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Abstract. Adding propositional quantification to the modal logics K, T or S4 is known to
lead to undecidability but CTL with propositional quantification under the tree semantics
(QCTLt) admits a non-elementary Tower-complete satisfiability problem. We investigate
the complexity of strict fragments of QCTLt as well as of the modal logic K with propositional
quantification under the tree semantics. More specifically, we show that QCTLt restricted
to the temporal operator EX is already Tower-hard, which is unexpected as EX can only
enforce local properties. When QCTLt restricted to EX is interpreted on N -bounded trees
for some N ≥ 2, we prove that the satisfiability problem is AExppol-complete; AExppol-
hardness is established by reduction from a recently introduced tiling problem, instrumental
for studying the model-checking problem for interval temporal logics. As consequences
of our proof method, we prove Tower-hardness of QCTLt restricted to EF or to EXEF
and of the well-known modal logics such as K, KD, GL, K4 and S4 with propositional
quantification under a semantics based on classes of trees.

1. Introduction

Propositional quantification in modal and temporal logics. A natural way to design
logics that dynamically update their models, consists in adding propositional quantification
as done for example to define QBF from SAT. Propositional quantification is a very powerful
feature to update models but this may have consequences in terms of computability. In the
realm of modal logics [12], the paper [16] remains a quite early work adding propositional
quantification. The undecidability of the propositional modal logic K (resp. T, K4 and S4)
augmented with propositional quantification is first established in [25], and this is done
thanks to a reduction from the second-order arithmetic. By contrast, the decidability of
second-order versions of the modal logic S5 is first proved in [24, Chapter 3] (see also [25, 31])
but two S5 modalities and propositional quantification already lead to undecidability [1, 30].

Many subsequent works have dealt with second-order modal logics, see e.g. [30, 34, 27, 57],
but in the realm of temporal logics, LTL with propositional quantification (written QLTL) is
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introduced in Sistla’s PhD thesis [54] (see also [53]) and non-elementarity of the satisfiability
problem is a consequence of [43]. So, the QLTL satisfiability problem is decidable but with
high complexity. By contrast, CTL with propositional quantification (written QCTL) already
admits an undecidable satisfiability problem by [25] (as CTL captures the modal logic K)
but its variant under the tree semantics (written QCTLt) admits a non-elementary Tower-
complete satisfiability problem [37, 19] (the complexity class Tower is introduced in [50]).
Having a tree semantics means that the formulae of QCTLt are interpreted on computation
trees obtained from the unfolding of finite (total) Kripke structures, which allows us to
regain decidability (see a similar approach in [63] with a quantified version of the modal
logic S4). This is a major observation from [37], partly motivated by the design of decision
procedures for ATL with strategy contexts [38]. The tree semantics, as far as satisfiability
is concerned, amounts to considering Kripke structures that are finite-branching trees in
which all the maximal branches are infinite. This is an elegant way to regain decidability.
More generally, decidability in the presence of propositional quantification can be regained
when tree-like models are involved, see e.g. [4, 6, 63, 37], essentially by taking advantage of
Rabin’s Theorem [47].

The modal logic K with propositional quantification from [25] is interpreted under the
structure semantics, as classified in [37], but many variants of propositional quantification
exist in the literature (see e.g. [45, 28, 14] and [9, 10] in the context of epistemic reasoning).
Sometimes, propositional quantification is syntactically restricted in the temporal language,
but its inclusion is motivated by a gain of expressive power while preserving the decidability
of the reasoning tasks. By way of example, in [48], an extension of the modal µ-calculus
with partial propositional quantification is introduced to perform control synthesis, whereas
an extension for model-checking computer systems is also presented in [35].

Interestingly enough, propositional quantification can sometimes have a more hidden
presence. For instance, hybrid logics with the down-arrow operator ↓x, see e.g [2, 3, 41, 62, 32],
can be understood as a form of propositional quantification since ↓x φ enforces that the
propositional variable x holds true only at the current world (before evaluating the formula
φ). In such logics, the companion formula @xψ expresses that the unique world satisfying x
also satisfied ψ; @x is a powerful operator to navigate in the structure [41] (obviously, it is
related to the universal modality, see e.g. [29]).

Our motivations. As recalled above, the modal logic K augmented with propositional
quantification is undecidable [25] and a fortiori, undecidability holds for fragments of CTL
with propositional quantification. Actually, these results hold under the structure semantics
but QCTLt (tree semantics) admits Tower-complete satisfiability and model-checking
problems [37]. As QCTLt can express that every tree node has exactly one child, Tower-
hardness for the satisfiability problem for QCTLt, is a corollary of the Tower-hardness of
the satisfiability problem for QLTL, see e.g. [43, 53, 20].

Given the central position of the modal logic K, surprisingly, the complexity of the
satisfiability problem for K with propositional quantification under the tree semantics has
never been investigated (closely related to QCTLtX – i.e. QCTLt restricted to EX– as EX
corresponds to 3 in K but with total models). QCTLtX is a natural and modest fragment
of QCTLt and we aim at characterising its complexity. Furthermore, the model-checking
problem for QCTLt is Tower-hard even with input Kripke structures having at most two
successor worlds per world and Tower-hardness of QLTL holds with linear structures of
length ω, see e.g. [53]. Thus, it is worth understanding what happens with the satisfiability
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problem for QCTLtX when the tree models are N -bounded (i.e. each node has at most N
children) for some fixed N ≥ 2.

Our contributions. Given QCTLt, the extension of CTL with propositional quantification
under the tree semantics (i.e. the models are finite-branching trees where all the maximal
branches are infinite), let QCTLt≤N be its variant in which the models are N -bounded, for

some N ≥ 2. We write QCTLtX and QCTLtX,≤N , to denote respectively the restriction to the

operator EX, and QCTLtF to denote the restriction of QCTLt to EF.

• We first present to the reader the toolkit of local nominals and explain the basic ideas
behind the hardness results of this paper by proving, for all N ≥ 2, that the satisfiability
problem for QCTLtX,≤N is AExppol-complete (Section 3). AExppol is the class of problems
solvable by exponential-time alternating Turing machines with a polynomial number of
alternations. By using a small model property and the complexity of model-checking (with
upper bound AExppol), AExppol-easiness is established. As far as AExppol-hardness
is concerned, the alternating multi-tiling problem introduced in [13] is instrumental
to establish that the model-checking problem for the interval temporal logic BĒ with
regular expressions is AExppol-hard. As a corollary, we get that the modal logic K with
propositional quantification interpreted on finite trees of branching degree bounded by
some fixed N ≥ 2 is also AExppol-complete.
• More generally and despite the modest scope of EX, the satisfiability problem for QCTLtX

is shown to be Tower-hard (Theorem 4.8), by a uniform reduction from k-NExpTime-
complete tiling problems (uniformity is with respect to k). The corresponding upper
bound is known from [37] and it is worth noting that all the Tower upper bound results
presented in this paper are based on translations into the satisfiability problem for QCTLt,
sometimes via intermediate decision problems, which eventually uses Rabin’s Theorem [47]
in some essential way. The hardness proof is one of the main results of the paper and
amounts first to showing that one can enforce that a node has a number of children equal
to some tower of exponentials of height k with a formula of size exponential in k. By
contrast, checking the satisfiability status of CTL∗ formulae, requires only to consider
tree models with branching degree bounded by the size of the formula, see e.g. [21, 20].
Once this complex construction enforcing a very high number of children is performed,
the reduction from the tiling problems can be done with the help of other properties on
the number of children. Hence, even though QCTLX under the structure semantics is
undecidable [25] and the variant of QCTLtX under the tree semantics (QCTLt) is decidable
by [37], the problem admits a high complexity despite the local range of EX. The Tower
lower bound for QCTLt crucially depends on the availability of very wide trees, which
contrasts with the AExppol upper bound for QCTLtX,≤N for which trees are N -bounded.

• By adapting our proof method, we show that QCTLtF and QCTLtXF (a variant of QCTLtF
with the unique operator EXEF) are Tower-hard too (consult Section 5.1).

• As EX, EF and EXEF correspond to the modality 3 in several modal logics (e.g. EXEF
corresponds to 3 in transitive frames), we are able to establish Tower-completeness
for standard modal logics with propositional quantification when interpreted on tree-like
structures (see Section 5.2). For instance, as the provability logic GL (after Gödel and
Löb) is complete for the class of finite transitive trees, i.e. the accessibility relation is the
transitive closure of the child-relation in the tree, see e.g. [12], we also investigate the
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satisfiability problem under the finite tree semantics. We show that QCTLftX and QCTLftXF
(‘ft’ stands for ’finite tree semantics’) are Tower-complete too. The satisfiability problem
for K (resp. GL) with propositional quantification under the finite (resp. transitive) tree
semantics is shown to be Tower-complete. Similar results are shown for KD, K4 and S4
with propositional quantification but interpreted on appropriate tree-like Kripke structures.
See Section 5.2 for the details.

This work is a revised and complete version of our conference paper [7]. To keep the main
body of the paper short we delegate all the proofs to the technical appendix.

2. Preliminaries

2.1. Kripke structures and computation trees. Below, we recall standard definitions
about Kripke structures. Let AP = {p, q, x, y, . . .} be a countably infinite set of propositional
variables. A Kripke structure K is a triple 〈W,R, l〉, where W is a set of worlds , R ⊆W ×W
is a transition relation and l : W → 2AP is a labelling function. A Kripke structure K is
total whenever for all w ∈W , there is w′ ∈W such that (w,w′) ∈ R. Totality is a standard
property for defining classes of models for temporal logics such as CTL. In the sequel, by a
‘Kripke structure’ we mean a structure according to the above definition, otherwise when
arbitrary (or total, finite, etc.) Kripke structures need to be considered, we explicitly specify
which classes of structures we have in mind. For instance, a tree model (resp. finite tree
model) T = 〈V,E, l〉 is an arbitrary Kripke structure where (V,E) is a (resp. finite) rooted
tree. Standard definitions about trees are omitted herein. Such structures play an important
role in the paper, as the tree semantics involves specific tree models (those obtained as
computation trees of Kripke structures).

Given a Kripke structure K = 〈W,R, l〉 and a world w ∈W , a finite path π from w is a
finite sequence w0, . . . , wn such that w0 = w and for all i ∈ [0, n− 1], we have (wi, wi+1) ∈ R.
An infinite path from w is an infinite sequence w0, . . . , wn, . . . such that w0 = w and for all
i ≥ 0, we have (wi, wi+1) ∈ R. With ΠK,w we denote the set of all finite paths starting from
a world w ∈W on a Kripke structure K.

For a Kripke structure K = 〈W,R, l〉 and w ∈ W , the computation tree unfolding K
from w is the tree model TK,w = 〈V,E, l′〉 such that the following conditions are satisfied:

(a) V
def
= ΠK,w,

(b) πEπ′
def⇔ π = w0, . . . , wn, π′ = π,wn+1 for some wn+1 ∈W and (wn, wn+1) ∈ R,

(c) for all π = w0, . . . , wn ∈ V , we have l′(π)
def
= l(wn).

Thus, when K is finite and total, TK,w is a finite-branching tree model in which all the
maximal branches are infinite and it is also a total Kripke structure. Below, unless otherwise
stated, the tree semantics involves such finite-branching trees with infinite maximal branches.
In the sequel, tree-like Kripke structures are denoted by T = 〈V,E, l〉 in order to emphasize
the tree-like nature of such models.

2.2. The logics QCTLs, QCTLt, QCTLft and QCTLgt. In this section, we define the logics

QCTLs, QCTLt, QCTLft and QCTLgt whose formulae are interpreted over different classes of
Kripke structures. The formulae of QCTL-like logics are defined from the grammar below by



WHY DOES PROPOSITIONAL QUANTIFICATION MAKE LOGICS ON TREES ROBUSTLY HARD? 5

extending the set of formulae from the computation tree logic CTL [18] with propositional
quantification:

φ ::= p | ¬φ | φ ∧ φ | EXφ | E(φUφ) | A(φUφ) | ∃p φ,

where p ∈ AP . We use the standard abbreviations ∨,→,↔,⊥,>, as well as other operators
like AX, EF, AG and AF:

• AX(φ)
def
= ¬EX(¬φ),

• EF(φ)
def
= E(>Uφ), AG(φ)

def
= ¬EF(¬φ) and AF(φ)

def
= A(>Uφ).

• The universal quantifier ∀p φ is used as ¬∃p ¬φ.

We denote by |φ| the length of the formula φ measured in a standard way, i.e. as the number
of symbols used to write φ. The modal/temporal depth of a formula φ, written md(φ), is the
maximal number of nested temporal operators in φ. We stress that md(φ) is linear in |φ|.

By restricting the set of allowed temporal operators in QCTL to the only temporal
operator EX (resp. EF) we obtain the logic QCTLX (resp. QCTLF). Note that AF does
not occur in QCTLF but AX (resp. AG) is allowed in QCTLX (resp. in QCTLF) as it is the
dual operator of EX (resp. EF). The main object of study in the paper is the logic QCTLX
under the tree semantics (below, written QCTLtX). Moreover, we write QCTLXF to denote
the restriction of QCTL to the (combined) temporal operator EXEF, which provides a strict
version of the future-time temporal operator EF. In the rest of the paper, we refer to QCTL
(or to some of its fragments) to denote a set of formulae and the notation QCTL• with a
superscript ‘•’ refers to a logic based on QCTL (or on some of its fragments) under a specific
semantics and for which the symbol ‘•’ is just a reminder of the semantics.

To define formally the semantics for propositional quantifiers, we introduce the notion of
X-equivalence between two Kripke structures, with X being a set of propositional variables.
Intuitively, two Kripke structures are X-equivalent, whenever the only differences (if any)
between them are restricted to the interpretation of the propositional variables not in
X. Formally, we say that two Kripke structures K = 〈W,R, l〉 and K′ = 〈W ′, R′, l′〉 are
X-equivalent (written K ≈X K′), iff W = W ′, R = R′ and l(w) ∩ X = l′(w) ∩ X for all
w ∈W .

Given a Kripke structure K = 〈W,R, l〉, a world w ∈W and a formula φ in QCTL, the
satisfaction relation K, w |= φ is defined as follows:

K, w |= p iff p ∈ l(w)
K, w |= ¬φ iff K, w 6|= φ
K, w |= φ ∧ ψ iff K, w |= φ and K, w |=s ψ
K, w |= EXφ iff there is w′ such that (w,w′) ∈ R and K, w′ |= φ
K, w |= E(φUψ) iff there is a path w0, . . . , wn such that w0 = w,

K, wn |= ψ and for all i ∈ [0, n− 1], we have K, wi |= φ
K, w |= A(φUψ) iff for all infinite paths w0, . . . , wn, . . . such that w0 = w, there is

j ≥ 0 such that K, wj |= ψ and for all i ∈ [0, j − 1],K, wi |= φ
K, w |= ∃p φ iff there is K′ such that K ≈AP\{p} K′ and K′, w |= φ

Note that K, w |= EFφ iff there is w′ ∈ R∗(w) (where R∗ is the reflexive transitive
closure of R) such that K, w′ |= φ. Stating that there is a unique successor of w satisfying the
propositional variable x can be expressed by the formula EX x∧¬(∃ p EX(x∧p)∧EX(x∧¬p)),
where p is distinct from x.
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The satisfiability problem for the logic QCTLs (under the structure semantics) takes as
input a formula φ in QCTL and asks whether there is a finite and total Kripke structure K
and a world w such that K, w |= φ.

The tree semantics introduced in [37] is obtained by considering as only admissible
models the computation trees of finite and total Kripke structures. As noted in [37, Remark
5.7], an equivalent formulation can be provided: the satisfiability problem for the logic QCTLt

(under the tree semantics) takes as input a formula in QCTL and asks whether there is
a finite-branching tree model T in which all the maximal branches are infinite such that
T, ε |= φ and ε is the root of T. This is the definition we adopt along the paper.

We write SAT(L) to denote the satisfiability problem for the logic L. The distinction be-
tween the tree semantics and the structure semantics is crucial and affects the computational
properties of the satisfiability problems.

Proposition 2.1. (I) SAT(QCTLs) (under the structure semantics) is undecidable [37, Theo-
rem 5.1]. (II) SAT(QCTLt) (under the tree semantics) is decidable and Tower-complete [37,
Theorem 5.3]. (III) The satisfiability problem for QCTLt is Tower-hard even if restricted
to ω-sequences [43, 53].

All our forthcoming Tower upper bound results are based on translations into the
satisfiability problem for QCTLt, sometimes via intermediate decision problems, which
eventually invokes Rabin’s Theorem [47] in some essential way. This is not surprising, as
considering tree-like models and propositional quantification naturally leads to invoking the
decidability of SωS [47] or its linear version, the second-order logic of one successor S1S [15].

Let us recapitulate the different versions of quantified CTL we have seen so far.

• QCTLs is interpreted over finite and total Kripke structures and SAT(QCTLs) is undecid-
able, see e.g. [37].
• QCTLt is interpreted over finite-branching trees in which all the maximal branches are

infinite and SAT(QCTLt) is Tower-complete, see e.g. [37].

Let us introduce two additional versions that are closely related to modal logics with
propositional quantification on tree-like models introduced in the forthcoming Section 5.

• QCTLft is interpreted over finite trees, SAT(QCTLft) can be shown to be in Tower by a
logspace reduction into SAT(QCTLt) and its restriction to EX will be shown to admit a
Tower-hard satisfiability problem (see Section 5).
• QCTLgt is interpreted over finite-branching trees (maximal branches may be finite),

SAT(QCTLgt) can be shown to be in Tower by logspace reduction into SAT(QCTLt) and
its restriction to EXEF will be shown to admit a Tower-hard satisfiability problem (see
Section 5).

As a side remark, the equivalence between the two formulations of QCTLt, is mainly
due to the fact that QCTLt can be translated into Monadic Second-Order Logic (MSO) over
tree models with arbitrary finite branching (getting decidability by Rabin’s Theorem [47]).
Indeed, as MSO over tree models with arbitrary finite branching is decidable by Rabin’s
Theorem [47], the satisfiability problem for QCTLt is decidable too, by a standard translation
internalising the tree semantics for QCTLt. As explained in [58, Section 6.3], the existence of
a tree model implies also the existence of a regular tree model, that can be precisely originated
by a finite Kripke structure. Hence, QCTLt has the finite model property. So, not only can
every finite and total Kripke structure be unfolded as a finite-branching tree in which all the
maximal branches are infinite (a direct consequence of the definition for computation trees)
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but the existence of a tree model with the above-mentioned properties and satisfying φ
implies the existence of the computation tree of a finite and total Kripke structure satisfying
φ. Hence, satisfiability in the computation tree of a finite Kripke structure is equivalent to
satisfiability in a finite-branching tree in which all the maximal branches are infinite, and in
the sequel, we shall operate with the latter definition.

