Preface

In this monograph, we present and discuss the many results obtained concerning a famous limit theorem, the local limit theorem, which has many interfaces, with Number Theory notably, and for which, in spite of considerable efforts, the question concerning conditions of validity of the local limit theorem, has up to now no satisfactory solution. These results mostly concern sufficient conditions for the validity of the local limit theorem and its interesting variant forms: strong local limit theorem, strong local limit theorem with convergence in variation. Quite importantly are necessary conditions, and the results obtained are sparse, essentially: Rozanov's necessary condition, Gamkrelidze's necessary condition, and, almost isolated among the flow of results, Mukhin's necessary and sufficient condition. Extremely useful and instructive are the counter-examples due to Azlarov and Gamkrelidze, as well as necessary and sufficient conditions obtained for a class of random variables, such as Mitalauskas' characterization of the local limit theorem in the strong form for random variables having stable limit distributions. The method of characteristic functions and the Bernoulli part extraction method, are presented and compared. A second part of the survey is devoted to the more recent study of the almost sure local limit theorem, instilled by Denker and Koch. The inherent second order study, which has its own interest, is much more difficult than for establishing the almost sure central limit theorem. The almost sure local limit theorems established already cover the i.i.d. case, the stable case, Markov chains, the model of the Dickman function, and the independent case, with almost sure convergence of related series.

Our aim in writing this monograph was first to share the passion resulting from the study for this very special limit theorem, second to bring to knowledge many interesting results obtained by the Lithuanian and Russian Schools of Probability during the sixties and after, and which are essentially written in Russian, and moreover often published in Journals of difficult access. In doing so, our feeling was to somehow help with this whole coherent body of results and methods, researchers in the study of the local limit theorem, at least it is our hope.

Dedicated to the Lithuanian and Russian Schools of Probability for their important contributions in the study and the applications of the local limit theorem, in particular due to Azlarov, Gamkrelidze, Gnedenko, Ibragimov, Kolmogorov, Kubilius 

The local limit theorem

A simple way to introduce to this topic is to begin with citing McDonald [START_REF] Macdonald | The Local Limit Theorem: A historical perspective[END_REF] p. 73: "The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fermat and was originally formalized by Jakob Bernoulli, Abraham De Moivre and Pierre-Simon Laplace."

The central limit theorem is since long time a major piece of the Theory of Probability, with numerous applications, and is still actively studied. The local limit theorem is comparatively much less investigated. One reason is that the study of this finer limit theorem is intrinsically more complicated. For instance, conditions on arithmetical properties of the support of a random variable are always present.

On the other hand, it can be noted that although there exists a substantial literature on the central limit theorem for sums of dependent random variables, especially martingales and stationary sequences, there is a paucity of local versions of such works.

Nevertheless, the field of application of the local limit theorem in combinatorics analysis and number theory notably, is considerable. The interface between local limit theorems and structure theory of set addition was much studied by Freiman, Moskvin and Yudin notably. The interaction with Number theory was investigated by the Lithuanian and Russian Schools of Probability, during the Soviet period, and later by Manstavichyus, Postnikov notably and Fomin, after earlier works of Gamkrelidze, Mitalauskas, Mukhin and Raudelyunas, and many other contributors.

One can define simply in the multi-dimensional case the local limit theorem. Let S n = n k=1 X nk , where {X nk , k = 1, . . . , n} are series of independent random variables with values in Z s , and such that the integral limit theorem holds: there exist A n ∈ R s and real B n → ∞ such that the sequence of distributions of (S n -A n )/B n weakly converges to an absolutely continuous distribution with density g(x), which is uniformly continuous in R s .

Then the local limit theorem is valid if

(1.1) P{S n = m} = B -s n g m -A n B n + o(B -s n ),
uniformly in m ∈ Z s .

Mukhin remarked in his 1991's paper [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF] that "In spite that the problem was posed a long time ago, the formulation is very simple, and there exists a great number of investigations, the question concerning conditions of validity of the local limit theorem, has up to now no satisfactory solution. The sufficient conditions for the validity of the l.l.t., as well as necessary and sufficient conditions, are useful for the verification only in some particular cases, for example such as the case of identically distributed summands. And even in such situations they give no clear idea about the class of all sequences satisfying the l.l.t. The main obstacle for the l.l.t. to be valid is a concentration of a great amount of distributions of summands on a lattice whose span is greater than 1." These remarks are still relevant.

