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Abstract

Global estimates of the land carbon sink are often based on simulations by terrestrial

biosphere models. The use of a large number of models that differ in their underlying

hypotheses, structure and parameters is one way to assess the uncertainty in the histor-

ical land carbon sink. Here we show that the atmospheric forcing datasets used to drive

these terrestrial biosphere models represent a significant source of uncertainty that is cur-

rently not systematically accounted for in land carbon cycle evaluations. We present re-

sults from three terrestrial biosphere models each forced with three different historical

atmospheric forcing reconstructions over the period 1850-2015. We perform an analy-

sis of variance to quantify the relative uncertainty in carbon fluxes arising from the mod-

els themselves, atmospheric forcing, and model-forcing interactions. We find that atmo-

spheric forcing in this set of simulations plays a dominant role on uncertainties in global

gross primary productivity (75% of variability) and autotrophic respiration (90%), and

a significant but reduced role on net primary productivity and heterotrophic respiration

(30%). Atmospheric forcing is the dominant driver (52 %) of variability for the net ecosys-

tem exchange flux, defined as the difference between gross primary productivity and res-

piration (both autotrophic and heterotrophic respiration). In contrast, for wildfire-driven

carbon emissions model uncertainties dominate and, as a result, model uncertainties dom-

inate for net ecosystem productivity. At regional scales, the contribution of atmospheric

forcing to uncertainty shows a very heterogeneous pattern and is smaller on average than

at the global scale. We find that this difference in the relative importance of forcing un-

certainty between global and regional scales is related to large differences in regional model

flux estimates, which partially offset each other when integrated globally, while the flux

differences driven by forcing are mainly consistent across world and therefore which add

up to a larger fractional contribution to global uncertainty.

1 Introduction

During the last decade, about 45% of anthropogenic carbon dioxide (CO2) emis-

sions remained and accumulated in the atmosphere. Model- and observation-based stud-

ies suggest that the remaining term was shared among ocean (24%) and land (32%) since

1960 (Friedlingstein et al., 2021). Together, the contribution of the ocean and terrestrial

CO2 uptake nearly halves the increase in atmospheric CO2, damping the pace of climate

change (Canadell et al., 2021). These sinks significantly increased since the middle of the
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20th century, mainly due to the acceleration of the increase in CO2 concentrations, caused

by fossil fuel emissions. However, carbon uptake processes depend strongly on climate

variability, especially for the terrestrial biosphere (Le Quéré et al., 2009; DeVries et al.,

2019). While the ocean sink grew from 1.1±0.4 PgC·yr−1 in the 1960s to 2.8±0.4 PgC·yr−1

in 2011–2020, with an inter-annual variability of a few tenths of PgC·yr−1, the land sink

rose from 1.2 ± 0.5 PgC·yr−1 to 3.1 ± 0.6 PgC·yr−1, but with inter-annual variations

up to 2 PgC·yr−1 (Friedlingstein et al., 2021).

Accurate evaluations of anthropogenic emissions, atmospheric CO2 levels and car-

bon cycle perturbation are necessary to monitor, understand and predict climate change.

The Global Carbon Project (GCP) has published an annual report since 2013 (Le Quéré

et al., 2013, 2014; Friedlingstein et al., 2020, 2021) that quantifies the magnitude and

uncertainty of the five major components of the global carbon budget: fossil fuel emis-

sions (EFOS), emissions from land use change (ELUC), the growth rate of atmospheric

CO2 (GATM ), the ocean sink (SOCEAN ) and the land sink (SLAND). In earlier analy-

ses provided by the Global Carbon Project, the terrestrial carbon cycle simulated by the

Terrestrial Biosphere Models (TBMs, called by the authors Land Biosphere Models or

Dynamical Global Vegetation Models) was not considered reliable enough to be used in

the report to estimate the land carbon sink (Le Quéré et al., 2009; Schaefer et al., 2012;

