Thaïs Baudon

Carsten Fuhs

Laure Gonnord

Analysing Parallel Complexity of Term Rewriting ⋆

We revisit parallel-innermost term rewriting as a model of parallel computation on inductive data structures and provide a corresponding notion of runtime complexity parametric in the size of the start term. We propose automatic techniques to derive both upper and lower bounds on parallel complexity of rewriting that enable a direct reuse of existing techniques for sequential complexity. The applicability and the precision of the method are demonstrated by the relatively light effort in extending the program analysis tool AProVE and by experiments on numerous benchmarks from the literature.

Introduction

Automated inference of complexity bounds for parallel computation has seen a surge of attention in recent years [START_REF] Baillot | Types for complexity of parallel computation in picalculus[END_REF][START_REF] Baillot | Sized Types with Usages for Parallel Complexity of Pi-Calculus Processes[END_REF][START_REF] Klemen | A general framework for static cost analysis of parallel logic programs[END_REF][START_REF] Albert | Parallel cost analysis[END_REF][START_REF] Hoffmann | Automatic static cost analysis for parallel programs[END_REF][START_REF] Das | Parallel complexity analysis with temporal session types[END_REF]. While techniques and tools for a variety of computational models have been introduced, so far there does not seem to be any paper in this area for complexity of term rewriting with parallel evaluation strategies. This paper addresses this gap in the fn size(&self) -> int { match self { &Tree::Node { v, ref left, ref right } => left.size() + right.size() + 1, &Tree::Empty => 0 , } } In this particular example, the recursive calls to left.size() and right. size() can be done in parallel. Building on previous work on parallel-innermost rewriting [START_REF] Vuillemin | Correct and optimal implementations of recursion in a simple programming language[END_REF][START_REF] Fernández | Orderings for innermost termination[END_REF], and first ideas about parallel complexity [START_REF] Alias | Estimation of Parallel Complexity with Rewriting Techniques[END_REF], we propose a new notion of Parallel Dependency Tuples that captures such a behaviour, and methods to compute both upper and lower parallel complexity bounds. Bounds on parallel complexity can provide insights about the potentiality of parallelisation: if sequential and parallel complexity of a function (asymptotically) coincide, this information can be useful for a parallelising compiler to refrain from parallelising the evaluation of this function. Moreover, evaluation of TRSs (as a simple functional programming language) in massively parallel settings such as GPUs is currently a topic of active research [START_REF] Van Eerd | Term rewriting on GPUs[END_REF]. In this context, a static analysis of parallel complexity can be helpful to determine whether to rewrite on a (fast, but not very parallel) CPU or on a (slower, but massively parallel) GPU.

Accepted to 32nd International

A preliminary version of this work with an initial notion of parallel complexity was presented in an informal extended abstract [13]. We now propose a more formal version accompanied by extensions, proofs, implementation, experiments, and related work. Sect. 2 recalls term rewriting and Dependency Tuples [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF] as the basis of our approach. In Sect. 3, we introduce a notion of runtime complexity for parallel-innermost rewriting, and we harness the existing Dependency Tuple framework to compute asymptotic upper bounds on this complexity. In Sect. [START_REF] Albert | Task-level analysis for a language with async/finish parallelism[END_REF], we provide a transformation to innermost term rewriting that lets any tool for (sequential) innermost runtime complexity be reused to find upper bounds for parallel-innermost runtime complexity and, for confluent parallel-innermost rewriting, also lower bounds. Sect. 5 gives experimental evidence of the practicality of our method on a large standard benchmark set. We discuss related work in Sect. 6. Our extended authors' accepted manuscript [START_REF] Baudon | Analysing parallel complexity of term rewriting[END_REF] additionally has full proofs of our theorems.

Term Rewriting and Innermost Runtime Complexity

We assume basic familiarity with term rewriting (see, e.g., [START_REF] Baader | Term rewriting and all that[END_REF]) and recall standard definitions to fix notation. As customary for analysis of runtime complexity of rewriting, we consider terms as tree-shaped objects, without sharing of subtrees.

We first define Term Rewrite Systems and Innermost Rewriting. T (Σ, V) denotes the set of terms over a finite signature Σ and the set of variables V. For a term t, its size |t| is defined by: (a) if t ∈ V, |t| = 1; (b) if t = f (t 1 , . . . , t n), then |t| = 1 + n i=1 |t i |. The set Pos(t) of the positions of t is defined by: (a) if t ∈ V, then Pos(t) = {ε}, and (b) if t = f (t 1 , . . . , t n), then Pos(t) = {ε} ∪ 1≤i≤n {iπ | π ∈ Pos(t i)}. The position ε is the root position of term t. If t = f (t 1 , . . . , t n), root(t) = f is the root symbol of t. The (strict) prefix order > on positions is the strict partial order given by: τ > π iff there exists π ′ ̸ = ε such that ππ ′ = τ . Two positions π and τ are parallel iff neither π > τ nor π = τ nor τ > π hold. For π ∈ Pos(t), t| π is the subterm of t at position π, and we write t[s] π for the term that results from t by replacing the subterm t| π at position π by the term s.

A substitution σ is a mapping from V to T (Σ, V) with finite domain

Dom(σ) = {x ∈ V | σ(x) ̸ = x}. We write {x 1 → t 1 ; . . . ; x n → t n } for a substitution σ with σ(x i) = t i for 1 ≤ i ≤ n and σ(x) =
x for all other x ∈ V. We extend substitutions to terms by σ(f (t 1 , . . . , f n)) = f (σ(t 1), . . . , σ(t n)). We may write tσ for σ(t).

For a term t, V(t) is the set of variables in t. A term rewrite system (TRS) R is a set of rules V(r i) ⊆ V(ℓ i) for all 1 ≤ i ≤ n. The rewrite relation of R is s → R t iff there are a rule ℓ → r ∈ R, a position π ∈ Pos(s), and a substitution σ such that s = s[ℓσ] π and t = s[rσ] π . Here, σ is called the matcher and the term ℓσ the redex of the rewrite step. If no proper subterm of ℓσ is a possible redex, ℓσ is an innermost redex, and the rewrite step is an innermost rewrite step, denoted by

{ℓ 1 → r 1 , . . . , ℓ n → r n } with ℓ i , r i ∈ T (Σ, V), ℓ i ̸ ∈ V,
s i → R t. Σ R d = {f | f (ℓ 1 , . . . , ℓ n) → r ∈ R} and Σ R c = Σ \ Σ R
d are the defined and constructor symbols of R. We may also just write Σ d and Σ c . The set of positions with defined symbols of t is Pos

d (t) = {π | π ∈ Pos(t), root(t| π) ∈ Σ d }.
For a relation →, → + is its transitive closure and → * its reflexive-transitive closure. An object o is a normal form wrt a relation

→ iff there is no o ′ with o → o ′ . A relation → is confluent iff s → * t and s → * u implies that there exists an object v with t → * v and u → * v. A relation → is terminating iff there is no infinite sequence t 0 → t 1 → t 2 → • • • .
Example 1 (size). Consider the TRS R with the following rules modelling the code of Figure 1. This rewrite sequence uses 7 steps to reach a normal form.