The first local limit theorem was established nearly three centuries ago, in the binomial case, which is also the fundamental case.

De Moivre-Laplace's Theorem. It was proved by De Moivre (1733) in Approximatio ad Summam Terminorum Binomii (a + b) n in Seriem expansi expanding on James Bernoulli's work (see [START_REF] Archibald | A Rare Pamphlet of Moivre and Some of His Discoveries[END_REF]). For the case p = 1/2 he proved: Theorem 1.1 (De Moivre-Laplace, 1730). Let 0 < p < 1, q = 1 -p. Let X be such that P{X = 1} = p = 1 -P{X = 0}. Let X 1 , X 2 , . . . be independent copies of X and let S n = X 1 + . . . + X n , n ≥ 2. Let also 0 < γ < 1. Then for all k such that |k -np| ≤ γnpq and n ≥ max(p/q, q/p), letting x = k-np √ npq , we have

P{S n = k} = e -x 2 2 √ 2πnpq e E ,
with |E| ≤ 3|x|+2|x| 3

(1-γ)

√ npq + 1 4n min(p,q)(1-γ) . If x = o(n 1/6 ), then

P{S n = k} - 1 √ 2πnpq e -(k-np) 2 2npq ≤ 1 √ 2πnpq e -(k-np) 2 2npq c 1 |x| 3 √ n + c 2 |x| √ n + c 3 n .
The constants c i , i = 1, 2, 3 are explicit and depend on p only.

De Moivre's result was further improved by Khintchin [START_REF] Khintchin | Über einen neuen Grenzwertsatz der Wahrscheinlichkeitsrechnung[END_REF] (see also [START_REF] Richter | Local limit theorem for large deviations[END_REF]Remark on p. 209]). We refer to McDonald [START_REF] Macdonald | The Local Limit Theorem: A historical perspective[END_REF] for a short historical study of the local limit theorem, to Todhunter [START_REF] Todhunter | A History of the Mathematical Theory of Probability[END_REF]Chap. IX] for a full analysis of De Moivre's "Doctrine of Chance ", also to Bellhouse and Genest [START_REF] Bellhouse | Maty's Biography of Abraham De Moivre, Translated, Annotated and Augmented[END_REF] and Bellhouse [START_REF] Bellhouse | Abraham de Moivre[END_REF]for a biography of De Moivre. De Moivre stated the local limit theorem for general p but proved only the case p = 1/2. The proof for all p was provided by Laplace (1795) in Théorie analytique des probabilités. This is why the above theorem is called the De Moivre-Laplace central limit theorem. As it concerns densities, it can be interpreted as a local limit theorem.

Proof of Theorem 1.1. The proof follows the one given in Chow and Teicher [35, p. 46]. Let b(k, n, p) = P{S n = k}. By using Stirling's formula, (1.2) n! = n n+ 1 2 e -n+εn √ 2π with 1 12n + 1

< ε n < 1 12n
, valid for all n ≥ 2, we have Since |x| √ n max( q/p, p/q) ≤ |x| √ npq ≤ γ, by the assumption made, we deduce that

b(k, n, p) = p k q n-k n! k!(n -k)! = p k q n-k n n+ 1 2 e εn-ε k -ε n-k √ 2π k k+ 1 2 (n -k) n-k+ 1 2 = e ε √ 2π np k k+ 1 2 nq n -k n-k+ 1 2 (npq) -1 2 , where ε = ε n -ε k -ε n-k . Whence (recalling that x = k-np √ npq ), log 2πnpq b(k, n, p) = ε -(k + 1 2 ) log k np -(n -k + 1 2 ) log n -k nq = ε -(np + x √ npq + 1 2 ) log 1 + x √ q √ np -(nq -x √ npq + 1 2 ) log 1 - x √ p √ nq = ε -(np + x √ npq) log 1 + x √ q √ np -(nq -x √ npq) log 1 - x √ p √ nq - L 2 
log 2πnpq b(k, n, p) = ε -(np + x √ npq) x q np - x 2 q 2np + A +(nq -x √ npq) x p nq + x 2 p 2nq + B - L 2 , with |A| ≤ 1 1 -γ |x| 3 n 3 2 q p 3 2 , |B| ≤ 1 1 -γ |x| 3 n 3 2 p q 3 2 . Whence, log 2πnpq b(k, n, p) = ε - x 2 2 + x 3 q 3 2 2 √ np - x 3 p 3 2 2 √ nq - L 2 + C,
where