Apart from CTL-like logics (see e.g. [37] for a wealth of bibliographical references), other
logics with propositional quantification have been shown to be decidable by translation into
SωS, see e.g. [4, 6, 63]. Besides, in [4] a fragment of GL with propositional quantification
is shown to be decidable by translation into the weak monadic second-order logic of one
successor WS1S [15], and a version of Gödel logic LC with propositional quantification is
shown to be decidable by translation into S1S [15, 6], see also [63] solving partially an open
problem from [33, §9].

2.3. Complexity classes and tiling problems. In this section, we introduce tiling prob-
lems that are mainly used in Sections 3.3 and 4.4.

Let t : N× N→ N be a tetration function defined for integers n, k ≥ 0, inductively as
t(0, n)=n and t(k+1, n)=2t(k,n). Intuitively the function t defines the tower of exponentials
of height k, e.g. we have t(1, n) = 2n, t(2, n) = 22n , and so on. By k-NExpTime we denote
the class of all problems decidable with a nondeterministic Turing machines of working time
in O(t(k, p(n))) for some polynomial p(·), on each input of length n. We define Tower as
the class of all problems of time complexity bounded by a tower of exponentials, whose
height is an elementary function [50]. Thus, to show Tower-hardness (using elementary
reductions [50]), it is sufficient to prove k-NExpTime-hardness for all k using uniform
reductions [50, Section 3.1]. It is worth recalling that Tower-hardness is defined with
the class of elementary reductions (i.e. those with time-complexity bounded by a tower of
exponentials of fixed height) [50]. Building a reduction from instances of k-NExpTime-hard
problems with time-complexity f(n, k) where the size n of the input leads to an elementary
reduction when f(n, k) itself is elementary in n and k. This is what we mean by a uniform
reduction in k to establish Tower-hardness.

For proving hardness results, we make extensive use of tiling problems, see e.g. [60].

Definition 2.2. The tiling problem Tilingk takes as inputs a triple 〈T ,H,V〉 and c ∈ T n
for some n ≥ 1 such that T is a finite set of tile types, H ⊆ T × T (resp. V ⊆ T × T )
represents the horizontal (resp. vertical) matching relation, and c = t0, t1, . . . , tn−1 ∈ T n is
the initial condition. A solution for the instance 〈T ,H,V〉, c is a mapping τ : [0, t(k, n)−
1]× [0, t(k, n)− 1]→ T such that:

(init): For all i ∈ [0, n− 1], τ(0, i) = ti.
(hori): For all i, j ∈ [0, t(k, n)− 1], i < t(k, n)− 1 implies (τ(i, j), τ(i+1, j)) ∈ H.
(verti): For all i, j ∈ [0, t(k, n)− 1], j < t(k, n)− 1 implies (τ(i, j), τ(i, j+1)) ∈ V.

A mapping τ satisfying (hori) and (verti) is called a tiling .

The problem of checking if an instance of Tilingk has a solution (note that k does not
appear in the instance and it governs the size of the grid) is k-NExpTime-complete [60].

Given N ≥ 2, let us consider the satisfiability problem for QCTLtX,≤N in which the
structures are tree models where all the maximal branches are infinite but each node has at
most N children (and at least one child). To characterise the complexity of SAT(QCTLtX,≤N ),
we consider the complexity class AExppol that consists of all problems decidable by an
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alternating Turing machine (ATM) [17] working in exponential-time and using only polyno-
mially many alternations [13, 44]. We stress here that allowing an unbounded number of
alternations would give us the class ExpSpace, and classes similar to AExppol have been
considered in [11], typically STA(f(n),g(n),h(n)), where f(n) refers to the restriction on the
Space, g(n) refers to the restriction on the Time, and h(n) refers to the restriction on the

number of Alternations. Consequently, AExppol is the union of classes STA(·,2g(n),h(n))
with polynomials g(n), h(n). The complexity of several logical problems has been captured
by the class AExppol, see e.g. [23, 14, 13].

For proving AExppol-hardness, we use an elegant modification of Tiling1, introduced
in [13, 44]. The extension amounts to considering a stack of n tilings, with a matching relation
between two consecutive tile types on the same position of the grid, and quantifications over
the tile types on the first row (initial conditions). Details follow below.

Definition 2.3. The alternating multi-tiling problem AMTP takes as inputs an even number n
(in unary), 〈T ,H,V〉 (as for defining Tiling1), T0 ⊆ T , Tacc ⊆ T and Tmulti ⊆ T ×T . Given
an initial condition c = (w1, . . . , wn) ∈ (T 2n

0 )n, a solution for c is a multi-tiling (τ1, . . . , τn)
on the grid [0, 2n − 1]× [0, 2n − 1] such that:

(m-init): For all α ∈ [1, n], for all j ∈ [0, 2n − 1], τα(0, j) = wα(j) (i.e. the first row of τα is
wα).

(m-tiling): For α ∈ [1, n], τα satisfies (hori) and (verti).
(m-multi): For α ∈ [1, n− 1], for all i, j ∈ [0, 2n − 1], (τα(i, j), τα+1(i, j)) ∈ Tmulti.
(m-accept): For some j ∈ [0, 2n − 1], τn(2n − 1, j) ∈ Tacc.
An instance I for AMTP made of n, 〈T ,H,V〉, T0, Tacc ⊆ T , Tmulti ⊆ T × T is positive iff for
all w1 ∈ T 2n

0 , there is w2 ∈ T 2n
0 such that . . . for all wn−1 ∈ T 2n

0 , there is wn ∈ T 2n
0 such

that there is a solution (τ1, . . . , τn) for (w1, . . . , wn). Note that this sequence involves n−1
quantifier alternations.

The alternating multi-tiling problem is shown to be AExppol-complete in [13, 44].

3. What happens when trees are bounded?

In this section, we study the satisfiability problem for QCTLtX,≤N with N ≥ 1, i.e. QCTLtX
over trees, where the degree of each node is bounded by a fixed natural number N ≥ 1.
As we have already mentioned in the introduction, the goal of this section is two-fold. First,
we would like to make the reader familiar with our proof techniques applied to a simplified
scenario. Second, our results show that to get Tower-hardness of QCTLtX we must focus
on trees of arbitrarily large branching.

3.1. A toolkit for introducing local nominals. Below, we introduce formulae to simulate
partially the use of nominals from hybrid modal logics [3]. A nominal x is usually understood
as a propositional variable true at exactly one world of the model (a global property). In
QCTLtX, such a property cannot be enforced but it can be done with respect to nodes at
a bounded depth from the evaluation node, whence the adjective ‘local’ for the nominals.
The use of local nominals is essential in all our hardness proofs, as it allows us to simulate
first-order quantification on a given set of nodes of bounded depth.

Proofs of all lemmas from this section are rather straightforward and are shown by
careful inspection of the semantics. Hence, we delegate them to Appendix A.1–A.3.
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Definition 3.1. Given a tree model T and a node v, we say that the propositional variable
x is a nominal for the depth k ≥ 1 from v iff there is v′ ∈ V with vEkv′ such that T, v′ |= x,
and for all worlds v′′ 6= v′ s.t. vEkv′′, we have T, v′′ 6|= x (Ek is the k-fold composition of E).

The formula nom(x, k) defined as EXkx∧¬∃ p (EXk(x∧ p)∧EXk(x∧¬p)), where p is
distinct from x, states that x is a nominal for the depth k (EXk denotes k copies of EX).

Lemma 3.2. x is a nominal for the depth k ≥ 1 from v iff T, v |= nom(x, k).

Let us next define @k
xφ as the formula EXk(x ∧ φ) (usually assuming that nom(x, k) holds).

Lemma 3.3. Assuming that x is a nominal for the depth k ≥ 0 from v such that vEkv′

and T, v′ |= x, we have T, v |= @k
xφ iff T, v′ |= φ.

Given d ≥ 1 and propositional variables x1, . . . , xd (that play the role of nominals),
we often write @x1,...,xd

φ to denote the formula @1
x1@1

x2 · · ·@
1
xd
φ (usually assuming that

nom(x1, 1) holds and for all i ∈ [2, d], @1
x1@1

x2 · · ·@
1
xi−1

nom(xi, 1) holds true). We also use
@x̄φ instead of @x1,...,xd

φ when x̄ is understood as x1, . . . , xd. Given a node v0 such that

T, v0 |= nom(x1, 1) ∧
∧

i∈[2,d]

@1
x1@1

x2 · · ·@
1
xi−1

nom(xi, 1),

we write v1, . . . , vd to denote the unique sequence of nodes such that for all i ∈ [1, d], we
have both vi−1Evi and T, vi |= xi. The existence and uniqueness of the nodes v1, . . . , vd
follow from Lemma 3.2 and Lemma 3.3. Here is another useful lemma justifying the use of
the introduced abbreviations.

Lemma 3.4. Assume that T, v0 |= nom(x1, 1) ∧
∧
i∈[2,d] @1

x1@1
x2 · · ·@

1
xi−1

nom(xi, 1) and the

sequence v1, . . . , vd is associated to x̄ = x1, . . . xd. Then, T, v0 |= @x̄φ iff T, vd |= φ.

Let diff-nom(x1, . . . , xα, k) be an abbreviation of
∧
i∈[1,α] nom(xi, k)∧

∧
j∈[1,α]

∧
i<j ¬@k

xixj .

It allows us to name α distinct nodes at the depth k. Hence, the respective nodes interpreting
the nominals x1, . . . , xα are pairwise distinct. It is summarised with the lemma below, which
proof is a slight variant the proof of Lemma 3.2.

Lemma 3.5. Given a tree model T and a node v, we have T, v |= diff-nom(x1, . . . , xα, k)
iff there are α distinct nodes v1, . . . , vα such that for all i ∈ [1, α], xi is a nominal for the
depth k ≥ 1 from v.

Let us illustrate the use of local nominals and diff-nom(x1, . . . , xα, k) to specify that a
node has at most 2n children, with a formula of polynomial size in n. This is exactly the
type of properties that can be expressed in graded modal logics [26, 22, 59]. Given a finite
set X of propositional variables, we design a formula stating that no pair of distinct children
agree on all propositional variables from X, as done in [19]. It is given below:

Uni(X)
def
= ∀x, y diff-nom(x, y, 1)→ ¬

∧
p∈X

(@1
xp↔ @1

yp)


Thus, the formula 3≤2n> from graded modal logics can be expressed in QCTLtX with

3≤2n>
def
= ∃ p0, . . . , pn−1 Uni({p0, . . . , pn−1}).

In Section 4, we show how to succinctly express hyperexponential bounds.
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3.2. Beyond the ExpSpace upper bound: AExppol. In order to solve SAT(QCTLtX,≤N ),
little is needed if the ExpSpace upper bound is aimed. Indeed, given a formula φ in
QCTLtX,≤N , it is clear that for an N -bounded tree model T satisfying φ at its root node ε, it
is irrelevant what happens at nodes of depth strictly more than md(φ). Hence, the formula
φ is satisfiable iff there is a finite N -bounded tree structure T with all the branches of length
exactly md(φ) satisfying φ at its root ε (as the branches of tree models are infinite, we need

to consider branches of length exactly md(φ)). Thus, T has at most |φ|N |φ| nodes. To get an
algorithm working in NExpSpace, guess such an exponential-size finite tree structure, and
perform model-checking on it with an algorithm inherently in PSpace (as model-checking
finite structures with MSO is PSpace-complete [56, 61] and φ can be translated to MSO
in the standard way), which leads to NExpSpace. By Savitch’s Theorem [49], we get the
ExpSpace upper bound.

This bound is not completely satisfactory as it does not use much of QCTLtX,≤N and more

importantly, Section 3.3 proves AExppol-hardness of SAT(QCTLtX,≤N ) as long as N ≥ 2.
Hence, the goal of this section is to establish an AExppol upper bound. The tight upper
bound for SAT(QCTLtX,≤N ) relies on the following ingredients.

(i) Every formula φ of QCTLtX is logically equivalent to a QCTLtX formula φ′ in prenex normal
form (PNF) such that φ′ can be computed in polynomial-time in |φ|. Formulae in PNF
are of the form Q1 p1 · · · Qβ pβ ψ where {Q1, . . . ,Qβ} ⊆ {∃, ∀} and ψ is quantifier-free.

(ii) Existence of an N -bounded tree model for φ is equivalent to the existence of an N -bounded
finite tree structure such that all branches are of length md(φ). Then, we simply guess a
finite tree of a small (exponential) size with the help of the shallow model property - such
a tree will be later unravelled to become an infinite tree model.

(iii) Checking whether T, ε |= Q1 p1 · · · Qβ pβ ψ (involving an N -bounded finite tree with
branches of length md(ψ) and the input formula in PNF) can be done with an alternating
Turing machine in time O((|ψ|+ β)|T|) and with at most β alternations.

To establish (i), we cannot rely directly on PNF for QCTL from [37, Prop. 3.1] as the
translation in [37, Prop. 3.1] involves temporal operators beyond the language of QCTLtX.

Lemma 3.6. For every formula φ in QCTLtX, one can compute in polynomial-time in |φ| a
logically equivalent formula in PNF Q1 p1 · · · Qβ pβ ψ with β ≤ |φ|.

Proof. On tree models, the following formulae are tautologies, assuming that p does not
occur in ψ′ (where Q is either ∃ or ∀):

EX Q p ψ ↔ Q p EXψ (Q p ψ)∧ψ′ ↔ Q p (ψ∧ψ′) ¬∃ p ψ ↔ ∀ p ¬ψ ¬∀ p ψ ↔ ∃ p ¬ψ

Hence, by employing the above formulae and rewriting the input, we conclude the lemma.
For a more detailed explanation consult Apppendix A.4

Now we proceed with the second property. Let us be a bit more precise. Given a tree
model T, we write T�n to denote its subtree obtained by taking only nodes on the depth at
most n from the root. A completion of a finite tree T′ of maximal depth n is an infinite tree
T (finite-branching and all the maximal branches are infinite) such that T′ = T�n. By the
naive completion of T′ of maximal depth n, we refer to the unique completion achieved by
replacing each node v at depth n from T by an infinite chain of copies of itself.

A shallow model property states that what matters for a QCTLtX formula φ in its infinite
tree model is a relatively small finite part, with paths bounded by the modal depth of φ.
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Lemma 3.7 (Shallow Model Property). Let T, ε be a model for the QCTLtX–formula φ.
Then, any completion of T�md(φ), ε is also a model for φ.

Proof. The construction is standard and goes in exactly the same way as in the literature,
e.g. [12, Theorem 2.3].

Since we are interested in the satisfiability problem over N -bounded trees, the overall
size of a structure T�md(φ) can be easily bounded. A simple estimation can be obtained by
counting the number of nodes with a certain distance from the root, namely:

|T�md(φ)| ≤ 1 +N +N2 + . . .+Nmd(φ) < |φ| ·N |φ|

As a direct consequence of the above estimation and Lemma 3.7, we obtain:

Lemma 3.8. For any formula φ, φ is satisfiable for QCTLtX,≤N iff φ is satisfiable in a finite

N -bounded tree structure of size bounded by |φ|N |φ| and each branch is of length md(φ).

In order to establish (iii), the details are omitted but we apply the naive model-checking
algorithm for MSO with an ATM: existential (resp. universal) quantification ∃p (resp. ∀p)
requires time O(|T|) and the machine enters a sequence of existential (resp. universal) states.
The quantifier-free formula ψ is evaluated as a first-order formula by the standard translation
for modal logic. Note also that checking T′, v |= ψ can be done in polynomial time in |ψ|+ |T′|
(see [18, 51]). By combining (i)-(iii) we establish an improved upper bound.

Theorem 3.9. For any N ≥ 1, the satisfiability problem for QCTLtX,≤N is in AExppol.

When N = 1, the upper bound can be improved as the number of alternations is linear and
the size of the finite witness “tree” is polynomial in |φ|, and therefore the whole procedure can
be implemented with a polynomial-time alternating Turing machine (thus in PSpace [17]).
The matching lower bound is inherited from quantified propositional logic QBF, see e.g. [42].

Corollary 3.10. The satisfiability problem for QCTLtX,≤1 is PSpace-complete.

3.3. A reduction from AMTP (with fixed N ≥ 2). Let N ≥ 2 and let us consider the
satisfiability problem for QCTLtX,≤N in which the structures are tree models where all the
maximal branches are infinite and each node has at most N children (and at least one child).
In order to show that the problem is AExppol-hard, we define below a reduction from the
alternating multi-line tiling problem AMTP presented in Section 2 and introduced in [13].

To define a grid [0, 2n−1]× [0, 2n−1], a major part in the solution of an instance of AMTP,
we specify a tree such that every node at a distance less than 2n from the root ε has exactly
two children, implying that there are exactly 22n nodes at a distance 2n from ε. Moreover,
each node at a distance 2n encodes a position (H,V) in [0, 2n − 1]× [0, 2n − 1], by making
the propositional variables hn−1, . . . , h0 and vn−1, . . . , v0 to be responsible, respectively, for
the horizontal and vertical axes. The i-th bit of H (resp. V) is taken care of by the truth
value of hi (resp. vi) and by convention the least significant bit is encoded by h0 (resp. v0).
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The forthcoming formula grid(2n) is dedicated to encoding such a grid.

grid(2n)
def
=

 ∧
i∈[0,2n−1]

AXi EX=2>)

∧
∀x, y diff-nom(x, y, 2n)→

 ∨
j∈[0,n−1]

¬(@2n
x hj ↔ @2n

y hj) ∨ ¬(@2n
x vj ↔ @2n

y vj)

 ,

where EX=2>
def
= ∃ x1, x2 diff-nom(x1, x2, 1) ∧AX(x1 ∨ x2) states that there are exactly

two children. Moreover, AX0ψ
def
= ψ and AXi+1ψ

def
= AXAXiψ.

Note that the upper part of grid(2n) enforces that there are exactly 22n descendants at
a distance 2n from the root, while the lower part imposes that any two such descendants
differ by at least one propositional variable from hn−1, . . . , h0, vn−1, . . . , v0. Hence, the full
grid [0, 2n − 1] × [0, 2n − 1] is encoded with grid(2n). The correctness of grid(2n) follows
from Lemma 3.3 and Lemma 3.5.

Corollary 3.11. T, v |= grid(2n) iff T�2n is a binary tree in which there are exactly 22n

nodes v′ satisfying E2n(v, v′) and each of such distinct nodes v′, v′′ is labelled by a different
subset of atomic propositions from {v0, v1, . . . , vn−1, h0, h1, . . . , hn−1}.

Let 〈T ,H,V〉 be a triple from an instance of AMTP and let j ∈ N. Each tile type t ∈ T will
be represented by a fresh propositional variable tj . Hence, {tj : t ∈ T } (written below T j)
is a set of propositional variables used to provide a tile type for each position of the grid
[0, 2n− 1]× [0, 2n− 1], while the superscript ‘j’ is handy to remember that this concerns the
j-th tiling (as several tilings are involved in AMTP instances).

We first define the formulae φjcov, φjH and φjV whose conjunction states that every position

of the grid has a unique tile type in T j , and the horizontal and vertical matching conditions
are satisfied. Hence, we have a valid tiling of the grid made from T j .