We wish to provide static bounds on the length of the longest rewrite sequence from terms of a specific size. Here we use innermost evaluation strategies, which closely correspond to call-by-value strategies used in many programming languages. We focus on rewrite sequences that start with basic terms, corresponding to function calls where a function is applied to data objects. The resulting notion of complexity for term rewriting is known as innermost runtime complexity.

Definition 1 (Innermost Runtime Complexity irc [START_REF] Hirokawa | Automated complexity analysis based on the dependency pair method[END_REF][START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]). The derivation height of a term t wrt a relation → is the length of the longest sequence of →-steps from t:

dh(t, →) = sup{e | ∃ t ′ ∈ T (Σ, V). t → e t ′ }
where → e is the e th iterate of →. If t starts an infinite →-sequence, we write dh(t, →) = ω. Here, ω is the smallest infinite ordinal, i.e., ω > n holds for all n ∈ N.

A term

f (t 1 , . . . , t k) is basic (for a TRS R) iff f ∈ Σ R d and t 1 , . . . , t k ∈ T (Σ R c , V). T R basic is the set of basic terms for a TRS R. For n ∈ N, the innermost runtime complexity function is irc R (n) = sup{dh(t, i → R) | t ∈ T R basic , |t| ≤ n}.
For all P ⊆ N ∪ {ω}, sup P is the least upper bound of P , where sup ∅ = 0. Many automated techniques are available [START_REF] Hirokawa | Automated complexity analysis based on the dependency pair method[END_REF][START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF][START_REF] Hirokawa | Automated complexity analysis based on contextsensitive rewriting[END_REF][START_REF] Avanzini | A combination framework for complexity[END_REF][START_REF] Naaf | Complexity analysis for term rewriting by integer transition systems[END_REF][START_REF] Moser | Automated amortised resource analysis for term rewrite systems[END_REF] to analyse irc R . We build on Dependency Tuples [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF], originally designed to find upper bounds for (sequential) innermost runtime complexity. A central idea is to group all function calls by a rewrite rule together rather than to separate them (as with DPs for proving termination [START_REF] Arts | Termination of term rewriting using dependency pairs[END_REF]). We use sharp terms to represent these function calls.

Definition 2 (Sharp Terms T ♯). For every f ∈ Σ d , we introduce a fresh symbol f ♯ of the same arity, called a sharp symbol. For a term t = f (t 1 , . . . , t n) with f ∈ Σ d , we define t ♯ = f ♯ (t 1 , . . . , t n). For all other terms t, we define t ♯ = t.

T ♯ = {t ♯ | t ∈ T (Σ, V), root(t) ∈ Σ d } denotes the set of sharp terms.
To get an upper bound for sequential complexity, we "count" how often each rewrite rule is used. The idea is that when a rule ℓ → r is used, the cost (i.e., number of rewrite steps for the evaluation) of the function call to the instance of ℓ is 1 + the sum of the costs of all the function calls in the resulting instance of r, counted separately in some fixed order. To group k function calls together, we use "compound symbols" Com k of arity k, which intuitively represent the sum of the runtimes of their arguments.

Definition 3 (Dependency Tuple, DT [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]). A dependency tuple (DT) is a rule of the form s ♯ → Com n (t ♯ 1 , . . . , t ♯ n) where s ♯ , t ♯ 1 , . . . , t ♯ n ∈ T ♯ . Let ℓ → r be a rule with Pos d (r) = {π 1 , . . . , π n } and π 1 ⋗ . . . ⋗ π n for a total order ⋗ (e.g., lexicographic order) on positions. Then DT

(ℓ → r) = ℓ ♯ → Com n (r| ♯ π1 , . . . , r| ♯ πn). 4 For a TRS R, let DT (R) = {DT (ℓ → r) | ℓ → r ∈ R}.
Example 2. For R from Ex. 1, DT (R) consists of the following DTs: plus ♯ (Zero, y) → Com 0 plus ♯ (S(x), y) → Com 1 (plus ♯ (x, y))

size ♯ (Nil) → Com 0 size ♯ (Tree(v, l, r)) → Com 3 (size ♯ (l), size ♯ (r), plus ♯ (size(l), size(r)))

To represent the complexity of a sharp term for a set of DTs and a TRS R, chain trees are used [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]. Intuitively, a chain tree for some sharp term is a dependency tree of the computations involved in evaluating this term. Each node represents a computation (the DT) on some arguments (defined by the substitution).

Definition 4 (Chain Tree, Cplx [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]). Let D be a set of DTs and R be a TRS. Let T be a (possibly infinite) tree where each node is labelled with a DT q ♯ → Com n (w ♯ 1 , . . . , w ♯ n) from D and a substitution ν, written

(q ♯ → Com n (w ♯ 1 , . . . , w ♯ n) | ν).
Let the root node be labelled with (s ♯ → Com e (r ♯ 1 , . . . , r ♯ e) | σ). Then T is a (D, R)-chain tree for s ♯ σ iff the following conditions hold for any node of T , where p ♯ j δ j for all j ∈ {1, . . . , k}. Let S ⊆ D and s ♯ ∈ T ♯ . For a chain tree T , |T | S ∈ N ∪ {ω} is the number of nodes in T labelled with a DT from S. We define Cplx ⟨D,S,R⟩ (s ♯) = sup{|T | S | T is a (D, R)-chain tree for s ♯ }. For terms s ♯ without a (D, R)-chain tree, we define Cplx ⟨D,S,R⟩ (s ♯) = 0.

(u ♯ → Com m (v ♯ 1 , . . . , v ♯ m) | µ)
Example 3. For R from Ex. 1 and D = DT (R) from Ex. 2, the following is a chain tree for the term size ♯ (Tree(Zero, Nil, Nil)):

(size ♯ (Tree(v, l, r)) → Com 3 (size ♯ (l), size ♯ (r), plus ♯ (size(l), size(r))) | {v → Zero; l → Nil; r → Nil}) (size ♯ (Nil) → Com 0 | {}) (size ♯ (Nil) → Com 0 | {}) (plus ♯ (Zero, y) → Com 0 | {y → Zero}) s i z e (N i l) i → * R Z e r o
The main correctness statement in the sequential case is the following:

Theorem 1 (Cplx bounds Derivation Height for i → R [37]). Let R be a TRS, let t = f (t 1 , . . . , t n) ∈ T (Σ, V) such that all t i are in normal form (this includes all t ∈ T R basic). Then we have dh(t, i → R) ≤ Cplx ⟨DT (R),DT (R),R⟩ (t ♯). If i → R is confluent, then dh(t, i → R) = Cplx ⟨DT (R),DT (R),R⟩ (t ♯).
For automated complexity analysis with DTs, the following notion of DT problems is used as a characterisation of DTs that we reduce in incremental proof steps to a trivially solved problem.

