasing the Young modulus of the blade from

Young1 = 2.00×1011 N/m2 to Young2 = 1.80×1011 N/m2. Let

nb1 12 11 10 9 8 7 6 5 4 3 2 1 0
nb2 0 1 2 3 4 5 6 7 8 9 10 11 12
nc 1 1 6 19 43 66 80 66 43 19 6 1 1

TABLE 2. Number nc(nb1,nb2) of detuned configurations as a func-
tion of the number nb1 and nb2 of blades of type 1 and 2.

us denote by nb1 and nb2 the number of blades of type 1 and
type 2 in a detuned configuration. Let nc(nb1,nb2) be the num-
ber of possible detuned configurations having nb1 and nb2 blades
of type 1 and 2 respectively. Let nc be the total number of de-
tuned configurations for all the possible values of nb1 and nb2.
For the tuned blisk with cyclic symmetry of order N = 12, Ta-
ble 2 gives the number nc(nb1,nb2) of detuned configurations as
a function of the number nb1 and nb2 of blades of type 1 and 2.
There are a total number of nc = 352 possible detuned configu-
rations. As shown in [21], the number of possible configurations
exponentially increases with the number of blades N and is close

to
2N

N
when considering 2 different blades. Since it is wished

to obtain a full data basis that explores the set of all possible de-
tuned configurations in order to ensure the existence and an order
of magnitude of possible improving detuned configurations (that
inhibates the amplifications induced by the pure mistuning situ-
ation), the investigation of the detuning is limited to 2 distincts
blades using a cyclic symmetry of order N=12.

The objective is to find the optimal configuration that will
reduce for the best the response amplification induced by mis-
tuning. Another objective is to have a complete knowledge of
the nonlinear dynamical behavior of all possible detuned config-
urations in order to constitute a reference data basis.

Choice of the observation
The pure mistuning case corresponds to the usual situation

for which the blisk is described with a tuned configuration in
presence of mistuning. In that particular case, the deterministic
case corresponds to a structure with a perfect cyclic symmetry
with order N. The usual mistuning analyses, whether it is in
a linear or nonlinear context, characterize the mistuning effects
by introducing a random amplification factor that is expressed
with respect to the deterministic resonance of the structure with
perfect cyclic symmetry.

The detuned configuration in presence of mistuning is de-
fined by a given distribution of the blades of type 1 and 2. The
detuned configuration number ℓ is then represented by a vector
wc,ℓ ∈ {0,1}nw whose component wc,ℓ

j is equal to 0 or 1 whether
the blade is of type 1 or of type 2. Let us recall that for a given
mistuning level, the drastic mistuning effects yield a response
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amplification with respect to its deterministic counterpart. The
objective is to find detuned configurations whose mistuning ef-
fects induce less amplification than the one obtained with the
tuned configuration in presence of mistuning. The idea is then to
define a scalar quantity that is able to quantify the mistuning ef-
fects of the detuned configuration with respect to the unavoidable
mistuning effects of the tuned configuration.

Let Xℓ( j,2πνi,θk) be the C3nb -vector of the realization θk
of the 3nb-displacement dofs of blade number j ∈ {1, . . . ,nw} in
the frequency domain, taken at frequency νi, and corresponding
to the detuned configuration number ℓ. Note that this random
observation is obtained from the NL-SROM related to detuned
configuration ℓ.

For blade number j of configuration ℓ, at frequency
νi, and for realization θk, we define the scalar observation
Y ℓ( j,2πνi,θk) = ∥Xℓ( j,2πνi,θk)∥. Since the mistuning context
requires to consider the resonance of the most responding blade,
we define the R+-valued random variable Aℓ whose realization
aℓ,k = Aℓ(θk) is such that

aℓ,k = max
j
{max

i
Y ℓ( j,2πνi,θk)} . (5)

We define the associated random variable Jℓmax whose realization
jℓ,kmax = Jℓmax(θk) is such that

jℓ,kmax = argmax
j
{max

i
Y ℓ( j,2πνi,θk)} . (6)

In order to get a robust scalar quantity for characterizing the ran-
dom nonlinear dynamical behavior of the blisk, an estimate of the
maximum extreme value statistics of random variable Aℓ is in-
troduced. It should be noted that, for a fixed ℓ-configuration, the
maximum is used so that all realizations are in the confidence do-
main with the greatest probability. This estimation is constructed
as follows. The available number of Monte Carlo numerical sim-
ulations is written as nsim = νr νe (for nsim = 500, νe = 10 and
νr = 50). We then define for r ∈ {1, . . . ,νr} quantity aℓM , such
that

aℓM =
1
νr

νr

∑
r=1

aℓ,rM with aℓ,rM = max
k∈{νe(r−1)+1,...,rνe}

aℓ,k . (7)