C = -(np + x √ npq + 1 2 )A + (nq -x √ npq + 1 2 )B.
We have

np q p 3 2 + nq p q 3 2 ≤ n √ pq , √ pq q p 3 2 + p q 3 2 ≤ 1 pq . Thus (1 -γ)|C| ≤ |x| 3 n 3 2 np + |x| √ npq q p 3 2 + nq + |x| √ npq p q 3 2 ≤ |x| 3 n 3 2 n √ pq + |x| √ n pq = |x| 3 √ npq + |x| 4 npq . Further x 3 q 3 2 2 √ np -x 3 p 3 2 2 √ nq = x 3 (q-p) 2 √ npq . We get log 2πnpq b(k, n, p) = ε - x 2 2 - L 2 + D, (1.4) with |D| ≤ 1 (1 -γ) |x| 3 √ npq + |x| 4 npq ≤ 2 (1 -γ) |x| 3 √ npq , (1.5) since |x| ≤ γ √ npq.
Now by (1.3), we have log(1 + y) ≤ 3|y| 1-γ if |y| ≤ γ. Thus

|L| = log 1 + x q/np 1 -x p/nq ≤ 3|x| (1 -γ) √ n q/p + p/q = 3|x| (1 -γ) √ npq .
By assumption |k -np| ≤ γnpq and n ≥ max(p/q, q/p). Thus

k ≥ np(1 -γq) ≥ np(1 -γ),
and 0

≤ ε k ≤ 1 12k ≤ 1 12np(1-γ) . Moreover, n -k ≥ nq -γnpq ≥ nq(1 -γ), so that 0 ≤ ε n-k ≤ 1 12(n-k) ≤ 1 12nq(1-γ) . Recalling that ε = ε n -ε k -ε n-k , we further have ε ≤ 1 6n min(p, q)(1 -γ) + 1 12n
≤ 1 4n min(p, q)(1 -γ) .

We deduce from (1.5) that, log 2πnpq b(k, n, p) = -

x 2 2 + E, with |E| ≤ 1 (1 -γ) 3|x| 2 √ npq + 2|x| 3 √ npq + 1 4n min(p, q)(1 -γ) .
Consequently,

P{S n = k} = e -(k-np) 2 2npq √ 2πnpq e E .
Thus if x = o(n 1/6 ),

P{S n = k} - e -(k-np) 2 2npq √ 2πnpq ≤ e -(k-np) 2 2npq √ 2πnpq 1 (1 -γ) 3|x| 2 √ npq + 2|x| 3 √ npq + 1 4n min(p, q)(1 -γ) := e -(k-np) 2 2npq √ 2πnpq c 1 |x| 3 √ n + c 2 |x| √ n + c 3 n .
The case of independent non-identically distributed binomial random variables was considered by Mamatov in [START_REF] Mamatov | Estimation of the remainder term of the generalized Moivre-Laplace local limit theorem (in Russian)[END_REF].

It is natural to compare the De Moivre-Laplace theorem with nowadays classical local limit theorems. The following precise result concerning the case p = q = 1/2, is derived from a fine local limit theorem with asymptotic expansion [START_REF] Petrov | Sums of Independent Random Variables[END_REF]Ch. 7,Th. 13].

Theorem 1.2. Let B n = β 1 + . . . + β n , n = 1, 2, . . . where β i are i.i.d. Bernoulli r.v.'s ( P{β i = 0} = P{β i = 1} = 1/2). There exists a numerical constant C 0 such that for all positive n

sup k P B n = k} - 2 πn e -(2k-n) 2 2n ≤ C 0 n 3/2 .
One easily observes that for moderate deviation of type x = |k-n/2| √ n/2 ∼ n 1/7 , this result is however considerably less precise than the old one of De Moivre (case p = q). Indeed,

P{B n = k} - 2 πn e -x 2 2 = O n -1/28 e -n 1/7 O n -3/2 .
This in particular shows that the usual formulation of the local limit theorem does not provide in fact the full information on the remainder term.