Definition 5 (DT Problem, Complexity of DT Problem [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]). Let R be a TRS, D be a set of DTs, S ⊆ D. Then ⟨D, S, R⟩ is a DT problem. Its complexity

function is irc ⟨D,S,R⟩ (n) = sup{Cplx ⟨D,S,R⟩ (t ♯) | t ∈ T R basic , |t| ≤ n}. The DT problem ⟨DT (R), DT (R), R⟩ is called the canonical DT problem for R.
For a DT problem ⟨D, S, R⟩, the set D contains all DTs that can be used in chain trees. S contains the DTs whose complexity remains to be analysed. R contains the rewrite rules for evaluating the arguments of DTs. Here we focus on simplifying S (thus D and R are fixed during the process) but techniques to simplify D and R are available as well [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF][START_REF] Avanzini | A combination framework for complexity[END_REF].

Thm. 1 implies the following link between irc R and irc ⟨DT (R),DT (R),R⟩ :

Theorem 2 (Complexity Bounds for TRSs via Canonical DT Problems [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]). Let R be a TRS with canonical DT problem In practice, the focus is on finding asymptotic bounds for irc R . For example, Ex. 4 will show that for our TRS R from Ex. 1 we have irc R (n) ∈ O(n 2).

⟨DT (R), DT (R), R⟩. Then we have irc R (n) ≤ irc ⟨DT (R),DT (R),R⟩ (n). If i → R is confluent, we have irc R (n) = irc ⟨DT (R),DT (R),R⟩ (n).

Accepted to 32nd International

A DT problem ⟨D, S, R⟩ is said to be solved iff S = ∅: we always have irc ⟨D,∅,R⟩ (n) = 0. To simplify and finally solve DT problems in an incremental fashion, complexity analysis techniques called DT processors are used. A DT processor takes a DT problem as input and returns a (hopefully simpler) DT problem as well as an asymptotic complexity bound as an output. The largest asymptotic complexity bound returned over this incremental process is then also an upper bound for irc R (n) [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]Corollary 21].

The reduction pair processor using polynomial interpretations [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF] applies a restriction of polynomial interpretations to N [START_REF] Lankford | Canonical algebraic simplification in computational logic[END_REF] to infer upper bounds on the number of times that DTs can occur in a chain tree for terms of size at most n.

Definition 6 (Polynomial Interpretation, CPI).

A polynomial interpretation Pol maps every n-ary function symbol to a polynomial with variables x 1 , . . . , x n and coefficients from N. Pol extends to terms via

Pol(x) = x for x ∈ V and Pol(f (t 1 , . . . , t n)) = Pol(f)(Pol(t 1), . . . , Pol(t n)).
Pol induces an order ≻ Pol and a quasi-order ≿ Pol over terms where s ≻ Pol t iff Pol(s) > Pol(t) and s ≿ Pol t iff Pol(s) ≥ Pol(t) for all instantiations of variables with natural numbers.

A complexity polynomial interpretation (CPI) Pol is a polynomial interpretation where:

Pol(Com n (x 1 , . . . , x n)) = x 1 + • • • + x n , and for all f ∈ Σ c , Pol(f (x 1 , . . . , x n)) = a 1 • x 1 + • • • + a n • x n + b for some a i ∈ {0, 1} and b ∈ N.
The restriction for CPIs regarding constructor symbols enforces that the interpretation of a constructor term t (as an argument of a term for which a chain tree is constructed) can exceed its size |t| only by at most a constant factor. This is crucial for soundness. Using a CPI, we can now define and state correctness of the corresponding reduction pair processor [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]Theorem 27].

Theorem 3 (Reduction Pair Processor with CPIs [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]). Let ⟨D, S, R⟩ be a DT problem, let ≿ and ≻ be induced by a CPI Pol. Let k ∈ N be the maximal degree of all polynomials Pol(f ♯) for all f ∈ Σ d . Let D ∪ R ⊆ ≿. If S ∩ ≻ ̸ = ∅, the reduction pair processor returns the DT problem ⟨D, S \ ≻, R⟩ and the complexity O(n k). Then the reduction pair processor is sound.

Example 4 (Ex. 2 continued). For our running example, consider the CPI Pol with:

Pol(plus ♯ (x 1 , x 2)) = Pol(size(x 1)) = x 1 , Pol(size ♯ (x 1)) = 2x 1 + x 2 1 , Pol(plus(x 1 , x 2)) = x 1 + x 2 , Pol(Tree(x 1 , x 2 , x 3)) = 1 + x 2 + x 3 , Pol(S(x 1)) = 1 + x 1 , Pol(Zero) = Pol(Nil) = 1.
Pol orients all DTs in S = DT (R) with ≻ and all rules in R with ≿. This proves irc R (n) ∈ O(n 2): since the maximal degree of the CPI for a symbol f ♯ is 2, the upper bound of O(n 2) follows by Thm. 3.

Finding Upper Bounds for Parallel Complexity

In this section we present our main contribution: an application of the DT framework from innermost runtime complexity to parallel-innermost rewriting.

The notion of parallel-innermost rewriting dates back at least to [START_REF] Vuillemin | Correct and optimal implementations of recursion in a simple programming language[END_REF]. Informally, in a parallel-innermost rewrite step, all innermost redexes are rewritten simultaneously. This corresponds to executing all function calls in parallel using a call-by-value strategy on a machine with unbounded parallelism [START_REF] Blelloch | Parallelism in sequential functional languages[END_REF]. In the literature [START_REF] Thiemann | Loops under strategies[END_REF], this strategy is also known as "max-parallel-innermost rewriting". Definition 7 (Parallel-Innermost Rewriting [START_REF] Fernández | Orderings for innermost termination[END_REF]). A term s rewrites innermost in parallel to t with a TRS R, written

s i -→ ∥ R t, iff s i → + R t, and either (a) s i → R t with s an innermost redex, or (b) s = f (s 1 , . . . , s n), t = f (t 1 , . . . , t n), and for all 1 ≤ k ≤ n either s k i -→ ∥ R t k or s k = t k is a normal form.
Example 5 (Ex. 1 continued). The TRS R from Ex. 1 allows the following parallel-innermost rewrite sequence, where innermost redexes are underlined:

size(Tree(Zero, Nil, Tree(Zero, Nil, Nil))) i -→ ∥ R S(plus(size(Nil), size(Tree(Zero, Nil, Nil)))) i -→ ∥ R S(plus(Zero, S(plus(size(Nil), size(Nil))))) i -→ ∥ R S(plus(Zero, S(plus(Zero, Zero)))) i -→ ∥ R S(plus(Zero, S(Zero))) i -→ ∥ R S(S(Zero))
In the second and in the third step, two innermost steps each happen in parallel (which is not possible with standard innermost rewriting:

i -→ ∥ R ̸ ⊆ i → R
). An innermost rewrite sequence without parallel evaluation necessarily needs two more steps to a normal form from this start term, as in Ex. 1.

Note that for all TRSs R, i -→ ∥ R is terminating iff i → R is terminating [START_REF] Fernández | Orderings for innermost termination[END_REF]. Ex. 5 shows that such an equivalence does not hold for the derivation height of a term. The question now is: given a TRS R, how much of a speed-up might we get by a switch from innermost to parallel-innermost rewriting? To investigate, we extend the notion of innermost runtime complexity to parallel-innermost rewriting.

