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Abstract

If the development of machine learning and artificial intelligence plays a role in many fields
of research and technology today, it has a special relationship with neurosciences. Indeed,
historically inspired by our knowledge of the brain, deep learning shares some vocabularies
with neurosciences and can sometimes be considered a brain’s model. Taking the particular
example of epileptic seizure, which can develop in any biological neural tissue, we raise the
question if and how the models used for deep learning can capture or model these pathological
events. This particular example is a starting point to discuss the nature, limits, and functions
of these models, and what we expect from a model of the brain. Finally, we argue that a
pluralistic approach leading to the integrated coexistence of different models is necessary to
study the brain in all its complexity.
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1 Introduction

Over the past decades, immense enthusiasm for deep learning (DL) has brought new insight into
our understanding of how the brain works. It has found a large field of application in neurosciences
[1–3]. In many cases, DL is used as a tool for data analysis. Indeed, using it to optimize some
operations such as classification on large and complex datasets is very practical and useful, and
very important results have been achieved in different fields ranging from biological data analysis,
object or face recognition to robotics, just to name a few [4–6].

However, a growing literature seeks to use DL as a model of brain functions [1, 2]. In this
literature, by digging into the machinery of the DL, a number of researchers aim to understand
how the human brain works, and in this way of thinking, DL has been considered a model of the
functions of the human brain. In this vein, the comparison of the brain and DL is not only a
metaphor but presents itself as a programmatic challenge: DL could develop until being able to
simulate all levels of brain functions. By refining itself, DL could simulate consciousness [7] or social
interactions [8]. In such a computationalist approach, the brain is conceived as a set of algorithms,
and the progression of the understanding of these algorithms will be able to approximate and
reproduce (at the phenomenological level) the functions of the human brain. But the question
remains: what do we mean by modeling the brain?
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In this article, we aim to demonstrate that DL cannot be considered a complete model of the
brain. To achieve this aim, we use a methodological tool corresponding to the counterfactuals:
if the brain no longer functions as it should function, can DL, in parallel, no longer work the
same way? This question avoids any fallacious and contingent comparison or analogy, and avoid
especially the list of programmatic arguments explaining why the DL will be able to raise its current
technical limits. In other words, if DL is considered a model of the brain, pathological states such as
epileptic seizure (a stereotyped and simplistic disorder of brain disease) may also exist as an intrinsic
property of DL. Epileptic seizures are related to groups of neurons that synchronously generate
repeated trains of action potentials, precluding the functions considered as normal in certain areas
of the human brain. Certainly, seizures can occur in any neuronal system [9], and models can
reproduce these paroxysmal dynamics from a single neuron model to the whole brain [10]. Thus,
the question should have been ”Is DL able to model a pathological human brain affected by an
epileptic seizure, in the sense of a synchronous and repeated discharge precluding the functions
considered as normal in certain areas of the human brain?”. However, as we will see right away,
Artificial Neural Network (ANN) used for DL cannot have epileptic seizures in this sense. The
purpose of this article is to discuss these apparent triviality reasons and if the DL can be a model
of human brain functions. We will provide clues to explain how DL should be considered and
interpreted in the context of this comparison with brain functions.

2 Why deep learning does not have seizures?

The neuron model (also called ”node” in machine learning) used in DL can be described as follows.
The node receives inputs from external data or from the previous nodes. Input values are weighted
(multiplied) by values of ”synaptic weights”, and then, they are summed before going through a so-
called activation function. The value obtained at the output of this function can be used as an input
value for the next node. This is a static description using multiplications, a sum, and an activation
function. This description is sufficient to reproduce a ”functional” aspect of the processing of
incoming information by a neuron. It has been called a formal neuron [11]. Once formed into
a network for a particular application, the ”learning rules” determine the evolution of synaptic
weights depending on the output obtained. The historical and most used method for updating
synaptic weights is the backpropagation [12], but others such as evolutionary computation [13] or
direct feedback alignment [14] can be very efficient. These rules are applied to the different layers
of the network. Indeed, networks are constituted of different layers of nodes, often projecting from
one to the other. Different architectures have been developed, as for example recurrent neural
networks (RNN), convolutional neural networks (CNN), generative adversarial networks (GAN),
and autoencoders, for a large range of applications [15].

In the brain, seizures are characterized by paroxysmal electrophysiological activity. In DL, it
would therefore be tempting to think that the state corresponding to the seizure could appear
when all the nodes have a very high activation level (i.e. all activation functions are at their
maximum). However, such an activation level is only one possible state of the network, like
any other, not presenting any pathological aspect. More precisely, whether or not the state of the
network allows the desired output, the model is considered relevant and useful for an assigned task,
or the synaptic weights are updated until the desired output is obtained. But in any case, the
differentiation between normal and pathological in human epileptic seizures cannot be transposed
to the question of normal and pathological in DL. DL can only be a seizures classifier, detector, or
eventually be used for prediction, given some specific input data [16–18].