Todd-Brown et al., 2013). The land sink SLAND was hence diagnosed indirectly as the

residual of the other terms. However, the methodology was updated in the 2017 global

carbon budget (Le Quéré et al., 2017), partly due to improvements in carbon cycle rep-

resentation (Collier et al., 2018; Lawrence et al., 2019; Arora et al., 2020; Davies-Barnard

et al., 2020), but also because of evidence of underestimation and uncertainty in the ocean

sink variability (Landschützer et al., 2015; DeVries et al., 2017). The global land sink

is now estimated by the multi-model mean of the TBM simulations, with the budget im-

balance term, BIM , representing residual uncertainty and/or unexplained aspects of the

actual global carbon cycle.

To account for model construction, structural, and parametric uncertainty, as many

as 17 TBMs were used to estimate SLAND by Friedlingstein et al. (2020). Simulations

were run using a unified land use change data set (LUH2; (Hurtt et al., 2020)), global

atmospheric CO2 trend, and atmospheric climate forcing (CRUJRA; (Harris, 2019)). Use

of a single forcing dataset for climatic forcing, however, means that any model spread

due to climate forcing data uncertainty is not represented by the GCP ensemble. Yet,
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several studies have identified historical climate forcing as a large source of uncertainty

in terrestrial carbon cycle modelling (Hicke, 2005; Jung et al., 2007; Poulter et al., 2011;

Bonan et al., 2019; Lawrence et al., 2019). Hicke (2005), for example, highlights impor-

tant biases in net primary productivity (NPP) estimation while using different radiation

datasets, and Poulter et al. (2011) conclude that atmospheric forcing results in a large

uncertainty compared to land-cover datasets for NPP, heterotrophic respiration (Rh) and

net ecosystem exchange (NEE). More recently, as part of the assessment and benchmark-

ing of the Community Land Model version 5 (CLM5) (Lawrence et al., 2019), climate

forcing uncertainty was compared to model structure uncertainty using two forcing data

sets (Global Soil Wetness Project 3 and CRUNCEP) and three versions of CLM (CLM4,

CLM4.5, and CLM5) that differ markedly in their carbon cycle representation (Bonan

et al., 2019). The authors concluded that climate forcing is a large source of uncertainty

in the global carbon cycle, especially for GPP, NPP and Rh, and to a lesser extent for

Net Biome Productivity. However, this study was performed with different versions of

a single model, and only two estimates of atmospheric climate forcing. Arguably there-

fore, the importance of atmospheric forcing on carbon cycle estimation by TBMs remain

insufficiently explored, especially in the context of recent model structural improvements

in the CMIP6 generation of models.

In this study, we used the output from the TBMs of three Earth System Models

(ESMs) participating in the 6th Coupled Model Intercomparison Project (CMIP6). We

performed an analysis of variance similar to (Hawkins & Sutton, 2009; Lovenduski & Bo-

nan, 2017; Bonan et al., 2019) in order to quantify the relative uncertainty from atmo-

spheric forcing, models and forcing-model interactions in carbon flux estimates made by

TBMs. We used a combination of three TBMs from Earth System Models (ESM) and

three atmospheric forcing datasets in our analysis. We present results for the major ter-

restrial carbon cycle fluxes; gross primary productivity (GPP), autotrophic respiration

(Ra) and heterotrophic respiration (Rh), at global and regional scales. We also inves-

tigate estimates of CO2 emissions from natural fires (fFire) and highlight their role in

the calculation of the land carbon sink, before focusing on sources of uncertainty in the

global net ecosystem productivity (NEP = GPP - Ra - Rh - fFire).
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2 Methods

2.1 CMIP6 models and atmospheric forcings

We used the results of three TBMs of CMIP6 Earth System Models described in

Table 1, from the Land Surface, Snow and Soil moisture Model Intercomparison Project

(LS3MIP, (Van den Hurk et al., 2016)) of CMIP6. For the three models, land use tran-

sitions are forced by the Land Use Harmonization 2 (LUH2) time series (Hurtt et al.,

2020). Those three models have been selected because they are the only ones that re-

port output from three different atmospheric forcings and also share data for emissions

from fire, on the Earth System Grid Federation (ESGF) archive.