It should be noted that such quantity of interest is neither issued
from a mean value or from an extreme value but is defined as an
average of a set of νr=50 maxima taken in a subset of νe=10 re-
alizations. This allows for capturing information on the maxima
with a reasonable number of available Monte Carlo numerical
simulations. The observation of the detuned ℓ-configuration with

mistuning is then defined as the amplification factor qc,ℓ with re-
spect to its tuned counterpart with pure mistuning, that is written
as

qc,ℓ =
aℓM
at

M
, (8)

in which superscript t is related to the tuned configuration.
It should also be noted that the chosen external load corre-

sponds to a narrow-frequency band of excitation so that the lin-
earized detuning optimization problem has no real interest. In-
deed it cannot be properly achieved since the natural frequencies
of most detuned configurations do not belong to this narrow ex-
citation frequency range and since the structure only can respond
in the excitation frequency band.

Detuned configurations that decrease the amplifica-
tion of the nonlinear response induced by the mistun-
ing

A detuned configuration ℓ, which yields a nonlinear mis-
tuned response level that is smaller than the one obtained with
the tuned configuration in presence of mistuning, is character-
ized by qc,ℓ<1. Such configuration belongs to the set of optimal
detuned configurations. In the detuning process, the tuned con-
figuration wc,t = [000000000000] in presence of mistuning is
considered and yields amplification qc,t = 1.0000. The detun-
ing is defined around this tuned configuration. This subset corre-
sponds to nc = 216 possible detuned configurations for which the
number nb2 of blades of type 2 is less than or equal to nw/2 = 6
(see Table 2). From now on, only detuned configurations cor-
responding to nc = 216 possible detuned configurations will be
considered. This assumption is motivated by the fact that (1) the
worst detuned configuration belongs to this subset, (2) there is
only one improving detuned configuration that has a number nb2
of blades with type 2 greater than 6 amongst the 14 improving
detuned configurations and (3) that most of the detuned config-
urations having a majority of blades with type 2, have a subse-
quent amplification factor. Fig. 3 shows the graph of j 7→ qc,ℓ j

where qc,ℓ j are sorted by increasing order for nc = 216. It can
be shown that the amplification factor increases from qc,ℓ1 =
qc,104 = 0.9476 until qc,ℓ352 = qc,9 = 1.1774 corresponding to de-
tuned configurations defined by wc,104 = [000100100101] and
wc,9 = [010001110011]. The tuned configuration wc,t corre-
sponds to ℓ= 49. Figure 4 summarizes the results obtained with
these improving detuned configurations. Note that there is only
one configuration that presents a subcyclicity with order s = 2
with qc,ℓ=0.9995. The other improving detuned configurations
have no particular cyclicity.

A careful attention is also paid to the 10 detuned configu-
rations that present a cyclic symmetry s ∈ {2,3,4,6} < N. The
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FIGURE 3. Dynamical amplification factor according to detuned con-
figuration. Graph of function j 7→ qc,ℓ j for the nc=352 possible detuned
configurations (upper graph) and for the nc = 216 detuned configura-
tions with a number of blades with type 2 less than or equal to 6 (lower
graph). Subcyclicity order s is given for s = 2 (purple square symbol),
s = 3 (red diamond symbol), s = 4 (orange bullet symbol) and s = 6
(green triangle symbol).
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FIGURE 4. Characteristics of the improving detuned configurations.

characteristics are summarized in Figure 5 and the correspond-
ing amplification factors are represented by symbols in Fig. 3.
As shown in Fig. 4, except for detuned configuration with s = 2
and with an amplification factor qc,211 = 0.9995 ≃ 1 that slightly
inhibits the mistuning effects, these subcyclic configurations give
rise to an amplification between 5% and 16% with respect to the

1

2

0 5 10

1

2

0 5 10

1

2

0 5 10

1

2

0 5 10

1

2

0 5 10

1

2

0 5 10

1

2

0 5 10

1

2

0 5 10

1

2

0 5 10

1

2

0 5 10

FIGURE 5. Characteristics of the detuned configurations with a sub-
cyclicity s

pure mistuning situation.

