

Uncertainty in land carbon budget simulated by terrestrial biosphere models: the role of atmospheric forcing

Lucas Hardouin, Christine Delire, Bertrand Decharme, David M Lawrence, Julia E M S Nabel, Victor Brovkin, Nathan Collier, Rosie Fisher, Forrest M Hoffman, Charles D Koven, et al.

▶ To cite this version:

Lucas Hardouin, Christine Delire, Bertrand Decharme, David M Lawrence, Julia E M S Nabel, et al.. Uncertainty in land carbon budget simulated by terrestrial biosphere models: the role of atmospheric forcing. Environmental Research Letters, 2022, 10.1088/1748-9326/ac888d. hal-03749645v1

HAL Id: hal-03749645 https://hal.science/hal-03749645v1

Submitted on 11 Aug 2022 (v1), last revised 15 Nov 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ENVIRONMENTAL RESEARCH LETTERS

ACCEPTED MANUSCRIPT • OPEN ACCESS

Uncertainty in land carbon budget simulated by terrestrial biosphere models: the role of atmospheric forcing

To cite this article before publication: Lucas Hardouin et al 2022 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/ac888d

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2022 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

Page 1 of 24

AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

manuscript submitted to Environmental Research Letters

manuscript submitted to Environmental Research Letters

Abstract

Global estimates of the land carbon sink are often based on simulations by terrestrial biosphere models. The use of a large number of models that differ in their underlying hypotheses, structure and parameters is one way to assess the uncertainty in the historical land carbon sink. Here we show that the atmospheric forcing datasets used to drive these terrestrial biosphere models represent a significant source of uncertainty that is currently not systematically accounted for in land carbon cycle evaluations. We present results from three terrestrial biosphere models each forced with three different historical atmospheric forcing reconstructions over the period 1850-2015. We perform an analysis of variance to quantify the relative uncertainty in carbon fluxes arising from the models themselves, atmospheric forcing, and model-forcing interactions. We find that atmospheric forcing in this set of simulations plays a dominant role on uncertainties in global gross primary productivity (75% of variability) and autotrophic respiration (90%), and a significant but reduced role on net primary productivity and heterotrophic respiration (30%). Atmospheric forcing is the dominant driver (52%) of variability for the net ecosystem exchange flux, defined as the difference between gross primary productivity and respiration (both autotrophic and heterotrophic respiration). In contrast, for wildfire-driven carbon emissions model uncertainties dominate and, as a result, model uncertainties dominate for net ecosystem productivity. At regional scales, the contribution of atmospheric forcing to uncertainty shows a very heterogeneous pattern and is smaller on average than at the global scale. We find that this difference in the relative importance of forcing uncertainty between global and regional scales is related to large differences in regional model flux estimates, which partially offset each other when integrated globally, while the flux differences driven by forcing are mainly consistent across world and therefore which add up to a larger fractional contribution to global uncertainty.

1 Introduction

During the last decade, about 45% of anthropogenic carbon dioxide (CO_2) emissions remained and accumulated in the atmosphere. Model- and observation-based studies suggest that the remaining term was shared among ocean (24%) and land (32%) since 1960 (Friedlingstein et al., 2021). Together, the contribution of the ocean and terrestrial CO_2 uptake nearly halves the increase in atmospheric CO_2 , damping the pace of climate change (Canadell et al., 2021). These sinks significantly increased since the middle of the

Page 3 of 24

AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

manuscript submitted to Environmental Research Letters

20th century, mainly due to the acceleration of the increase in CO₂ concentrations, caused by fossil fuel emissions. However, carbon uptake processes depend strongly on climate variability, especially for the terrestrial biosphere (Le Quéré et al., 2009; DeVries et al., 2019). While the ocean sink grew from 1.1 ± 0.4 PgC·yr⁻¹ in the 1960s to 2.8 ± 0.4 PgC·yr⁻¹ in 2011–2020, with an inter-annual variability of a few tenths of PgC·yr⁻¹, the land sink rose from 1.2 ± 0.5 PgC·yr⁻¹ to 3.1 ± 0.6 PgC·yr⁻¹, but with inter-annual variations up to 2 PgC·yr⁻¹ (Friedlingstein et al., 2021).

Accurate evaluations of anthropogenic emissions, atmospheric CO_2 levels and carbon cycle perturbation are necessary to monitor, understand and predict climate change. The Global Carbon Project (GCP) has published an annual report since 2013 (Le Quéré et al., 2013, 2014; Friedlingstein et al., 2020, 2021) that quantifies the magnitude and uncertainty of the five major components of the global carbon budget: fossil fuel emissions (E_{FOS}) , emissions from land use change (E_{LUC}) , the growth rate of atmospheric CO_2 (G_{ATM}), the ocean sink (S_{OCEAN}) and the land sink (S_{LAND}). In earlier analyses provided by the Global Carbon Project, the terrestrial carbon cycle simulated by the Terrestrial Biosphere Models (TBMs, called by the authors Land Biosphere Models or Dynamical Global Vegetation Models) was not considered reliable enough to be used in the report to estimate the land carbon sink (Le Quéré et al., 2009; Schaefer et al., 2012; Todd-Brown et al., 2013). The land sink S_{LAND} was hence diagnosed indirectly as the residual of the other terms. However, the methodology was updated in the 2017 global carbon budget (Le Quéré et al., 2017), partly due to improvements in carbon cycle representation (Collier et al., 2018; Lawrence et al., 2019; Arora et al., 2020; Davies-Barnard et al., 2020), but also because of evidence of underestimation and uncertainty in the ocean sink variability (Landschützer et al., 2015; DeVries et al., 2017). The global land sink is now estimated by the multi-model mean of the TBM simulations, with the budget imbalance term, B_{IM} , representing residual uncertainty and/or unexplained aspects of the actual global carbon cycle.