Three climate forcing datasets were used to force the TBMs, according to the LS3MIP

protocol. Atmospheric forcing consists of hourly- to 6-hourly data on precipitation, short

and long wave solar radiation, near surface air temperature, specific humidity, and wind

speed. The three forcings described in Table 2 have a 0.5◦ × 0.5◦ spatial resolution.

For reference, results of analysis of this set of model simulations with the Interna-

tional Land Model Benchmarking (ILAMB, (Collier et al., 2018)) package are provided

here: https://www.ilamb.org/land-hist/. ILAMB produces systematic evaluation (plots,

summary tables, scoring) of model output against observations for a range of metrics in-

cluding bias, RMSE, pattern correlation, annual cycle phase, and variable-to-variable com-

parisons. The version of ILAMB presented here assesses 22 land carbon, water, and en-

ergy cycle variables model variables against more than 50 observational datasets.

2.2 Analysis of variance

To statistically disaggregate the impacts of climate forcing, model choice and their

interactions on relevant output variables, we performed an ANOVA. We analysed nine

terrestrial carbon cycle simulations - three TBMs forced by three forcings - for the time

period 1960 to 2012, chosen to coincide with the beginning of atmospheric carbon diox-

ide measurements in the 1960s, and the end of the Princeton dataset. We quantify rel-

ative uncertainty into three sources: models, atmospheric forcing differences and model-

forcing interactions which measure the fact that models behave differently to different

forcing product. Details can be found in the Supplementary Material.

–5–

Page 5 of 24 AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



manuscript submitted to Environmental Research Letters

Table 1. Model description

Terrestrial biosphere

model

Community Land

Model CLM5

(Lawrence et al.,

2019)

ISBA-CTRIP

(Delire et al., 2020;

Decharme et al.,

2019)

JSBACH3.2(Reick et

al., 2021)

Parent climate

model

Community

Earth System

Model CESM2

(Danabasoglu et al.,

2020)

CNRM-ESM2-1

(Séférian et al.,

2019)

MPI-ESM1.2-LR

(Mauritsen et al.,

2019)

Simulation resolu-

tion

0.9◦ latitude by

1.25◦ longitude

T127 (∼ 1.4◦) T63 (∼ 1.9◦)

Fire process-based (Li

et al., 2012; Li &

Lawrence, 2017)

simple, based on

GlobFirm (Thonicke

et al., 2001)

mechanistic, SPIT-

FIRE (Lasslop et al.,

2014)

Natural vegetation

dynamics

no no yes (Reick et al.,

2013)

Nitrogen cycle revised (Fisher et

al., 2019)

no new (Goll et al.,

2017)

Plant hydrodynam-

ics

(Kennedy et al.,

2019)

no no

Soil carbon decom-

postion

yes yes new (Goll et al.,

2015)

Soil hydrology multilayer multilayer multilayer

(Hagemann &

Stacke, 2015)

Other numerous updates

to hydrology, snow,

gas exchange and

crops

similar similar
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Table 2. Atmospheric forcing description

Name Global Soil Wetness

Project (GSWP3)

version 1.09 (Kim et

al., 2017)

CRUJRAa (Harris,

2019)

Princeton (Sheffield

et al., 2006) v2.2

Time resolution 3-hourly 6-hourly 3-hourly

Covered period 1901-2014 1901-2018 1901-2012

Reanalysis used 20th Century Re-

analysis version 2

(Compo et al., 2011)