Lattice-valued random variables. We recall some classical facts ( [START_REF] Petrov | Sums of Independent Random Variables[END_REF], p. 10).

(I) A random variable X has lattice distribution if and only if its characteristic function f (t) = E e itX satisfies f (t 0 ) = 1 for some t 0 = 0.

Let X be taking values in the lattice L(v 0 , D), namely defined by the sequence v k = v 0 + Dk, k ∈ Z, where v 0 and D > 0 are real numbers.

The span D is said to be maximal, if there are no other real numbers v 0 and D > D for which P{X ∈ L(v 0 , D )} = 1.

(II) Let the span D be maximal. Then,

|f 2π D | = 1, and 
|f (t)| < 1 for 0 < |t| < 2π D .
As a consequence, for every 0 < ε < 2π D , there exists and θ > 0, such that |f (t)| ≤ e -θ , for ε ≤ |t| ≤ 2π D -ε.

Let {X n , n ≥ 1} be a sequence of independent, square integrable random variables taking values in a common lattice L(v 0 , D), and let S n = n j=1 X j , for each n. Then S n takes values in the lattice L(v 0 n, D). Put (1.6) M n = E S n , B 2 n = Var(S n ). Definition 1.3. The sequence {X n , n ≥ 1} satisfies a local limit theorem if (1.7) ∆ n := sup

N =v 0 n+Dk B n P{S n = N } - D √ 2π e - (N -Mn) 2 2B 2 n = o(1).
This is a fine limit theorem in Probability Theory, which also has connections with Number Theory. These two aspects of a same problem were much studied in the past decades by the Lithuanian and Russian probabilists.

Note that the transformation (1.8)

X j = X j -v 0 D ,
allows one to reduce to the case v 0 = 0, D = 1.

The i.i.d. case

Assume that the random variables X i are identically distributed, and let µ = E X 1 , σ 2 = Var(X 1 ). Then M n = nµ, B 2 n = nσ 2 , and (1.7) reduces to (1.9) ∆ n = sup

N =v 0 n+Dk σ √ n P{S n = N } - D √ 2π e -(N -nµ) 2 2nσ 2
= o(1).

Gnedenko's Theorem. The following well-known result of Gnedenko [START_REF] Gnedenko | On a local limit theorem in the theory of probability[END_REF] characterizes the local limit theorem in this case. It was proved in 1948 and can be viewed as a generalization of the De Moivre-Laplace theorem. Theorem 1.4. Assume that {X n , n ≥ 1} is an i.i.d. sequence and let µ = E X 1 , σ 2 = Var(X 1 ). Then (1.9) holds if and only if the span D is maximal.

The proof was effected by means of the method of characteristic functions. See [START_REF] Gamkrelidze | On the application of a smoothness function in proving a local limit theorem[END_REF] or [START_REF] Petrov | Sums of Independent Random Variables[END_REF] (Theorem 1 and proof of Theorem 2,.

Remark that (1.9) is significant only for the bounded domains of values

(1.10) |N -nµ| ≤ σ 2n log D ε n ,
where ε n ↓ 0 depends on the Landau symbol o.

It is also worth observing that (1.9) cannot be deduced from a central limit theorem with rate, even under stronger moment assumption. Suppose for instance that D = 1, X is centered and E |X| 3 < ∞. Using the Berry-Esseen estimate implies that

σ √ nP{S n = k} -σ √ n k+1 σ √ n k σ √ n e -t 2 /2 dt √ 2π ≤ C E |X| 3 σ 2 .
Further,

sup k+1≤σ √ n σ √ n k+1 σ √ n k σ √ n e -t 2 /2 dt √ 2π - 1 √ 2π e -k 2 2σ 2 n ≤ C σ √ n → 0.
By substituting we get,

σ √ nP{S n = k} - 1 √ 2π e -k 2 2σ 2 n ≤ C E |X| 3 σ 2 + 1 σ √ n . Letting k = k n → ∞, k n + 1 ≤ σ √
n, the right-hand side is bounded with n, whereas by (1.9), this one tends to zero with n. Hence (1.9) cannot follow from the Berry-Esseen estimate. Note however that if Cramér's condition is fulfilled, namely (1.11) lim sup |u|→∞ |E e iuX 1 | < 1, and higher moments exist, better rates of approximation in the Berry-Esseen theorem are available, see [29, p. 329], [180, p. 130].

