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We find an instanton (caloron) solution in the finite-temperature SU(2) gluon gas subjected to
(imaginary, in Euclidean spacetime) rotation. We demonstrate that the rotation decreases the
temperature of the caloron and leads to the delocalization of its topological charge over fractionally
charged constituents. Furthermore, we show that in the high-temperature limit, the rapidly-rotating
caloron becomes a “circulon”: a self-dual monopole (dyon) possessing a spatial toroidal core.

The recent observation of highly-vortical quark-gluon
plasma [1] has attracted attention to the properties of
relativistically rotating quark-gluon matter. The vortic-
ity of the quark-gluon plasma can be probed experimen-
tally via spin polarization of the hadronized matter [2, 3].
Theoretical analysis indicates that rotation can also af-
fect the thermodynamic properties and modify the phase
diagram of hot QCD [4–16]. Although most of the the-
oretical studies were carried out in the much simplifying
approximation of rigid rotation, a global picture of the
phase diagram of rigidly-rotating quark-gluon plasma is
still missing.

In the absence of rotation, the finite-temperature QCD
transition appears to unify the chiral and deconfining
crossovers that occur close to each other [17]. However,
the theoretical results on chiral and deconfining transi-
tions in rotating plasma contain certain controversies.

All existing theoretical studies agree that vorticity re-
duces the critical temperature of the chiral phase transi-
tion [4–11]. The physical mechanism of this phenomenon
takes its roots in the Barnett effect [18] discovered in
1915: the rotation aligns the spins of quarks and anti-
quarks along the rotation axis and suppresses the pair-
ing of fermions in the scalar channel, thus inhibiting the
quark condensate [5]. Thus, the faster rotation, the lower
the chiral critical temperature.

However, the first-principle numerical simulations of
purely gluonic matter show a different picture implying
that the critical temperature of the deconfining transi-
tion should increase with the angular velocity [12, 14]:
the faster rotation, the higher the deconfining critical
temperature. At the same time, other independent ap-
proaches to the deconfinement problem in rotating quark-
gluon plasma, a holographic technique of Ref. [10] and the
hadron-resonance gas used in Ref. [15], indicate, in a con-
tradictory manner as well, that the deconfining critical
temperature should decrease with the angular velocity.
Moreover, the Tolman-Ehrenfest argument, re-derived in
a confining model in Ref. [13], suggests that rotation
leads to yet another outcome: a qualitative change of
the QCD phase diagram featuring a new mixed confining-
deconfining phase with both phases present at the same
time in a broad domain of the parameters of the model.
Thus, the connection between the chiral and confining

properties and intrinsic coherent explanation of the con-
fining mechanism are missing.

Let us now look briefly at the problems of chiral sym-
metry breaking and confinement from the point of view of
the topology of the Yang-Mills gauge group1. The nat-
ural topological objects of zero-temperature Euclidean
Yang-Mills theory are instantons representing self-dual
solutions to the classical Yang-Mills equations of mo-
tion [22]. The Euclidean instanton configuration can be
associated with a process in a Minkowski spacetime.

The instanton is a solution to the classical equations
of motion, ∂µFµν + [Aµ, Fµν ] = 0 for the Yang-Mills
field Aµ = gtaAaµ, where ta are the generators of the
SU(Nc) gauge group with a = 1, . . . N2

c − 1. The self-
dual instanton solutions are determined by the relation
F̃µν ≡ εµναβF̃αβ = ±Fµν imposed on the field strength
tensor Fµν = ∂µAν−∂νAµ+[Aµ, Aν ]. A convenient form
of a general instanton solution is

Aaµ = −η̄aµν∂ν lnφ , (1)

where η̄aµν is the ’t Hooft symbol [23] and φ is the scalar
potential which satisfies the equation �φ = 0.