Japanese Reanal-

ysis (JRA) by the

Japanese Meteo-

rological Agency

(JMA)b

National Centers

for Environmental

Prediction (NCEP)

reanalysis

Corrected by

Air Temperature Climate Research

Unit Timeseries

(CRU TS) v3.21

CRU TS v4.03 CRU TS v3.2

Precipitation Global Precipitation

Climatology Center

(GPCC) v7

CRU TS v4.03 CRU, Global Pre-

cipitation Clima-

tology Project and

TRMM Multi-

satellite Precipita-

tion Analysis

Radiation Surface Radia-

tion Budget (SRB)

datasets (down-

welling radiation

fluxes)

CRU TS v4.03 SRB

Use LS3MIP GCP hydrology

aerroneously named CRUNCEP in CMIP6 simulations.

bhttp://hydro.iis.u-tokyo.ac.jp/GSWP3/
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3 Results

3.1 Global scale

We first investigated and compared the forcing data in order to highlight the main

differences and similarities. The three forcings mostly agree on near surface air temper-

ature, but they present large differences in specific humidity, incoming shortwave and

longwave radiation, and windspeed (Figure 1). Princeton has much higher specific (and

relative - not shown) humidity than CRUJRA or GSWP3 in most parts of the world,

except in desert areas. Additionally, specific humidity is generally greater with GSWP3

than with CRUJRA in tropical regions. CRUJRA also has higher shortwave and lower

longwave incoming radiation than GSWP3 and Princeton, both having almost identi-

cal values. The precipitation forcing differs also with higher values for GSWP3, espe-

cially within the Arctic circle related to snowfall uncertainties.

We performed the analysis of variance on the global estimates of GPP, Ra, Rh, GPP-

Ra-Rh, fFire and NEP (Figure 2). The results illustrate a dominant role of the atmo-

spheric forcing variation on global GPP estimates (Fig. 2(a)), with large differences be-

tween the multi-model mean values according to the forcings (about 15 PgC·yr−1), with

GSWP3 resulting in lowest GPPs for all three models, Princeton the highest GPPs, and

CRUJRA in between. The discrepancies between the models for a given forcing are smaller,

especially for CRUJRA and Princeton. Global GPP estimates of the ISBA-CTRIP and

CLM5 models are very similar when forced with the CRUJRA forcing, and slightly dif-

fer when forced with GSWP3 or Princeton. The global GPP estimates of JSBACH are

the largest with all 3 forcings and the difference with the 2 other models is the biggest

with the GSWP3 forcing. However, the three models obtain very similar results with the

Princeton atmospheric forcing. This suggests a general sensitivity of the models to an

atmospheric variable that is different between Princeton’s and the two other forcings,

such as specific humidity (Figure 1). These nine simulation results indicate a strong sen-

sitivity of modelled GPP to climate forcing.

Figure 2(b) confirms the dominant role of atmospheric forcing on global GPP un-

certainty. It accounts for ∼ 75% of the variability in the mean estimates, against ∼ 19%

for models and ∼ 6% for interactions terms.
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Figure 1. Annual mean of atmospheric variables used to drive terrestrial biosphere

models: GSWP3 (gswp, left-most column), Princeton minus GSWP3 (pgf-gswp ; cen-

ter left column), CRUJRA minus GSWP3 (crujra-gswp ; center right column), and

zonal averages of each product (right-most column).
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Figure 2. Model means and standard deviations (color dots and bars) and multi-

model means (black crosses) of global carbon flux time series for each atmospheric

forcing between 1960 and 2012 (pointplot) and fractional distribution of uncertainty

(variability) obtained from the ratios of the sum of squared deviation from the mean

(eq. 3 to 6 in Supplementary Material) (pieplot) for GPP (a, b), Ra (c, d), NPP (e,

f), fFire (g, h), GPP−Ra−Rh (i, j) and NEP=GPP−Ra−Rh−fFire (k, l). Standard

deviations are calculated from the yearly time series of the fluxes.
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The dominance of atmospheric forcing contribution over the uncertainty is even more

obvious for autotrophic respiration (figure 2(c)), again with similar model mean values

for a given forcing but large differences between forcings with no overlap. According to

our analysis of variance, ∼ 90% of the uncertainty can be assigned to forcings, ∼ 5% to

models and ∼ 5% to the interactions terms (figure 2(d)). The Princeton forcing results

in a slightly larger spread between the average autotrophic respiration than the other

forcings.