Definition 8 (Parallel-Innermost Runtime Complexity pirc). For n ∈ N, we define the parallel-innermost runtime complexity function as pirc

R (n) = sup{dh(t, i -→ ∥ R) | t ∈ T R basic , |t| ≤ n}.
In the literature on parallel computing [START_REF] Blelloch | Parallelism in sequential functional languages[END_REF][START_REF] Hoffmann | Automatic static cost analysis for parallel programs[END_REF][START_REF] Baillot | Types for complexity of parallel computation in picalculus[END_REF], the terms depth or span are commonly used for the concept of the runtime of a function on a machine with unbounded parallelism ("wall time"), corresponding to the complexity measure of pirc R . In contrast, irc R would describe the work of a function ("CPU time").

In the following, given a TRS R, our goal shall be to infer (asymptotic) upper bounds for pirc R fully automatically. Of course, an upper bound for (sequential) irc R is also an upper bound for pirc R . We will now introduce techniques to find upper bounds for pirc R that are strictly tighter than these trivial bounds.

To find upper bounds for runtime complexity of parallel-innermost rewriting, we can reuse the notion of DTs from Def. 3 for sequential innermost rewriting along with existing techniques [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF] as illustrated in the following example. Example 6. In the recursive size-rule, the two calls to size(l) and size(r) happen in parallel (they are structurally independent) and take place at parallel positions in the term. Thus, the cost (number of rewrite steps with i -→ ∥ R until a normal form is reached) for these two calls is not the sum, but the maximum of their individual costs. Regardless of which of these two calls has the higher cost, we still need to add the cost for the call to plus on the results of the two calls: plus starts evaluating only after both calls to size have finished. With σ as the used matcher for the rule and with t ↓ as the (here unique) normal form resulting from repeatedly rewriting a term t with i -→ ∥ R (the "result" of evaluating t), we have:

Accepted to 32nd International

dh(size(Tree(v, l, r))σ, i -→ ∥ R) = 1 + max(dh(size(l)σ, i -→ ∥ R), dh(size(r)σ, i -→ ∥ R)) + dh(plus(size(l)σ ↓, size(r)σ ↓), i -→ ∥ R)
In the DT setting, we could introduce a new symbol ComPar k that explicitly expresses that its arguments are evaluated in parallel. This symbol would then be interpreted as the maximum of its arguments in an extension of Thm. 3:

size ♯ (Tree(v, l, r)) → Com 2 (ComPar 2 (size ♯ (l), size ♯ (r)), plus ♯ (size(l), size(r)))
Although automation of the search for polynomial interpretations extended by the maximum function is readily available [START_REF] Fuhs | Maximal termination[END_REF], we would still have to extend the notion of Dependency Tuples and also adapt all existing techniques in the Dependency Tuple framework to work with ComPar k .

This is why we have chosen the following alternative approach, which is equally powerful on theoretical level and enables immediate reuse of existing techniques in the DT framework. Equivalently to the above, we can "factor in" the cost of calling plus into the maximum function:

dh(size(Tree(v, l, r))σ, i -→ ∥ R) = max(1 + dh(size(l)σ, i -→ ∥ R) + dh(plus(size(l)σ ↓, size(r)σ ↓), i -→ ∥ R), 1 + dh(size(r)σ, i -→ ∥ R) + dh(plus(size(l)σ ↓, size(r)σ ↓), i -→ ∥ R))
Intuitively, this would correspond to evaluating plus(. . . , . . .) twice, in two parallel threads of execution, which costs the same amount of (wall) time as evaluating plus(. . . , . . .) once. We can represent this maximum of the execution times of two threads by introducing two DTs for our recursive size-rule:

size ♯ (Tree(v, l, r)) → Com 2 (size ♯ (l), plus ♯ (size(l), size(r))) size ♯ (Tree(v, l, r)) → Com 2 (size ♯ (r), plus ♯ (size(l), size(r)))
To express the cost of a concrete rewrite sequence, we would non-deterministically choose the DT that corresponds to the "slower thread".

In other words, when a rule ℓ → r is used, the cost of the function call to the instance of ℓ is 1 + the sum of the costs of the function calls in the resulting instance of r that are in structural dependency with each other. The actual cost of the function call to the instance of ℓ in a concrete rewrite sequence is the maximum of all the possible costs caused by such chains of structural dependency (based on the prefix order > on positions of defined function symbols in r). Thus, structurally independent function calls are considered in separate DTs, whose non-determinism models the parallelism of these function calls.

The notion of structural dependency of function calls is captured by Def. 9. Basically, it comes from the fact that a term cannot be evaluated before all its subterms have been reduced to normal forms (innermost rewriting/call by value). This induces a "happens-before" relation for the computation [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF].

Definition 9 (Structural Dependency, MSDC). For positions π 1 , . . . , π k , we call ⟨π 1 , . . . , π k ⟩ a structural dependency chain for a term t iff π 1 , . . . , π k ∈ Pos d (t) and π 1 > . . . > π k . Here π i structurally depends on π j in t iff j < i. A structural dependency chain ⟨π 1 , . . . , π k ⟩ for a term t is maximal iff k = 0 and

Pos d (t) = ∅, or k > 0 and ∀π ∈ Pos d (t) . π ≯ π 1 ∧ (π 1 > π ⇒ π ∈ {π 2 , . . . , π k }).
We write MSDC (t) for the set of all maximal structural dependency chains for t.

Note that MSDC (t) ̸ = ∅ always holds: if Pos d (t) = ∅, then MSDC (t) = {⟨⟩}.

Example 7. Let t = S(plus(size(Nil), plus(size(x), Zero))). In our running example, t has the following structural dependencies: MSDC (t) = {⟨11, 1⟩, ⟨121, 12, 1⟩}. The chain ⟨11, 1⟩ corresponds to the nesting of t| 11 = size(Nil) below t| 1 = plus(size(Nil), plus(size(x), Zero)), so the evaluation of t| 1 will have to wait at least until t| 11 has been fully evaluated.

If π structurally depends on τ in a term t, neither t| τ nor t| π need to be a redex. Rather, t| τ could be instantiated to a redex and an instance of t| π could become a redex after its subterms, including the instance of t| τ , have been evaluated.

We thus revisit the notion of DTs, which now embed structural dependencies in addition to the algorithmic dependencies already captured in DTs. We can now make our main correctness statement: Theorem 4 (Cplx bounds Derivation Height for i -→ ∥ R). Let R be a TRS, let t = f (t 1 , . . . , t n) ∈ T (Σ, V) such that all t i are in normal form (e.g., when

t ∈ T R basic). Then we have dh(t, i -→ ∥ R) ≤ Cplx ⟨PDT (R),PDT (R),R⟩ (t ♯). If i -→ ∥ R is confluent, then dh(t, i -→ ∥ R) = Cplx ⟨PDT (R),PDT (R),R⟩ (t ♯). 5
Accepted to 32nd International Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

From Thm. 4, the soundness of our approach to parallel complexity analysis via the DT framework follows analogously to [START_REF] Noschinski | Analyzing innermost runtime complexity of term rewriting by dependency pairs[END_REF]:

Theorem 5 (Parallel Complexity Bounds for TRSs via Canonical Parallel DT Problems). Let R be a TRS with canonical parallel DT problem ⟨PDT (R), PDT (R), R⟩. Then we have pirc R

(n) ≤ irc ⟨PDT (R),PDT (R),R⟩ (n). If i -→ ∥ R is confluent, we have pirc R (n) = irc ⟨PDT (R),PDT (R),R⟩ (n).
This theorem implies that we can reuse arbitrary techniques to find upper bounds for sequential complexity in the DT framework also to find upper bounds for parallel complexity, without requiring any modification to the framework.