The topology of the Euclidean gluon configuration
is characterized by the integer-valued Pontryagin index
(topological charge),

Q =
1

16π2

∫
d4xTr

(
F̃µνFµν

)
= ± 1

8π2
S , (2)

where the Euclidean action is:

S =
1

2g2

∫
d4x

∫
d4x s(x), s(x) = −�� log φ. (3)

AnN -instanton configuration is given by the potential:

φ = 1 +

N∑
k=0

λ2
k

(x− xk)2
, (4)

where kth instanton is characterized by its size λk and
position xk.

1 Here, we do not consider alternative approaches based on partial
gauge fixing of non-Abelian symmetry and subsequent use of
topology of the residual Abelian symmetry group to uncover the
topological content of the gluonic configurations [19–21].
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The role of instantons in QCD is impossible to over-
state [24]. Instantons are believed to be responsible
for the chiral symmetry breaking since they host exact
fermionic zero modes. An instanton gas or liquid lifts
the degeneracy of zero modes producing a finite density
of near-zero-mode states that, in turn, lead straightfor-
wardly to the breaking of the chiral symmetry [25]. As
temperature increases, the instantons form instantonic
molecules (see, for example, Ref. [26]), which possess a
gapped fermionic spectrum. Thus, the instanton picture
of the QCD vacuum correctly implies the chiral symme-
try breaking at low temperatures and reproduce the chi-
ral symmetry restoration at high temperature.

At finite temperature T , the Euclidean time direction
τ ≡ −it is compactified into a circle S1 of the length
β = 1/T with periodic boundary conditions imposed on
the gluon fields,

Aµ(x, τ) = Aµ(x, τ + β) . (5)

At finite temperature, the instanton solutions become
periodic instantons, so-called Harrington-Shepard (HS)
calorons [27, 28]. The periodicity of the gluon field (5)
translates into the periodicity of the scalar potential (1):

φ(x, τ + β) = φ(x, τ) . (6)

The solution (4) for a single periodic HS instanton (6)
corresponds to infinite amount of copies of the same ra-
dius λk = λ with the positions xk = (x0, τ0 + βk). One
gets for the HS scalar potential:

φHS
β = 1 +

∑
k∈Z

λ2

(x− x0)2 + (τ − τ0 − kβ)2
, (7)

or, explicitly:

φHS
β = 1 +

πλ2

β
H(x− x0, τ − τ0, β) , (8)

where we introduced the Harrington-Shepard function:

H(x, τ, β) =
1

|x|
sinh(2π|x|/β)

cosh(2π|x|/β)− cos(2πτ/β)
. (9)

In the low-temperature limit, β → ∞, the HS solu-
tion (8) reduces to a zero-temperature single-instanton
configuration with the topological charge Q = ±1:

lim
β→∞

φHS
β = φinst ≡ 1 +

λ2

(x− x0)2 + (τ − τ0)0
, (10)

In the opposite limit of high temperatures,

lim
β→∞

φHS
β = φmon

BPS ≡ 1 +
πλ2

β

1

|x− x0|
, (11)

one finds the asymptotics of a dyon [29]: the caloron
solution loses its dependence on the time coordinate
and becomes a static, three-dimensional dyon-like con-
figuration in the Bogomolny-Prasad-Sommerfield (BPS)

limit [30, 31]. Despite its explicit self-duality, the BPS
solution and its asymptotic are often referred to as a BPS
monopole. One can also obtain the BPS expression (11)
directly from Eq. (8) replacing over the individual in-
stantons by the integral,

∑
n →

∫
dn, and performing

the integration explicitly.
Monopole degrees of freedom provide the basis for

one of the most popular mechanisms of color confine-
ment which suggest that the confining force between a
quark and an anti-quark appears due to a condensate
of monopole-like gluonic configurations. At high tem-
perature, the condensate evaporates and the color con-
finement disappears in agreement with the existing phe-
nomenology [19, 20]. This scenario, however, cannot
work with the static BPS monopoles inherent to the
high-temperature limit since any ensemble of the static
monopoles contribute trivially to the confining order pa-
rameter, the Polyakov loop Px = exp{

∫ β
0
dτ A4(x, τ)}

(and at high temperature, the confining property is lost
anyway). The simplest instanton-gas picture of gluon
vacuum cannot explain the color confinement as well [32].