Nonlinear analysis of the mistuned response of the
best and the worst detuned configurations

The results are analyzed for the following detuned configu-
rations: the tuned configuration corresponding to the pure mis-
tuning case (ℓ=49), the best detuned configuration (ℓ=104), and
the worst detuned configuration (ℓ=9). Fig. 6 displays the graphs
of k 7→ aℓ,k =Aℓ(θk) for k = 1, . . . ,nsim, which describes the max-
imum displacement response over the frequency and the blades
for each mistuning realization θk of the detuned configurations
ℓ ∈ {49,104,9}. By comparing these graphs, it can be seen that
the best detuned configuration is characterized by slightly lower
response levels but also by less scattered realizations with respect
to the pure mistuned case (left figure). The realizations of the
worst detuned configurations (right graph) are clearly more scat-
tered with higher response levels. The distribution of the blades
related to these detuned configurations are displayed in Fig. 7.

For a given detuned configuration ℓ and a fixed frequency ν ,
we introduce the real-valued random variable Y ℓ

max(2πν) whose
realization θk is defined by

Y ℓ
max(2πν ,θk) = Y ℓ( jℓ,kmax,2πν ,θk) . (9)

For detuned configurations ℓ ∈ {49,104,9}, Figs. 8 to 10 display
the graphs of the confidence region of the real-valued random
function ν 7→ Y ℓ

max(2πν) for a probability level of 0.98.
The analysis of the graphs of the confidence region of the

real-valued random function ν 7→ Y ℓ
max(2πν) for a probability

level of 0.98 shows that the structural displacements are mainly
located in the frequency band of excitation Be but that there are

7 2022



0 200 400

5

6

7

8

9

10

11

12

13
10

-5

0 200 400

5

6

7

8

9

10

11

12

13
10

-5

0 200 400

5

6

7

8

9

10

11

12

13
10

-5

FIGURE 6. Analysis of the mistuned response for given detuned con-
figurations: graph of realizations k 7→ aℓ,k = Aℓ(θk) (colored symbols),
of realizations (5r + 10) 7→ ar,ℓ

M (red circle) and value of constant aℓM
(red thick line) for the tuned configuration (pure mistuning) ℓ= 49 (left
figure), the best detuned configuration ℓ = 104 (middle figure), and the
worst detuned configuration ℓ= 9 (right figure).
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FIGURE 7. Analysis of the blade distribution corresponding to the
pure mistuned configuration (left graph), the best detuned configuration
(middle graph), and the worst detuning case (right graph).

also new resonances occurring below the frequency band of ex-
citation Be that are induced by the geometrical nonlinearities.
The amplitudes of these new resonances correspond to the in-
direct excitation of the first blade modes of the blisk and are of a
lower order of magnitude in the present case, probably because
the blades are not very slender. Fig. 11 shows a zoom of these
confidence regions around the excitation frequency band Be. It
is clearly seen that the pure mistuned blisk have slightly more
robust resonances that the one obtained with the detuned config-
urations in presence of mistuning. But the real interest is to verify
that the optimal detuned configuration (middle graph) guarantees
that the upper envelope of the confidence region stays below the

critical level of response of the pure mistuned response. It is thus
observed that the optimal detuned configuration yields a reduc-
tion of the maximum amplitude of about 12% with respect to the
initial situation that corresponds to the pure mistuning case. An-
other observation is that the worst detuned configuration yields
an amplification of about 11% with respect to the initial situation
that corresponds to the pure mistuning case. Furthermore, let
zℓ,+max(2πν) be the upper bound of confidence region Y ℓ

max(2πν)
normalized with respect to its pure mistuned counterpart. Fig-
ure 12 shows the graphs of ν 7→ zℓ,+max(2πν) for the 15 best and for
the 15 worst detuning configurations. It can be seen that the first
resonance that is also the main resonance of the pure mistuned
system is the one that is involved in the detuning optimization
process, the two other ones being robust to detuning optimiza-
tion. To the contrary, the worst detuned configurations violate
the critical level through the two first resonances. All these ob-
servations allow for assessing the efficiency of the optimization
through the output of interest qc,ℓ.
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FIGURE 8. Analysis of the mistuned response for the tuned config-
uration: graph of the confidence region of ν 7→ Y ℓ

max(2πν) for a prob-
ability level of 0.98, corresponding to the pure mistuned configuration
ℓ= 49 (purple area). Excitation frequency band Be is represented by the
light pink area.