To go further in the comparison between these two completely different systems (brain seizures
and ”DL seizures”), we have to highlight that in the brain, seizures can be propagated while
synaptic communication fails [19,20]. Indeed, homeostatic disturbances, leading to unhealthy con-
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centrations, will disturb membrane excitability, and reinforce the inability of glial cells to help
to contain the seizure. In addition to the electro-diffusion mechanisms, there are also ephaptic
interactions that participate in the propagation [10,19–21]. Many complex interactions and mech-
anisms are involved, going beyond the simplistic reductionist framework of interacting neurons
only through synapses. Thus, seizures can spread in the brain even if all synaptic connections fail.
In DL, such spreading is not conceivable.

It should be added two points precluding comparison of brain seizures and DL seizures. First,
seizures are a dynamical phenomenon [9, 22]. Indeed, time evolution is a central element. But
unlike the brain, the evolution of the state and the synaptic weights in DL takes place step by
step. If a dynamical process does exist, it is a discrete process. This time is therefore that of
the model, and not the real biological time that the model would have captured. Thus, the scale
of the dynamics is not intrinsic to the nature of the model. However, a correspondence between
the interval between steps and the real-time of the biological process can be established. In order
to consider these temporal aspects, models based on temporal differential equations (i.e., models
from the field of dynamical systems) could be more appropriate to capture the seizure phenomena
at different scales [10,23]. Such models can also include learning mechanisms [21,24,25]. However,
these models are not initially developed to achieve complex classification tasks, while DL captures
this aspect of the brain’s capacities.

Secondly, brain epileptic seizures correspond to a synchronous discharge at the level of the
biological neurons, and more particularly at the level of biological tissue (e.g., ion channels).
However, the DL does not necessarily have such a physical implementation, but only constitutes
information exchange networks. The question that arises is that of DL implemented within, for
example, a robot: could this physical (e.g., electrical) implementation of the DL have epilepsy,
corresponding to the fact that the electrical system ”burns”? We do not believe it. For instance,
at the molecular level, the brain relies on an exchange of ions depending on the state of the system,
and both together provide information to the brain [26–28]. According to Marr description [29],
this happens at the implementation level. DL is based on an exchange of (numerical) values, at
the algorithmic and computational levels. In terms of pathology, if an overflow of information is
present in the brain, there can be a synchronous discharge, i.e., an epileptic seizure. Conversely,
there is no change at the implementation level for DL, so if too much information is presented to
the network, there will be no synchronous burst, but classical information processing. However,
this finding does not mean that the (unimplemented) DL model itself may have ”seizures”. Apart
even from the problem of embodied DL models, this impossibility of DL being overtaken by a flood
of information removes any comparison between DL and the brain.

Considering all these differences, should we think that DL are bad models? Of course not, but
when and why can it be considered a good model? First, there are just not adapted to capture
seizure phenomenon. Their function is diverted being used for a task that cannot correspond to
the nature of such models. However, if DL cannot grasp pathological states, it cannot grasp the
counterfactual model of the brain, which is the epileptic brain. Thus a correspondence between
the model and the phenomenon depends on the state of the considered object. Indeed, if the
communication between neurons is altered (i.e. during epilepsy), then DL failed in capturing this
aspect. In addition, one particular aspect of DL must be mentioned. The model itself, based on
formal neurons, constitutes networks with particular properties and architectures, and the complex
functions approximated by this type of network, after their implementation.

The ability to view DL as a good model of the brain would therefore be limited to the study of
a healthy brain, and only that. In this case, if the DL may be a model of the brain, the question is
therefore to know what this model captures. If the DL can process information and approximate
functions that the brain is able to perform, does it do so the same way?

Indeed, if we consider the DL beyond a black box that provides us interesting outputs depending
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on the inputs, and if we look at what is happening inside, we may wonder how what is there, has
a connection with the brain. A recent and fast-developing field of research on explainable neural
network offers new directions [30–32]. The aim is to understand and make interpretable what is
happening in the network from input to output. This does not mean that the brain works the
same way.

Certainly, DL has network properties allowing the processing of information that can help us
build knowledge about the brain. If we established the correspondence between (biological) neurons
and nodes, it is therefore situated at a computational level and at the neural network scale. These
notions of what models capture, and of scale and level are discussed in the next section.