Thus, via Thm. 3, in particular we can use polynomial interpretations in the DT framework for our PDTs to get upper bounds for pirc R .

Example 9 (Ex. 6 continued). For our TRS R computing the size function on trees, we get the set PDT (R) with the following PDTs:

plus ♯ (Zero, y) → Com 0 plus ♯ (S(x), y) → Com 1 (plus ♯ (x, y)) size ♯ (Nil) → Com 0 size ♯ (Tree(v, l, r)) → Com 2 (size ♯ (l), plus ♯ (size(l), size(r))) size ♯ (Tree(v, l, r)) → Com 2 (size ♯ (r), plus ♯ (size(l), size(r)))
The interpretation Pol from Ex. 4 implies pirc R (n) ∈ O(n 2). This bound is tight: consider size(t) for a comb-shaped tree t where the first argument of Tree is always Zero and the third is always Nil. The function plus, which needs time linear in its first argument, is called linearly often on data linear in the size of the start term. Due to the structural dependencies, these calls do not happen in parallel (so call k + 1 to plus must wait for call k).

Example 10. Note that pirc R (n) can be asymptotically lower than irc R (n), for instance for the TRS R with the following rules:

doubles(Zero) → Nil d(Zero) → Zero doubles(S(x)) → Cons(d(S(x)), doubles(x)) d(S(x)) → S(S(d(x)))
The upper bound irc R (n) ∈ O(n 2) is tight: from doubles(S(S(. . . S(Zero) . . .))), we get linearly many calls to the linear-time function d on arguments of size linear in the start term. However, the Parallel Dependency Tuples in this example are:

doubles ♯ (Zero) → Com 0 d ♯ (Zero) → Com 0 doubles ♯ (S(x)) → Com 1 (d ♯ (S(x))) d ♯ (S(x)) → Com 1 (d ♯ (x)) doubles ♯ (S(x)) → Com 1 (doubles ♯ (x))
Then the following polynomial interpretation, which orients all DTs with ≻ and all rules from R with ≿, proves pirc

R (n) ∈ O(n): Pol(doubles ♯ (x 1)) = Pol(d(x 1)) = 2x 1 , Pol(d ♯ (x 1)) = x 1 , Pol(doubles(x 1)) = Pol(Cons(x 1 , x 2)) = Pol(Zero) = Pol(Nil) = 1, Pol(S(x 1)) = 1 + x 1 .

Accepted to 32nd International

i -→ ∥ R t 1 i -→ ∥ R t 2 i -→ ∥ R . . . , also t 0 i → R t 1 i → R t 2 i → R . . . holds (i.e., from basic terms, i -→ ∥ R and i → R coincide); (c) pirc R (n) = irc R (n).
Thus, for TRSs R where Thm. 6 applies, no rewrite rule can introduce parallel redexes, and specific analysis techniques for pirc R are not needed.

From Parallel DTs to Innermost Rewriting

As we have seen in the previous section, we can transform a TRS R with parallelinnermost rewrite relation to a DT problem whose complexity provides an upper bound of pirc R (or, for confluent i -→ ∥ R , corresponds exactly to pirc R). However, DTs are only one of many available techniques to find bounds for irc R . Other techniques include, e.g., Weak Dependency Pairs [START_REF] Hirokawa | Automated complexity analysis based on the dependency pair method[END_REF], usable replacement maps [START_REF] Hirokawa | Automated complexity analysis based on contextsensitive rewriting[END_REF], the Combination Framework [START_REF] Avanzini | A combination framework for complexity[END_REF], a transformation to complexity problems for integer transition systems [START_REF] Naaf | Complexity analysis for term rewriting by integer transition systems[END_REF], amortised complexity analysis [START_REF] Moser | Automated amortised resource analysis for term rewrite systems[END_REF], or techniques for finding lower bounds [START_REF] Frohn | Lower bounds for runtime complexity of term rewriting[END_REF]. Thus, can we benefit also from other techniques for (sequential) innermost complexity to analyse parallel complexity?

In this section, we answer the question in the affirmative, via a generic transformation from Dependency Tuple problems back to rewrite systems whose innermost complexity can then be analysed using arbitrary existing techniques.

We use relative rewriting, which allows for labelling some of the rewrite rules such that their use does not contribute to the derivation height of a term. In other words, rewrite steps with these rewrite rules are "for free" from the perspective of complexity. Existing state-of-the-art tools like AProVE [START_REF] Giesl | Analyzing program termination and complexity automatically with AProVE[END_REF] and TcT [START_REF] Avanzini | TcT: Tyrolean Complexity Tool[END_REF] are able to find bounds on (innermost) runtime complexity of such rewrite systems.

Definition 11 (Relative Rewriting). For two TRSs

R 1 and R 2 , R 1 /R 2 is a relative TRS. Its rewrite relation → R1/R2 is → * R2 • → R1 • → * R2 , i.e.
, rewriting with R 2 is allowed before and after each R 1 -step. We define the innermost rewrite relation by

s i → R1/R2 t iff s → * R2 s ′ → R1 s ′′ → * R2
t for some terms s ′ , s ′′ such that the proper subterms of the redexes of each step with

→ R2 or → R1 are in normal form wrt R 1 ∪ R 2 . The set T R1/R2 basic of basic terms for a relative TRS R 1 /R 2 is T R1/R2 basic = T R1∪R2
basic . The notion of innermost runtime complexity extends to relative TRSs in the natural way:

irc R1/R2 (n) = sup{dh(t, i → R1/R2) | t ∈ T R1/R2 basic , |t| ≤ n}
The rewrite relation i → R1/R2 is essentially the same as i → R1∪R2 , but only steps using rules from R 1 count towards the complexity; steps using rules from R 2 have no cost. This can be useful, e.g., for representing that built-in functions from programming languages modelled as recursive functions have constant cost. Theorem 7 (Upper Complexity Bounds for δ(⟨D, S, R⟩) from ⟨D, S, R⟩). Let ⟨D, S, R⟩ be a DT problem. Then (a) for all t ♯ ∈ T ♯ with t ∈ T R basic , we have Cplx ⟨D,S,R⟩ (t ♯) ≤ dh(t ♯ , i → S/((D\S)∪R)), and (b) irc ⟨D,S,R⟩ (n) ≤ irc S/((D\S)∪R) (n).

Accepted to 32nd International

Example 13 (Ex. 12 continued). For the relative TRS PDT (R)/R from Ex. 12, the tool AProVE uses a transformation to integer transition systems [START_REF] Naaf | Complexity analysis for term rewriting by integer transition systems[END_REF] followed by an application of the complexity analysis tool CoFloCo [START_REF] Flores-Montoya | Resource analysis of complex programs with cost equations[END_REF][START_REF] Flores-Montoya | Upper and lower amortized cost bounds of programs expressed as cost relations[END_REF] to find a bound irc PDT (R)/R (n) ∈ O(n) and to deduce the bound pirc R (n) ∈ O(n) for the original TRS R from the TPDB. In contrast, using the techniques of Sect. 3 without the transformation to a relative TRS from Def. 12, AProVE finds only

a bound pirc R (n) ∈ O(n 2).
Intriguingly, we can use our transformation from Def. 12 not only for finding upper bounds, but also for lower bounds on pirc R .