To account for model construction, structural, and parametric uncertainty, as many as 17 TBMs were used to estimate S_{LAND} by Friedlingstein et al. (2020). Simulations were run using a unified land use change data set (LUH2; (Hurtt et al., 2020)), global atmospheric CO₂ trend, and atmospheric climate forcing (CRUJRA; (Harris, 2019)). Use of a single forcing dataset for climatic forcing, however, means that any model spread due to climate forcing data uncertainty is not represented by the GCP ensemble. Yet,

-3-

manuscript submitted to Environmental Research Letters

several studies have identified historical climate forcing as a large source of uncertainty in terrestrial carbon cycle modelling (Hicke, 2005; Jung et al., 2007; Poulter et al., 2011; Bonan et al., 2019; Lawrence et al., 2019). Hicke (2005), for example, highlights important biases in net primary productivity (NPP) estimation while using different radiation datasets, and Poulter et al. (2011) conclude that atmospheric forcing results in a large uncertainty compared to land-cover datasets for NPP, heterotrophic respiration (Rh) and net ecosystem exchange (NEE). More recently, as part of the assessment and benchmarking of the Community Land Model version 5 (CLM5) (Lawrence et al., 2019), climate forcing uncertainty was compared to model structure uncertainty using two forcing data sets (Global Soil Wetness Project 3 and CRUNCEP) and three versions of CLM (CLM4, CLM4.5, and CLM5) that differ markedly in their carbon cycle representation (Bonan et al., 2019). The authors concluded that climate forcing is a large source of uncertainty in the global carbon cycle, especially for GPP, NPP and Rh, and to a lesser extent for Net Biome Productivity. However, this study was performed with different versions of a single model, and only two estimates of atmospheric climate forcing. Arguably therefore, the importance of atmospheric forcing on carbon cycle estimation by TBMs remain insufficiently explored, especially in the context of recent model structural improvements in the CMIP6 generation of models.

In this study, we used the output from the TBMs of three Earth System Models (ESMs) participating in the 6th Coupled Model Intercomparison Project (CMIP6). We performed an analysis of variance similar to (Hawkins & Sutton, 2009; Lovenduski & Bonan, 2017; Bonan et al., 2019) in order to quantify the relative uncertainty from atmospheric forcing, models and forcing-model interactions in carbon flux estimates made by TBMs. We used a combination of three TBMs from Earth System Models (ESM) and three atmospheric forcing datasets in our analysis. We present results for the major terrestrial carbon cycle fluxes; gross primary productivity (GPP), autotrophic respiration (Ra) and heterotrophic respiration (Rh), at global and regional scales. We also investigate estimates of CO_2 emissions from natural fires (fFire) and highlight their role in the calculation of the land carbon sink, before focusing on sources of uncertainty in the global net ecosystem productivity (NEP = GPP - Ra - Rh - fFire).

-4-

AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

manuscript submitted to Environmental Research Letters

2 Methods

2.1 CMIP6 models and atmospheric forcings

We used the results of three TBMs of CMIP6 Earth System Models described in Table 1, from the Land Surface, Snow and Soil moisture Model Intercomparison Project (LS3MIP, (Van den Hurk et al., 2016)) of CMIP6. For the three models, land use transitions are forced by the Land Use Harmonization 2 (LUH2) time series (Hurtt et al., 2020). Those three models have been selected because they are the only ones that report output from three different atmospheric forcings and also share data for emissions from fire, on the Earth System Grid Federation (ESGF) archive.

Three climate forcing datasets were used to force the TBMs, according to the LS3MIP protocol. Atmospheric forcing consists of hourly- to 6-hourly data on precipitation, short and long wave solar radiation, near surface air temperature, specific humidity, and wind speed. The three forcings described in Table 2 have a $0.5^{\circ} \times 0.5^{\circ}$ spatial resolution.

For reference, results of analysis of this set of model simulations with the International Land Model Benchmarking (ILAMB, (Collier et al., 2018)) package are provided here: https://www.ilamb.org/land-hist/. ILAMB produces systematic evaluation (plots, summary tables, scoring) of model output against observations for a range of metrics including bias, RMSE, pattern correlation, annual cycle phase, and variable-to-variable comparisons. The version of ILAMB presented here assesses 22 land carbon, water, and energy cycle variables model variables against more than 50 observational datasets.

2.2 Analysis of variance

To statistically disaggregate the impacts of climate forcing, model choice and their interactions on relevant output variables, we performed an ANOVA. We analysed nine terrestrial carbon cycle simulations - three TBMs forced by three forcings - for the time period 1960 to 2012, chosen to coincide with the beginning of atmospheric carbon dioxide measurements in the 1960s, and the end of the Princeton dataset. We quantify relative uncertainty into three sources: models, atmospheric forcing differences and modelforcing interactions which measure the fact that models behave differently to different forcing product. Details can be found in the Supplementary Material.