CONCLUSION AND DISCUSSION
We have presented an approach for the optimization of the

detuning in presence of random mistuning and geometrical non-
linearities for bladed disks, based on the use of high-fidelity com-
putational models. This very challenging problem has given rise
to very little published work and remains an open subject. The
difficulties we have addressed are related to the developments of
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FIGURE 9. Analysis of the mistuned response for given detuned con-
figurations: graph of the confidence region of ν 7→ Y ℓ

max(2πν) for a
probability level of 0.98, corresponding to the best detuned configura-
tion ℓ = 104 (green area). Excitation frequency band Be is represented
by the light pink area.
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FIGURE 10. Analysis of the mistuned response for given detuned
configurations: graph of the confidence region of ν 7→ Y ℓ

max(2πν) for a
probability level of 0.98, corresponding to the worst detuned configura-
tion ℓ = 9 (orange area). Excitation frequency band Be is represented
by the light pink area.

an efficient computational methodology for reducing the com-
putational cost, to the physics understanding of such stochastic
nonlinear dynamical systems, and to the probabilistic formula-
tion of the detuning optimization problem. Several results can be
put forward.

A careful convergence analysis with respect to all numeri-
cal parameters must be performed to obtain a predictive solution
with an optimal computational cost. This is essential for explor-
ing a relatively large number of detuned configurations in the
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FIGURE 11. Analysis of the mistuned response for given detuned
configurations: for a probability level of 0.98, zoom of the confi-
dence region of ν 7→ Y ℓ

max(2πν) for the pure mistuned configuration
ℓ = 49 (upper graph), for the best detuned configuration ℓ = 104 (mid-
dle graph), and for the worst detuned configuration ℓ= 9 (lower graph).
Critical level defined by the maximum of the upper envelope corre-
sponding to the pure mistuned situation (red line).

FIGURE 12. Analysis of the mistuned response for given detuned
configurations: zoom of the upper bound of confidence region ν 7→
zℓ,+max(2πν) for the best detuned configuration ℓ = 104 (green line), for
the worst detuned configuration ℓ= 9 (orange line), for the 15 best con-
figurations (black dashed-dotted lines) and for the 15 worst configura-
tions (red dashed-dotted lines). Critical level corresponding to the pure
mistuned situation is set to 1 (red line).

context of the stochastic nonlinear mistuning analysis. It should
be noted that the sensitivity analysis with respect to the time step
used in the numerical resolution of the nonlinear coupled differ-
ential equations is particularly delicate, yielding a fast conver-
gence in the excitation frequency band but a slow convergence in

9 2022



the low-frequency range that is not directly excited by the exter-
nal loading.

Another point of attention concerns the choice of the quanti-
ties of interest used in the formulation of the detuning optimiza-
tion problem from a scalar-valued highly nonlinear cost function.
It is found that there is a few number of optimal solutions with
respect to the number of possible detuned configurations. It is
also proved that the optimization problem is well-posed, yielding
to robust optimal detuned configurations that are identified after
post-processing analysis as detuned configurations for which the
mistuning amplification effects are inhibited with respect to the
pure mistuning situation.

The detuning patterns yielding the best optimal detuned con-
figurations and yielding the worst amplification response levels
have no particularly structure in terms of number of blades of
different types and of blade distribution, which deserve further
investigations to understand the complex mechanisms induced
by the detuning. As expected, the sub-cyclic detuned configu-
rations that present a cyclic symmetry with a lower cyclic order
are sensitive to the mistuning and are not part of the optimal so-
lutions.

The chosen external load corresponds to a narrow-frequency
band of excitation so that the linearized detuning optimization
problem has no real interest. Indeed it cannot be properly
achieved since the natural frequencies of most detuned config-
urations do not belong to this narrow excitation frequency range
and since the structure only can respond in the excitation fre-
quency band. This is to underline that the nonlinear detuned op-
timization problem is of different nature because of the complex
vibratory behavior induced by the geometric nonlinearities that
appear themselves as an excitation that spreads the nonlinear re-
sponse on the whole frequency band of analysis.

The availability of this full detuning data basis can also be
viewed as a way to validate further optimization methodologies,
by investigating the detuning optimization problem as a combi-
natorial optimization problem based on a probabilistic learning
approach [29]. Such research open area could be of interest when
considering bladed disk structures with a large number of blades.
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