At finite temperature, the BPS monopoles reveal them-
selves explicitly [33] as constituents of the so-called
Kraan-van Baal-Lee-Lu (KvBLL) calorons [34–37]. The
KvBLL caloron is a generalization of the periodic HS
instanton [27, 28] extended to configurations that pos-
sess a nontrivial holonomy at spatial infinity, P∞ ≡
limx→∞ Px 6= 1l. A gas of the KvBLL calorons has been
shown to produce the confinement property [38] similarly
to confining models based on dyon configurations [39, 40]

Given the promising applications of instantons,
calorons, and their holonomically twisted counterparts
to chiral symmetry breaking and confinement of QCD, in
this article, we construct the finite-temperature instan-
ton (caloron) solutions in the rotating Yang-Mills vac-
uum regarding their possible relevance to vortical quark-
gluon plasma. We work with the case of trivial holonomy,
P∞ ≡ 1l, and consider Yang-Mills theory with SU(2)
gauge group. The generalization to SU(Nc) is straight-
forward.

Consider a system that rotates with the angular ve-
locity Ω about the axis z. In cylindrical coordinates
of the inertial laboratory frame in Minkowski spacetime,
(ρ, ϕ, z, t), a uniform rotation of an object is encoded in
the uniform growth (modulo 2π) of the polar coordinate,
ϕ̃ = [ϕ− Ωt]2π where the tilded coordinate refers to the
system co-rotating with the object. The causality prin-
ciple restricts the maximal extent of the object in the
radial coordinate, |Ωρ| < 1 to guarantee the positivity of
the purely time component of the metric gtt(ρ) = 1−Ω2ρ2

(we remind that c = 1 in our units).
After a Wick rotation to the Euclidean spacetime, the

time coordinate becomes imaginary. The rotation be-
comes imaginary as well: the angular frequency Ω be-
comes a purely imaginary parameter, ΩI = −iΩ [12–
14, 16, 41]. The imaginary nature of rotation makes
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it possible to avoid the sign problem and opens a way
for first-principle lattice simulations of rotating sys-
tems [12, 14, 41]. Under the Wick transformation, the
real rotation in the real-time maps to the imaginary ro-
tation with the imaginary angular frequency ΩI in the
imaginary time τ such that Ωt → ΩIτ . In terms of
the polar coordinate, the rotation in Euclidean space be-
comes ϕ̃ = [ϕ− ΩIτ ]2π, implying that the periodic con-
straint for the gluon field (5) should be replaced, in a
rotating medium, by the rotationally twisted periodicity:

Aµ(ρ, ϕ, z, τ) = Aµ(ρ, ϕ− ΩIβ, z, τ + β) . (12)

The uniform imaginary rotation with arbitrarily large
ΩI does not violate causality because there is no notion of
causality in the Euclidean spacetime. In other words, the
light cone does not exist in the Euclidean space (see also a
discussion in Ref. [16]). Moreover, at finite temperature,
the theory is periodic in ΩI since the spin-statistic rela-
tions for bosonic and fermionic theories imply the equiv-
alence of the thermal state with respect to the following
transformations [13]:

ΩI → ΩI + 2πβ−1k, (bosons), (13)
ΩI → ΩI + 4πβ−1k, (fermions), (14)

where k ∈ Z. The first relation for bosonic fields
is seen from Eq. (12). For fermionic fields possessing
anti-periodic boundary conditions, the system returns
to its state after a double rotation. Interestingly, at
ΩI = 2πβ−1, the fermions become ghost particles as they
are converted to spinors obeying bosonic statistics [13].