Theorem 8 (Lower Complexity Bounds for δ(⟨D, S, R⟩) from ⟨D, S, R⟩). Let ⟨D, S, R⟩ be a DT problem. Then (a) there is a type assignment s.t. for all ℓ → r ∈ D ∪ R, ℓ and r get the same type, and for all well-typed t ∈ T D∪R basic , Cplx ⟨D,S,R⟩ (t ♯) ≥ dh(t, i → S/((D\S)∪R)), and (b) irc ⟨D,S,R⟩ (n) ≥ irc S/((D\S)∪R) (n).

Thm. 7 and Thm. 8 hold regardless of whether the original DT problem was obtained from a TRS with sequential or with parallel evaluation. So while this kind of connection between DT (or DP) problems and relative rewriting may be folklore in the community, its application to convert a TRS whose parallel complexity is sought to a TRS with the same sequential complexity is new.

Note that Thm. 5 requires confluence of i -→ ∥ R to derive lower bounds for pirc R from lower complexity bounds of the canonical parallel DT problem. So to use Thm. 8 to search for lower complexity bounds with existing techniques [START_REF] Frohn | Lower bounds for runtime complexity of term rewriting[END_REF], we need a criterion for confluence of parallel-innermost rewriting.

Example 14 (Confluence of

i → R does not Imply Confluence of i -→ ∥ R).
To see that we cannot prove confluence of i -→ ∥ R just by using a standard off-the-shelf tool for confluence analysis of innermost or full rewriting [START_REF]Community: The international Confluence Competition (CoCo)[END_REF], consider the TRS R = {a → f(b, b), a → f(b, c), b → c, c → b}. For this TRS, both i → R and → R are confluent. However, i -→ ∥ R is not confluent: we can rewrite both

a i -→ ∥ R f(b, b) and a i -→ ∥ R f(b, c), yet there is no term v such that f(b, b) i -→ ∥ * R v and f(b, c) i -→ ∥ * R v.
The reason is that the only possible rewrite sequences with

i -→ ∥ R from these terms are f(b, b) i -→ ∥ R f(c, c) i -→ ∥ R f(b, b) i -→ ∥ R . . . and f(b, c) i -→ ∥ R f(c, b) i -→ ∥ R f(b, c) i -→ ∥ R . . . , with no terms in common. Conjecture 1. If i -→ ∥ R is confluent, then i → R is confluent.
Confluence means: if a term s can be rewritten to two different terms t 1 and t 2 in 0 or more steps, it is always possible to rewrite t 1 and t 2 in 0 or more steps to a term u. For i -→ ∥ R , the redexes that get rewritten are fixed: all innermost redexes simultaneously. Thus, s can rewrite to two different terms t 1 and t 2 only if at least one of these redexes can be rewritten in two different ways using i → R . Towards a sufficient criterion for confluence of parallel-innermost rewriting, we introduce the following standard definition: Definition 13 (Non-Overlapping). A TRS R is non-overlapping iff for any two rules ℓ → r, u → v ∈ R where variables have been renamed apart between the rules, there is no position π in ℓ such that ℓ| π / ∈ V and the terms ℓ| π and u unify.

A sufficient criterion that a given redex has a unique result from a rewrite step is given in the following.

Lemma 1 ([10], Lemma 6.3.9). If a TRS R is non-overlapping, s → R t 1 and s → R t 2 with the redex of both rewrite steps at the same position, then t 1 = t 2 .

With the above reasoning, this lemma directly gives us a sufficient criterion for confluence of parallel-innermost rewriting.

Corollary 1 (Confluence of Parallel-Innermost Rewriting). If a TRS R is non-overlapping, then i -→ ∥ R is confluent.
So, in those cases we can actually use this sequence of transformations from a parallel-innermost TRS via a DT problem to an innermost (relative) TRS to analyse both upper and lower bounds for the original. Conveniently, these cases correspond to deterministic programs, our motivation for this work! Example 15 (Ex. 13 continued). Cor. 1 and Thm. 8 imply that a lower bound for irc PDT (R)/R (n) of the relative TRS PDT (R)/R from Ex. 12 carries over to pirc R (n) of the original TRS R from the TPDB. AProVE uses rewrite lemmas [START_REF] Frohn | Lower bounds for runtime complexity of term rewriting[END_REF] to find the lower bound irc PDT (R)/R (n) ∈ Ω(n). Together with Ex. 13, we have automatically inferred that this complexity bound is tight: pirc R (n) ∈ Θ(n).

Implementation and Experiments

We have implemented the contributions of this paper in the automated termination and complexity analysis tool AProVE [START_REF] Giesl | Analyzing program termination and complexity automatically with AProVE[END_REF]. We added or modified 620 lines of Java code, including 1. the framework of parallel-innermost rewriting; 2. the generation of parallel DTs (Thm. 5); 3. a processor to convert them to TRSs with the same complexity (Thm. 7, Thm. 8); 4. the confluence test of Cor. 1. As far as we are aware, this is the first implementation of a fully automated inference of complexity bounds for parallel-innermost rewriting. To demonstrate the effectiveness of our implementation, we have considered the 663 TRSs from category Runtime Complexity Innermost Rewriting of the TPDB, version 11.2 [START_REF]Wiki: Termination Problems DataBase (TPDB)[END_REF]. This category of the TPDB is the benchmark collection used at termCOMP to compare tools that infer complexity bounds for runtime complexity of innermost rewriting, irc R . To get meaningful results, we first applied Thm. 6 to exclude TRSs R where pirc R (n) = irc R (n) trivially holds. We obtained 294 TRSs with potential for parallelism as our benchmark set. We conducted our experiments on the StarExec compute cluster [START_REF] Stump | Starexec: A cross-community infrastructure for logic solving[END_REF] in the all.q queue. The timeout per example and tool configuration was set to 300 seconds. Our experimental data with analysis times and all examples are available online [1]. As remarked earlier, we always have pirc R (n) ≤ irc R (n), so an upper bound for irc R (n) is always a legitimate upper bound for pirc R (n). Thus, we include upper bounds for irc R found by the state-of-the-art tools AProVE and TcT [2,9]. from termCOMP 2021 as a "baseline" in our evaluation. We compare with several configurations of AProVE and TcT that use the techniques of this paper for pirc R : "AProVE pirc R Section 3" also uses Thm. 5 to produce canonical parallel DT problems as input for the DT framework. "AProVE pirc R Sections 3 & 4" additionally uses the transformation from Def. 12 to convert a TRS R to a relative TRS PDT (R)/R and then to analyse irc PDT (R)/R (n) (for lower bounds only together with a confluence proof via Cor. 1). We also extracted each of the TRSs PDT (R)/R and used the files as inputs for AProVE and TcT from termCOMP 2021. "AProVE pirc R Section 4" and "TcT pirc R Section 4" provide the results for irc PDT (R)/R (for lower bounds, only where i -→ ∥ R had been proved confluent).