Gnedenko's theorem is optimal. This was proved by Matskyavichyus in [START_REF] Matskyavichyus | On a lower bound for the convergence rate in a local limit theorem[END_REF].

Theorem 1.5. For any nonnegative function ϕ(n) → 0 as n → ∞, there is a sequence

{X n , n ≥ 1} of i.i.d. integer valued random variables with E X 1 = 0, E X 2 1 < ∞ such that for each n ≥ n 0 , (1.12) ∆ n ≥ ϕ(n).
The common distribution of these random variables is a mixture of symmetrized distributions, namely with characteristic function

f (t) = ∞ k=1 λ k exp ν k (cos t -1) , where ∞ k=1 λ k = 1, ν k > 0, λ k ≥ 0 for each k = 1, 2, . . .
and σ k , λ k are chosen with respect to ϕ(n), see Lemma 2 in [START_REF] Matskyavichyus | On a lower bound for the convergence rate in a local limit theorem[END_REF]. These random variables are therefore extremal for the local limit theorem.

Stronger integrability properties yield finer remainder terms. This is made precise in the following statement.

Theorem 1.6. Let F denote the distribution function of X 1 .

(i) ( [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], Theorem 4.5.3) In order that the property

(1.13) sup N =an+Dk σ √ n D P{S n = N } - 1 √ 2πσ e -(N -nµ) 2 2nσ 2 = O n -α/2 ,
where 0 < α < 1, it is necessary and sufficient that the following conditions be satisfied:

(1) D is maximal, (2) 
|x|≥u x 2 F (dx) = O(u -α ) as u → ∞. (ii) ([180] Theorem 6 p. 197) If E |X 1 | 3 < ∞, then (1.13) holds with α = 1/2.
Although evident from the assumption made, the link with classical central limit theorem is not apparent in the statements.

Remark 1.7 (Bernoulli case). Theorem 1.2 provides a finer remainder term than the one directly derived from Theorem 1.6. Better formulations can be established by using a more precise, but less handy comparison term. For instance, there exists an absolute constant C such that for all integers n ≥ 2,

sup k P{B n = k} - 1 π R e i(2k-n)v-n( v 2 2 + v 4 12 ) dv ≤ C log 7/2 n n 5/2 . (1.14)
Galstyan [START_REF] Galstyan | Local analogs of a theorem of Heyde[END_REF] characterized in the theorem below a stronger form of the local limit theorem.

Theorem 1.8. Let {X k , k ≥ 1} be a sequence of independent, identically distributed random variables taking values in a common lattice

L(v 0 , D) with E X 1 = 0, σ 2 = E X 2 1 < ∞. Assume the span D is maximal.
Then in order that

(1.15) ∞ n=1 n -1+ 1 2δ sup k∈Z σ √ n D P{S n = nv 0 + kD} - 1 √ 2π e - (nϑ 0 +kD) 2 2σ2 √ n < ∞, 0 ≤ δ < 1,
it is necessary and sufficient that

E |X 1 | 2+δ < ∞, if 0 < δ < 1, E |X 1 | 2 log(1 + |X 1 |) < ∞, if δ = 0.
This Theorem is an extension for densities and for lattice valued variables of an earlier result proved by Heyde in [START_REF] Heyde | On the influence of moments on the rate of convergence to the normal distribution[END_REF].

Consider now the case of sums of i.i.d. stable random variables. Definition 1.9. Let G(x) be the stable distribution function for which M (x) = 0, N (x) = -1

x α , σ 2 = 0 and γ(τ ) = ατ 1-α /(1 -α) in the Lévy-Khintchin formula. We say that the sequence {X n , n ≥ 1} satisfies a local limit theorem if, letting S n = X 1 + . . . + X n for each n, we have,

B n P{S n = m} -g m B n → 0 when n → ∞, uniformly in m, -∞ < m < ∞, where g(x) = G (x).
The local limit theorem for i.i.d. stable random variables is due to Ibragimov and Linnik and states as follows.