manuscript submitted to Environmental Research Letters

Terrestrial biosphere	Community Land	ISBA-CTRIP	JSBACH3.2(Reick et
model	Model CLM5	(Delire et al., 2020 ;	al., 2021)
	(Lawrence et al.,	Decharme et al.,	
	2019)	2019)	
Parent climate	Community	CNRM-ESM2-1	MPI-ESM1.2-LR
model	Earth System	(Séférian et al.,	(Mauritsen et al.,
	Model CESM2	2019)	2019)
	(Danabasoglu et al.,		
	2020)		
Simulation resolu-	0.9° latitude by	T127 (~ 1.4°)	T63 (~ 1.9°)
tion	1.25° longitude		
Fire	process-based (Li	simple, based on	mechanistic, SPIT-
	et al., 2012; Li &	GløbFirm (Thonicke	FIRE (Lasslop et al.
	Lawrence, 2017)	et al., 2001)	2014)
Natural vegetation	no	no	yes (Reick et al.,
dynamics			2013)
Nitrogen cycle	revised (Fisher et	no	new (Goll et al.,
	al., 2019)		2017)
Plant hydrodynam-	(Kennedy et al.,	no	no
ics	2019)		
Soil carbon decom-	yes	yes	new (Goll et al.,
postion			2015)
Soil hydrology	multilayer	multilayer	multilayer
			(Hagemann &
)		Stacke, 2015)
Other	numerous updates	similar	similar
	to hydrology, snow,		
	gas exchange and		
	crops		
7 7	-6	-	

Table 1. Model description

AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

manuscript submitted to Environmental Research Letters

Name	Global Soil Wetness	CRUJRA ^{a} (Harris,	Princeton (Sheffie
	Project (GSWP3)	2019)	et al., 2006) v2.2
	version 1.09 (Kim et		
	al., 2017)		
Time resolution	3-hourly	6-hourly	3-hourly
Covered period	1901-2014	1901-2018	1901-2012
Reanalysis used	20th Century Re-	Japanese Reanal-	National Centers
	analysis version 2	ysis (JRA) by the	for Environmental
	(Compo et al., 2011)	Japanese Meteo-	Prediction (NCEF
		rological Agency	reanalysis
		$(JMA)^b$	
Corrected by			
Air Temperature	Climate Research	CRU TS v4.03	CRU TS v3.2
	Unit Timeseries	CY'	
	(CRU TS) v3.21		
Precipitation	Global Precipitation	CRU TS v4.03	CRU, Global Pre-
	Climatology Center	<i>,</i>	cipitation Clima-
	(GPCC) v7		tology Project an
			TRMM Multi-
			satellite Precipita
			tion Analysis
Radiation	Surface Radia-	CRU TS v 4.03	SRB
	tion Budget (SRB)		
	datasets (down-		
	welling radiation		
	fluxes)		
Use	LS3MIP	GCP	hydrology
erroneously named	CRUNCEP in CMIP6 simulatio	ne	
erroneously named	okwo ac in/CSWP3/		
http://liydro.ns.u-to	okyo.ac.jp/GSWF3/		
	7		
٣	-1-		

Table 2. Atmospheric forcing description

manuscript submitted to Environmental Research Letters

3 Results

3.1 Global scale

We first investigated and compared the forcing data in order to highlight the main differences and similarities. The three forcings mostly agree on near surface air temperature, but they present large differences in specific humidity, incoming shortwave and longwave radiation, and windspeed (Figure 1). Princeton has much higher specific (and relative - not shown) humidity than CRUJRA or GSWP3 in most parts of the world, except in desert areas. Additionally, specific humidity is generally greater with GSWP3 than with CRUJRA in tropical regions. CRUJRA also has higher shortwave and lower longwave incoming radiation than GSWP3 and Princeton, both having almost identical values. The precipitation forcing differs also with higher values for GSWP3, especially within the Arctic circle related to snowfall uncertainties.

We performed the analysis of variance on the global estimates of GPP, Ra, Rh, GPP-Ra-Rh, fFire and NEP (Figure 2). The results illustrate a dominant role of the atmospheric forcing variation on global GPP estimates (Fig. 2(a)), with large differences between the multi-model mean values according to the forcings (about 15 $PgC \cdot yr^{-1}$), with GSWP3 resulting in lowest GPPs for all three models, Princeton the highest GPPs, and CRUJRA in between. The discrepancies between the models for a given forcing are smaller, especially for CRUJRA and Princeton. Global GPP estimates of the ISBA-CTRIP and CLM5 models are very similar when forced with the CRUJRA forcing, and slightly differ when forced with GSWP3 or Princeton. The global GPP estimates of JSBACH are the largest with all 3 forcings and the difference with the 2 other models is the biggest with the GSWP3 forcing. However, the three models obtain very similar results with the Princeton atmospheric forcing. This suggests a general sensitivity of the models to an atmospheric variable that is different between Princeton's and the two other forcings, such as specific humidity (Figure 1). These nine simulation results indicate a strong sensitivity of modelled GPP to climate forcing.

Figure 2(b) confirms the dominant role of atmospheric forcing on global GPP uncertainty. It accounts for $\sim 75\%$ of the variability in the mean estimates, against $\sim 19\%$ for models and $\sim 6\%$ for interactions terms.

AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

manuscript submitted to Environmental Research Letters

Figure 1. Annual mean of atmospheric variables used to drive terrestrial biosphere models: GSWP3 (gswp, left-most column), Princeton minus GSWP3 (pgf-gswp; center left column), CRUJRA minus GSWP3 (crujra-gswp; center right column), and zonal averages of each product (right-most column).

manuscript submitted to Environmental Research Letters

Figure 2. Model means and standard deviations (color dots and bars) and multimodel means (black crosses) of global carbon flux time series for each atmospheric forcing between 1960 and 2012 (pointplot) and fractional distribution of uncertainty (variability) obtained from the ratios of the sum of squared deviation from the mean (eq. 3 to 6 in Supplementary Material) (pieplot) for GPP (a, b), Ra (c, d), NPP (e, f), fFire (g, h), GPP-Ra-Rh (i, j) and NEP=GPP-Ra-Rh-fFire (k, l). Standard deviations are calculated from the yearly time series of the fluxes.

manuscript submitted to Environmental Research Letters

The dominance of atmospheric forcing contribution over the uncertainty is even more obvious for autotrophic respiration (figure 2(c)), again with similar model mean values for a given forcing but large differences between forcings with no overlap. According to our analysis of variance, ~ 90% of the uncertainty can be assigned to forcings, ~ 5% to models and ~ 5% to the interactions terms (figure 2(d)). The Princeton forcing results in a slightly larger spread between the average autotrophic respiration than the other forcings.

Global NPP (GPP-Ra) behaves differently. Despite differences in multi-model mean values per atmospheric forcings (around 5 PgC·yr⁻¹) attesting to the role of forcing in uncertainty, we can see that JSBACH estimates are clearly higher than the two others (more than 10 PgC·yr⁻¹) in figure 2(e). This indicates greater model contribution to uncertainty, confirmed by figure 2(f) where models are the dominant source ($\sim 63\%$) of uncertainty for NPP, but atmospheric forcing remains important with $\sim 30\%$ of variability explained and $\sim 7\%$ for model-forcing interactions. Contrary to ISBA-CTRIP and CLM5 that simulate the lowest NPP with GSWP3 and the highest with Princeton (like for GPP and Ra), JSBACH simulates a slightly smaller global NPP with the CRUJRA forcing. Global Rh presents similar results to global NPP (not shown), both for atmospheric contribution to uncertainty and for greater values obtained with GSWP3 than CRUJRA for JSBACH.

We show that atmospheric forcings have an important (NPP, Rh) and even dominant (GPP, Ra) role in uncertainty distribution for the major fluxes of global carbon cycle estimates. It seems that forcing contribution to uncertainty decreases when we consider net flux such as NPP and Rh rather than direct products of photosynthesis (GPP and Ra).

Wildfires are a small contribution to the global land carbon loss fluxes (~ 2-3 PgC·yr⁻¹) (Van der Werf et al., 2010), especially when compared to plant and soil respiration. Nonetheless, fire carbon losses correspond to approximately one-third of the GPP-Ra-Rh net flux. Moreover, this flux has particularly high seasonal and inter-annual variability, in response to both land cover change, as well as climatic events like drought. Despite its importance, anthropogenic biomass burning is not yet represented by all terrestrial biosphere models. Overall, high uncertainty remains in the carbon emissions associated with fire (figure 2(g,h)). ISBA-CTRIP tends to overestimate global fire emissions compared to the

manuscript submitted to Environmental Research Letters

global fire emission database (2.14 $PgC \cdot yr^{-1}$ for 1997-2015 van der Werf et al., 2017), while JSBACH is slightly lower (especially with Princeton). Part of these differences may be explained by the intermediate complexity fire module GlobFirm (Thonicke et al., 2001) used in ISBA-CTRIP that is known to overestimate fire emissions (Li et al., 2012). Figure 2(g) shows a large discrepancy between model values for a given forcing, particularly for the Princeton one, and figure 2(h) confirms a fractional contribution to uncertainty of $\sim 85\%$ for the models, $\sim 6\%$ for forcings and $\sim 9\%$ for interactions. A closer look at fire results shows indeed interesting interactions between the forcings and fire modules that explain the bigger dispersion for Princeton. We saw that GPP and NPP (GPP-Ra) is enhanced with the Princeton forcing, most probably because of the high level of air humidity. For the GlobFirm module implemented in ISBA-CTRIP, this leads simply to lower evapotranspiration rates, less moisture stress, higher productivity and litterfall (not shown) resulting in more biomass burned and greater associated carbon emissions. However, with the more mechanistic fire module of CLM5, the higher air humidity results directly in lower level of fuel flammability (see eq.8 (Li et al., 2012)). In JSBACH, finally, the three applied forcings cause very different fire-vegetation feedbacks, such that the natural vegetation cover in the three simulations differs strongly, particularly in fire prone regions such as Africa and Asia (not shown). Such strong fire-vegetation feedbacks have already been observed for JSBACH in previous idealised model simulations (Lasslop et al., 2016). Emissions from fire appear to be quite sensitive to atmospheric forcing when we compare individually the relative dispersion for each model, but this dependency is overshadowed in this analysis by the even larger uncertainty related to the model structure.

Here, we first present results for GPP-Ra-Rh estimates. This flux takes into account the most important and probably best represented processes of the terrestrial biosphere carbon sink, by excluding fire emissions. As expected, this net flux is smaller and has larger interannual variability (standard deviation) relative to the mean than the gross fluxes GPP, Ra and Rh. Figure 2(i) suggests a more important contribution to uncertainty by forcing than models: model mean values are close to each other for a given forcing and there is a small difference between forcings. The analysis of variance results shows effectively a dominant role of forcings (~ 52%) over models (~ 8%) but also a substantial contribution of the interaction terms (~ 40%) (figure 2(j)). Indeed, the models do not show similar patterns with respect to the forcings. CLM5 results in greater values

AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

manuscript submitted to Environmental Research Letters

for CRUJRA (6.53 PgC·yr⁻¹) than Princeton (6.14 PgC·yr⁻¹), while ISBA-CTRIP simulates slightly bigger fluxes with Princeton (6.33 PgC·yr⁻¹) than with CRUJRA (6.23 PgC·yr⁻¹), as does JSBACH with a greater difference (6.06 for CRUJRA against 6.68 PgC·yr⁻¹ with Princeton). In addition, we observe only slightly bigger results for CRU-JRA than GSWP3 for JSBACH, consistent with the results obtained from Rh and NPP, while the difference is more pronounced for ISBA-CTRIP and CLM5. This highlights differences in model sensitivity to atmospheric forcings, such as air humidity or downward radiation flux, for the land sink calculation.