The formula φjcov expresses that every position of the grid has a unique tile type:

φjcov
def
= ∀x nom(x, 2n)→ @2n

x

∨
t∈T

tj ∧
∧

t6=t′∈T
¬(tj ∧ t′j)

 .

For the horizontal matching constraints, we need to express when two nodes at a distance
2n interpreted respectively by x and y and representing respectively the position (H,V)
and (H′,V′), satisfy V = V′ and H′ = H + 1. The formula HN(x, y) (‘HN’ for ’horizontal
neighbours’) does the job using a standard arithmetical reasoning on binary numbers.

The intuition is that we treat hi propositions as bits and to verify that the number
encoded on y is equal to the number encoded on x plus 1, we need to (i) find an index i on
which the i-th bit is switched on for y but switched off for x, (ii) check that all bits on more
significant positions after i for x and y are equal and (iii) ensure that all less significant bits
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are switched on for x while switched off for y. This idea is formalised as follows:

HN(x, y)
def
=

 ∧
α∈[0,n−1]

@2n
x vα ↔ @2n

y vα

 ∧ ∨
i∈[0,n−1]

(
@2n
x ¬hi ∧@2n

y hi ∧

∧
∧

α∈[0,i−1]

(
@2n
x hα ∧@2n

y ¬hα
)
∧ (

∧
α∈[i+1,n]

(
@2n
x hα ↔ @2n

y hα)
))

.

Employing HN(x, y) we can provide a formula φjH that encodes horizontal matching con-
straints:

φjH
def
= ∀x, y (nom(x, 2n) ∧ nom(y, 2n) ∧HN(x, y))→

∨
(t,t′)∈H

(
@2n
x tj ∧@2n

y t′j
)
.

Let VN(x, y) (where ‘VN’ stands for ‘vertical neighbours’) be the formula obtained from
HN(x, y) by replacing each occurrence of hα (resp. vα) by vα (resp. hα).

The following formula φjV encodes the vertical matching constraints:

φjV
def
= ∀x, y (nom(x, 2n) ∧ nom(y, 2n) ∧VN(x, y))→

∨
(t,t′)∈V

(
@2n
x tj ∧@2n

y t′j
)
.

To state that a root satisfying grid(2n) encodes a tiling with respect to T j , we consider the
formula

φjtiling
def
= φjcov ∧ φ

j
H ∧ φ

j
V .

Lemma 3.12. Assume that T, v |= grid(2n) holds. Then:

• If T, v |= φjtiling then τ : [0, 2n−1]×[0, 2n−1]→ T j, defined as τ(x, y) = tj for T, v(x,y) |= tj,

where v(x,y) is the unique encoding of the position (x, y) satisfying E2n(v, v(x,y)), is a tiling.

• If τ : [0, 2n − 1] × [0, 2n − 1] → T j is a tiling, then there exists a tree T′, v′ satisfying

φjtiling ∧ grid(2n) and being a T j-variant of T.

Proof. By careful inspection of the semantics and of presented formulae, cf. Appendix A.5.

In order to encode an instance of AMTP, there are still properties that need to be expressed.
Let us assume that the root node ε satisfies grid(2n).

• Given the set of initial tile types T0 ⊆ T , let us express that for each position of the first

row of the grid, exactly one tile type in T j0 holds.

φjinit
def
= ∀x

nom(x, 2n) ∧@2n
x (

∧
α∈[0,n−1]

¬hα)

→ @2n
x

∨
t∈T0

tj ∧
∧

t 6=t′∈T0

¬(tj ∧ t′j)


• Assuming that ε satisfies φjtiling ∧ φ

j′

init, we express that for each position of the first row of

the grid, the tile type in T j0 coincides with the tile type in T j
′

0 (corresponding to (m-init)):

φj,j
′

coinci
def
= ∀x

(nom(x, 2n) ∧@2n
x (

∧
α∈[0,n−1]

¬hα)

→ @2n
x

∨
t∈T0

(tj ∧ tj′)

 .
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• Given the set of accepting tile types Tacc ⊆ T and assuming that ε satisfies φjtiling, we state

that there is a position on the last row with a tile type in Tacc (satisfying (m-accept)):

φjacc
def
= ∃x nom(x, 2n) ∧@2n

x

 ∧
α∈[0,n−1]

hα

 ∧ ∨
t∈Tacc

tj

 .

• Given the multi-matching tiling relation Tmulti ⊆ T × T , and assuming ε satisfies φjtiling ∧
φj+1

tiling, on every position, the tile type in T j and the tile type in T j+1 are in the relation

Tmulti (fulfilling the requirements of (m-multi)):

φjmulti
def
= ∀x nom(x, 2n)→ @2n

x

 ∨
(t,t′)∈Tmulti

(tj ∧ t′j+1)

 .

It is time to wrap up. Given a finite set of propositional variables X = {r1, . . . , rβ}, we write
∃X ψ to denote the formula ∃r1 ∃r2 · · · ∃rβ ψ. ∀X ψ is defined similarly. Given an instance
I of AMTP made of n, 〈T ,H,V〉, T0, Tacc, Tmulti, let us define the formula φI below:

φI
def
= grid(2n)∧∀T 1

0 ∃T 2
0 ∀T 3

0 . . . ∀T n−1
0 ∃T n0

∧
j∈[1,n]

φjinit →

(
∃{tj : t ∈ T , j ∈ [n+1, 2n]}

 ∧
j∈[n+1,2n]

φjtiling ∧ φ
j,(j−n)
coinci

 ∧
 ∧
j∈[n+1,2n−1]

φjmulti

 ∧ φ2n
acc

)
.

Now, we can state the correctness of the reduction.

Lemma 3.13. I is a positive instance of AMTP iff φI is satisfiable in QCTLtX,≤N .

Proof. The proof is a bit tedious but has no serious difficulties, as all the conditions for
being a solution of I can be easily expressed, as soon as the grid [0, 2n − 1]× [0, 2n − 1] is
encoded. Moreover, the quantifications involved in AMTP are straightforwardly taken care of in
QCTLtX,≤N thanks to the presence of propositional quantification. Consult Appendix A.6.

The above lemma leads us to one of the main results of the paper.

Theorem 3.14. For all N ≥ 2, the satisfiability problem for QCTLtX,≤N is AExppol-hard.

4. Tower-hardness of the satisfiability problem QCTLtX

We are back to the (general) satisfiability problem for QCTLtX, i.e. with no further restrictions
on the number of children per node.
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4.1. Overview of the method. In order to show Tower-hardness, we shall reduce the
k-NExpTime-complete tiling problem Tilingk introduced in Section 2.3 to SAT(QCTLtX)
and this should be done in a uniform way so that Tower-hardness can be concluded (see
the discussion in [50, Section 3.1.2] and in Section 2.3). Hence, we need to encode concisely a
grid t(k, n)× t(k, n) and to do so, the main task consists in enforcing that a node has t(k, n)
children, using a formula of elementary size in k + n (bounded by a tower of exponentials
of fixed height). Actually, our method produces a formula of exponential size in k + n. Of
course, this is not the end of the story as we need to encode the grid t(k, n)× t(k, n) and
to express on it constraints about the tiling τ . First, let us explain how to enforce that a
node has exactly t(k, n) children, by partly taking advantage of the proof technique of local
nominals (see Section 3.1).

We recall that t(1, n)=2n and t(k + 1, n)=2t(k,n) for k > 0. For the forthcoming subsec-
tions, we assume that n is fixed. Below, we classify the nodes of a tree model by their type
(a value in N) such that any node is of type 0, and if a node is of type k > 0, then it has
exactly t(k, n) children and all the children are of type k−1. To be more precise, a node may
have two types (as one of them is always zero). So, a node of type 1 has exactly 2n children,
a node of type 2 has exactly 22n children, etc. Therefore if a node is of type k > 0, then the
value k is unique. Additional conditions apply for being of type k > 0 but we can already
notice that a node v of type k implicitly defines a balanced subtree of depth k with root v.

. . .
0 1 2 t(k−1, n)−1

type k−1 type k−1
. . .

0 1 2 t(k−1, n)−1

type k−1 type k−1

type k+1

. . . . . .

In order to enforce that a node is of type k ≥ 1 (this is a trivial property for k = 0), and
therefore has exactly t(k, n) children, with each node v of type k ≥ 0 is associated a number
in [0, t(k+1, n)−1]. Such a number is written nbT(v). The subscript ‘T’ may be omitted when
the context is clear. Similarly, when T, v0 |= nom(x1, 1) ∧

∧
i∈[2,d] @1

x1@1
x2 · · ·@

1
xi−1

nom(xi, 1)

and the nodes v1, . . . , vd are associated with x1, . . . xd, we write nbT(xi) instead of nbT(vi)
for all i ∈ [1, d] (in general, by a slight abuse of notation, we may refer to a node by its local
nominal when it exists).

When the type of the node v is zero, its number is defined as the unique m such that
the number represented by the truth values of pn−1, pn−2, . . . p0 is equal to m. As usual, the
propositional variable pi is responsible for the ith bit of the number m and by convention,
the least significant bit is encoded by the truth value of p0. We illustrate the encoding below:

type 1

. . .
0 1 2 2n−1

¬pn−1 ∧ . . . ∧ ¬p0 pn−1 ∧ . . . ∧ p0
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Otherwise, when the type of v is equal to some k > 0, its number is represented by the
binary encoding of the propositional variable val on its children assuming that there are
t(k, n) children whose respective (bit) numbers span all over [0, t(k, n)− 1] and therefore all
the children are implicitly ordered. This principle makes sense conceptually but it remains to
express it in QCTLtX, similarly to the Tower-hardness proof in [46] for the fluted fragment
in which counters with high values have to be enforced within a restricted language (see
also [56]). That is why, in Table 1, we present a list of formulae to be defined. All of them
are interpreted on a node v0 of type k ≥ 0, 1 ≤ d ≤ k.

Formulae to be defined Intuitive meaning
type(k) v0 is of type k
first(k) nb(v0) = 0
last(k) nb(v0) = t(k + 1, n)− 1
uniq(k) ∀v, v′ ((v0Ev) & (v0Ev

′) & v 6= v′) →
nb(v) 6= nb(v′)

compl(k) ∀v ((v0Ev) & nb(v) < t(k, n)− 1) →
∃ v′ (v0Ev

′) ∧ nb(v′) = nb(v) + 1
nb(x̄) =k nb(ȳ) nb(vd) = nb(v′d)

nb(ȳ) =k nb(x̄) + 1 nb(v′d) = 1 + nb(vd)
nb(x̄) <k nb(ȳ) nb(vd) < nb(v′d)

Table 1: Family of auxiliary formulae.

In the last 3 lines of the table, the subscript ‘k’ below ‘=’ and ‘<’ allows us to remember
that the formula is evaluated at a node of type k; as x̄ and ȳ are of length d, the number
comparison is done on nodes of type k − d and the numbers can take values in [0, t(k −
d + 1, n) − 1]. Though most of the intuitive meanings are straightforward, let us notice
that uniq(k) is intended to express that two distinct children of v0 have distinct numbers.
Similarly, compl(k) is intended to express that if a child of v0 has a number n strictly less
than t(k, n) − 1, then v0 has also another child with number equal to n + 1 (‘compl’ in
compl(k) stands for ‘complete’).

In what follows we will also employ ̂̄x, ȳ to denote the formula

nom(x1, 1) ∧ nom(y1, 1) ∧
∧

i∈[2,d]

(@1
x1@1

x2 · · ·@
1
xi−1

nom(xi, 1) ∧@1
y1@1

y2 · · ·@
1
yi−1

nom(yi, 1)).

Assuming that the nodes v1, . . . , vd are associated with x̄ = x1, . . . , xd (resp. v′1, . . . , v
′
d are

associated with ȳ = y1, . . . , yd), v0, v1, . . . , vd and v0, v
′
1, . . . , v

′
d can be understood as two

branches rooted at v0 ending at the node vd and at the node v′d respectively. The formulâ̄x, ȳ uses subformulae introduced in Section 3.1 and the wide hat symbol in ̂̄x, ȳ above x̄ and
ȳ is a graphical reminder of these two branches. By contrast, the specific formula ̂̄x, x̄ states
the existence of a single branch with nodes v0, . . . , vd.

In order to define type(k) (k ≥ 1), we specify that every child is of type k− 1, there is a
child with number equal to zero, and if a child has number m < t(k, n)− 1, then there is a
child with number equal to m+ 1. Moreover, two distinct children have distinct numbers in
[0, t(k, n)− 1]. Satisfying these conditions guarantees that the number for the children span
all over [0, t(k, n)− 1]. The formula type(k) (for k ≥ 1) is defined as

type(k)
def
= AX(type(k − 1)) ∧EX(first(k − 1)) ∧ uniq(k) ∧ compl(k).
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Note that the above formula is intended to be built over the propositional variables
p0, . . . , pn−1, val (only).

Let us first explain how we proceed to define all the mentioned formulae. For successive
values N ∈ N, we define inductively the formulae:

• type(N), first(N) and last(N),
• nb(x1, . . . , xd) =k nb(y1, . . . , yd),
• nb(x1, . . . , xd) <k nb(y1, . . . , yd),
• nb(y1, . . . , yd) =k nb(x1, . . . , xd) + 1

for all k − d = N − 1. For N = 0, only the formulae type(0), first(0) and last(0) make
sense. The case N = 1 is not yet an instance of the general case. We first treat the cases for
N ∈ {0, 1} and then we proceed with the general case N ≥ 2.

4.2. Formulae for types zero and one. When k = 0 (thus k = N = 0), only the intended
properties for the formulae type(0), first(0) and last(0) are meaningful. Let us define them,
in the simplest way.

type(0)
def
= > first(0)

def
= ¬pn−1 ∧ · · · ∧ ¬p0 last(0)

def
= pn−1 ∧ · · · ∧ p0.

It can be rapidly checked that T, v |= type(0) iff v is of type 0. Moreover, assuming that
v is understood as a node of type 0, we have T, v |= first(0) iff nbT(v) = 0 and T, v |= last(0)
iff nbT(v) = t(1, n)− 1 = 2n − 1.

We next focus on the case when N = 1 and we define the formulae type(k), first(k)
and last(k) with k=1 (i.e. when k=N=1) as well as nb(x1, . . . , xd) <k nb(y1, . . . , yd) and
nb(y1, . . . , yd) =k nb(x1, . . . , xd) + 1 with k − d = 0 (that is when k−d = N−1 with N=1).
We stress that k and d can be arbitrarily large as long as k = d.

To start with the formula nb(x1, . . . , xd) =k nb(y1, . . . , yd), it can be easily defined in
terms of nb(x1, . . . , xd) <k nb(y1, . . . , yd) as:

¬ (nb(x1, . . . , xd) <k nb(y1, . . . , yd)) ∧ ¬ (nb(y1, . . . , yd) <k nb(x1, . . . , xd)) .

Second, we turn our attention to the formula type(1). It states that there is a child
with number equal to zero, if a child has number m < 2n − 1, then there is a child with
number equal to m+ 1, all the children are of type 0, and two distinct children have distinct
numbers in [0, 2n−1]. Remember that the number of each child (of type 0) is computed from
the propositional variables in {pn−1, . . . , p0}. The arithmetical reasoning between children,
leading to the fact that there are exactly 2n children whose numbers span all over [0, 2n − 1]
takes advantage of standard arithmetical properties on numbers encoded by n bits. Here is
the formula type(1):

type(1)
def
= AX(type(0)) ∧EX(first(0)) ∧ uniq(1) ∧ compl(1).

It remains to specify what exactly the formulae uniq(1) and compl(1) are. In order to
define uniq(1), responsible for enforcing the uniqueness among the children’s numbering, we
simply state that there are no two distinct children (of type 0) having the same number:

∀x, y diff-nom(x, y, 1)→ ¬(nb(x) =1 nb(y)).

Note that the formula diff-nom(x, y, 1) guarantees that we pick two distinct children and
the nominals x and y allow us to access them (and check the values of the propositional
variables in {pn−1, . . . , p0}). Consult Lemma 3.5 for the correctness.
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The formula compl(1) below states that for each child v (of type 0) that is not the last
one (i.e. does not have the highest possible number among all other nodes), there is also a
child v′ (also of type 0) such that nbT(v′) = nbT(v) + 1. Here is the formula compl(1):

∀x (nom(x, 1) ∧@1
x(¬last(0)))→ ∃y nom(y, 1) ∧ nb(y) =1 nb(x) + 1.

Finally, it remains to define the formulae nb(x) =1 nb(y) and nb(y) =1 nb(x) + 1 used
respectively in uniq(1) and in compl(1). Below, we treat the more general situation with
k = d (k is not necessarily equal to 1), and nb(x) =1 nb(y) and nb(y) =1 nb(x) + 1 are
specific instances with k = d = 1. Let assume that x̄ = x1, . . . , xk and ȳ = y1, . . . , yk (thus
d = k). The forthcoming definitions are standard and rely on elementary operations on
binary encoding of natural numbers with n bits (again, the least significant bit is represented
by the truth value of p0):

• nb(y1, . . . , yk) =k nb(x1, . . . , xk) + 1 is defined as

n−1∨
i=0

@x̄

(¬pi ∧
i−1∧
j=0

pj)


︸ ︷︷ ︸
look for the first zero bit

∧ @ȳ

i−1∧
j=0

¬pj ∧ pi


︸ ︷︷ ︸
reset previous bits, set pi

∧

 n−1∧
j=i+1

@x̄pj ⇔ @ȳpj


︸ ︷︷ ︸

rewrite other bits


• nb(x1, . . . , xk) <k nb(y1, . . . , yk) is defined as

n−1∨
i=0

 @ȳpi ∧@x̄¬pi∧︸ ︷︷ ︸
find the first bit that differs

(
n−1∧
j=i+1

@x̄pj ⇔ @ȳpj)︸ ︷︷ ︸
equality of more significant bits


For the sake of completeness, we define first(1)

def
= AX(¬val) and last(1)

def
= AX(val).

The lemma below states that we have properly proceeded for the binary encoding of
numbers with the variables in pn−1, . . . , p0 (and Lemmas 3.4–3.5 need to be used).

Lemma 4.1. Let T be a tree model and v be one of its nodes such that v satisfies ̂̄x, ȳ (x̄
and ȳ are both of length k) and, vk and v′k are understood as nodes of type 0.

(I) : T, v |= nb(ȳ) =k nb(x̄) + 1 iff nbT(v′k) = 1 + nbT(vk).
(II): T, v |= nb(x̄) <k nb(ȳ) iff nbT(vk) < nbT(v′k).
(III): T, v |= nb(x̄) =k nb(ȳ) iff nbT(vk) = nbT(v′k).

Proof. By careful inspection of the presented formulae, cf. Appendix B.1.

We conclude by presenting the main lemma that gathers all established formulae.