How the imaginary rotation affects the periodic instan-
ton (caloron)? The scalar potential φ is now determined
by the rotationally twisted condition (12) which replaces
the finite-temperature periodic constraint (6):

φ(ρ, ϕ, z, τ) = φ(ρ, ϕ− ΩIβ, z, τ + β) . (15)

In order to satisfy Eq. (15) we supplement the sum (7)
with the rotational twists. A single caloron under the
imaginary rotation is thus described by the potential:

φβ,ΩI = 1 + λ2
∑
k∈Z

[
ρ2 + ρ2

0 − 2ρρ0 cos(ϕ− ϕ0 + ΩIβk)

+(z − z0)2 + (τ − τ0 − βk)2
]−1

, (16)

where we use the cylindrical coordinate system and con-
sider the system rotating about the axis z centered at
the origin ρ = 0. The original 4-position of the “seed” in-
stanton is xµ0 = (ρ0, ϕ0, z0, τ0). Since we will be consider-
ing mainly the solutions seeded by a single instanton, we
put, for simplicity, the seed instanton at the non-negative
part of the x axis, ϕ0 = 0. A generalization to the many-
instanton case is straightforward and follows identically
the general prescription of Eq. (4).

In the low-temperature limit, β → ∞, the rotated in-
stanton (16) reduces to the one-instanton solution (10)
regardless of the value of ΩI .

If the instanton is centered at the rotation axis, ρ0 = 0,
then this spherically symmetric system is insensitive to
the rotation, and the solution (16) reduces to the caloron
solution given by the finite-temperature periodic instan-
ton (8). Below we consider several nontrivial cases with
ρ0 6= 0.

The explicit form of the potential (16) can also be given
for a set of imaginary angular frequencies ΩI = 2πβ−1κ
where κ is a rational number. Obviously, at ΩI = 2π/β
(κ = 1), the system is insensitive to rotation due to the
bosonic symmetry (13). The first non-trivial case is given
by ΩI = π/β (κ = 1/2), which gives us cos(ϕ+ ΩIβk) =
(−1)k cosϕ in the denominator of the sum (16). The sum
in Eq. (16) thus decouples into two sums over even and
odd k with the result:

φβ,ΩI

∣∣∣∣
ΩI=π

β

= 1 +
πλ2

β

[
H(x− x0, τ − τ0, 2β)

+H(x + x0, τ − τ0 + β, 2β)
]
, (17)

where H is the HS function (9). The sense of Eq. (17) is
clear: the π-rotating (flipping) instanton chain consists of
two sub-chains that can be summed over independently.
This example provides us with the idea of how to build
the rotating instanton solution for any rational (in units
of 2π/β ≡ 2πT ) angular frequency:

ΩI =
2π

β

m

n
, m = 0, . . . n− 1, n = 1, 2, . . . , (18)

where the ratio m/n represents an irreducible fraction.
The general solution for the angular frequency (18) is:

φβ,ΩI

∣∣∣∣
ΩI= 2π

β
m
n

= 1 +
πλ2

β
(19)

×
n−1∑
l=0

H
(
x− x̄(lm)

n , τ − τ0 + lβ, nβ
)
,

where we introduced the set of images x̄(k)
n of the position

of the seed instanton, x0 = (x0 ≡ ρ0, 0, z0), rotated about
the z axis by the angle 2πk/n:

x̄(k)
n =

(
x0 cos

2πk

n
, x0 sin

2πk

n
, z0

)T
. (20)

In the simplest nontrivial case, x̄
(1)
2 = −x̄(0)

2 ≡ −x0

enters the n = 2 solution (17) as the mirror image of the
position x0 of the seed instanton.

The geometric localization of the topological charge (2)
and action (3) densities in the classical self-dual config-
urations closely follows the behavior of the scalar func-
tion φ. In order to get an insight into the effect of the
rotation on the localization properties of the solutions,
we show in Fig. 1 the scalar potential φ in the spatial
volume for various rational frequencies ΩI .