Larger differences are obtained when we take into account fFire in the NEP calculation (figure 2(k,l)). There is only a small difference between the multi-model mean values per forcing, and a larger spread between the values of the different models, especially with the Princeton forcing (figure 2(k)). Moreover, global NEP is almost independent of the forcing with CLM5 and ISBA-CTRIP, which is not the case with JSBACH. The variance analysis results show that models contribute ~ 75% to uncertainty, forcings account for ~ 9% and interactions for ~ 16%. This contrasts with the significant forcing contribution we obtained when not accounting for fFire, and indicates clearly a high model uncertainty related to fire emission.

To complete the global picture we analyze the contribution of atmospheric forcing to uncertainty in carbon stocks (fig3). Atmospheric forcing plays a role in global carbon stock uncertainties but not a dominant one like for gross carbon fluxes. There are large differences in live (cVeg) and dead biomass (cLitter) and soil organic carbon content (cSoil) between multi-model means per forcing but the differences between models are even larger. The analysis of variance for cVeg shows that $\sim 26\%$ of the uncertainty can be assigned to forcings, ~ 67% to models and ~ 7% to the interactions terms (fig3(b)). For cLitter and cSoil, these numbers are respectively $\sim 20\%$ and $\sim 9\%$ for forcing, $\sim 68\%$ and $\sim 81\%$ for models and $\sim 13\%$ and $\sim 10\%$ for interactions (fig3(d,f)). CLM5 and ISBA-CTRIP both simulate the smallest live and dead stocks with GSWP3 while JSBACH simulates the smallest stocks with CRUJRA(fig3(a,c,e)). Princeton results in the largest stocks with every model. Live biomass from CLM5 and ISBA-CTRIP are fairly similar while JSBACH's is lower. The litter reservoir is the highest with ISBA-CTRIP and the lowest with CLM5 while the soil carbon is the largest with CLM5 especially for CRU-JRA and Princeton. The higher soil carbon content with CLM5 can be explained by the vertically discretized soil carbon module with deeper soils (down to a maximum of 8.5m).

manuscript submitted to Environmental Research Letters

Figure 3. Model means and standard deviations (color dots and bars) and multimodel means (black crosses) of global carbon stocks time series for each atmospheric forcing between 1960 and 2012 (pointplot) and fractional distribution of uncertainty (variability) obtained from the ratios of the sum of squared deviation from the mean (eq. 3 to 6 in Supplementary Material) (pieplot) for cVeg (a, b), cLitter (including coarse woody debris) (c, d), and cSoil (e, f).

AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

manuscript submitted to Environmental Research Letters

In the case of ISBA-CTRIP and JSBACH the soil carbon reservoir only represents the carbon in the first meter.

3.2 Regional scale

We performed the same analysis of variance on the 30 sub-continental regions defined in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX; (SREX, 2012)). Figure 4 presents the results for GPP, Ra and Rh. The regions that present the largest uncertainty (largest pies) for GPP (figure 4 (a) and Supplementary Table S2-4) are North Asia (NAS), the Amazon forest (AMZ), and to a lesser extent West Africa (WAF), South Asia (SAS), South East Asia (SEA), East Africa (EAF), South Africa (SAF), and West North America (WNA) even if WNA contributes only 2 to $4 \text{ PgC} \cdot \text{yr}^{-1}$ to global GPP. Atmospheric forcing is a dominant source of uncertainty (more than half) in some regions that have fairly large contributions to the global total GPP flux, such as EAF and East Asia (EAS), but also in Central North America (CNA), West Coast South America (WSA), and North East Brazil (NEB). Atmospheric forcing is an important source of uncertainty (more than a third) in AMZ and WAF, tropical forest regions, which contribute greatly to global GPP. Generally, it seems that atmospheric forcings play an important role in tropical regions. Less important contribution in SAS and SEA could be explained by monsoon regimes that prevail on atmospheric forcing differences, but also by model resolution that could explain dominant model uncertainty in island regions (SEA but also Caribbean and Pacific Island Regions). Modelforcing interactions play a secondary but significant role in some regions such as NAS, WAF and South East South America (SSA) for the ones that contribute the most to global GPP.

Slightly different results can be observed for Ra (figure 4(b)). Atmospheric forcing contribution to uncertainty is lower in NAS and AMZ, as well as SEA and NEB. Generally, the forcing and interaction terms seem to play a less important role in Ra than in GPP regional estimates. For Rh (figure 4(c)), forcing contribution is even more reduced in tropical regions, where the fractional distribution never exceeds one-third. However, atmospheric forcing plays an important role in heterotrophic respiration uncertainty in the northern hemisphere's mid and high latitudes (about one-third). Interaction terms become also important in numerous mid and northern regions, particularly in NAS, CNA

-15-

manuscript submitted to Environmental Research Letters

Figure 4. Regional carbon fluxes for 1960-2012. Total flux value for each SREX region in background, distribution of uncertainty between forcings, models and interactions as overlayed pieplots with size of the pies proportional to the total uncertainty value (eq. 3 and Table S2-4 in Supplementary Material).

AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

manuscript submitted to Environmental Research Letters

and Central Europe (CEU). An interpretation could be that models do not predict the same evolution for Rh in the areas where atmospheric variables are changing faster.

It is interesting to probe why atmospheric forcing accounts for more uncertainty at global than regional scale. We found that some differences between the forcings have the same impact on most of the world's area, while model differences induce strong regional uncertainty but not in the same manner everywhere. As an example, GPP estimates are slightly larger with Princeton than with CRUJRA or GSWP3 in all regions (see Supplementary Material fig S1), regardless of the model and add up to a large difference at global scale. This is consistent with the idea that the higher humidity in the Princeton dataset allows for higher photosynthetic rates for all models forced by it. Conversely, GPP estimates by ISBA-CTRIP and CLM5 appear to be similar at global scale, yet the regional analysis highlights strong opposition between tropical regions with higher GPP for ISBA-CTRIP compared to CLM5, and the northern hemisphere which has higher GPP in CLM5 compared to ISBA-CTRIP (see Supplementary Material fig S2). This leads to a strong model contribution to uncertainty at regional scale, but those differences compensate each other globally.

4 Conclusion

The goal of this study was to evaluate the uncertainty related to the use of different global atmospheric forcing datasets in terrestrial carbon cycle modelling. We used nine CMIP6 simulations from three terrestrial biosphere models run with three different forcings to perform our analysis. First, we focused on global averages and found that atmospheric forcings are a dominant source of uncertainty compared to model choice for GPP and Ra, and contribute significantly to the overall uncertainty for Rh and NPP. The contribution of atmospheric forcing to the net fluxes uncertainty is reduced since positive effects of atmospheric forcings on photosynthesis are partially offset by enhancement in the respiration fluxes. We still found an important role of atmospheric forcing on GPP-Ra-Rh temporal mean estimates, but with important interaction terms that translate different model responses to climate variables. Important differences in fire modelling lead to a dominant role of models in NEP uncertainty, even on a global scale, despite a visible relationship and interactions between fire emission and climate forcings.

manuscript submitted to Environmental Research Letters

Secondly, we looked at the partitioning of uncertainty at the regional scale, with the purpose of identifying the regions where atmospheric forcings contribute the most to the variability of GPP, Ra and Rh. We showed that generally, the model structure is the dominant source of uncertainty regionally, in contrast to what we found globally. Atmospheric forcing contribution remains significant and even slightly dominant in some regions, notably in tropical forests for GPP and Ra and in mid and northern high latitudes for Rh, but regional discrepancies among the models are stronger. However, and in contrast with the forcings, it is not the same models that result in the biggest and lowest values everywhere. Those differences add up and offset each other, leading to closer results globally.

While the purpose of the study was to investigate the contribution of forcing uncertainty and to demonstrate the influence of choosing a specific forcing over another forcing, this experimental design, using three distinct sets of forcing data fields is not ideal for identifying the relative sensitivity to which drivers are most critical. While the large difference in humidity between Princeton and the other two datasets points to that field being particularly important in governing GPP and other fluxes, a more specific one-ata-time propagation of the uncertainty in each field may allow for a more specific attribution of uncertainty to meteorologic variables. Likewise, perturbations to the distributions while holding mean values constant may allow attribution of carbon cycle sensitivity to extremes. Nonetheless, these results point to a focus on constraining humidity values as key to reducing forcing uncertainty. To the extent that humidity is a key driver in GPP uncertainty, another question is whether this uncertainty is exacerbated in offline simulations such as used here, GCP, and elsewhere, because of the inability for surface moisture fluxes to attenuate humidity biases in the forcing fields due to the oneway coupling.

Additional work involving more terrestrial biosphere models and climate forcings should be done in order to better quantify the role of forcings in carbon cycle uncertainty, especially for the interactions between fire, land-cover dynamics and climate forcings. Even so, we conclude that atmospheric forcings are a key source of uncertainty in carbon cycle modelling at the global scale and are a significant source of uncertainty in some regions. Therefore, we suggest that where possible, it would be preferable for future MIPs and assessments (e.g., TRENDY, GCP, CMIP) to run simulations with several alternative climate forcing datasets, and to more specifically generate datasets to allow attri-

Page 19 of 24

AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

manuscript submitted to Environmental Research Letters

bution of carbon cycle sensitivity both to uncertainty in meteorologic fields and to uncertainty in mean versus extreme values of meteorologic fields, when estimating the terrestrial carbon sink in order to correctly represent the uncertainty associated.

Acknowledgments

LH, CD, BD, RS, TS and RF acknowledge funding by the European Union's Horizon-2020 (H2020) research and innovation program under Grant Agreement no. 641816 (CRESCENDO) for LH, BD, CD and TS, no. 101003536 (ESM2025 – Earth System Models for the Future) for RS and no. 821003 (4C) for RF. CD and BD are supported by the "Centre National de Recherches Météorologiques" (CNRM) of Météo-France and the "Centre National de la Recherche Scientifique" (CNRS) of the French research ministry. DML is supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement 1852977 and by the U.S. Department of Energy, Office of Biological and Environmental Research Grant DE-FC03-97ER62402/A0101. JEMSN and TS would like to thank Veronika Gayler for conducting many of the CMIP6 MPI-ESM1.2-LR simulations. TS work was funded by the EU CRESCENDO project. CDK acknowledges support by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract DE-AC02-05CH11231 through the Early Career Research Program and the Regional and Global Model Analysis Program (RUBISCO SFA).