Lemma 4.2. Let T be a tree model and let v be any of its nodes. The following hold:

(I) : T, v |= type(1) iff v is of type 1,
(II): Assuming v satisfies type(1), we have T, v |= first(1) iff nbT(v) = 0.
(III): Assuming v satisfies type(1), we have T, v |= last(1) iff nbT(v) = t(2, n)− 1.

Proof. The properties (II)–(III) follow immediately from the way we encode numbers. Check
Appendix B.2 for a more detailed explanation.
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4.3. Formulae with arbitrary N ≥ 2. Let us consider the arbitrary case N ≥ 2. Below, we
define the formulae type(N), first(N) and last(N) as well as nb(x1, . . . , xd) <k nb(y1, . . . , yd),
and nb(y1, . . . , yd) =k nb(x1, . . . , xd) + 1 with k−d = N−1. We also consider the formula
nb(x1, . . . , xd) =k nb(y1, . . . , yd), that is defined as follows:

¬(nb(x1, . . . , xd) <k nb(y1, . . . , yd)) ∧ ¬(nb(y1, . . . , yd) <k nb(x1, . . . , xd)).

We assume that for all k < N , the formulae type(k), last(k) and first(k) are already defined
and for k− d ≤ N − 2, the formulae nb(x̄) <k nb(ȳ), nb(x̄) =k nb(ȳ) and nb(ȳ) =k nb(x̄) + 1
are already defined too (x̄ and ȳ are of length d). This can be understood as an implicit
induction hypothesis when proving the correctness of the formulae built for N .

As for the case N = 1, the formula type(N) follows the general schema: it states that
there is a child with number equal to zero, if a child has number m < t(N,n)− 1, then there
is a child with number equal to m+ 1, and two distinct children have distinct numbers in
[0, t(N,n)− 1]. Of course, all the children are enforced to be of type N − 1. We present the
claimed formula type(N) below.

type(N)
def
= AX(type(N − 1)) ∧EX(first(N − 1)) ∧ uniq(N) ∧ compl(N).

Again, it remains to specify what uniq(N) and compl(N) are. In order to define uniq(N),
we simply state that there are no two distinct children (of type N−1) with the same number:

uniq(N)
def
= ∀x, y diff-nom(x, y, 1)→ ¬(nb(x) =N nb(y)).

Again, the formula diff-nom(x, y, 1) allows us to select two distinct children (of type N − 1).
The formula compl(N) below states that for each child v (of type N − 1) that is not the last
one, there is also a child v′ (of type N − 1 too) such that nbT(v′) = nbT(v) + 1. Here it is:

compl(N)
def
= ∀x (nom(x, 1) ∧@1

x(¬last(N − 1)))→ ∃y nom(y, 1) ∧ nb(y) =N nb(x) + 1.

It remains to define nb(x) =N nb(y) and nb(y) =N nb(x) + 1 used respectively in uniq(N)
and in compl(N). This time, this requires much lengthier developments, apart from using
the properties of the formulae constructed for N − 1 and for smaller values (implicit
induction hypothesis). Below, we treat the more general situation with k − d = N − 1, and
nb(x) =N nb(y) and nb(y) =N nb(x) + 1 are just particular instances with k = N and d = 1.
Thus, let x̄ = x1, . . . , xd and ȳ = y1, . . . , yd.

For defining nb(y1, . . . , yk) =k nb(x1, . . . , xk) + 1 (see Section 4.2), we have compared
the respective truth values of the propositional variables pn−1, . . . , p0 for the node vk (the
interpretation of xk) and for the node v′k (the interpretation of yk). The same principle applied
for defining nb(x1, . . . , xk) =k nb(y1, . . . , yk). Typically, nb(y1, . . . , yk) =k nb(x1, . . . , xk) + 1
holds iff there is an index i ∈ [0, n− 1], such that

• for every j ∈ [i+ 1, n− 1], vk and v′k agree on pj ,
• vk does not satisfy pi and v′k satisfies pi,
• for j ∈ [0, i− 1], vk satisfies pj , v

′
k does not satisfy pj .

Thus, we needed to define a partition {[i+ 1, n− 1], {i}, [0, i− 1]} of [0, n− 1] (understood
as the set of bit numbers to encode a value in [0, 2n − 1]). The same principle applies when
the bit numbers are among [0, t(k−d, n)− 1] to encode a value in [0, t(k−d+1, n)− 1]. This
needs to be done concisely as we cannot go through all the t(k−d, n) bit numbers because
the whole reduction has to be of elementary complexity.

Now, when attempting to define nb(y1, . . . , yd) =k nb(x1, . . . , xd) + 1, the nodes vd and
v′d are of type k − d > 0 with t(k − d, n) children each. The truth values of val on their
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respective children determine precisely the numbers nb(vd) and nb(v′d). Below, we describe
what vd’s children look like.

. . .

0

val

1

¬val

2

¬val . . . val

t(k−d, n)−1

val

type k−d−1 type k−d−1

Let ut(k−d,n)−1, . . . , u0 be the children of vd such that nb(uj) = j for all j. Simi-
larly, let u′t(k−d,n)−1, . . . , u

′
0 be the children of v′k such that nb(u′j) = j for all j. Hence,

nb(y1, . . . , yd) =k nb(x1, . . . , xd) + 1 holds iff there is a position i ∈ [0, t(k − d, n) − 1]
satisfying

• for j ∈ [i+ 1, t(k − d, n)− 1], uj and u′j agree on val ,

• ui does not satisfy val and u′i satisfies val ,
• for every j ∈ [0, i− 1], uj satisfies val and u′j does not satisfy val .

We have to define a partition {ui+1, . . . , ut(k−d,n)−1}, {ui}, {u0, . . . , ui−1} of {ut(k−d,n)−1, . . . , u0}
(and similarly for the children of v′d). To do so, we employ the existential quantification on
the fresh propositional variables l (left), s (selected bit), r (right) such that

(a) for every child of vd (resp. v′d), exactly one propositional variable among {l, s, r} holds
true,

(b) exactly one child of vd (resp. v′d) satisfies s,
(c) if v is a child of vd satisfying l (resp. s) and v′ is child of vd satisfying s (resp. r), then

nbT(v) < nbT(v′). The same condition holds with v′d.

Below, we illustrate how the propositional variables l, s and r are distributed.

. . . . . .
l l s r r

. . . . . .
l l s r r

Additional arithmetical constraints are needed to relate the partition of x̄ with the
partition of ȳ (see below the details) but in a way, it is independent of the partition itself.
For instance, the unique child of vd satisfying s and the unique child of v′d satisfying s should
have the same (bit) number. Nevertheless, it is clear that we need, at least, to be able to
state in QCTLtX the existence of a partition satisfying the conditions (a), (b) and (c). In the
sequel, such partitions are called lsr-partitions. The forthcoming formula LSRx̄(k) does the
job for vd (then use LSRȳ(k) for v′d).

Take x̄ = x1, . . . , xd. In the context of the definition of LSRx̄(k), we allow the limit case

d = 0, with empty sequence ε, assuming that @εψ
def
= ψ and ε̂, ε

def
= >. Below 0 ≤ d < k and

the formula LSRx̄(k) is defined as the conjunction LSR1
x̄(k) ∧ LSR2

x̄(k) ∧ LSR3
x̄(k) and is

interpreted on a node v0 of type k satisfying ̂̄x, x̄, and therefore this satisfaction is witnessed
by the branch v0, . . . , vd (notations for developments below).
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First, LSR2
x̄(k)

def
= @x̄(EX=1(s)), with EX=1(ψ) defined as EXψ ∧ ¬∃ p (EX(ψ ∧ p) ∧

EX(ψ ∧ ¬p)) for a fresh p. Note that the formula LSR2
x̄(k) simply states that there is a

unique child of vd satisfying s. Next, let LSR1
x̄(k) be defined below, stating that for every

child of vd, exactly one propositional variable among {l, s, r} holds true:

LSR1
x̄(k)

def
= @x̄ (AX((s ∨ l ∨ r) ∧ ¬(s ∧ l) ∧ ¬(s ∧ r) ∧ ¬(l ∧ r))) .

Finally, LSR3
x̄(k) is defined as follows.

@x̄(∀w∀w′ diff-nom(w,w′, 1)∧((@1
w(s)∧@1

w′(r))∨(@1
w(l)∧@1

w′(s)))→ nb(w′) <k−d nb(w)).

The formula LSR3
x̄(k) states if v is a child of vd satisfying l (resp. s) and v′ is another child

of vd satisfying s (resp. r), then nbT(v) < nbT(v′). The nodes v and v′ are obviously of type
k−d−1 and their respective numbers belong to [0, t(k−d, n)−1]. It is important to observe
that nb(w′) <k−d nb(w) is well-defined recursively as soon as k − d ≤ N − 2.

Lemma 4.3. Let T be a tree model, v0 be a node of type k ≥ 0, and x̄ be a (possibly empty)
sequence of nominals x1, . . . , xd for some d ∈ [0, k− 1] such that k− d ≤ N − 1, T, v0 |= ̂̄x, x̄,
and its witness branch is v0, . . . , vd. Then T, v0 |= LSRx̄(k) iff the conditions below hold:

(a) For every child of vd, exactly one propositional variable among {l, s, r} holds true.
(b) Exactly one child of vd satisfies s.
(c) If v is a child of vd satisfying l (resp. s) and v′ is a child of vd satisfying s (resp. r),

then nbT(v) < nbT(v′).

Proof. By careful inspection of the presented formulae, cf. Appendix B.3.

We come back to the question of defining formulae expressing number comparisons. The
formula nb(ȳ) =k nb(x̄) + 1 (remember k − d = N − 1) is defined as the expression

∃ l, s, r LSRx̄(k) ∧ LSRȳ(k) ∧ φleft(k) ∧ φselect(k) ∧ φright(k).

The conjunction φleft(k)∧ φselect(k)∧ φright(k) takes care of the arithmetical constraints.
The formula φselect(k) states that the vd’s unique child satisfying s (whose number is the
pivot bit i) does not satisfy val , and the v′d’s unique child satisfying s (whose number is also
the pivot bit i) satisfies val :

φselect(k)
def
= @x̄ (AX(s→ ¬val)) ∧@ȳ (AX(s→ val)) .

The formula φright(k) states that for all the children of vd satisfying r (and therefore with bit
number strictly smaller than i), the bit value is 1, and for all the children of v′d satisfying r
(and therefore with bit number strictly smaller than i), the bit value is 0.

φright(k)
def
= @x̄ (AX(r→ val)) ∧@ȳ (AX(r→ ¬val)) .

The formula φleft(k) states that the children of vd satisfying l induce a set of bit numbers
equal to the set of bit numbers induced by the children of v′d satisfying l. This entails also
that the unique respective children of vd and v′d satisfying s have the same (bit) number.
Moreover, we require that children with the same bit number satisfying l (taken from vd and
from v′d) have the same bit value witnessed by the truth value of val . The formula φleft(k) is

equal to φx̄,ȳleft(k) ∧ φȳ,x̄left(k) with φx̄,ȳleft(k) defined below:

φx̄,ȳleft(k)
def
= ∀w @x̄(nom(w, 1) ∧@1

w(l))→(
∃w′ @ȳ(nom(w′, 1) ∧@1

w′(l)) ∧ nb(x̄, w) =k nb(ȳ, w′) ∧ (@x̄,wval ↔ @ȳ,w′val)
)
.
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Note that nb(x̄, w) =k nb(ȳ, w′) is well-defined as k − (d + 1) ≤ N − 2. Below, we define
the formula nb(x̄) <k nb(ȳ) with k − d = N − 1, x̄ = x1, . . . , xd and ȳ = y1, . . . , yd. Based
on previous developments and on standard arithmetical properties of numbers encoded in
binary with k − d bits, we define the formula nb(x̄) <k nb(ȳ) as the expression

nb(x̄) <k nb(ȳ)
def
= ∃ s, l, r LSRx̄(k) ∧ LSRȳ(k) ∧ φleft(k) ∧ φselect(k).

As previously, the formula nb(x̄) =k nb(ȳ) is defined as follows:

nb(x̄) =k nb(ȳ)
def
= ¬(nb(x̄) <k nb(ȳ)) ∧ ¬(nb(ȳ) <k nb(x̄)).

Lemma 4.4. Let T be a tree model, v be a node satisfying ̂̄x, ȳ and, vd, v′d are of type k− d.

(I) : We have T, v |= nb(ȳ) =k nb(x̄) + 1 iff nbT(v′d) = 1 + nbT(vd).
(II): We have T, v |= nb(x̄) <k nb(ȳ) iff nbT(vd) < nbT(v′d).
(III): We have T, v |= nb(x̄) =k nb(ȳ) iff nbT(vd) = nbT(v′d).

Proof. By careful inspection of the presented formulae, cf. Appendix B.4.

Mainly, this allows us to prove Lemma 4.5(I).

Lemma 4.5. Let N ≥ 2, T be a tree model and v be one of its nodes.

(I) : T, v |= type(N) iff v is of type N ,
(II): Assuming that v satisfies type(N), we have T, v |= first(N) iff nbT(v) = 0.
(III): Assuming that v satisfies type(N), we have T, v |= last(N) iff nbT(v) = t(N+1, n)−1.

Proof. Similar to the proof of Lemma 4.2, see Appendix B.5 for more details.

Consequently, for all k ≥ 0, type(k), first(k) and last(k) characterise exactly the discussed
properties, and similarly for the formulae of form nb(ȳ) =k nb(x̄) + 1, nb(x̄) <k nb(ȳ),
nb(x̄) =k nb(ȳ) where x̄ and ȳ are of length d in [1, k] and k ≥ 1. It is natural to wonder what
is the size of type(k), using a reasonably succinct encoding for formulae. As the definition of
type(k) requires the subformulae type(k − 1), nb(x̄) =k nb(ȳ) and nb(ȳ) =k nb(x̄) + 1 (the
other subformulae are of constant size), and the formula type(1) is quadratic in n, one can

show that type(k) is of size 2O(k+n). This is sufficient for our purposes.

4.4. Uniform reduction leading to Tower-hardness. Let (P, c), where P = (T ,H,V)
and c = t0, t1, . . . , tn−1 be an instance of Tilingk known to be k-NExpTime-complete (see
also [20, Chapter 11]). We reduce the existence of a tiling τ : [0, t(k, n)−1]×[0, t(k, n)−1]→ T ,
respecting the initial condition and the horizontal and vertical matching conditions, to the
satisfiability of a formula φ in QCTLtX.

To encode the grid [0, t(k, n) − 1] × [0, t(k, n) − 1], we consider a root node ε of type
k + 1, and we distinguish t(k, n) children among all of its t(k + 1, n) children. Each child of
ε has itself exactly t(k, n) children as it is a node of type k. In order to identify the t(k, n)
first children of ε, we use an lsr-partition so that the unique child satisfying s has precisely
the number t(k, n). This guarantees that exactly the children of ε whose numbers are in
[0, t(k, n)− 1] satisfy r. So, the lsr-partition is used in a new context.

Below, we define the new formula nb =k t(k, n) that expresses that a node of type k has
number t(k, n) (k ≥ 1). We recall that a node of type k takes its values in [0, t(k + 1, n)− 1].
Let us provide an inductive definition for nb =k t(k, n) with the base case k = 1.

• nb =0 t(0, n)
def
= ¬pn−1 ∧ · · · ∧ ¬p0.
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• nb =1 t(1, n)
def
= AX(val ↔ Xn = n), where Xn = n is an abbreviation for the formula

stating that the truth values for pn−1, . . . , p0 encode n in binary.

• For k ≥ 2, (nb =k t(k, n))
def
= AX(val ↔ (nb =k−1 t(k − 1, n))).

Lemma 4.6. Assume that T, v |= type(k). Then nbT(v) = t(k, n) iff T, v |= (nb =k t(k, n)).

Proof. By careful inspection of the semantics, cf. Appendix B.6.

Let φP be the formula built from the instance (P = (T ,H,V), c) as follows:

type(k + 1) ∧ ∃ l, s, r LSRε(k + 1) ∧EX(s ∧ (nb =k t(k, n))) ∧ φcov ∧ φinit ∧ φH ∧ φV .

Definitions and explanations for φcov, φinit, φH and φV follow but observe that an lsr-partition
is performed for a node of type k + 1 and exactly t(k, n) children satisfy r thanks to the
satisfaction of the subformula EX(s ∧ (nb =k t(k, n))). The formula φcov states that every
position in [0, t(k, n)− 1]× [0, t(k, n)− 1] has a unique tile:

∀ x, y nom(x, 1) ∧@1
xr ∧@1

xnom(y, 1)→ @x,y(
∨
t∈T

t ∧
∧

t6=t′∈T
¬(t ∧ t′)).

The tile types in T are understood as propositional variables. In order to access the root
node ε to a node encoding a position of the grid, one needs first to access a child v of ε
satisfying r (and this is done with the help of the local nominal x) and then to access any
child v′ of v (done with the local nominal y). Then, to reason propositionally on v′, it is
sufficient to consider subformulae of the form @x,yψ. This principle is applied to all the
formulae below. The formula φH defined below encodes the horizontal matching constraints.

∀ x, x′, y, y′ (nom(x, 1) ∧@1
xr ∧ nom(x′, 1) ∧@1

x′r ∧@1
xnom(y, 1) ∧@1

x′nom(y′, 1)∧

nb(x′) =k+1 nb(x) + 1 ∧ nb(x, y) =k+1 nb(x, y′))→
∨

(t,t′)∈H

@x,yt ∧@x′,y′t
′

Similarly, the following formula φV encodes the vertical matching constraints.

∀ x, x′, y, y′ nom(x, 1) ∧@1
xr ∧ nom(x′, 1) ∧@1

x′r ∧@1
xnom(y, 1) ∧@1

x′nom(y′, 1)∧

nb(x) =k+1 nb(x′) ∧ nb(x, y′) =k+1 nb(x, y) + 1→
∨

(t,t′)∈V

@x,yt ∧@x′,y′t
′

It remains to express the initial conditions. It is sufficient to identify the n first children
of the first child of ε (identified by the satisfaction of first(k)). For example, to express that
the jth child of the first child of ε (say v is this first child of ε) satisfies tj , perform an
lsr-partition on v, enforce that the unique child satisfying s also satisfies tj and express that
there are exactly j − 1 children of v satisfying r. This is a condition from graded modal logic
that is easy to express. Let EX=i ψ be the formula below stating that exactly i ≥ 1 children
satisfy ψ:

∃ q1, . . . , qi diff-nom(q1, . . . , qi, 1) ∧AX((q1 ∨ · · · ∨ qi)↔ ψ),

where q1, . . . , qi are fresh propositional variables. By convention EX=0 ψ is defined as AX¬ψ.
The formula φinit is defined as

∀ x (nom(x, 1) ∧@1
x(first(k)))→ @1

x(
∧

i∈[0,n−1]

∃ l, s, r LSRε(k) ∧EX=i r ∧EX(s ∧ ti)).

The correctness of the reduction is stated below.
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Lemma 4.7. P = (T ,H,V), c = t0, t1, . . . , tn−1 is a positive instance of Tilingk iff φP is
satisfiable in QCTLtX.