Global NPP (GPP-Ra) behaves differently. Despite differences in multi-model mean

values per atmospheric forcings (around 5 PgC·yr−1) attesting to the role of forcing in

uncertainty, we can see that JSBACH estimates are clearly higher than the two others

(more than 10 PgC·yr−1) in figure 2(e). This indicates greater model contribution to un-

certainty, confirmed by figure 2(f) where models are the dominant source (∼ 63%) of un-

certainty for NPP, but atmospheric forcing remains important with ∼ 30% of variabil-

ity explained and ∼ 7% for model-forcing interactions. Contrary to ISBA-CTRIP and

CLM5 that simulate the lowest NPP with GSWP3 and the highest with Princeton (like

for GPP and Ra), JSBACH simulates a slightly smaller global NPP with the CRUJRA

forcing. Global Rh presents similar results to global NPP (not shown), both for atmo-

spheric contribution to uncertainty and for greater values obtained with GSWP3 than

CRUJRA for JSBACH.

We show that atmospheric forcings have an important (NPP, Rh) and even dom-

inant (GPP, Ra) role in uncertainty distribution for the major fluxes of global carbon

cycle estimates. It seems that forcing contribution to uncertainty decreases when we con-

sider net flux such as NPP and Rh rather than direct products of photosynthesis (GPP

and Ra).

Wildfires are a small contribution to the global land carbon loss fluxes (∼ 2-3 PgC·yr−1)

(Van der Werf et al., 2010), especially when compared to plant and soil respiration. Nonethe-

less, fire carbon losses correspond to approximately one-third of the GPP-Ra-Rh net flux.

Moreover, this flux has particularly high seasonal and inter-annual variability, in response

to both land cover change, as well as climatic events like drought. Despite its importance,

anthropogenic biomass burning is not yet represented by all terrestrial biosphere mod-

els. Overall, high uncertainty remains in the carbon emissions associated with fire (fig-

ure 2(g,h)). ISBA-CTRIP tends to overestimate global fire emissions compared to the
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global fire emission database (2.14 PgC·yr−1 for 1997-2015 van der Werf et al., 2017),

while JSBACH is slightly lower (especially with Princeton). Part of these differences may

be explained by the intermediate complexity fire module GlobFirm (Thonicke et al., 2001)

used in ISBA-CTRIP that is known to overestimate fire emissions (Li et al., 2012). Fig-

ure 2(g) shows a large discrepancy between model values for a given forcing, particularly

for the Princeton one, and figure 2(h) confirms a fractional contribution to uncertainty

of ∼ 85% for the models, ∼ 6% for forcings and ∼ 9% for interactions. A closer look at

fire results shows indeed interesting interactions between the forcings and fire modules

that explain the bigger dispersion for Princeton. We saw that GPP and NPP (GPP-Ra)

is enhanced with the Princeton forcing, most probably because of the high level of air

humidity. For the GlobFirm module implemented in ISBA-CTRIP, this leads simply to

lower evapotranspiration rates, less moisture stress, higher productivity and litterfall (not

shown) resulting in more biomass burned and greater associated carbon emissions. How-

ever, with the more mechanistic fire module of CLM5, the higher air humidity results

directly in lower level of fuel flammability (see eq.8 (Li et al., 2012)). In JSBACH, fi-

nally, the three applied forcings cause very different fire-vegetation feedbacks, such that

the natural vegetation cover in the three simulations differs strongly, particularly in fire

prone regions such as Africa and Asia (not shown). Such strong fire-vegetation feedbacks

have already been observed for JSBACH in previous idealised model simulations (Lasslop

et al., 2016). Emissions from fire appear to be quite sensitive to atmospheric forcing when

we compare individually the relative dispersion for each model, but this dependency is

overshadowed in this analysis by the even larger uncertainty related to the model struc-

ture.