Accepted to 32nd

Table 1 gives an overview over our experimental results for upper bounds. For each configuration, we state the number of examples for which the corresponding asymptotic complexity bound was inferred. A column "≤ O(n k)" means that the corresponding tools proved a bound ≤ O(n k) (e.g., the configuration "AProVE irc R " proved constant or linear upper bounds in 50 cases). Maximum values in a column are highlighted in bold. We observe that upper complexity bounds improve in a noticeable number of cases, e.g., linear bounds on pirc R can now be inferred for 69 TRSs rather than for 50 TRSs (using upper bounds on irc R as an over-approximation), an improvement by 38%. Note that this does not indicate deficiencies in the existing tools for irc R , which had not been designed with analysis of pirc R in mind -rather, it shows that specialised techniques for analysing pirc R are a worthwhile subject of investigation. Note also that Ex. 4 and Ex. 9 show that even for TRSs with potential for parallelism, the actual parallel and sequential complexity may still be asymptotically identical, which further highlights the need for dedicated analysis techniques for pirc R .

The improvement from irc R to pirc R can be drastic: for example, for the TRS TCT 12/recursion 10, the bounds found by AProVE change from an upper bound of sequential complexity of O(n 10) to a (tight) upper bound for parallel complexity of O(n). (This TRS models a specific recursion structure, with rules {f 0 (x) → a} ∪ {f i (x) → g i (x, x), g i (s(x), y) → b(f i-1 (y), g i (x, y)) | 1 ≤ i ≤ 10}, and is highly amenable to parallelisation.) We observe that adding the techniques from Sect. 4 to the techniques from Sect. 3 leads to only few examples for which better upper bounds can be found (one of them is Ex. 13).

Table 2 shows our results for lower bounds on pirc R . Here we evaluated only configurations including Def. 12 to make inference techniques for lower bounds of irc R applicable to pirc R . The reason is that a lower bound on irc R is not necessarily also a lower bound for pirc R (the whole point of performing innermost rewriting in parallel is to reduce the asymptotic complexity!), so using results by tools that compute lower bounds on irc R for comparison would not make sense. We observe that non-trivial lower bounds can be inferred for 155 out of the 186 examples proved confluent via Cor. 1. This shows that our transformation from Sect. 4 has practical value since it produces relative TRSs that are generally amenable to analysis by existing program analysis tools. Finally, Table 3 shows that for overall 46 TRSs, the bounds that were found are asymptotically precise.

Related Work, Conclusion, and Future Work

Related work. We provide pointers to work on automated analysis of (sequential) innermost runtime complexity of TRSs at the start of Sect. 4. We now focus on automated techniques for complexity analysis of parallel/concurrent computation.

Our notion of parallel complexity follows a large tradition of static cost analysis, notably for concurrent programming. The two notable works [START_REF] Albert | Task-level analysis for a language with async/finish parallelism[END_REF][START_REF] Albert | Parallel cost analysis[END_REF] address async/finish programs where tasks are explicitly launched. The authors propose several metrics such as the total number of spawned tasks (in any execution of the program) and a notion of parallel complexity that is roughly the same as ours. They provide static analyses that build on techniques for estimating costs of imperative languages with functions calls [START_REF] Albert | Cost analysis of object-oriented bytecode programs[END_REF], and/or recurrence equations. Recent approaches for the Pi Calculus [START_REF] Baillot | Types for complexity of parallel computation in picalculus[END_REF][START_REF] Baillot | Sized Types with Usages for Parallel Complexity of Pi-Calculus Processes[END_REF] compute the span (our parallel complexity) through a new typing system. Another type-based calculus for the same purpose has been proposed with session types [START_REF] Das | Parallel complexity analysis with temporal session types[END_REF].

For logic programs, which -like TRSs -express an implicit parallelism, parallel complexity can be inferred using recurrence solving [START_REF] Klemen | A general framework for static cost analysis of parallel logic programs[END_REF].

The tool RAML [START_REF] Hoffmann | Resource aware ML[END_REF] derives bounds on the worst-case evaluation cost of first-order functional programs with list and pair constructors as well as pattern matching and both sequential and parallel composition [START_REF] Hoffmann | Automatic static cost analysis for parallel programs[END_REF]. They use two typing derivations with specially annotated types, one for the work and one for the depth (parallel complexity). Our setting is more flexible wrt the shape of user-defined data structures (we allow for tree constructors of arbitrary arity), and our analysis deals with both data structure and control in an integrated manner.

Conclusion and future work. We have defined parallel-innermost runtime complexity for TRSs and proposed an approach to its automated analysis. Our approach allows for finding both upper and lower bounds and builds on existing techniques and tools. Our experiments on the TPDB indicate that our approach is practically usable, and we are confident that it captures the potential parallelism of programs with pattern matching.

Parallel rewriting is a topic of active research, e.g., for GPU-based massively parallel rewrite engines [START_REF] Van Eerd | Term rewriting on GPUs[END_REF]. Here our work could be useful to determine which functions to evaluate on the GPU. More generally, parallelising compilers which need to determine which function calls should be compiled into parallel code may benefit from an analysis of parallel-innermost runtime complexity such as ours.

DTs have been used [START_REF] Winkler | Runtime complexity analysis of logically constrained rewriting[END_REF] in runtime complexity analysis of Logically Constrained TRSs (LCTRSs) [START_REF] Kop | Term rewriting with logical constraints[END_REF], an extension of TRSs by built-in data types from SMT theories (integers, arrays, . . .). This work could be extended to parallel rewriting. Moreover, analysis of derivational complexity [START_REF] Hofbauer | Termination proofs and the length of derivations[END_REF] of parallelinnermost term rewriting can be a promising direction. Derivational complexity considers the length of rewrite sequences from arbitrary start terms, e.g., d(d(. . . (d(S(Zero))) . . .)) in Ex. 10, which can have longer derivations than basic terms of the same size. Finally, towards automated parallelisation we aim to infer complexity bounds wrt term height (terms = trees!), as suggested in [START_REF] Alias | Estimation of Parallel Complexity with Rewriting Techniques[END_REF].

Fig. 1 .

 1 Fig. 1. Tree size computation in Rust literature. We consider term rewrite systems (TRSs) as intermediate representation for programs with patternmatching operating on algebraic data types like the one depicted in Figure 1.In this particular example, the recursive calls to left.size() and right. size() can be done in parallel. Building on previous work on parallel-innermost rewriting[START_REF] Vuillemin | Correct and optimal implementations of recursion in a simple programming language[END_REF][START_REF] Fernández | Orderings for innermost termination[END_REF], and first ideas about parallel complexity[START_REF] Alias | Estimation of Parallel Complexity with Rewriting Techniques[END_REF], we propose a new notion of Parallel Dependency Tuples that captures such a behaviour, and methods to compute both upper and lower parallel complexity bounds.

 Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

and

 Accepted to 32nd International Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

 plus(Zero, y) → y size(Nil) → Zero plus(S(x), y) → S(plus(x, y)) size(Tree(v, l, r)) → S(plus(size(l), size(r))) Here Σ R d = {plus, size} and Σ R c = {Zero, S, Nil, Tree}. We have the following innermost rewrite sequence, where the used innermost redexes are underlined: size(Tree(Zero, Nil, Tree(Zero, Nil, Nil))) i → R S(plus(size(Nil), size(Tree(Zero, Nil, Nil)))) i → R S(plus(Zero, size(Tree(Zero, Nil, Nil)))) i → R S(plus(Zero, S(plus(size(Nil), size(Nil))))) i → R S(plus(Zero, S(plus(Zero, size(Nil))))) i → R S(plus(Zero, S(plus(Zero, Zero)))) i → R S(plus(Zero, S(Zero))) i → R S(S(Zero))

 Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

 Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

 Accepted to 32nd International Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

Definition 10 (Example 8 .

 108 Parallel Dependency Tuples PDT , Canonical Parallel DT Problem). For a rewrite rule ℓ → r, we define the set of its Parallel Dependency Tuples (PDTs) PDT (ℓ → r):PDT (ℓ → r) = {ℓ ♯ → Com k (r| ♯ π1 , . . . , r| ♯ π k) | ⟨π 1 , . . . , π k ⟩ ∈ MSDC (r)}. For a TRS R, let PDT (R) = ℓ→r∈R PDT (ℓ → r).The canonical parallel DT problem for R is ⟨PDT (R), PDT (R), R⟩. For our recursive size-rule ℓ → r, we have Pos d (r) = {1, 11, 12} and MSDC (r) = {⟨11, 1⟩, ⟨12, 1⟩}. With r | 1 = plus(size(l), size(r)), r | 11 = size(l), and r | 12 = size(r), we get the PDTs from Ex. 6. For the rule size(Nil) → Zero, we have MSDC (Zero) = {⟨⟩}, so we get PDT (size(Nil) → Zero) = {size ♯ (Nil) → Com 0 }.

 Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual. Interestingly enough, Parallel Dependency Tuples also allow us to identify TRSs that have no potential for parallelisation by parallel-innermost rewriting. Theorem 6 (Absence of Parallelism by PDTs). Let R be a TRS such that for all rules ℓ → r ∈ R, |MSDC (r)| = 1. Then: (a) PDT (R) = DT (R); (b) for all basic terms t 0 and rewrite sequences t 0

 Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

 Accepted to 32nd International Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

 Accepted to 32nd International Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

 Accepted to 32nd International Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

Accepted to 32nd International Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

 is the label of the node: u ♯ µ is in normal form wrt R; if this node has the children (p ♯ 1 → Com m1 (. . .) | δ 1), . . . , (p ♯ k → Com m k (. . .) | δ k), then there are pairwise different i 1 , . . . , i k ∈ {1, . . . , m} with v ♯

	ij µ i → * R

-

International Symposium on Logic-based Program Synthesis and Transformation, LOPSTR 2022, 21-23 September 2022 -Tbilisi, Georgia and Virtual.

	Tool	O(1) ≤ O(n) ≤ O(n 2) ≤ O(n 3) ≤ O(n ≥4)
	TcT ircR	4	28	39	44	44
	AProVE ircR	5	50	110	123	127
	AProVE pirc R Section 3	5	65	125	140	142
	AProVE pirc R Sections 3 & 4 5	69	125	139	141
	TcT pirc R Section 4	3	39	52	56	57
	AProVE pirc R Section 4	5	62	96	105	105

Table 1 .

 1 Upper bounds for runtime complexity of (parallel-)innermost rewritingTool confluent ≥ Ω(n) ≥ Ω(n 2) ≥ Ω(n 3) ≥ Ω(n ≥4)

	AProVE pirc R Sections 3 & 4	186	133	23	5	1
	TcT pirc R Section 4	186	59	0	0	0
	AProVE pirc R Section 4	186	155	22	5	1

Table 2 .

 2 Lower bounds for runtime complexity of parallel-innermost rewriting

	Tool	Θ(1) Θ(n) Θ(n 2) Θ(n 3) Total
	AProVE pirc R Sections 3 & 4 5	32	1	3	41
	TcT pirc R Section 4	3	21	0	0	24
	AProVE pirc R Section 4	5	37	1	3	46

Table 3 .

 3 Tight bounds for runtime complexity of parallel-innermost rewriting

The order ⋗ must be total to ensure that the function DT is well defined wrt the order of the arguments of Comn. The (partial!) prefix order > is not sufficient here.

The proof uses the confluence of R as a sufficient criterion for unique normal forms.

Acknowledgements. We thank the anonymous reviewers for helpful comments.

⋆ This work was partially funded by the French National Agency of Research in the CODAS Project (ANR-17-CE23-0004-01). For Open Access purposes, our extended authors' accepted manuscript [14] of this paper is available under Creative Commons CC

Example 11. Consider a variant of Ex. 1 where plus(S(x), y) → S(plus(x, y)) is moved to R 2 , but all other rules are elements of R 1 . Then R 1 /R 2 would provide a modelling of the size function that is closer to the Rust function from Sect. 1. Let S n (Zero) denote the term obtained by n-fold application of S to Zero (e.g., S 2 (Zero) = S(S(Zero))). Although dh(plus(S n (Zero), S m (Zero)), i → R1∪R2) = n+1, we would then get dh(plus(S n (Zero), S m (Zero)), i → R1/R2) = 1, corresponding to a machine model where the time of evaluating addition for integers is constant.

Note the similarity of a relative TRS and a Dependency Tuple problem: only certain rewrite steps count towards the analysed complexity. We make use of this observation for the following transformation.

Definition 12 (Relative TRS for a Dependency Tuple Problem, δ). Let ⟨D, S, R⟩ be a Dependency Tuple problem. We define the corresponding relative TRS δ(⟨D, S, R⟩) = S/((D \ S) ∪ R).

In other words, we omit the information that steps with our dependency tuples can happen only on top level (possibly below constructors Com n , but above → R steps). (As we shall see in Thm. 8, this information can be recovered.)

The following example is taken from the Termination Problem Data Base (TPDB) [START_REF]Wiki: Termination Problems DataBase (TPDB)[END_REF], a collection of examples used at the annual Termination and Complexity Competition (termCOMP) [START_REF] Giesl | The termination and complexity competition[END_REF][START_REF]Wiki: The International Termination Competition (TermComp)[END_REF] (see also Sect. 5):

Example 12 (TPDB, HirokawaMiddeldorp 04/t002). Consider the following TRS R from category Innermost Runtime Complexity of the TPDB: leq(0, y) → true if(true, x, y) → x leq(s(x), 0) → false if(false, x, y) → y leq(s(x), s(y)) → leq(x, y) -(x, 0) → x mod(0, y) → 0 -(s(x), s(y)) → -(x, y) mod(s(x), 0) → 0 mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))

This TRS has the following PDTs PDT (R): mod(-(s(x), s(y)), s(y)), s(x))) mod ♯ (s(x), s(y)) → Com 3 (-♯ (s(x), s(y)), mod ♯ (-(s(x), s(y)), s(y)), if ♯ (leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)))

The canonical parallel DT problem is ⟨PDT (R), PDT (R), R⟩. We get the relative TRS δ(⟨PDT (R), PDT (R), R⟩) = PDT (R)/R.