Proof. Given an instance P = (T ,H,V), c = t0, t1, . . . , tn−1 of the tiling problem Tilingk,
let τ : [0, t(k, n) − 1] × [0, t(k, n) − 1] → T be a tiling respecting all the constraints (init),
(hori) and (verti). Below, we build a tree model T = 〈V,E, l〉 such that T, ε |= φP where ε is
the root node of T. Let V be the following subset of N∗ (set of finite sequences over N):

• ε is the empty string and it belongs to V ,
• For all j ∈ [1, k + 1], [0, t(k + 1, n)− 1]× · · · × [0, t(j, n)− 1] ⊆ V .
• [0, t(k + 1, n)− 1]× · · · × [0, t(1, n)− 1]× 0+ ⊆ V .

The binary relation E is simply defined as: vEv′
def⇔ v is a prefix of v′, and v ·α = v′ for some

α ∈ N. So, (V,E) is a finite-branching tree such that all the maximal branches are infinite.
The labelling map l is defined in a way so that T, ε |= type(k + 1). For instance, any node
mk+1, . . . ,m2 ∈ V ∩ Nk−1 has 2n children, and their numbers should span over [0, 2n − 1].
This is easy to realise by setting properly the truth values for pn−1, . . . , p0. Similarly, any
node mk+1, . . . ,m3 ∈ V ∩ Nk−2 has t(2, n) children, and their numbers should span over
[0, t(2, n)− 1]. Again, this is easy to realise by setting properly the truth values of val on
the nodes in [0, t(k + 1, n) − 1] × · · · × [0, t(1, n) − 1]. So, it remains to take care of the
propositional variables dedicated to the tile types.

• For all (i, j) ∈ [0, t(k, n)− 1]× [0, t(k, n)− 1], l((i, j))∩T is equal to {τ(i, j)} by definition.
In particular, this means that for all (i, j) ∈ [0, t(k, n)− 1]× [0, t(k, n)− 1], there is exactly
one tile type (understood as a propositional variable) satisfied by (i, j).
• For all v ∈ V \ [0, t(k, n)− 1]× [0, t(k, n)− 1], the value of the set l(v) ∩ T is irrelevant.

It remains to check that

T, ε |= type(k + 1) ∧ ∃ l, s, r LSRε(k + 1) ∧EX(s ∧ nb =k t(k, n)) ∧ φcov ∧ φinit ∧ φH ∧ φV ,
which is routine and done in Appendix B.7.

We are ready to conclude the main theorem of this paper.

Theorem 4.8. SAT(QCTLtX) is Tower-complete.

Theorem 4.8 significantly improves the Tower lower bound from [37, Cor. 5.6] by
considering as only temporal operator, the (local) modality EX. Tower-hardness can be
also obtained with arbitrary countable trees. In Section 5 below, we show that this entails
more Tower-hardness results for other fragments of QCTLtX and for modal logics with
propositional quantification under appropriate tree semantics.

5. A harvest of Tower-complete modal and temporal logics

We capitalise on the Tower-hardness of the satisfiability problem for QCTLtX, by showing
Tower-hardness of other fragments of QCTLt that involve only EF or its strict variant
EXEF (Section 5.1). Tower-hardness is obtained by reduction from SAT(QCTLtX) by
introducing propositional variables that enforce layers from the root in the tree model and
therefore this allows us to simulate EX. In Section 5.2, we consider well-known modal logics
that are complete for classes of tree-like Kripke structures, and we show that their extension
with propositional quantification for such classes of tree-like Kripke structures is decidable
in Tower, but more importantly Tower-hard. Some of such classes involve finite trees
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and therefore, we also take the opportunity to study QCTLftX and QCTLftXF that happen, for

instance, to be closely related to the modal logics QKt and QGLt, respectively.

5.1. The satisfiability problems for QCTLtF and QCTLtXF are Tower-hard! The frag-
ment QCTLtF of QCTLt is defined according to the following grammar

φ ::= p | ¬φ | φ ∧ φ | EFφ | ∃p φ.

We recall the standard semantics for EF-formulae: T, v |= EFφ
def⇔ there is j ≥ 0 such that

vEjv′ and T, v′ |= φ, and as usual, AGφ
def
= ¬EF¬φ.

In order to show that SAT(QCTLtF) is Tower-hard, we design a logarithmic-space
many-one reduction from SAT(QCTLtX). A more sophisticated analysis is also possible to
establish Tower-hardness for even smaller fragments, see the recent work [39].

Let φ be a formula in QCTLtX with modal depth md(φ) = k. Without loss of generality,
we assume that φ may contain occurrences of EX and no occurrences of AX. Let us define
the formula φ′ = trans(k, φ) ∧ shape(k) in QCTLtF, where the formula shape(k) enforces
a discipline for layers (explained below) and trans(k, φ) admits a recursive definition, by
relativising the occurrences of EX. We consider the set of propositional variables Yk =
{layer−1, layer0, . . . , layerk} with the intended meaning that a node satisfying layer i is
of “layer i”, the root node being of layer k. Indeed, there is a need for such propositional
variables, as unlike with the formulae in QCTLtX, we have to enforce that moving with EF
leads to a lower layer.

The formula shape(k) is defined as the conjunction of the following formulae.

• Every node satisfies exactly one propositional variable from Yk (layer unicity):

AG

(layer−1 ∨ layer0 ∨ · · · ∨ layerk) ∧
∧

−1≤i 6=j≤k
¬(layer i ∧ layer j)


• When a node satisfies layer i with −1 ≤ i ≤ k, none of its descendants satisfies layer j with
j > i (monotonicity of layer numbers):∧

−1≤i≤k
AG(layer i → AG(layer−1 ∨ layer0 ∨ · · · ∨ layer i))

• When a node satisfies layer i with 0 ≤ i ≤ k, there is a descendant satisfying layer i−1

(weak progress): ∧
0≤i≤k

AG(layer i → EF layer i−1)

• When a node satisfies layer i with 0 ≤ i ≤ k, it has no (strict) descendant satisfying layer i
(no stuttering). This type of constraints does not apply to layer−1.∧

0≤i≤k
AG(layer i → ¬∃p (p ∧EF(layer i ∧ ¬p)))

• The root node is at layer k: layerk.

A tree model T = 〈V,E, l〉 for QCTLt with root ε is k-layered iff the conditions below hold:

(a) For every node v ∈ V , card(l(v) ∩ Yk) = 1.
(b) For all v ∈ V such that layer j ∈ l(v) for some j ∈ [−1, k],
• if j ≥ 0, then there is v′ such that vEv′ and layer j−1 ∈ l(v′) and,
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• for all v′ such that vE+v′ and layer j′ ∈ l(v′), we have j′ ≤ j.
(c) For all j ∈ [0, k], there are no distinct nodes v and v′ such that vE+v′ and layer j ∈

l(v) ∩ l(v′).
(d) layerk ∈ l(ε), where ε is the root of the tree model.

This means that the only propositional variable from Yk satisfied by a node reachable in
j ∈ [1, k] steps from ε is layerm for some m ≤ k− j, and the only propositional variable from
Yk satisfied by a node reachable in strictly more than k steps from ε is layer−1. Moreover,
once layer−1 holds true, it holds for all its descendants. Actually, the formula shape(k)
characterises k-layered structures.

Lemma 5.1. Let T = 〈V,E, l〉 be a tree model for QCTLt with the root node ε. We have
T, ε |= shape(k) holds if and only if T is k-layered.

Proof. By careful inspection of the semantics, cf. Appendix C.1.

To define trans(k, φ), we define inductively trans(i, ψ) where ψ is a subformula of φ and
md(ψ) ≤ i.

• trans(i, p)
def
= p for all propositional variables p,

• trans is homomorphic for Boolean connectives and trans(i,∃ p ψ)
def
= ∃ p trans(i, ψ),

• trans(i,EXψ)
def
= EF

(
layer i−1 ∧ trans(i−1, ψ)

)
.

Note that trans(k, φ) has no occurrence of layer−1 since md(φ) = k and that translating an
EX-formula decreases the index of the layer by exactly one. The correctness of the reduction
can be now stated as follows.

Lemma 5.2. A formula φ is satisfiable for QCTLtX iff trans(k, φ) ∧ shape(k) is satisfiable
for QCTLtF.

Proof. By induction. Consult Appendix C.2.

Hence we conclude yet another important result.

Theorem 5.3. The satisfiability problem for QCTLtF is Tower-complete.

The Tower upper bound is established for the full logic QCTLt in [37] and in particular
for QCTLtF. Theorem 5.3 also admits a variant in which we only allow to move to proper
descendants. It amounts to replacing EF by EXEF (treated here as a single modality) in
QCTLtF, leading to the variant QCTLtXF, with formulae obtained from

φ ::= p | ¬φ | φ ∧ φ | EXEFφ | ∃p φ

As usual, we write AXAG ψ as an abbreviation of ¬EXEF¬φ.

Theorem 5.4. The satisfiability problem for QCTLtXF is Tower-complete.

As above, the Tower upper bound for SAT(QCTLtXF) is inherited from SAT(QCTLt) [37].
Note that in QCTLt, the formula EFp is logically equivalent to p ∨ EXEFp. Thus, we
get a (possibly exponential, which is sufficient for us) reduction from SAT(QCTLtF) to
SAT(QCTLtXF), whence the Tower-hardness of SAT(QCTLtXF). Recall that Tower-
hardness is defined with respect to elementary reductions and therefore an exponential-time
reduction is fine to establish Tower-hardness, see e.g. [50] and Section 2.3.
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5.2. Modal logics with propositional quantification on trees. Numerous well-known
modal logics are complete (a.k.a. determined) for classes of tree-like structures. A modal logic
L (defined from the Hilbert-style system HL) is complete for a class of Kripke structures
C iff the theoremhood of φ in HL is equivalent to the validity of φ in C (i.e. for all K ∈ C,
for all w, we have K, w |= φ). For instance, the (propositional) modal logic K is complete
for the class of finite trees [52, 12]. It is worth noting that a given modal logic can be
complete for different classes of Kripke models (e.g. K is complete for the class of all the
Kripke models, but also complete for the class of finite Kripke models) and their extension
to propositional quantification may lead to distinct logics. Typically, K with propositional
quantification under the structure semantics is undecidable [25] whereas it is shown below
to be Tower-complete under the finite tree semantics.

Below, for the propositional modal logics L in K, KD, GL, K4 and S4 we define an
extension QLt with propositional quantification under a class of tree-like models that is
complete for the logic L.

In order to avoid too many notations, the modalities for each logic QLt are EX and
AX (instead of the more standard modal operators 3 and 2) and therefore QLt formulae
are built from the grammar below: φ ::= p | ¬φ | φ ∧ φ | EXφ | AXφ | ∃p φ.

• The propositional modal logic K is complete for the class of finite trees and we define QKt

as the modal logic with propositional quantification over the class of finite trees.
• The propositional modal logic KD (K with seriality, a.k.a. totality) is known to be complete

for the class of finite-branching trees for which all the maximal branches are infinite. Indeed,
KD is complete for the class of finite total Kripke models. Therefore by using the unfolding
construction, completeness applies also for the class of finite-branching trees for which
all the maximal branches are infinite, i.e. the models for QCTLt. Let QKDt be the modal
logic with propositional quantification over the class of finite-branching trees for which
all the maximal branches are infinite. The satisfiability problem for QKDt is exactly the
problem for QCTLtX.
• The modal logic GL is known to be complete for the class of finite transitive trees (GL is

complete with respect to finite irreflexive transitive Kripke models [55]), i.e. the class of
Kripke structures 〈V,E+, l〉 such that 〈V,E, l〉 is a finite tree model, see e.g. [12]. Let QGLt

be the modal logic with propositional quantification over the class of finite transitive trees,

which is precisely QCTLftXF. It is worth noting that adding propositional quantification to
GL is studied in [4], where a fragment is shown to be decidable by translation into the
weak monadic second-order logic of one successor WS1S [15].
• The modal logic K4 is complete for the class of Kripke structures 〈V,E+, l〉 such that
〈V,E, l〉 is a finite-branching tree model (some branches may be infinite, some others
not). Let QK4t be the modal logic with propositional quantification over the class of
finite-branching trees.
• The modal logic S4 is complete for the class of finite Kripke structures such that the

accessibility relation is reflexive and transitive, and therefore complete for the class of
structures 〈V,E∗, l〉 such that 〈V,E, l〉 is a finite-branching tree model in which all the
branches are infinite (by unfolding). Let QS4t be the modal logic with propositional
quantification over the class of finite-branching trees in which all the branches are infinite
(precisely the class of models for QCTLt). The satisfiability problem for QS4t happens to
be exactly the problem for QCTLtF, modulo the fact that EX in QS4t corresponds to EF
in QCTLtF.
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In this section, we show that the satisfiability problem for the logics QKt, QKDt, QGLt,
QK4t and QS4t and whose models are tree-like Kripke structures is Tower-complete. For
instance, QKt corresponds to the modal logic K interpreted on finite trees with propositional

quantification, which is precisely QCTLftX , i.e. QCTLft restricted to the EX operator.

Theorem 5.5. SAT(QKt) is Tower-complete.

Proof. The satisfiability problem in Theorem 5.5 is exactly SAT(QCTLftX). An easy translation
can be found in Appendix C.3.

As a corollary of Theorem 3.14, for all N ≥ 2, the satisfiability problem for QKt≤N is

AExppol-complete too where QKt≤N is interpreted on finite trees whose branching degree
is at most N . The AExppol lower bound can be obtained using the same reduction as
for QCTLtX,≤N whereas the AExppol upper bound uses also the same arguments as for

QCTLtX,≤N .

We have seen that QKDt is actually defined as QCTLtX (KD is characterised by total
and finite Kripke structures whose unfoldings generate finite-branching trees in which all
the branches are infinite). Consequently:

Theorem 5.6. SAT(QKDt) is Tower-complete.

Recall that the modal logic GL is known to be complete for the class of finite transitive
trees. The logic QGLt extends it with propositional quantification. We obtain the following:

Theorem 5.7. SAT(QGLt) is Tower-complete.

Proof. The logic can be shown to be precisely QCTLftXF when EX is translated into EXEF,
whence we get a Tower upper bound. For the Tower-hardness proof, it is very similar to
the one for QCTLtF (actually, it is a bit simpler). Consult Appendix C.4.

QK4t is defined as the modal logic with propositional quantification over the class of
finite-branching trees. Our next theorem is as follows.

Theorem 5.8. SAT(QK4t) is Tower-complete.

Proof. Full proof is in Appendix C.5. We first show SAT(QK4t) and SAT(QCTLgtXF) are
identical modulo the rewriting of EX into EXEF. This yields the Tower upper bound. As
far as Tower-hardness is concerned, for any formula φ in QCTLtXF, one can show that φ is

satisfiable for QCTLtXF iff φ ∧EX EF >∧AXAG EXEF > is satisfiable in QCTLgtXF.

Finally, by noting that QS4t is equal to QCTLtF modulo that EX is rewritten into EF,
using Theorem 5.3, we get the following complexity characterisation.

Theorem 5.9. SAT(QS4t) is Tower-complete.

6. Conclusion

In the paper, we have developed a relatively simple proof method to show that the satisfiability
problems for QCTLtX, QCTLtF and QCTLtXF are Tower-complete, see also similar methods
in [56, 46]. Our contribution is to establish Tower-hardness, which could be also shown for
several modal logics with propositional quantification whose respective classes of models
are tree-like structures. Moreover, in the case of fixed degree, we have shown that for all
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N ≥ 2, the satisfiability problem for the variant QCTLtX,≤N is AExppol-complete. Whereas
AExppol-hardness is established by reducing the alternating multi-tiling problem recently
introduced in [13], the Tower-hardness of SAT(QCTLtX) is essentially based on the fact
that one can enforce concisely that a node has a number of children equal to some tower of
exponentials.

Section 5 deals with the Tower-completeness of SAT(QCTLftX) and SAT(QCTLftXF), as
well as Tower-completeness for the well-known modal logics K, KD, GL, K4 and S4 extended
with propositional quantification but with adequate classes of tree-like structures. Though
the Tower upper bound for decision problems on trees should not come as a real surprise,
all our Tower-hardness results significantly improve the current state-of-the-art regarding
the fragments of QCTLt and for the above-mentioned modal logics. In particular, our proof
technique for Tower-hardness of SAT(QCTLtX) (and therefore for QKt on finite trees) is
simple enough so that it could be further reused or adapted, see e.g. a recent refinement of
the proof in [8].

This work can be continued in several directions. For instance, Tower-hardness of
SAT(QCTLtF) is recently refined in [40, 39] by establishing that already QCTLtF restricted to
formulae of modal/temporal depth two is also Tower-hard. Among the several directions,
one of them would be to characterise the expressiveness of QCTLtX or QCTLtF along the
lines of [19] or [36], see also [5]. More generally, we believe that standard modal logics
with propositional quantification, but under the tree semantics, deserve to be much better
understood.
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[15] J.R. Büchi. On a decision method in restricted second-order arithmetic. In Logic, Methodology, and
Philosophy of Science, pages 1–11, 1960.

[16] R. Bull. On modal logic with propositional quantifiers. The Journal of Symbolic Logic, 34(2):257–263,
1969.

[17] A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114–133, 1981.
[18] E. Clarke and A. Emerson. Design and synthesis of synchronization skeletons using branching time

temporal logic. In Worshop on Logic of Programs, volume 131 of Lecture Notes in Computer Science,
pages 52–71. Springer, 1981.

[19] A. David, F. Laroussinie, and N. Markey. On the expressiveness of QCTL. In CONCUR’16, volume 59
of LIPIcs, pages 28:1–28:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[20] S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science. Cambridge University
Press, 2016.

[21] A. Emerson and P. Sistla. Deciding full branching time logic. Information and Control, 61:175–201, 1984.
[22] M. Fattorosi Barnaba and F. De Caro. Graded modalities. Studia Logica, 44(2):197–221, 1985.
[23] J. Ferrante and Ch. Rackoff. A decision procedure for the first order theory of real addition with order.

SIAM Journal of Computing, 4(1):69–76, 1975.
[24] K. Fine. For some proposition and so many possible worlds. PhD thesis, University of Warwick, 1969.
[25] K. Fine. Propositional quantifiers in modal logic. Theoria, 36:336–346, 1970.
[26] K. Fine. In so many possible worlds. Notre Dame Journal of Formal Logic, 13(4):516–520, 1972.
[27] T. French. Decidability of quantifed propositional branching time logics. In 14th Australian Joint

Conference on Artificial Intelligence, volume 2256 of Lecture Notes in Computer Science, pages 165–176.
Springer, 2001.

[28] T. French. Quantified propositional temporal logic with repeating states. In TIME-ICTL’03, pages
155–165. IEEE Computer Society, 2003.

[29] V. Goranko and S. Passy. Using the universal modality: gains and questions. Journal of Logic and
Computation, 2(1):5–30, 1992.