References

- Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., ... Ziehn, T. (2020). Carbon-concentration and carbon-climate feedbacks in emip6 models and their comparison to emip5 models. *Biogeosciences*, 17(16), 4173-4222. Retrieved from https://bg.copernicus.org/articles/17/4173/2020/ doi: 10.5194/bg-17-4173-2020
- Bonan, G. B., Lombardozzi, D. L., Wieder, W. R., Oleson, K. W., Lawrence, D. M.,
 Hoffman, F. M., & Collier, N. (2019). Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014).
 Global Biogeochemical Cycles, 33(10), 1310–1326.

Canadell, J., Monteiro, P., Costa, M., Cotrim da Cunha, L., Cox, P., Eliseev, A.,

... Zickfeld, K. (2021). Global carbon and other biogeochemical cycles and

manuscript submitted to Environmental Research Letters

feedbacks. In V. Masson-Delmotte et al. (Eds.), *Climate change 2021: The physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change.* Cambridge University Press.

- Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C. D., Riley,
 W. J., ... Randerson, J. T. (2018). The international land model benchmarking (ilamb) system: Design, theory, and implementation. Journal of Advances in Modeling Earth Systems, 10(11), 2731-2754.
- Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin,
 X., ... others (2011). The twentieth century reanalysis project. Quarterly
 Journal of the Royal Meteorological Society, 137(654), 1–28.
- Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D., DuVivier, A., Edwards, J., ... others (2020). The community earth system model version 2 (cesm2). Journal of Advances in Modeling Earth Systems, 12(2).
- Davies-Barnard, T., Meyerholt, J., Zaehle, S., Friedlingstein, P., Brovkin, V., Fan,
 Y., ... Wiltshire, A. J. (2020). Nitrogen cycling in cmip6 land surface
 models: progress and limitations. *Biogeosciences*, 17(20), 5129-5148. Retrieved from https://bg.copernicus.org/articles/17/5129/2020/ doi: 10.5194/bg-17-5129-2020
- Decharme, B., Delire, C., Minvielle, M., Colin, J., Vergnes, J.-P., Alias, A., ...
 Voldoire, A. (2019). Recent changes in the isba-ctrip land surface system for use in the cnrm-cm6 climate model and in global off-line hydrological applications. Journal of Advances in Modeling Earth Systems, 11(5), 1207–1252.
- Delire, C., Séférian, R., Decharme, B., Alkama, R., Calvet, J.-C., Carrer, D., et al. (2020). The global land carbon cycle simulated with isba-ctrip: Improvements over the last decade. *Journal of Advances in Modeling Earth Systems*, 12.
- DeVries, T., Holzer, M., & Primeau, F. (2017). Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542(7640), 215–218.

DeVries, T., Le Quéré, C., Andrews, O., Berthet, S., Hauck, J., Ilyina, T., ...

Séférian, R.(2019).Decadal trends in the ocean carbon sink.Proceed-ings of the National Academy of Sciences, 116(24), 11646–11651.Re-trieved from https://www.pnas.org/content/116/24/11646doi:

manuscript submitted to Environmental Research Letters

10.1073/pnas.1900371116
Fisher, R. A., Wieder, W. R., Sanderson, B. M., Koven, C. D., Oleson, K. W., Xu,
C., Lawrence, D. M. (2019). Parametric controls on vegetation responses
to biogeochemical forcing in the clm5. Journal of Advances in Modeling Earth
Systems, 11(9), 2879–2895.
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C.,
Hauck, J., others (2021). Global carbon budget 2021. Earth System
Science Data Discussions, 1–191.
Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen,
A., others (2020). Global carbon budget 2020. Earth System Science Data,
12(4), 3269-3340.
Goll, D. S., Brovkin, V., Liski, J., Raddatz, T., Thum, T., & Todd-Brown, K. E.
(2015). Strong dependence of co2 emissions from anthropogenic land cover
change on initial land cover and soil carbon parametrization. Global Biogeo-
chemical Cycles, 29(9), 1511–1523.
Goll, D. S., Winkler, A. J., Raddatz, T., Dong, N., Prentice, I. C., Ciais, P., &
Brovkin, V. (2017) . Carbon–nitrogen interactions in idealized simulations with
jsbach (version 3.10). Geoscientific Model Development, $10(5)$, 2009–2030.
Hagemann, S., & Stacke, T. (2015). Impact of the soil hydrology scheme on simu-
lated soil moisture memory. <i>Climate Dynamics</i> , 44, 1731–1750. doi: https://
doi.org/10.1007/s00382-014-2221-6
Harris, I. (2019). Cru jra v1. 1: A forcings dataset of gridded land surface blend
of climatic research unit (cru) and japanese reanalysis (jra) data, january
1901–december 2017, university of east anglia climatic research unit, centre for
Hawkins, E., & Sutton, R. (2009). The potential to narrow uncertainty in regional
climate predictions. Bulletin of the American Meteorological Society, 90(8),
III de LA (2001). Nes este sis solar rediction dete sets escileble for consistent
micke, J. A. (2005). Notep and giss solar radiation data sets available for ecosystem
Global Biogeochemical Cycles 19(2)
Hurtt G. C. Chini I. Sahainal R. Frolking S. Rodirsky R. I. Calvin K.
others (2020). Harmonization of global land use change and management
(2020). Internetion of groom faile use change and management
-21-

manuscript submitted to Environmental Research Letters

 for the period 850–2100 (luh2) for cmip6. Geoscientific Model Development, 13(11), 5425–5464.

- Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Zaehle, S., ... others (2007). Uncertainties of modeling gross primary productivity over europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. *Global Biogeochemical Cycles*, 21(4).
- Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola da Costa, A. C., & Gentine, P. (2019). Implementing plant hydraulics in the community land model, version 5. Journal of Advances in Modeling Earth Systems, 11(2), 485–513.
- Kim, H., Watanabe, S., Chang, E., Yoshimura, K., Hirabayashi, J., Famiglietti, J.,
 & Oki, T. (2017). Global soil wetness project phase 3 atmospheric boundary conditions (experiment 1)[data set], data integration and analysis system (dias).
- Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C., Van Heuven, S., ... others (2015). The reinvigoration of the southern ocean carbon sink. *Science*, 349(6253), 1221–1224.
- Lasslop, G., Brovkin, V., Reick, C. H., Bathiany, S., & Kloster, S. (2016). Multiple stable states of tree cover in a global land surface model due to a firevegetation feedback. *Geophysical Research Letters*, 43(12), 6324–6331.
- Lasslop, G., Thonicke, K., & Kloster, S. (2014). Spitfire within the mpi earth system model: Model development and evaluation. Journal of Advances in Modeling Earth Systems, 6(3), 740-755. doi: https://doi.org/10.1002/2013MS000284
- Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., ... others (2019). The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11(12), 4245–4287.
- Le Quéré, C., Andres, R. J., Boden, T. A., Conway, T., Houghton, R. A., House, J. I., ... others (2013). The global carbon budget 1959–2011.

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning,

A. C., ... others (2017). Global carbon budget 2017. Earth System Science Data Discussions, 1–79.

Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P.,

3 4

5 6

7

8

9

10 11

12 13

14

15 16

17 18

19

20 21

22 23

24 25

26

27 28

29 30

31 32

33

34 35

36 37

38

39 40

41 42

43 44

45

46 47

48

49 50

51 52

53 54

55

56 57

58 59 60

AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

manuscript submitted to Environmental Research Letters

... others (2014). Global carbon budget 2013. Earth System Science Data, 6(1), 235-263.Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., ... others (2009). Trends in the sources and sinks of carbon dioxide. Nature geoscience, 2(12), 831–836. Li, F., & Lawrence, D. M. (2017). Role of fire in the global land water budget during the twentieth century due to changing ecosystems. Journal of Climate, 30(6), 1893-1908.Li, F., Zeng, X., & Levis, S. (2012).A process-based fire parameterization of intermediate complexity in a dynamic global vegetation model. Biogeosciences, 9(7), 2761-2780.Lovenduski, N. S., & Bonan, G. B. (2017). Reducing uncertainty in projections of terrestrial carbon uptake. Environmental Research Letters, 12(4), 044020. Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., ... others (2019). Developments in the mpi-m earth system model version 1.2 (mpi-Journal of Advances in Modeling esm1. 2) and its response to increasing co2. Earth Systems, 11(4), 998–1038. Poulter, B., Frank, D., Hodson, E., & Zimmermann, N. (2011).Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the co 2 airborne fraction. Biogeosciences, 8(8), 2027–2036. Reick, C. H., Gayler, V., Goll, D., Hagemann, S., Heidkamp, M., Nabel, J. E., ... Wilkenskjeld, S. (2021). Jsbach 3-the land component of the mpi earth system model: documentation of version 3.2. Reick, C. H., Raddatz, T., Brovkin, V., & Gayler, V. (2013).Representation of natural and anthropogenic land cover change in mpi-esm. Journal of Advances in Modeling Earth Systems, 5(3), 459-482. doi: https://doi.org/10.1002/jame .20022 Schaefer, K., Schwalm, C. R., Williams, C., Arain, M. A., Barr, A., Chen, J. M., (2012). A model-data comparison of gross primary productivity: ... others Results from the north american carbon program site synthesis. Journal of Geophysical Research: Biogeosciences, 117(G3). Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., ... others (2019). Evaluation of cnrm earth system model, cnrm-esm2-1: Role of

earth system processes in present-day and future climate. Journal of Advances in Modeling Earth Systems, 11(12), 4182–4227.

- Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-year highresolution global dataset of meteorological forcings for land surface modeling. *Journal of climate*, 19(13), 3088–3111.
- SREX, I. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by: Field, CB, Barros, V., Stocker, TF, Qin, D., Dokken, DJ, Ebi, KL, Mastrandrea, MD, Mach, KJ, Plattner, G.-K., Allen, SK, Tignor, M., and Midgley, PM, Cambridge University Press, Cambridge, UK, and New York, NY, USA.
- Thonicke, K., Venevsky, S., Sitch, S., & Cramer, W. (2001). The role of fire disturbance for global vegetation dynamics: coupling fire into a dynamic global vegetation model. *Global Ecology and Biogeography*, 10(6), 661–677.
- Todd-Brown, K., Randerson, J., Post, W., Hoffman, F., Tarnocai, C., Schuur, E., & Allison, S. (2013). Causes of variation in soil carbon simulations from cmip5 earth system models and comparison with observations. *Biogeosciences*, 10(3), 1717–1736.
- Van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., ... others (2016). Ls3mip (v1. 0) contribution to cmip6: the land surface, snow and soil moisture model intercomparison project–aims, setup and expected outcome. *Geoscientific Model Development*, 9(8), 2809–2832.
- Van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G., Mu, M., Kasibhatla, P. S., ... van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). *Atmospheric chemistry and physics*, 10(23), 11707–11735.