Here, we first present results for GPP-Ra-Rh estimates. This flux takes into ac-

count the most important and probably best represented processes of the terrestrial bio-

sphere carbon sink, by excluding fire emissions. As expected, this net flux is smaller and

has larger interannual variability (standard deviation) relative to the mean than the gross

fluxes GPP, Ra and Rh. Figure 2(i) suggests a more important contribution to uncer-

tainty by forcing than models: model mean values are close to each other for a given forc-

ing and there is a small difference between forcings. The analysis of variance results shows

effectively a dominant role of forcings (∼ 52%) over models (∼ 8%) but also a substan-

tial contribution of the interaction terms (∼ 40%) (figure 2(j)). Indeed, the models do

not show similar patterns with respect to the forcings. CLM5 results in greater values

–12–

Page 12 of 24AUTHOR SUBMITTED MANUSCRIPT - ERL-114006.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



manuscript submitted to Environmental Research Letters

for CRUJRA (6.53 PgC·yr−1) than Princeton (6.14 PgC·yr−1), while ISBA-CTRIP sim-

ulates slightly bigger fluxes with Princeton (6.33 PgC·yr−1) than with CRUJRA (6.23

PgC·yr−1), as does JSBACH with a greater difference (6.06 for CRUJRA against 6.68

PgC·yr−1 with Princeton). In addition, we observe only slightly bigger results for CRU-

JRA than GSWP3 for JSBACH, consistent with the results obtained from Rh and NPP,

while the difference is more pronounced for ISBA-CTRIP and CLM5. This highlights

differences in model sensitivity to atmospheric forcings, such as air humidity or down-

ward radiation flux, for the land sink calculation.

Larger differences are obtained when we take into account fFire in the NEP cal-

culation (figure 2(k,l)). There is only a small difference between the multi-model mean

values per forcing, and a larger spread between the values of the different models, espe-

cially with the Princeton forcing (figure 2(k)). Moreover, global NEP is almost indepen-

dent of the forcing with CLM5 and ISBA-CTRIP, which is not the case with JSBACH.

The variance analysis results show that models contribute ∼ 75% to uncertainty, forc-

ings account for ∼ 9% and interactions for ∼ 16%. This contrasts with the significant

forcing contribution we obtained when not accounting for fFire, and indicates clearly a

high model uncertainty related to fire emission.

To complete the global picture we analyze the contribution of atmospheric forc-

ing to uncertainty in carbon stocks (fig3). Atmospheric forcing plays a role in global car-

bon stock uncertainties but not a dominant one like for gross carbon fluxes. There are

large differences in live (cVeg) and dead biomass (cLitter) and soil organic carbon con-

tent (cSoil) between multi-model means per forcing but the differences between mod-

els are even larger. The analysis of variance for cVeg shows that ∼ 26% of the uncertainty

can be assigned to forcings, ∼ 67% to models and ∼ 7% to the interactions terms (fig3(b)).

For cLitter and cSoil, these numbers are respectively ∼ 20% and ∼ 9% for forcing, ∼ 68%

and ∼ 81% for models and ∼ 13% and ∼ 10% for interactions (fig3(d,f)). CLM5 and ISBA-

CTRIP both simulate the smallest live and dead stocks with GSWP3 while JSBACH

simulates the smallest stocks with CRUJRA(fig3(a,c,e)). Princeton results in the largest

stocks with every model. Live biomass from CLM5 and ISBA-CTRIP are fairly similar

while JSBACH’s is lower. The litter reservoir is the highest with ISBA-CTRIP and the

lowest with CLM5 while the soil carbon is the largest with CLM5 especially for CRU-