[30] M. Kaminski and M. Tiomkin. The expressive power of second order propositional modal logic. Notre
Dame Journal of Formal Logic, 37(1):35–43, 1996.

[31] D. Kaplan. S5 with quantifiable propositional variables. The Journal of Symbolic Logic, 35(2):355, 1970.
[32] D. Kernberger. Hybrid Branching-Time Logics. PhD thesis, University of Kassel, Germany, 2019.
[33] Ph. Kremer. On the complexity of propositional quantification in intuitionistic logic. The Journal of

Symbolic Logic, 62(2):529–544, 1997.
[34] Ph. Kremer. Propositional quantification in the topological semantics for S4. Notre Dame Journal of

Formal Logic, 38(2):295–313, 1997.
[35] O. Kupferman. Augmenting branching temporal logics with existential quantification over atomic

propositions. Journal of Logic and Computation, 9(2):135–147, 1999.
[36] A. Kuusisto. Second-order propositional modal logic and monadic alternation hierarchies. Annals of

Pure and Applied Logic, 166(1):1–28, 2015.
[37] F. Laroussinie and N. Markey. Quantified CTL: expressiveness and complexity. Logical Methods in

Computer Science, 10(4), 2014.
[38] F. Laroussinie and N. Markey. Augmenting ATL with strategy contexts. Information and Computation,

245:98–123, 2015.



WHY DOES PROPOSITIONAL QUANTIFICATION MAKE LOGICS ON TREES ROBUSTLY HARD? 31

[39] A. Mansutti. An Auxiliary Logic on Trees: on the Tower-Hardness of Logics Featuring Reachability
and Submodel Reasoning. In FoSSaCS’20, volume 12077 of Lecture Notes in Computer Science, pages
462–481. Springer, 2020.

[40] A. Mansutti. Reasoning with Separation Logics: Complexity, Expressive Power, Proof Systems. PhD
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[55] C. Smoryński. Self-reference and Modal Logic. Springer-Verlag, 1985.
[56] L. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD thesis, Department

of Electrical Engineering, MIT, 1974.
[57] B. ten Cate. Expressivity of second order propositional modal logic. Journal of Philosophical Logic,

35(2):209–223, 2006.
[58] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors, Handbook of

Formal Languages, Vol. 3: Beyond Words, pages 389–455. Springer, 1997.
[59] S. Tobies. PSPACE reasoning for graded modal logics. Journal of Logic and Computation, 11:85–106,

2001.
[60] P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity, Logic, and recursion

Theory, volume 187 of Lecture Notes in Pure and Applied Logic, pages 331–363. Marcel Dekker, Inc.,
1997.

[61] M. Vardi. The complexity of relational query languages. In STOC’82, pages 137–146, 1982.
[62] V. Weber. Hybrid branching-time logics. CoRR, abs/0708.1723, 2007.
[63] R. Zach. Decidability of quantified propositional intuitionistic logic and S4 on trees of height and arity

≤ω. Journal of Philosophical Logic, 33(2):155–164, 2004.



32 B. BEDNARCZYK AND S. DEMRI

Appendix A. Proofs from Section 3

A.1. Proof of Lemma 3.2.

Proof. First, suppose that x is a nominal for the depth k ≥ 0 from v. By definition, this
means that there is v′ ∈ V satisfying vEkv′ such that T, v′ |= x and for all v′′ 6= v′ satisfying
vEkv′′ we have T, v′′ 6|= x. Obviously, we have T, v |= EXkx. Ad absurdum, suppose that
T, v |= ∃p (EXk(x∧p)∧EXk(x∧¬p)) with p being a fresh propositional variable. So, there is
a (AP \{p})-variant T′ of T (i.e. T ≈AP\{p} T

′) such that T′, v |= EXk(x∧p)∧EXk(x∧¬p).

Therefore, there is v′ such that vEkv′ and T′, v′ |= x ∧ p. Similarly, there is v′′ such that
vEkv′′ and T′, v′′ |= x∧¬p. Because of the constraint on the satisfaction of the propositional
variable p, the nodes v′ and v′′ are distinct, which leads to a contradiction.

Conversely, suppose that T, v |= nom(x, k). As T, v |= EXkx, there exists v′ such
that vEkv′ and T, v′ |= x. The uniqueness of v′ can be concluded from the satisfaction
¬∃p (EXk(x ∧ p) ∧EXk(x ∧ ¬p)) (as above), since that formula characterises exactly the
property that there are no two distinct nodes reachable in k steps from v satisfying x.

A.2. Proof of Lemma 3.3.

Proof. By assumption, there is a node v′ ∈ V satisfying vEkv′ such that T, v′ |= x, and
for all v′′ 6= v′ satisfying vEkv′′, we have T, v′′ 6|= x. First, suppose that T, v |= @k

xφ, i.e.
T, v |= EXk(x∧ φ). Hence, there exists v′′ such that vEkv′′ and T, v′′ |= x∧ φ. As T, v′′ |= x,
the node v′′ is necessarily equal to v′ and therefore T, v′ |= φ. For the opposite direction,
suppose that T, v′ |= φ. As vEkv′ and T, v′ |= x, by the definition of the satisfaction
relation |=, we conclude that T, v |= EXk(x ∧ φ) and EXk(x ∧ φ) is equal to @k

xφ.

A.3. Proof of Lemma 3.4.

Proof. The proof is by induction on d. For the base case, suppose that d = 1. Thus, we have
that T, v0 |= nom(x1, 1), and that v1 is the unique child of v0 such that v0Ev1 and T, v1 |= x1.
By Lemma 3.3, we have T, v0 |= @1

x1φ iff T, v1 |= φ and @x1φ is equal to @1
x1φ, so we are

done. For the induction step with d ≥ 2, let us assume that

T, v0 |= nom(x1, 1) ∧
∧

i∈[2,d]

@1
x1@1

x2 · · ·@
1
xi−1

nom(xi, 1),

and v1, . . . , vd is associated to x1, . . . xd. The propositions below are equivalent

• T, v0 |= @x̄φ,
• T, v0 |= @1

x1@1
x2 · · ·@

1
xd
φ (by definition of @x̄),

• T, vd−1 |= @1
xd
φ (by the induction hypothesis),

• T, vd |= φ (by Lemma 3.3).

Hence, T, v0 |= @x̄φ holds iff T, vd |= φ holds, finishing the proof.
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A.4. Proof of Lemma 3.6.

Proof. By way of example, we prove that EX ∀ p ψ ↔ ∀ p EXψ is valid. (Other formulae,
e.g. EX ∃ p ψ ↔ ∃ p EXψ can be proved to be valid in an even simpler way). Before doing
so, note that then the valid equivalences below provide a rewriting system (by reading the
equivalences from left to right) that pushes the propositional quantification outside (in the
usual way), leading to formulae in PNF in polynomial-time (Q ∈ {∃,∀}).
EX Q p ψ ↔ Q p EXψ (Q p ψ)∧ψ′ ↔ Q p (ψ∧ψ′) ¬∃ p ψ ↔ ∀ p ¬ψ ¬∀ p ψ ↔ ∃ p ¬ψ
assuming that p does not occur in ψ′ (otherwise, rename the quantified variable).

First, assume that T, v |= EX ∀ p ψ with T = 〈V,E, l〉. Thus, there exists v′ such that
vEv′ and T, v′ |= ∀ p ψ. Hence, for all T′ ≈AP\{p} T, we have T′, v′ |= ψ. As v′ remains a
child of v for all such variants T′, we have that for all T′ ≈AP\{p} T, vE′v′ and T′, v′ |= ψ.
Thus, for all T′ ≈AP\{p} T we have T′, v |= EXψ. We conclude T, v |= ∀ p EXψ.

Conversely (and this is the place where the tree structure is essential), assume T, v |=
∀ p EXψ. It means that for all T′ ≈AP\{p} T, we have T′, v |= EXψ. Ad absurdum,
suppose T, v 6|= EX ∀ p ψ. Equivalently, we have T, v |= AX ∃ p ¬ψ. Thus, for all v′ such
that vEv′, there is Tv′ ≈AP\{p} T (say Tv′ = 〈V,E, lv′〉) such that Tv′ , v

′ 6|= ψ. Let T′v′ =
〈Vv′ , Ev′ , l′v′〉 be the restriction of Tv′ to the subtree whose root is v′. Obviously T′v′ , v

′ 6|= ψ
too. Two distinct children v1 and v2 of v in T, lead to tree models T′v1 = 〈Vv1 , Ev1 , l′v1〉
and T′v2 = 〈Vv2 , Ev′ , l′v2〉 with Vv1 ∩ Vv2 = ∅. Indeed, T is a tree. Let T? be defined as
〈V,E, (]v′∈E(v)l

′
v′) ] {v 7→ l(v)}〉, where ] denotes the disjoint sum. One can show that

T? ≈AP\{p} T and for all v′ such that vEv′, T?, v′ 6|= ψ, which leads to a contradiction.

A.5. Proof of Lemma 3.12.

Proof. We start with the first item of the lemma. The definition of τ is correct, since:

• for each position (x, y) ∈ [0, 2n − 1]× [0, 2n − 1] there is a unique node v′ in the distance
2n from v encoding the position (x, y) (follows from Corollary 3.11),
• for each v′, as defined above, there is a unique tile proposition tj such that T, v′ |= tj holds

(it is a direct consequence of the satisfaction of φjcov at v).

The satisfaction of the conditions (hori) and (verti) follows from the satisfaction of φjH ∧ φ
j
V .

Indeed, let us discuss the condition (hori) only, since (verti) is analogous. Take any two
consecutive positions (a, b) and (a, b+ 1) such that τ(a, b) = t and τ(a, b+ 1) = t′. Then, let
vt, vt′ be nodes at the distance 2n from v, representing the positions (a, b) and (a, b+ 1). Set
the local nominals x and y at vt and vt′ . Then, note that the formula HN(x, y) is satisfied
at v by elementary operations on binary encodings of numbers. Hence, by the right-hand

side of the implication in φjH we conclude that (t, t′) ∈ H.
To show the second item, we take T′ = 〈V,E, l′〉 obtained from T = 〈V,E, l〉 by setting

l′(v(a,b)) = (l(v(a,b)) \ T j) ∪ {τ(a, b)} for the unique node v(a,b) at the distance 2n from v
corresponding to (a, b) in the grid. Otherwise l and l′ coincide. Since the formula grid(2n)
does not employ propositions from T j we conclude T′, v |= grid(2n). By the definition of τ
we know that each node at the distance 2n from v is labelled with exactly one tile proposition

from T j and hence, T′, v |= φjcov. Checking that T′, v satisfies φjH ∧ φ
j
V is routine and follows

from the fact that τ is a tiling (so it satisfies (hori) and (verti)).
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A.6. Proof of Lemma 3.13.

Proof. Let I be the instance n, 〈T ,H,V〉, T0, Tacc, Tmulti of AMTP. Before showing that the
reduction is correct, we need to state preliminary properties. Moreover, in the proof below,
we repeat several formula definitions to follow more smoothly the technical developments.

(GRID) We recall that grid(2n) is defined as the formula below

(
∧

i∈[0,2n−1]

AXi EX=2>) ∧ ∀x, y diff-nom(x, y, 2n)→

(
∨

j∈[0,n−1]

¬(@2n
x hj ↔ @2n

y hj) ∨ ¬(@2n
x vj ↔ @2n

y vj)).

Given a tree model T and a root node ε, one can show that T, ε |= grid(2n) iff the properties
below hold:

(a) For all j ∈ [0, 2n− 1], we have that εEjv implies that v has exactly two children.
(b) For all distinct nodes v, v′ such that εE2nv and εE2nv′, there is some propositional

variable r in {hn−1, . . . , h0, vn−1, . . . , v0}, such that v satisfies r iff v′ does not satisfy r.

Satisfaction of (a) is essentially due to the fact that EX=2> is defined as

∃ x1, x2 diff-nom(x1, x2, 1) ∧AX(x1 ∨ x2)

and one can check that it holds true on nodes having exactly two children. For the satis-
faction of (b), we need to invoke Lemma 3.2, Lemma 3.3 and Lemma 3.5. Assuming that
diff-nom(x, y, 2n) holds, (b) is equivalent to have two distinct nodes that are the respective
interpretations of the nominals x and y for the depth 2n. More generally, Lemma 3.12 states
the main properties that are used about grid(2n).

(TILING) Let us state a few properties about the conjunction φjcov∧φjH∧φ
j
V assuming

that T, ε |= grid(2n) (and therefore the set of nodes of distance 2n from the root encodes

the grid [0, 2n − 1]× [0, 2n − 1]). The formula φjcov defined as

∀ x nom(x, 2n)→ @2n
x (

∨
t∈T

tj ∧
∧

t6=t′∈T
¬(tj ∧ t′j))

states that all the nodes at distance 2n from the root satisfy exactly one tile type from T j .
This is again a consequence of Lemma 3.2 and Lemma 3.3. The formula φjH is defined as:

∀ x, y (nom(x, 2n) ∧ nom(y, 2n) ∧HN(x, y))→
∨

(t,t′)∈H

@2n
x tj ∧@2n

y t′j ,

where HN(x, y) is the formula below:

HN(x, y)
def
=

 ∧
α∈[0,n−1]

@2n
x vα ↔ @2n

y vα

 ∧ ∨
i∈[0,n−1]

(
@2n
x ¬hi ∧@2n

y hi ∧

∧
∧

α∈[0,i−1]

(
@2n
x hα ∧@2n

y ¬hα
)
∧ (

∧
α∈[i+1,n]

(
@2n
x hα ↔ @2n

y hα)
))

.

The formula HN(x, y) expresses that, assuming that x and y for the depth 2n, the two
nodes at distance 2n interpreted respectively by x and y and representing respectively the

positions (H,V) and (H′,V′) of the grid, satisfies V = V′ and H′ = H + 1. So, φjH encodes

the horizontal constraints for the set of tile types T j . Similarly, φjV encodes the vertical
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constraints for the set of tile types T j . Indeed, in VN(x, y) we swap the variable hα with
the variable vα (with respect to the definition for HN(x, y)), which amount to stating that
assuming that x and y are nominals for the depth 2n from ε, the two nodes at distance 2n
interpreted respectively by x and y and representing respectively the positions (H,V) and
(H′,V′) of the grid, satisfies V′ = V + 1 and H′ = H. So, assuming that T, ε |= grid(2n), the

formula φjcov ∧ φjH ∧ φ
j
V expresses that the way the tile types from T j holds on the nodes at

distance 2n from the root defines a proper tiling.

(INIT) Let φjinit be the formula below:

∀ x (nom(x, 2n) ∧@2n
x (

∧
α∈[0,n−1]

¬hα))→ @2n
x (

∨
t∈T0

tj ∧
∧

t6=t′∈T0

¬(tj ∧ t′j)).

Note that (
∧
α∈[0,n−1] ¬hα) states on a node v at distance 2n from the root, that all the

propositional variables hα are false and therefore this is a node on the row zero of the grid.

φjinit therefore states (using again Lemma 3.2 and Lemma 3.3) that all the nodes of the row
zero have a unique tile type from T0.

(COINCI) Let φj,j
′

coinci be the formula below (with j, j′ ∈ N):

∀ x (nom(x, 2n) ∧@2n
x (

∧
α∈[0,n−1]

¬hα))→ @2n
x (

∨
t∈T0

tj ∧ tj′).

Assuming that T, ε |= φjtiling ∧ φ
j′

init, the formula φj,j
′

coinci states that for every node of the row

zero, the tile type from T j is the same as the tile type from T j
′

0 . The reasoning is exactly
the same as for (INIT).

(ACCEPT) Let φjacc be the formula below

∃ x nom(x, 2n) ∧@2n
x ((

∧
α∈[0,n−1]

hα) ∧
∨

t∈Tacc

tj).

Note that (
∧
α∈[0,n−1] hα) states on a node v at distance 2n from the root, that all the

propositional variables hα are true and therefore this is a node on the (last) row 2n − 1 of
the grid.

Assuming that T, ε |= φjtiling, the formula φjacc therefore states that there is a node

encoding a position of the grid on the last row such that the tile type is in T jacc.
(MULTI) Finally, let φjmulti be the formula below:

∀ x nom(x, 2n)→ @2n
x (

∨
(t,t′)∈Tmulti

tj ∧ t′j+1).