Theorem 1.10 ( [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], Th. 4.2.1). Let {X n , n ≥ 1} be a sequence of i.i.d. random variables taking values in a common lattice L(v 0 , D), let S n = X 1 + . . . + X n for each n. In order that for some choice of constants A n and B n lim

n→∞ sup m∈Z B n D P{S n = v 0 n + mD} -g v 0 n + mD -A n B n = 0,
where g is the density of some stable distribution G with exponent 0 < α ≤ 2, it is necessary and sufficient that

(i) S n -A n B n D ⇒ G as n → ∞, (ii) D is maximal.
We give the proof, although not with full details. It also serves as an illustration of the well-known method of characteristic functions, which is the common approach of many proofs of the local limit theorems investigated by the Russian and Lithuanian Schools of Probability. See [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], [START_REF] Petit | θ-transformations, θ-shifts and limit theorems for some Riesz-Raikov sums[END_REF] and the references therein. See also Gamkrelidze's proofs, in particular hints of proofs of Theorem 1.31 and Mitalauskas' Theorem 1.40, see also Shukri [208]. This also makes alternate approaches using various characteristics of a random variable, or based on other arguments, of particular interest.

Method of characteristic functions.

There is no loss (see (1.8)) in assuming for the proof of Theorem 1.10 that

v 0 = 0, D = 1. Let f denote the characteristic of X 1 . By the Fourier inversion formula (letting in what follows z = (m -A n )/B n ), (1.16) P S n = m = 1 2π π -π e -izt-itAn/Bn f (t/B n ) n dt.
Let also v denote the characteristic function of the G. We further have (1.17)

g(z) = ∞ -∞ e -izt v(t)dt.
We can write (1.18)

B n P S n = m -g m -A n B n ≤ I 1 + I 2 + I 3 + I 4 ,
where

I 1 = |t|≤A e -itAn/Bn f (t/B n ) n -v(t) dt, I 2 = |t|>A v(t) dt, I 3 = A≤|t|≤εBn f (t/B n ) n dt, I 4 = εBn≤|t|≤πBn f (t/B n ) n dt, (1.19)
and A, ε are constants to be determined. That approach for controlling the left-hand side of (1.18) in bounding it with the sum of the previous four integrals is frequently used. See proof of Theorem 1.40 for a more delicate case.

Integral I 1 can be made small in view of assumption (i), and I 2 is small for A large. Now that I 3 is small for n large follows from the fact that for any δ < α, there exists a positive constant c(δ), such that for t in some neighbourhood of 0, and all n

f (t/B n ) n ≤ e -c(δ)|t| δ . Thus A≤|t|≤εBn f (t/B n ) n dt ≤ |t|≥A e -c(δ)|t| δ dt → 0, as A → ∞.
Finally as 1 is maximal, for some positive constant c 

|f (t)| ≤ e -c , if ε ≤ |t| ≤ π. Then εBn≤|t|≤πBn f (t/B n ) n dt ≤ 2πB n e -cn → 0, since B n = o e cn (
P{S n = v 0 n + mD} - D B n g v 0 n + mD -A n B n = 0.
Local limit theorems for densities in various norms (sup-norm, L p -norms) were intensively studied. We refer to [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], Ch. 4 and to [START_REF] Petrov | Sums of Independent Random Variables[END_REF] Ch. 7. In the simplest case where X j , j ≥ 1 are i.i.d. centered random variables with E X 2 j = σ 2 < ∞, σ 2 > 0, assuming that for all n large enough the distribution function of Z n = ( n j=1 X j )/σ √ n, is absolutely continuous with density function p n (x), the following result holds. Theorem 1.12 ([110], Th. 4.5.1). In order that

(1.21) sup x p n (x) -φ(x) = O n -δ/2 ,
with 0 < δ < 1, where φ(x) is the standard normal density function, it is necessary and sufficient that

(1.22) |u|≥x y 2 F (dy) = O x -δ ,
where F is the distribution function of X 1 , and that there exists N such that

(1.23) sup x p N (x) < ∞.
There are variants or extensions of this result, to independent non-identically distributed random variables, see Theorem 1.26, or to weighted sums of i.i.d. random variables as we shall see below. Some refinements in terms of asymptotical Hölder continuity are obtained in Macht and Wolf [START_REF] Macht | The Local Limit Theorem and Hölder-Continuity[END_REF], where a smoothing inequality is used.