JRA and Princeton. The higher soil carbon content with CLM5 can be explained by the

vertically discretized soil carbon module with deeper soils (down to a maximum of 8.5m).
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Figure 3. Model means and standard deviations (color dots and bars) and multi-

model means (black crosses) of global carbon stocks time series for each atmospheric

forcing between 1960 and 2012 (pointplot) and fractional distribution of uncertainty

(variability) obtained from the ratios of the sum of squared deviation from the mean

(eq. 3 to 6 in Supplementary Material) (pieplot) for cVeg (a, b), cLitter (including

coarse woody debris) (c, d), and cSoil (e, f).
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In the case of ISBA-CTRIP and JSBACH the soil carbon reservoir only represents the

carbon in the first meter.

3.2 Regional scale

We performed the same analysis of variance on the 30 sub-continental regions de-

fined in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Man-

aging the Risks of Extreme Events and Disasters to Advance Climate Change Adapta-

tion (SREX; (SREX, 2012)). Figure 4 presents the results for GPP, Ra and Rh. The re-

gions that present the largest uncertainty (largest pies) for GPP (figure 4 (a) and Sup-

plementary Table S2-4) are North Asia (NAS), the Amazon forest (AMZ), and to a lesser

extent West Africa (WAF), South Asia (SAS), South East Asia (SEA), East Africa (EAF),

South Africa (SAF), and West North America (WNA) even if WNA contributes only 2

to 4 PgC·yr−1 to global GPP. Atmospheric forcing is a dominant source of uncertainty

(more than half) in some regions that have fairly large contributions to the global to-

tal GPP flux, such as EAF and East Asia (EAS), but also in Central North America (CNA),

West Coast South America (WSA), and North East Brazil (NEB). Atmospheric forc-

ing is an important source of uncertainty (more than a third) in AMZ and WAF, trop-

ical forest regions, which contribute greatly to global GPP. Generally, it seems that at-

mospheric forcings play an important role in tropical regions. Less important contribu-

tion in SAS and SEA could be explained by monsoon regimes that prevail on atmospheric

forcing differences, but also by model resolution that could explain dominant model un-

certainty in island regions (SEA but also Caribbean and Pacific Island Regions). Model-

forcing interactions play a secondary but significant role in some regions such as NAS,

WAF and South East South America (SSA) for the ones that contribute the most to global

GPP.

Slightly different results can be observed for Ra (figure 4(b)). Atmospheric forc-

ing contribution to uncertainty is lower in NAS and AMZ, as well as SEA and NEB. Gen-

erally, the forcing and interaction terms seem to play a less important role in Ra than

in GPP regional estimates. For Rh (figure 4(c)), forcing contribution is even more re-

duced in tropical regions, where the fractional distribution never exceeds one-third. How-

ever, atmospheric forcing plays an important role in heterotrophic respiration uncertainty

in the northern hemisphere’s mid and high latitudes (about one-third). Interaction terms

become also important in numerous mid and northern regions, particularly in NAS, CNA
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Figure 4. Regional carbon fluxes for 1960-2012. Total flux value for each SREX

region in background, distribution of uncertainty between forcings, models and inter-

actions as overlayed pieplots with size of the pies proportional to the total uncertainty

value (eq. 3 and Table S2-4 in Supplementary Material).
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and Central Europe (CEU). An interpretation could be that models do not predict the

same evolution for Rh in the areas where atmospheric variables are changing faster.

It is interesting to probe why atmospheric forcing accounts for more uncertainty

at global than regional scale. We found that some differences between the forcings have

the same impact on most of the world’s area, while model differences induce strong re-

gional uncertainty but not in the same manner everywhere. As an example, GPP esti-

mates are slightly larger with Princeton than with CRUJRA or GSWP3 in all regions

(see Supplementary Material fig S1), regardless of the model and add up to a large dif-

ference at global scale. This is consistent with the idea that the higher humidity in the

Princeton dataset allows for higher photosynthetic rates for all models forced by it. Con-

versely, GPP estimates by ISBA-CTRIP and CLM5 appear to be similar at global scale,

yet the regional analysis highlights strong opposition between tropical regions with higher

GPP for ISBA-CTRIP compared to CLM5, and the northern hemisphere which has higher

GPP in CLM5 compared to ISBA-CTRIP (see Supplementary Material fig S2). This leads

to a strong model contribution to uncertainty at regional scale, but those differences com-

pensate each other globally.