As done in (INIT), φjmulti (assuming that T, ε |= φjtiling ∧ φ
j+1
tiling) states that for all nodes

at distance 2n from the root, the tile type from T j and the tile type from T j+1 are in the
relation Tmulti. Consequently,

T, ε |= grid(2n) ∧ (
∧

j∈[1,n]

φjinit) ∧ (
∧

j∈[n+1,2n]

φjtiling ∧ φ
j,(j−n)
coinci ) ∧ (

∧
j∈[n+1,2n−1]

φjmulti) ∧ φ
2n
acc)

if and only if the initial condition induced from the satisfaction of (
∧
j∈[1,n] φ

j
init) (see

the definition of AMTP in Section 2.3) of the form (w1, . . . , wn) ∈ (T 2n
0 )n, and the multi-

tiling (τ1, . . . , τn) induced by the satisfaction of (
∧
j∈[n+1,2n] φ

j
tiling), entails that (τ1, . . . , τn)

is a solution and satisfies the condition (m-init), (m-tiling), (m-multi) and (m-accept).
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Indeed, satisfying T, ε |= grid(2n) ∧ (
∧
j∈[n+1,2n] φ

j
tiling) defines a multi-tiling (τ1, . . . , τn)

(and reciprocally). Similarly, satisfying T, ε |= grid(2n) ∧ (
∧
j∈[1,n] φ

j
init) defines an initial

condition (w1, . . . , wn) ∈ (T 2n
0 )n (and reciprocally). The details are omitted but it does not

pose any difficulty. So given an initial condition c = (w1, . . . , wn) ∈ (T 2n
0 )n, we write Tc to

denote a tree model such that Tc, ε |= grid(2n) ∧ (
∧
j∈[1,n] φ

j
init) and on the grid induced by

Tc, we have precisely the initial condition c. Similarly, given a multi-tiling M = (τ1, . . . , τn),

we write TM to denote a tree model such that TM , ε |= grid(2n) ∧ (
∧
j∈[n+1,2n] φ

j
tiling)

and on the grid induced by TM , we have precisely the multi-tiling (τ1, . . . , τn). More
generally, given c and M , we write Tc,M to denote a tree model such that Tc,M , ε |=
grid(2n) ∧ (

∧
j∈[1,n] φ

j
init) ∧ (

∧
j∈[n+1,2n] φ

j
tiling) and on the grid induced by Tc,M , we have

precisely the initial condition c and the multi-tiling M . Reciprocally, assuming a tree model

T such that T, ε |= grid(2n) ∧ (
∧
j∈[1,n] φ

j
init), we write cT = (w1, . . . , wn) to denote the

initial condition from the grid defined by T. Similarly, assuming a tree model T such that

T, ε |= grid(2n) ∧ (
∧
j∈[n+1,2n] φ

j
tiling), we write MT = (τ1, . . . , τn) to denote the multi-tiling

from the grid defined by T.
It remains to conclude by explaining how to handle the quantifications over the tuples

(w1, . . . , wn) ∈ (T 2n
0 )n. The instance I is positive iff

• (by definition) for all w1 ∈ T 2n
0 , there is w2 ∈ T 2n

0 such that · · · for all wn−1 ∈ T 2n
0 , there

is wn ∈ T 2n
0 such that there is a solution (τ1, . . . , τn) for (w1, . . . , wn), iff

• (by the above correspondences) there is a tree model T0 such that T0, ε |= grid(2n) such

that for all T1 such that (T1 ≈AP\T 1
0
T0), T1, ε |= φ1

init and wT1

1 = w1 (where wT1

1 is the

new word induced by T1) there is T2 such that (T2 ≈AP\T 2
0
T1), T2, ε |= φ2

init and wT2

2 = w2

. . . for all Tn−1 such that (Tn−1 ≈AP\T n−1
0

Tn−2), Tn−1, ε |= φn−1
init and wTn−1

n−1 = wn−1

there is Tn such that (Tn ≈AP\T n
0
Tn−1), Tn, ε |= φninit and wTn

n = wn, there is Tn+1 such

that (Tn+1 ≈AP\{tj :t∈T ,j∈[n+1,2n]} T
n) such that Tn+1, ε |= (

∧
j∈[n+1,2n] φ

j
tiling) and MTn+1

is a solution for cTn+1 , iff
• (by first-order reasoning) there is a tree model T0 such that T0, ε |= grid(2n) such that

for all T1 such that (T1 ≈AP\T 1
0

T0) there is T2 such that (T2 ≈AP\T 2
0

T1) . . . for

all Tn−1 such that (Tn−1 ≈AP\T n−1
0

Tn−2) there is Tn such that (Tn ≈AP\T n
0

Tn−1), if

Tn, ε |= (
∧
j∈[1,n] φ

j
init), then there is Tn+1 such that (Tn+1 ≈AP\{tj :t∈T ,j∈[n+1,2n]} T

n) such

that Tn+1, ε |= (
∧
j∈[n+1,2n] φ

j
tiling) and MTn+1 is a solution for cTn+1 , iff

• (by the encodings of (m-init), (m-coinci), (m-multi), (m-accept)) there is a tree model
T0 such that T0, ε |= grid(2n) such that for all T1 such that (T1 ≈AP\T 1

0
T0) there

is T2 such that (T2 ≈AP\T 2
0

T1) . . . for all Tn−1 such that (Tn−1 ≈AP\T n−1
0

Tn−2)

there is Tn such that (Tn ≈AP\T n
0

Tn−1), if Tn, ε |= (
∧
j∈[1,n] φ

j
init), then there is Tn+1

such that (Tn+1 ≈AP\{tj :t∈T ,j∈[n+1,2n]} T
n) such that Tn+1, ε |= (

∧
j∈[n+1,2n] φ

j
tiling) and

Tn+1, ε |= (
∧
j∈[n+1,2n] φ

j,(j−n)
coinci ) ∧ (

∧
j∈[n+1,2n−1] φ

j
multi) ∧ φ

2n
acc iff

• (by definition of |=) the formula below is satisfiable:

grid(2n) ∧ ∀ T 1
0 ∃ T 2

0 ∀ T 3
0 · · · ∃ T n0

∧
j∈[1,n]

φjinit →
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(∃ {tj : t ∈ T , j ∈ [n+ 1, 2n]} (
∧

j∈[n+1,2n]

φjtiling ∧ φ
j,(j−n)
coinci ) ∧ (

∧
j∈[n+1,2n−1]

φjmulti) ∧ φ
2n
acc).

Appendix B. Proofs from Section 4

B.1. Proof of Lemma 4.1.

Proof. The property (III) is a direct consequence of (II). Since the proof of (II) is similar
to (I), we focus on showing (I) only. In order to define nb(y1, . . . , yk) =k nb(x1, . . . , xk) + 1,
and therefore to express that nbT(v′k) = nbT(vk) + 1 with numbers computed with the
propositional variables pn−1, . . . , p0, we perform a standard comparison of the respective
truth values of pn−1, . . . , p0 for the node vk (the interpretation of xk) and for the node v′k
(the interpretation of yk). Typically, nbT(v′k) = nbT(vk) + 1 iff there is i ∈ [0, n − 1], such
that

• for every j ∈ [i+ 1, n− 1], vk and v′k agree on pj (nbT(v′k) and nbT(vk) agree on their jth
bit),
• vk does not satisfy pi and v′k satisfies pi (nbT(v′k) and nbT(vk) disagree on their ith bit

and the ith bit of nbT(vk) is equal to zero),
• for every j ∈ [0, i− 1], vk satisfies pj and v′k does not satisfy pj .

The formula nb(y1, . . . , yk) =k nb(x1, . . . , xk) + 1 indeed quantifies existentially on i via
a generalised disjunction and the three conditions are checked by three conjuncts in the
standard manner.

B.2. Proof of Lemma 4.2.

Proof. We focus on proving (I), the other properties can be shown analogously.
A node v is of type 1 iff it has exactly 2n children, say v0, . . . , v2n−1, and for all

j ∈ [0, 2n− 1], the number associated to vj is precisely j when encoded with the truth values
of the propositional variables pn−1, . . . , p0. The latter proposition amounts to having the
following conditions:

(a) The node v has a child whose number is zero.
(b) If v′ is a child of v with number m < 2n − 1, then v has also a child with number m+ 1.
(c) Two distinct children of v have distinct numbers.

Let us recall that type(1) = AX(type(0)) ∧ EX(first(0)) ∧ uniq(1) ∧ compl(1). Obviously,
AX(type(0)) always holds and EX(first(0)) expresses exactly the condition (a). It remains
to show that uniq(1) (resp. compl(1)) characterises the conditions (c) (resp. the condition
(b)). The formula uniq(1) is equal to ∀x, y diff-nom(x, y, 1) → ¬(nb(x) =1 nb(y)). By
Lemma 4.1(III), and by Lemma 3.5, when interpreted on a node of type 1, uniq(1) states
that for any two distinct children, their respective numbers are different, which is precisely
the condition (c). Finally, let us recall the definition of the formula compl(1):

∀x (nom(x, 1) ∧@1
x(¬last(0)))→ ∃y nom(y, 1) ∧ nb(y) =1 nb(x) + 1.

By Lemma 4.1(I), by the fact that last(0) already characterises the nodes of type 0 whose
number is 2n − 1. By Lemma 3.2 and Lemma 3.3, the formula compl(1), states that for
all children whose number m is different from 2n − 1, there is a child with number m+ 1,
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which is precisely the condition (b). This ends the proof as all the formulae AX(type(0)),
EX(first(0)), uniq(1), compl(1) capture exactly the properties specified above.

B.3. Proof of Lemma 4.3.

Proof. Assume that v0 is of type k, T, v0 |= ̂̄x, x̄ and the witness branch is v0, . . . , vd.
First, suppose that T, v |= LSRx̄(k). As T, v0 |= @x̄(EX=1(s)), by Lemma 3.4, T, vd |=

EX=1(s). It is easy to show that EX=1 ψ holds whenever there is a unique child satisfying ψ.
Consequently, there is a unique child of vd satisfying s, which corresponds to the satisfaction
of (b). As T, v0 |= @x̄ (AX((s ∨ l ∨ r) ∧ ¬(s ∧ l) ∧ ¬(s ∧ r) ∧ ¬(l ∧ r))), by Lemma 3.4, we have
T, vd |= AX((s∨l∨r)∧¬(s∧l)∧¬(s∧r)∧¬(l∧r)) and therefore for all children v′ of vd, we have
T, v′ |= (s∨ l∨r)∧¬(s∧ l)∧¬(s∧r)∧¬(l∧r). As the formula (s∨ l∨r)∧¬(s∧ l)∧¬(s∧r)∧¬(l∧r)
precisely states that exactly one propositional variable among {l, s, r} holds true, we can
conclude that (a) is satisfied. Moreover, T, v0 |= LSR3

x̄(k) and by Lemma 3.4, we have that

T, vd |= ∀w∀w′ diff-nom(w,w′, 1)∧((@1
w(s)∧@1

w′(r))∨(@1
w(l)∧@1

w′(s)))→ nb(w′) <k−d nb(w).

As k− d− 1 ≤ N − 2 by assumption, the satisfaction of the formula above on vd straightfor-
wardly states that for all children v and v′ of vd such that (v satisfies s and v′ satisfies r)
or (v satisfies l and v′ satisfies s), we have nbT(v) < nbT(v′) (here we use the induction
hypothesis), which corresponds precisely to the satisfaction of (c).
The proof in the other direction is quite similar as there are equivalences between the
formulae LSR1

x̄(k), LSR2
x̄(k), and LSR3

x̄(k), and the conditions (a), (b) and (c).

B.4. Proof of Lemma 4.4.

Proof. Let T be a tree model and v be such that v satisfies ̂̄x, ȳ, k − d = N − 1 and vd and
v′d are of type k − d. We will focus on the proof of (I) only. The proof of (II) is similar to
the proof of (I) and (III) is a direct consequence of (II). Hence, we omit the details.

As vd and v′d are of type k−d, both have t(k−d, n) children. Those children are ordered,
let u0, . . . , ut(k−d,n)−1 be the children of vk such that nb(uj) = j for all j. Similarly, let
u′0, . . . , u

′
t(k−d,n)−1 be the children of v′k such that nb(u′j) = j for all j. By arithmetical

reasoning, we have nbT(v′d) = nbT(vd) + 1 iff there is i ∈ [0, t(k − d, n)− 1], such that

(A) for every j ∈ [i + 1, t(k − d, n) − 1], nbT(v′d) and nbT(vd) agree on the jth bit, which is
equivalent to uj and u′j agree on val ,

(B) the ith bit of nbT(vd) is equal to 0 and the ith bit of nbT(v′d) is equal to 1, which is
equivalent to ui does not satisfy val and u′i satisfies val ,

(C) for every j ∈ [0, i− 1], the jth bit of nbT(vd) is equal to 1 and the jth bit of nbT(v′d) is
equal to 0, which is equivalent to uj satisfies val and u′j does not satisfy val .

By using Lemma 3.4, it is easy to check that the condition (A) (resp. (B), (C)) is taken care
by φleft(k) (resp. φselect(k), φright(k)). This is quite immediate for φselect(k) and φright(k), as
no induction hypothesis is used, in particular no comparison between numbers is performed.
Concerning the satisfaction of φleft(k), we have to be more careful. Let us recall the definition
of the formula φx̄,ȳleft(k) below:

∀w @x̄(nom(w, 1) ∧@1
w(l))→(

∃w′ @ȳ(nom(w′, 1) ∧@1
w′(l)) ∧ nb(x̄, w) =k nb(ȳ, w′) ∧ (@x̄,wval ⇔ @ȳ,w′val)

)
.
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We have defined φleft(k) as φx̄,ȳleft(k)∧φȳ,x̄left(k). By Lemma 3.4, and by the induction hypothesis

(as (k− (d+ 1)) ≤ N − 2), φx̄,ȳleft(k) enforces that for all children v of vd satisfying l, there is a

child v′ of v′d satisfying l, such that v and v′ agree on val . Moreover, φȳ,x̄left(k) enforces that for
all children v of v′d satisfying l, there is a child v′ of vd satisfying l, such that v and v′ agree
on val . So, the set of numbers of the children of vd satisfying l is equal to the set of numbers
of the children of v′d satisfying l. This implies also that this property applies for the children
satisfying r, and the number of the unique child of vd satisfying s is equal to the number of
the unique child of v′d. This is a direct consequence of the properties of lsr-partitions (see
Lemma 4.3). Consequently, nbT(v′d) = nbT(vd) + 1 implies nb(ȳ) =k nb(x̄) + 1. The proof for
the other direction is similar, as φleft(k) is equivalent to (A), φselect(k) is equivalent to (B)
and φright(k) is equivalent to (C). Moreover, the existential quantification over i corresponds
to the existential quantification leading to an lsr-partition.

B.5. Proof of Lemma 4.5.

Proof. The properties (II) and (III) are easy to verify, hence let us focus on (I). The proof
is actually very similar to the proof of Lemma 4.2. A node v is of type N for some N ≥ 2,
iff the conditions below hold: (a) it has exactly t(N,n) children, (b) all its children are of
type N − 1 and (c) {nbT(v′) : vEv′} = [0, t(N,n) − 1]. The mentioned conditions can be
reformulated as follows so, by induction, (a′)+(b′)+(c′) is equivalent to (a)+(b)+(c):

(a′) The node v has a child whose number is zero.
(b′) If v′ is a child of v with number m < t(N,n) − 1, then v has also a child with number

m+ 1.
(c′) Two distinct children of v have distinct numbers.

Let us recall below the definition of the formula type(N):

AX(type(N − 1)) ∧EX(first(N − 1)) ∧ uniq(N) ∧ compl(N).

Obviously, the formula AX(type(N − 1)) expresses exactly the condition (b), assuming
that type(N − 1) already characterised the nodes of type N − 1. Similarly, the formula
EX(first(N − 1)) expresses exactly the condition (a′), assuming that first(N − 1) already
characterises the nodes of type N − 1 whose number is zero. It remains to show that uniq(N)
(resp. compl(N)) characterises the conditions (c′) (resp. the condition (b′)).

Let us recall below the definition of the formula uniq(N):

∀x, y diff-nom(x, y, 1)→ ¬(nb(x) =N nb(y)).

By Lemma 4.4(III), and by the fact that diff-nom(x, y, 1) enforces that x and y are
interpreted by two distinct children (see Lemma 3.5), when interpreted on a node of type N ,
the formula uniq(N) states that for any two distinct children, their respective numbers are
different, which is precisely the condition (c′). Finally, let us recall the formula compl(N):

∀x (nom(x, 1) ∧@1
x(¬last(N − 1)))→ ∃y nom(y, 1) ∧ nb(y) =N nb(x) + 1.

By Lemma 4.4(I), by the fact that last(N − 1) already characterises the nodes of type N − 1
whose number is t(N,n)− 1 and by the properties of the subformulae nom(x, 1) and nom(y, 1)
enforcing local nominals x and y, the formula compl(N), when interpreted on a node of type
N , states that for all children whose number m is different from t(N,n)− 1, there is a child
with number m+ 1, which is precisely the condition (b′). This ends the proof as the formulae
AX(type(N − 1)), EX(first(N − 1)), uniq(N), compl(N) capture (a′)+(b′)+(c′).
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B.6. Proof of Lemma 4.6.

Proof. The case of k = 0 is trival, so take for the case case k = 1. Assuming that T, v |=
type(1), the node v is of type 1, and therefore v has exactly t(1, n) = 2n children. The
number nbT(v) is determined by the truth values of val on its children, and the children
have themselves (bit) numbers spanning all over [0, 2n − 1] and the numbers are encoded
by the truth values of pn−1, . . . , p0. Consequently, nbT(v) = t(1, n) = 2n iff the unique child
v′ of v such that nbT(v′) = n satisfies val and all the other children do not satisfy val . If
the value n encoded with n bits is represented by the sequence of bits bn−1bn−2 · · · b0, then
Xn = n is a shortcut for

∧
i∈[0,n−1] `i where `i = pi if bi = 1, otherwise `i = ¬pi. Hence, we

get nbT(v) = t(k, n) iff T, v |= AX(val ↔ Xn = n).
For the induction step, we reason in a similar way. Assume that for all 1 ≤ k′ < k, if

T′, v′ |= type(k′), we have nbT′(v
′) = t(k′, n) iff T, v |= nb =k′ t(k′, n). Now, assume that

T, v |= type(k), the node v is of type k, and therefore v has exactly t(k, n) children. The
number nbT(v) is determined by the truth values of val on its children, and the children have
themselves (bit) numbers spanning all over [0, t(k, n)− 1]. Consequently, nbT(v) = t(k, n) iff
the unique child v′ of v such that nbT(v′) = t(k− 1, n) satisfies val and all the other children
does not satisfy val . Indeed, if only the t(k − 1, n)th bit is equal to 1, nbT(v) is equal to

2t(k−1,n), which is precisely t(k, n). Now, checking whether a node of type k − 1, has value
t(k−1, n) can be expressed by nb =k−1 t(k−1, n) invoking the induction hypothesis. Putting
all together, we get nbT(v) = t(k, n) iff T, v |= AX(val ↔ (nb =k−1 t(k − 1, n))).

B.7. More details on the proof of Lemma 4.7.

Proof. We have seen that the satisfaction of type(k+1) is guaranteed by the way propositional
variables hold on the nodes. Observe that for the nodes in [0, t(k + 1, n) − 1] × · · · ×
[0, t(1, n)− 1]× 0+, the truth values of the propositional variables is irrelevant. Moreover,
for all j ∈ [1, k + 1], for all mk+1, . . . ,mj ∈ [0, t(k + 1, n)− 1]× · · · × [0, t(j, n)− 1], we have
nbT(mk+1, . . . ,mj) = mj . In order to check the satisfaction of the existentially quantified
subformula, we consider the labelling l′ variant of l only for the propositional variables l,
s, and r such that l holds on [t(k, n) + 1, t(k + 1, n) − 1], s holds on t(k, n), and r holds
on [0, t(k, n)− 1]. By Lemma 4.3, 〈V,E, l′〉, ε |= LSRε(k + 1) and by Lemma 4.6, we have
〈V,E, l′〉, ε |= EX(s ∧ nb =k t(k, n)). The satisfaction of the formulae φcov, φH and
φV is inherited from the fact that for all (i, j) ∈ [0, t(k, n) − 1] × [0, t(k, n) − 1], there is
exactly one tile type satisfied by (i, j) and the mapping τ satisfies horizontal and vertical
matching conditions. Here, we use the properties of the formulae of the form nom(x, 1), @1

xψ,
nb(x) =k+1 nb(x′) and nb(x, y′) =k+1 nb(x, y) + 1 (see e.g. Lemma 4.4), apart from the fact
that r holds exactly on the nodes in [0, t(k, n)− 1]. Concerning the satisfaction of φinit, first
observe that EX=jψ holds true exactly when there are j children of the node satisfying the
formula ψ. Hence, the formula below

∀ x (nom(x, 1) ∧@1
x(first(k)))→ @1

x(
∧

j∈[0,n−1]

∃ l, s, r LSRε(k) ∧EX=j r ∧EX(s ∧ tj))

states for all (i, j) ∈ {0}× [0, n− 1], tj holds on it. In order to access the jth child of {0}, an
lsr-partition on the children of {0} is performed and s holds true exactly on (i, j) by counting
how many children satisfies r. The proof for the other direction uses similar principles and is
omitted herein. The main idea is to build τ so that assuming that T, ε |= φP , for all v, v′
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such that ε E v E v′, and (nb(v), nb(v′)) ∈ [0, t(k, n)− 1]× [0, t(k, n)− 1], τ(nb(v), nb(v′))
takes the value of the unique t in T satisfied on the node v′.