3 What do we expect from a model of the brain?

We propose in this last section two necessary axioms in order to consider DL capable of explaining
certain functions of the human brain: the double relativity of the models, and the distinction
between scale and levels.

What would mean a model of the brain, whether or not dynamic? The brain is an extremely
complex system with a manifold of mutual interactions, from microscopic to whole-brain interac-
tions, with a large number of high-level cognitive functions and the emergence of consciousness.
Consequently, due to the impossibility of considering all these levels and phenomena, the con-
struction of a model implies a reduction. It necessarily considers only the relevant elements to a
particular phenomenon applied to a particular study objective. Such a contingency has been called
the ”double relativity”: DL are constrained by the context of use and by the objective [33].

The relativity corresponding to the objective of the study questions the usefulness of the model.
Does the model bring us knowledge, understanding, and predictions? These questions require
specifying exactly what are the functions of a model during its construction. Therefore, functions
are limited by the intrinsic nature of models, because it has been designed to reproduce only certain
aspect. Epistemological approaches have been able to detail these different aims organized in 21
specific functions [34]. The mains and most frequent epistemic functions of models are explanation
(regarding underlying mechanisms, rules, and causality), prediction (interpolation, extrapolation,
case-specific prediction), understanding (share a common ”vision”, mental reconstruction of a
considered phenomenon), and data representation and generation. In most situations, DL can be
used for data classification, representation, and generation, or for prediction [15,35–37] but hardly
for explanation (as it captures too few aspects of the original object of study, the brain). However,
there are some efforts in this direction showing for example a possible neural implementation of
backpropagation [38,39].

In neurosciences, different scales are considered from molecular, cellular, tissue, and anatom-
ical regions to whole-brain. At each of these scales, it can be considered three different levels of
description, that can be understood in terms of Marr’s levels [29]. They correspond to the im-
plementation, algorithmic, and computational levels. The first would correspond to the biological
substrate, the second to the (complex) relationship between the different elements, and the last
to the emerging function. Thus, we have three levels of description that can be captured by the
models. These levels of description may apply at different scales. The relationship between scale
and level is not trivial, there is maybe not a correspondence such as lower level corresponds to
lower scale (and vice versa). For example, there is a cellular scale and a cerebral connections scale:
there are levels of Marr allowing to understand a problem in terms of implementation (biologi-
cal) or computation (function). This aspect should be considered while interpreting results from
modeling studies. Scales and levels undertake to design a phenomenological model (i.e., modeled
toward a pragmatic objective) or mechanistic (i.e., modeled towards a resemblance of properties,
often biophysical) [40]. Thus, when observing the apparent global behavior of a model, it may be
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interesting to look a the underlying scales within the model to explain the emergence phenomenon.
However, many different underlying mechanisms may lead to similar apparent behaviors. This is
known as neural degeneracy in biology or multiple realizability in epistemology, and it happens
even in computational models [41, 42]. These concepts are particularly important because they
may strongly limit the capacity for explanation or the generalization of a model.

However, minimal or necessary conditions for a given phenomenon can be found thanks to the
model. For example, in the case of seizures, the consideration of two different time scales, a fast
one, corresponding to the electrophysiological activity and a slow one, that enables the transition
between ictals and inter-ictals periods, can be understood thanks to dynamical systems-based
models [9,10,23]. This time scale separation does not exist in neural networks used for DL, and it
is not appropriate to capture such a phenomenon. This characteristic of time scale separation can
be identified in both objects, the biological nervous tissue, and the models. This also opens the
question of biological plausibility. As models are non-biological objects that capture some level(s)
of description (biological representation) for specific scale(s), models boundaries will necessarily
cut or approximate the underlying mechanisms as they are in biology. But they can share, for the
considered scales and levels, some common aspects with biology.

It is thus of first importance, to analyze our model through this prism of the optimal extraction
of knowledge about the object of study. In the case of DL, the model of synapse used may not
inform us about the biological synapses. But this model of synapses plays the role of functional
interactions between the nodes, and we can identify from such model this necessity of evolution of
the strength of this interaction for the information processing, and, enable to describe the network
of interaction between cells. Non-neural tissue may also support different cognitive functions such
as learning, memory, or decision-making [43–45].