4 Conclusion

The goal of this study was to evaluate the uncertainty related to the use of differ-

ent global atmospheric forcing datasets in terrestrial carbon cycle modelling. We used

nine CMIP6 simulations from three terrestrial biosphere models run with three differ-

ent forcings to perform our analysis. First, we focused on global averages and found that

atmospheric forcings are a dominant source of uncertainty compared to model choice for

GPP and Ra, and contribute significantly to the overall uncertainty for Rh and NPP.

The contribution of atmospheric forcing to the net fluxes uncertainty is reduced since

positive effects of atmospheric forcings on photosynthesis are partially offset by enhance-

ment in the respiration fluxes. We still found an important role of atmospheric forcing

on GPP-Ra-Rh temporal mean estimates, but with important interaction terms that trans-

late different model responses to climate variables. Important differences in fire mod-

elling lead to a dominant role of models in NEP uncertainty, even on a global scale, de-

spite a visible relationship and interactions between fire emission and climate forcings.
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Secondly, we looked at the partitioning of uncertainty at the regional scale, with

the purpose of identifying the regions where atmospheric forcings contribute the most

to the variability of GPP, Ra and Rh. We showed that generally, the model structure

is the dominant source of uncertainty regionally, in contrast to what we found globally.

Atmospheric forcing contribution remains significant and even slightly dominant in some

regions, notably in tropical forests for GPP and Ra and in mid and northern high lat-

itudes for Rh, but regional discrepancies among the models are stronger. However, and

in contrast with the forcings, it is not the same models that result in the biggest and low-

est values everywhere. Those differences add up and offset each other, leading to closer

results globally.

While the purpose of the study was to investigate the contribution of forcing un-

certainty and to demonstrate the influence of choosing a specific forcing over another forc-

ing, this experimental design, using three distinct sets of forcing data fields is not ideal

for identifying the relative sensitivity to which drivers are most critical. While the large

difference in humidity between Princeton and the other two datasets points to that field

being particularly important in governing GPP and other fluxes, a more specific one-at-

a-time propagation of the uncertainty in each field may allow for a more specific attri-

bution of uncertainty to meteorologic variables. Likewise, perturbations to the distribu-

tions while holding mean values constant may allow attribution of carbon cycle sensi-

tivity to extremes. Nonetheless, these results point to a focus on constraining humid-

ity values as key to reducing forcing uncertainty. To the extent that humidity is a key

driver in GPP uncertainty, another question is whether this uncertainty is exacerbated

in offline simulations such as used here, GCP, and elsewhere, because of the inability for

surface moisture fluxes to attenuate humidity biases in the forcing fields due to the one-

way coupling.

Additional work involving more terrestrial biosphere models and climate forcings

should be done in order to better quantify the role of forcings in carbon cycle uncertainty,

especially for the interactions between fire, land-cover dynamics and climate forcings.

Even so, we conclude that atmospheric forcings are a key source of uncertainty in car-

bon cycle modelling at the global scale and are a significant source of uncertainty in some

regions. Therefore, we suggest that where possible, it would be preferable for future MIPs

and assessments (e.g., TRENDY, GCP, CMIP) to run simulations with several alterna-

tive climate forcing datasets, and to more specifically generate datasets to allow attri-
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bution of carbon cycle sensitivity both to uncertainty in meteorologic fields and to un-

certainty in mean versus extreme values of meteorologic fields, when estimating the ter-

restrial carbon sink in order to correctly represent the uncertainty associated.
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