Appendix C. Proofs from Section 5

C.1. Proof of Lemma 5.1.

Proof. First, let us suppose that T is k-layered and we show that T, ε |= shape(k).

• By the condition (a), we have that:

T, ε |= AG

(layer−1 ∨ layer0 ∨ · · · ∨ layerk) ∧
∧

−1≤i 6=j≤k
¬(layer i ∧ layer j)


as the formula inside AG states that there is exactly one proposition from Yk =
{layer−1, layer0, . . . , layerk} holds.
• By the condition (b), namely its second point, for all i ∈ [0, k], we have

T, ε |=
∧

−1≤i≤k
AG(layer i → AG(layer−1 ∨ layer0 ∨ · · · ∨ layer i)).

• By the first point of the condition (b), for all i ∈ [0, k], we have T, ε |= AG(layer i →
EF layer i−1). Actually, when T, v |= layer i the witness descendant satisfying layer i−1 is
a child of v by (b).
• By the condition (d), we have T, ε |= layerk.
• By the condition (c), for every node v satisfying layer j for some j ∈ [0, k], there is no proper

descendant of v satisfying layer j . Observe that the formula ¬∃p (p ∧ EF(layer j ∧ ¬p))
holds exactly on the nodes such that there is no proper descendant satisfying layer j . Hence

T, ε |=
∧

0≤i≤k
AG (layer i → ¬∃p (p ∧EF(layer i ∧ ¬p))) .

Conversely, suppose that T, ε |= shape(k) holds. The satisfaction of (a), (c) and (d)
holds thanks to the corresponding formulae in shape(k) (see above). Let us check that (c)
holds true. As

T, ε |=
∧

0≤i≤k
AG(layer i → ¬∃p (p ∧EF(layer i ∧ ¬p)))

holds and for all i ∈ [0, k], we have

T, ε |= AG(layer i → EF layer i−1),

on the same branch two distinct nodes cannot satisfy layer i for some i ∈ [0, k]. Moreover,
the satisfaction of layer i implies that some (proper) descendant satisfies layer i−1. Due to
the monotonicity of the layer numbers and no stuttering, layer i implies that a child satisfies
layer i−1, which corresponds to the first point of (b). The second point of (b) is a consequence
of the monotonicity of the layer numbers.
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C.2. Proof of Lemma 5.2.

Proof. First, let us assume that φ (md(φ) = k ≥ 0) is satisfiable for QCTLtX, i.e. T, ε |= φ
holds with the tree model T = 〈V,E, l〉. Let T′ = 〈V,E, l′〉 be the tree model obtained from
T by providing truth values for the propositional variables in Yk. More precisely, for all v ∈ V
with εEjv, we have that l′(v)

def
= (l(v) \ Yk)∪ {layermax(−1,k−j)}. As T is a tree model, εEjv

implies that j is the unique number of steps to reach v from ε. Obviously, T′ is k-layered
and hence, by Lemma 5.1, T′, ε |= shape(k) holds. Moreover, by structural induction, one

can show that for all j ∈ [0, k], for all v ∈ V with εE(k−j)v, and for all subformulae ψ of
φ of modal depth less than j, T, v |= ψ if and only if T′, v |= trans(j, ψ). This leads to the
satisfaction of T′, ε |= trans(k, φ).

• For the base case j = 0, for all formulae ψ of modal degree 0, we have T, v |= ψ iff
T′, v |= trans(0, ψ) due to the fact that trans(0, ψ) = ψ and, that T and T′ agree on the
propositional variables occurring in φ.
• For the induction step, the proof for the cases with Boolean connectives is immediate.
• We now consider the case with propositional quantification. Suppose that T, v |= ∃ p ψ.

Hence, there is T? = 〈V,E, l?〉 such that T? ≈AP\{p} T and T?, v |= ψ. Let T?? = 〈V,E, l??〉
be the variant obtained from T? such that for all v′ ∈ V with εEjv′, we have l??(v′)

def
=

(l?(v′) \ Yk) ∪ {layermax(−1,k−j)}. By the induction hypothesis, T??, v |= trans(j, ψ). It is

easy to check that T?? ≈AP\{p} T
′ and therefore T′, v |= ∃ p trans(j, ψ). The proof for the

other direction is analogous.
• Finally, we consider the case with EX. First, let us suppose that T, v |= EXψ with εE(k−j)v

and the modal depth of ψ is less than j. Hence, there is v′ such that vEv′ and T, v′ |= ψ.

Thus, εE(k−(j−1))v′ and therefore v′ satisfies layer j−1 in T′. By the induction hypothesis
(ψ is also of modal depth less than j−1), we conclude T′, v′ |= layer j−1∧trans(j−1, ψ). As
v′ is also a child of v in T′ (and therefore a descendant), we obtain T′, v |= EF(layer j−1 ∧
trans(j−1, ψ)). Conversely, suppose that T′, v |= EF(layer j−1∧trans(j−1, ψ)). Thus, there
is a descendant v′ such that vE∗v′ and T′, v′ |= layer j−1 ∧ trans(j − 1, ψ). By definition

of l′, we have εEk−j+1v′ and therefore vEv′. By the induction hypothesis, we obtain
T, v′ |= ψ (again, ψ is also of modal depth less than j − 1), which implies T, v |= EXψ.

For the other implication, we assume that trans(k, φ)∧ shape(k) is satisfiable for QCTLtF,
that is T, ε |= trans(k, φ) ∧ shape(k) holds with the tree model T = 〈V,E, l〉 and md(φ) =
k ≥ 0. By Lemma 5.1, the tree model T is k-layered and therefore satisfying layer i and
jumping to a node with the help of EF(layer i−1 ∧ . . .) leads to a child node (assuming that
i ∈ [0, k]). Let T′ = 〈V ′, E′, l′〉 be the tree model defined as follows:

• V ′ is the least subset of V satisfying the conditions below:
– ε ∈ V ′,
– if v ∈ V ′ and layer j ∈ l(v) for some j ∈ [0, k], then for all v′ ∈ V such that layer j−1 ∈
l(v′) and vEv′, then v′ ∈ V ′. The children of v that do not satisfy layer j−1 are ignored
in T′.

• l′ is the restriction of l to V ′.
• For all v, v′ ∈ V ′, vE′v′ def⇔ one the conditions below holds:

– layer−1 ∈ l(v) ∩ l(v′) and vEv′.
– For some j ∈ [0, k], vEv′, layer j ∈ l(v) and layer j−1 ∈ l(v′).
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It is not difficult to check that T′ is a tree model (finite-branching tree and all the maximal
branches are infinite), as T satisfies the formula below (due to the satisfaction of shape(k)):∧

i∈[0,k]

AG(layer i → EF layer i−1).

Similarly to what we did above, by structural induction, one can show that for all
j ∈ [0, k], for all v ∈ V ′ such that layer j ∈ l(v), and for all subformulae ψ of φ of modal
depth less than j, we have T, v |= trans(j, ψ) iff T′, v |= ψ. This leads to the satisfaction of
T′, ε |= φ as T, ε |= layerk holds by the satisfaction of shape(k).

• For the base case j = 0, for all formulae ψ of modal degree 0, we have T, v |= trans(0, ψ)
iff T′, v |= ψ due to the fact that trans(0, ψ) = ψ and, T and T′ agree on the propositional
variables occurring in φ.
• For the induction step, the proof for the cases with Boolean connectives and propositional

quantification is by easy verification (cf. the proof in the other direction).
• Let us treat in depth the case with EXψ, with layer j ∈ l(v) and EXψ is of modal depth

less than j. Suppose that T, v |= trans(j,EXψ). So, this means that T, v |= EF(layer j−1∧
trans(j− 1, ψ)). There is v′ ∈ V such that vE∗v′ and T, v′ |= layer j−1 ∧ trans(j− 1, ψ). As
T is a k-layered tree model, necessarily vEv′ (otherwise there are two distinct nodes on the
branch from v such that either both satisfy layer j or both satisfy layer j−1, which leads to
a contradiction). By definition of E′, we get vE′v′ and by the induction hypothesis (ψ is
also of modal depth less than j − 1), we get T′, v′ |= ψ. Hence, we obtain T′, v |= EXψ.

Conversely, assume that T′, v |= EXψ. Thus, there exists v′ ∈ V ′ such that vE′v′ and
T′, v′ |= ψ. By definition of E′, T, v′ |= layer j−1 and hence, by the induction hypothesis,
we get T, v′ |= layer j−1 ∧ trans(j − 1, ψ). As one can check that E′ ⊆ E and hence, we
conclude that T, v |= EF(layer j−1 ∧ trans(j − 1, ψ)).

C.3. Proof of Lemma 5.5.

Proof. As far as Tower-hardness is concerned, in order to enforce finite tree models, it
is sufficient to consider the reduction defined for QCTLtX in Section 4 but to modify the
definition of the formula type(0) so that type(0) is now equal to ¬EX>. In that way, the
finite grids of the form [0, t(k, n)− 1]× [0, t(k, n)− 1] can still be encoded but with finite
tree models.

In order to get the Tower upper bound, let us define a reduction to the satisfiability
problem for QCTLt by simply identifying finite trees within tree models for QCTLt (known
to be in Tower by [37]). Let φ be a formula in QKt. Without loss of generality, we assume
that φ may contain occurrences of EX and no occurrences of AX. We introduce the formula
trans(φ) ∧ φfin in QCTLt, where φfin enforces that the fresh propositional variable in holds
true only finitely on each branch and trans(φ) admits a recursive definition, by relativising
the occurrences of EX with respect to in. Let φfin be the formula in∧AF ¬in∧AG(¬in→
AG ¬in). The satisfiability of φfin at the root node ε implies that in holds exactly on a
subtree from ε where all the branches are finite. It remains to define trans(φ):

• trans(p)
def
= p for all propositional variables p, and trans is homomorphic for Boolean

connectives and propositional quantification,

• trans(EXψ)
def
= EX(in ∧ trans(ψ)).
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We recall that the satisfaction of φfin at the root node ε implies in holds exactly on a subtree
from ε where all the branches are finite.

One can show that φ is satisfiable for QKt iff trans(φ)∧φfin is satisfiable in QCTLt (note
that in does not need to be part of the conjunction as the root is always part of the model).
Moreover, as the models for QCTLt are finite-branching trees (see e.g. [37, Remark 5.7]), φ
is satisfiable in a finite tree model iff trans(φ) ∧ φfin is satisfiable in a finite-branching tree
model, which leads to the desired upper bound Tower.

C.4. Proof of Lemma 5.7.

Proof. First, let us show that SAT(QGLt) and SAT(QCTLftXF) are identical problems modulo

the rewriting of EX into EXEF. Herein, QCTLftXF is defined as QCTLft restricted to the

combined temporal operator EXEF. According to Section 2, the models for QCTLft are

finite trees. In a second part of the proof, we show that SAT(QCTLftXF) is Tower-complete.

(I) Let t be the map from QGLt formulae into QCTLftXF formulae such that t(φ) is
defined from φ by replacing every occurrence of EX by EXEF. Similarly, the inverse map

t−1 is defined so that t−1(ψ) with a QCTLftXF formula ψ, is defined from ψ by replacing
every occurrence of EXEF by EX.

Let us show that (a) φ is QGLt satisfiable iff t(φ) is QCTLftXF satisfiable and (b) ψ is

QCTLftXF satisfiable iff t−1(ψ) is QGLt satisfiable. Since t is bijective, it is sufficient to show

(a). Let K = 〈W,R, l〉 be a QGLt model and w ∈ W such that K, w |= φ. As K is a QGLt

model, (W,R) = (W,E+) for some finite tree (W,E) with root w. Consequently for all
w1, w2 ∈ W , we have (w1, w2) ∈ R iff (w1, w2) belongs to the transitive closure of E. By
structural induction, one can easily show that for all w′ ∈W and for all subformulae φ′ of φ,
we have K, w′ |= φ′ iff 〈W,E, l〉, w′ |= t(φ′). Consequently, φ is QGLt satisfiable implies t(φ)

is QCTLftXF satisfiable as 〈W,E, l〉 is a model for QCTLftXF since it is a finite tree.

Conversely, let T = 〈V,E, l〉 be a QCTLftXF model (finite tree) with root ε such that
T, ε |= t(φ). Let K be the Kripke structure 〈V,E+, l〉 defined from T and by definition, K is
an QGLt model. Again, by structural induction, one can easily show that for all w′ ∈ V and
for all subformulae φ′ of φ, we have 〈V,E, l〉, w′ |= t(φ′) iff K, w′ |= φ′. Consequently, φ is
QGLt satisfiable as we have assumed that T, ε |= t(φ) and therefore K, ε |= φ.

(II) Let us show that the satisfiability problem for QCTLftXF is Tower-complete. We
need to take care of both the lower bound and of the upper bound. As far as Tower-hardness

is concerned, we define a reduction from the satisfiability for QCTLftX (see Theorem 5.5 as

QCTLftX and QKt are identical), and the proof is very similar to the one for QCTLtF (actually,

it is a bit simpler). The main steps are summarised below. Let φ be a formula in QCTLftX
of the modal depth md(φ) = k. Similarly to what was done before, let us consider the
set of fresh propositional variables Yk = {layer0, . . . , layerk} with the intended meaning
that a node satisfying layer i is of “layer i”, the root node being of layer k. Let us define
the formula trans(k, φ) ∧ shape(k) in QCTLtXF, where shape(k) is the conjunction of the
following formulae:



WHY DOES PROPOSITIONAL QUANTIFICATION MAKE LOGICS ON TREES ROBUSTLY HARD? 45

• Every node satisfies exactly one propositional variable from Yk (layer unicity) and the
root satisfies layerk.

(layerk ∧
∧
i 6=k
¬layer i) ∧AXAG((layer0 ∨ · · · ∨ layerk) ∧

∧
0≤i 6=j≤k

¬(layer i ∧ layer j)).

• When a node satisfies layer i with i ≤ k, none of its descendants satisfies some layer j with
j > i (monotonicity of layer numbers).

AXAG(layer0 ∨ · · · ∨ layerk−1)∧∧
i≤k−1

AXAG(layer i → AXAG(layer0 ∨ · · · ∨ layer i−1)).

• When a node satisfies layer i with 1 ≤ i ≤ k − 1, there is a descendant satisfying layer i−1

(weak progress).

EXEF layerk−1 ∧AXAG(layer i → EXEF layer i−1).

• The nodes satisfying layer0 have no successor: AXAG(layer0 → ¬EXEF>).

The formula trans(k, φ) is defined as in the reduction from QCTLtX to QCTLtXF (see Sec-

tion 5.1). One can show that φ is satisfiable in QCTLftX iff trans(k, φ)∧ shape(k) is satisfiable

in QCTLftXF.
To get the Tower upper bound, let us define a reduction to the satisfiability problem

for QCTLt (known to be in Tower by [37]). Let φ be a formula in QCTLftXF. We introduce

the formula trans(φ) ∧ φfin in QCTLt, where trans(φ) is recursively defined as follows:

• trans(p)
def
= p for all propositional variables p, and trans is homomorphic for Boolean

connectives and propositional quantification,

• trans(EXEFψ)
def
= EXEF(in ∧ trans(ψ)).

As in the proof of Theorem 5.5, φfin is equal to in ∧AF AG ¬in ∧AG(¬in → AG ¬in).
One can show that φ is satisfiable in a tree model without infinite branches iff trans(φ)∧φfin

is satisfiable in QCTLt. Again, as the models for QCTLt are finite-branching, φ is satisfiable
in a finite tree model iff trans(φ) ∧ φfin is satisfiable in a finite-branching tree models, which
leads to Tower-easiness.

C.5. Proof of Lemma 5.8.

Proof. First, let us show that SAT(QK4t) and SAT(QCTLgtXF) are identical problems modulo

the rewriting of EX into EXEF. Herein, QCTLgtXF is defined as QCTLgt restricted to the

temporal operator EXEF. According to Section 2, the models for QCTLgt are finite-branching

trees. In a second part of the proof, we show that SAT(QCTLgtXF) is Tower-complete.

(I) Let t be the map from QK4t formulae into QCTLgtXF formulae such that t(φ) is defined
from φ by replacing every occurrence of EX by EXEF. Similarly, the inverse map t−1 is

defined so that t−1(ψ) with a QCTLftXF formula ψ, is defined from ψ by replacing every
occurrence of EXEF by EX. This is similar to what is done in the proof of Theorem 5.7.

Let us show that (a) φ is QK4t satisfiable iff t(φ) is QCTLgtXF satisfiable and (b) ψ is

QCTLgtXF satisfiable iff t−1(ψ) is QK4t satisfiable. It is sufficient to show (a). Let K = 〈W,R, l〉
be an QK4t model and w ∈W such that K, w |= φ. As K is a QK4t model (W,R) = (W,E+)
for some finite-branching tree (W,E) with root w. Consequently for all w1, w2 ∈W , we have
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(w1, w2) ∈ R iff (w1, w2) belongs to the transitive closure of E. By structural induction, one
can easily show that for all w′ ∈W and for all subformulae φ′ of φ, we have K, w′ |= φ′ iff

〈W,E, l〉, w′ |= t(φ′). Consequently, φ is QK4t satisfiable implies t(φ) is QCTLgtXF satisfiable

as 〈W,E, l〉 is a model for QCTLgtXF.

Conversely, let T = 〈V,E, l〉 be a QCTLgtXF model (finite-branching tree) with root ε such
that T, ε |= t(φ). Let K be the Kripke structure 〈V,E+, l〉 defined from T and by definition,
K is an QK4t model. Again, by structural induction, one can easily show that K, ε |= φ.

(II) In order to establish the upper bound Tower, let us provide a reduction from the

satisfiability for QCTLgtXF to the satisfiability problem for QCTLtXF. Let φ be a formula in

QCTLgtXF. We introduce the formula trans(φ)∧ φ′fin in QCTLtXF, where φ′fin enforces that the
propositional variable in holds false on all descendants, as soon as it does not hold on a node
and that trans(φ) admits a recursive definition, by relativising the occurrences of EXEF
with respect to in. Let φ′fin be the formula in ∧AXAG(¬in→ AXAG ¬in).

It remains to define trans(φ):

• trans(p)
def
= p for all propositional variables p, and trans is homomorphic for Boolean

connectives and propositional quantification,

• trans(EXEFψ)
def
= EXEF(in ∧ trans(ψ)).

It is easy to see that φ is satisfiable for QCTLgtXF iff trans(φ)∧ φ′fin is satisfiable for QCTLtXF.

As far as Tower-hardness is concerned, for any formula φ in QCTLtXF, one can show
that φ is satisfiable for QCTLtXF iff φ ∧ EX EF > ∧ AXAG EXEF > is satisfiable in

QCTLgtXF. The two last conjuncts simply state that from any node, there is a child, which

enforces that all the maximal branches are infinite. As the satisfiability problem for QCTLtXF

is Tower-hard (Theorem 5.4), this concludes the proof.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany
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