This aspect relates to the theoretical level (see Fig.1), some models are built to mainly describe
cognitive functions or a cognitive architecture (such as the generative adversarial networks (GANs)
[37], Generative Pre-trained Transformer 3 (GPT-3) [46], Adaptive Control of Thought-Rational
(ACT-R) [47], convolutional neural network (CNN) [48]) while others have the primary objective of
capturing the electrophysiological activity of the brain (such as the Hodgkin-Huxley neuron model
(HH) [49], the Izhikevich spiking neuron model (Izh) [50], or the virtual brain using mean-field
model (TVB) [51]). In our figure, we can observe that we have no models in the upper right corner.
We still don’t have whole-brain models with the aim to be biophysical and functional. The free-
energy principle is an attempt to link both approaches [52]. Artificial general intelligence is also
a field where we could see the emergence of such an integrative model [53]. Being able to model
these two aspects is particularly challenging, interesting approaches in this direction are based on
spiking neural networks designed to reproduce functional tasks.

The existence of double relativity (models are constrained by the context of use and by their
objective) and the consideration of separation between scales and levels allows considering a form
of scientific pluralism. As this could be modeled within the framework of the Research Domain
Criteria (RDoC) proposed by the National Institute of Mental Health [54]. it seems necessary to
consider the different functions of the brain at all their scales of understanding. To model each
of these functions at all these scales, a large number of DL models can be constructed. However,
in order that this matrix could link models reproducing the functions at all scales, it is still
necessary to add the different levels of description for each of the functions, for all scales. In other
words, pluralism in terms of modeling is necessary to achieve faithful reproduction of the (non-
pathological) functions of the brain. A pluralism of approaches (using other forms of models than
DL) is necessary to complete the picture at different scales and levels. However, this observation
does not remove the possibility that some brain pathology cannot be modeled intrinsically by DL
(by modeling the information flow).

Finally, an important point is that the brain contains enough information to develop by itself
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Figure 1: Different models related to the brain are characterized by their biological representation
(how much is the description close to the biophysics), the theoretical level (how much the model
captures the function), for different scales (from the molecule to the whole brain). Few examples are
shown here: (HH) Hodgkin-Huxley neuron model [49], (Izh) Izhikevich spiking neuron model [50],
(TVB) The Virtual Brain [51], (GANs) Generative adversarial networks [37], (GPT-3) Generative
Pre-trained Transformer 3 [46], (ACT-R) Adaptive Control of Thought—Rational [47], (CNN)
Convolutional neural network [48]. Two clusters appear, one integrating models of functions,
which do not capture the electrophysiological activity, and on the other part of the model space
we have models designed to reproduce the dynamics of electrophysiological activities.

within its environment, and at the same time is a central organ of internal regulation, perception,
action, and behavior. But it also can have seizures, migraines, or strokes and can reorganize itself
at different scales, while, to a certain extent, maintaining its functions. In silico models, built by
humans are not capable of this variety of functions at such different time scales. These models
cannot be exactly equivalent to a biological brain, being built differently on a different substrate
it will not perfectly reproduce the same functions using the same exact underlying mechanisms.
Again, the models are centered on a level of description at a given scale. If DL can be interesting
from a computational point of view, it will not explain and understand the underlying biological
mechanism at smaller scales (subcellular, molecular). Thus if it may be useful to reproduce, predict
or understand certain aspects of the brain, we should not restrict our vision to this approach to
consider the brain. Such a broader pluralist vision also enables to improve models by relating them
to their neighbors in terms of level and scale and questioning their possible integration. In Fig. 1 we
show the relative position of different types of models to each other. It seems particularly difficult
to integrate all these models into a single simulation framework. The resulting system would be so
complex that it would be extremely difficult to extract any knowledge about the biological brain.
Therefore, it seems necessary to consider the coexistence of different models, each developed for
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specific objectives. This pluralism is isolationist because explanations are understood at a given
level of analysis, relatively impervious to explanations at other levels [55]. The possibility of direct
integration between models can only be very local.

4 Conclusion

DL is very powerful to model computational or cognitive aspects of the brain, and also for data
analysis. However, to build a theory of the brain, the modeler has to keep in mind the two axioms
we described earlier: the double relativity of the models, and the distinction between scale and
levels. The corollary is that an explicative model needs to be enough constrained to grasp and
explain neural phenomena. DL is a very good example of that, it can model functions such as
learning, classification, prediction, or other cognitive functions, but lacks the resolution to model
brain pathologies such as epilepsy. Scientific pluralism is therefore a key element for constructing
a theory of the brain.

Overcoming this potential problem in the research practices, constant questioning about the
function and the boundaries of the used model is absolutely necessary to understand the provided
results. Finally, models are built on specific assumptions to answer specific questions. Indeed
considering a general model of the brain is very different. We build a model of some aspects of the
brain to fulfill given functions. DL offers a specific and computationalist point of view that can
be interpreted at different scales and levels. By refining the knowledge of the boundaries of our
model, we may better understand their best range of applications from which we would be able to
extract a genuine and deeper knowledge about this complex object of study: the brain.
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