The rotation produces several fascinating effects:
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ΩI = 2π
β

⋅ 1
2 ΩI = 2π

β
⋅ 1

3 ΩI = 2π
β

⋅ 1
4 ΩI = 2π

β
⋅ 1

5ΩI = 0
x
y

z

Figure 1. Equipotential lines of the scalar potential (19) of the rotating caloron solution at fixed τ = β/2 and various imaginary
angular frequencies ΩI .

1. First of all, the imaginary rotation with the ratio-
nal frequency generates exactly n identical lumps
over the spatial ring, where n is the denominator of
the irreducible fraction m/n of the frequency (18).
Since the lumps represent identical structures, their
charge is fractionalized. Each lump carries the
topological charge of 1/n of the original solution.

2. The number of the lumps does not depend on
the numerator m that determines the rational fre-
quency (18). This property implies that the rota-
tion with the frequencies, for example, ΩI = 1

5 ·2πT
and ΩI = 2

5 · 2πT lead to the identical solutions.

3. As one can see from the analytical formula (19), the
rotation with the rationalm/n frequency effectively
cools down the caloron configuration by reducing
its temperature from T down to T/n.

Thus, the imaginary rotation with the rational (in
units of 2πT ) angular frequency leads to the fraction-
alization and delocalization of the topological charge of
the finite-temperature caloron and the temperature drop
in the solution. The latter property might imply that the
imaginary rotation effectively decreases the temperature
in the topological sector of the gluonic plasma.

We suggest that a rotating caloron at an irrational
frequency (for example, at ΩI =

√
2πT or ΩI = 0.1T )

reduces, regardless of the temperature T , to a zero-
temperature configuration with an infinite number of in-
stantons placed along a circular ring of a finite radius.
The radius is equal to the distance from the seed instan-
ton’s center to the rotation axis. This “instanton-ring” so-
lution, known to produce a monopole along the ring [42],
can provide us with another intriguing link between ro-
tation and the problem of color confinement.

The strong sensitivity of the basic properties of the ro-
tating calorons, such that the effective temperature and
the localization of topological charge, calls for a care-
ful study of the analytical continuation of observables
from the imaginary to real angular frequencies, ΩI → Ω,
at least in the topological sector of Yang-Mills theory.

For example, the angular frequencies ΩI = 2πT/10 and
ΩI = 2πT · 99/1000, that differ only by 1%, produce
substantially different caloron configurations that fea-
ture, respectively, 10 and 1000 constituents each of which
carries 1/10 and 1/1000 fraction of the unit topological
charge.

Finally, let us consider the high-temperature limit of
the rotating instanton solution. In the non-rotating
case, the HS periodic instanton (8) reaches its BPS
monopole limit (11) when the inverse temperature β be-
comes smaller than the typical length scale λ of the so-
lution, β � λ. For solution (8), this scale corresponds
to a smaller length out of the two length parameters,
λ ∼ |x − x0| ∼ |τ − τ0|, which in dynamical configura-
tions, are dictated by the scale factor λ in Eq. (7).

The rotating instanton (19) is characterized by three
parameters: its size λ, the inverse temperature scale β,
and the imaginary angular frequency ΩI . While the hi-
erarchy β � λ is rigidly fixed by the requirement of
the high-T limit, the properties of the high-T solution
may vary significantly depending on the value of the fre-
quency ΩI .

In the case of slow rotation, the frequency is small
compared to the length scales of the solution, ΩIλ � 1.
Assuming rationality of the angular velocity (18), the
high-T limit is achieved in the limit mβ � λ, where m
is defined as the denominator in the irreducible fraction
in Eq. (18). The scalar potential of the slowly rotating
high-temperature instanton is then obtained by replacing
the HS functions in Eq. (19) with their BPS limits (11):

φhighT
slow

∣∣∣∣
ΩI= 2π

β
m
n

= 1 +
πλ2

β

1

|x− x̄
(m)
n |

, (21)

where the monopole positions x̄
(k)
n is given in Eq. (20).

Thus, the high-temperature limit of the slowly rotating
solution (19) is a simple sum of the static BPS monopoles.

On the contrary, the limit of the rapidly rotating in-
stanton, ΩIλ � 1, is a nontrivial example of an analyt-
ically solvable high-temperature (β � λ) solution pro-
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vided2 ΩIβ � 2π. In this limit, the term ΩIβk under the
cosine function in the sum over (16) represents a “fast”
variable that oscillates more rapidly compared to a “slow”
evolution of the rest of the expression. Performing first
the integration averaging over a full period of the fast
variable and then taking the integral over the slow vari-
able, we get for the scalar potential of the rapidly rotating
caloron the following analytical expression:

φ◦(ρ, z) = 1 +
2λ2K

(
− 4ρρ0

(ρ−ρ0)2+(z−z0)2

)
β
√

(ρ− ρ0)2 + (z − z0)2
, (22)

where K(x) is complete elliptic integral of the first kind3.
We call the high-temperature rapidly-rotating caloron so-
lution (22) “circulon”.

xy plane

z
ΩI

xy plane

z
ΩI = 0

imaginary

rotation

Figure 2. Equipotential lines for the topological charge (ac-
tion density) of (left) the HS caloron solution (8), (9) and
(right) the circulon solution (22). Fast imaginary rotation
smears the caloron over the ring and produces the circulon.

Remarkable, the circulon solution (22) does not depend
on the angular frequency ΩI implying that Eq. (22) is an
ultimate configuration in the limit of a high-frequency
rotation. Moreover, the high-T high-ΩI solution (22)
possesses the axial symmetry implying that the original
caloron gets smeared uniformly by the rotation. The core
of the circulon forms a ring at (ρ, z) = (ρ0, z0), Fig. 2.

At large distances rδ ≡
√

(ρ− ρ0)2 + (z − z0)2 from
the ring (ρ, z) = (ρ0, z0), the circulon potential (22) ac-
quires the asymptotic form of the BPS monopole (11):

φ◦ = 1 +
πλ2

β

1

rδ
+ . . . , rδ � ρ0 , (23)

where the ellipsis denotes the subleading O(r−3
δ ) terms.

The circulon potential (22) has a logarithmic diver-
gence close to its ring-shaped core:

φ◦ = 1− λ2

βρ0
log

rδ
8ρ0

+ . . . , rδ � ρ0 , (24)

2 These three hierarchical relations are consistent with each other.
For example, one can take β = 0.1 fm, λ = 1 fm, ΩI = 10 fm−1.

3 In other words, K(x) =
∫ π

2
0

dθ√
1−x2 sin2 θ

.

where the ellipsis corresponds to O(r2
δ) corrections.

Therefore, the rapid rotation softens the point-like di-
vergent pole of the static BPS solution (11) down to the
logarithmic singularity (24).

A generalization of our construction to many-circulon
solutions is straightforward. An example of a serious two-
circulon configuration is shown in Fig. 3.

z
ΩI

Figure 3. Equipotential lines of the topological charge (ac-
tion) density of a two-circulon solution with the cores at
(ρ0, z0) = (λ, 0), (3λ, 6λ) and inverse temperature β = 0.1λ.

In summarizing, we constructed the finite-temperature
instanton (caloron) solution in Euclidean Yang-Mills the-
ory subjected to imaginary rotation. The solution with a
rational-valued angular frequency ΩI can be represented
as an ensemble of the Harrington-Shepard calorons ar-
ranged equidistantly along a ring (19). We demonstrated
that the imaginary rotation cools down the caloron solu-
tion, reducing its temperature and leading, at the same
time, to the delocalization and subsequent fractionaliza-
tion of its topological charge. In the high-temperature
limit, a slowly rotating caloron reduces to an ensem-
ble of static BPS monopoles. A fast imaginary rotation
(which still belongs to a physically reasonable domain
with ΩI � 2πT ) produces the “circulon” solution with
a toroidal core. The circulon potential can explicitly be
expressed via the elliptic integral (22).
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