Local limit theorems for weighted sums of i.i.d. random variables. The following problem is considered. Let {ξ k , k ∈ Z} be a sequence of i.i.d. random variables. Let {a k,n , k ∈ Z, n ≥ 1} be a matrix. Put for each n ≥ 1,

(1.24) S n = k∈Z a k,n ξ k .
These sums are studied in Shukri [START_REF] Shukri | Local limit theorems for sums of weighted independent random variables[END_REF], when the distribution function of ξ k belongs to the domain of attraction of some stable law with index 0 < α ≤ 2. Let F (x) (resp. F n (x)), p(x) (resp. p n (x) and f (t) (resp. f n (t)) successively denote the distribution function, the density distribution and characteristic function of the i.i.d. random variables ξ k (resp. S n ).

Prerequisites on the representation of stable laws are necessary. As F (x) belongs to the domain of attraction of some stable law with index 0 < α ≤ 2, we have the classical representation ( [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], Ch. II, Section 6)

(I) F (x) = c 1 +o(1) |x| α h(|x|), x → -∞, c 1 ≥ 0, 1 -F (x) = c 2 +o(1) x α h(x), x → ∞, c 2 ≥ 0, c 1 + c 2 > 0,
where h(x) is a function varying slowly as x → ∞. The case α = 2, Var(ξ k ) < ∞ was studied in [START_REF] Yu | A local limit theorem for weighted sums of independent random quantities[END_REF] and [START_REF] Saulis | On multidimensional limit theorems for distribution densities[END_REF]. If α = 2, Var(ξ k ) = ∞, then we assume that F has the following representation (I )

χ(x) = 1 -F (x) + F (-x) = h(x) x 2 , x → ∞,
where h(x) is a function that varies slowly as x → ∞. The characteristic function f (t) is representable in a neighborhood of 0 in the form

(II) f (t) = exp{-c|t| α e sign(t)iϕ }, c > 0, 0 < α ≤ 2, where |ϕ| ≤ πα/2| if 0 < α < 1, |ϕ| ≤ (2 -α)π/2 if 1 < α ≤ 2
, and h(t) is a function varying slowly as t → 0.

In particular, if F (x) and f (t) satisfy (I) or (I') and (II), c can be chosen so that,

h(t) ∼ h(1/|t|), 0 < α ≤ 2, 1/|t| 0 u 2 χ(du) α = 2.
Conditions under which the series (1.24) converges almost surely are given in the following proposition. Proposition 1.13 ([208], Prop. 1). Let F (x) belong to the domain of attraction of some stable law with index 0 < α ≤ 2. Assume that the sequence {a k , k ∈ Z} satisfies the condition

(1.25) k∈Z |a k | α h(a k ) < ∞.
Then k∈Z a k ξ k converges almost surely.

The local limit theorems for S n are obtained under the following three conditions, the first arising naturally from the previous Proposition.

Condition

A 1 : k∈Z |a k,n | α h(a k,n ) → 1 as n → ∞
, where h is the slowly varying function from the representation (II).

Condition

A 2 : sup k∈Z |a k,n | → 0 as n → ∞. Condition A 3 : For some p > 0, R |f (t)| p dt < ∞. Conditions A 1 , A 2 are
natural in regard of regularity conditions of matrix summation methods.

Theorem 1.14. Let F (x) belong to the domain of attration of a stable law G(x) with index 0 < α ≤ 2, α = 1, and let the matrix coefficients {a k,n } satisfy Condition A 2 , and for some 0 ≤ P ≤ 1, the conditions

(1) k : a k,n >0 |a k,n | α h(a k,n ) → P, n → ∞, (2) 
k : a k,n <0 |a k,n | α h(a k,n ) → 1 -P, n → ∞, (1.26)
where h is the slowly varying function from the representation (II). Then,

(1.27) F n (x) → L(x) n → ∞,
where

(1.28) L(x) = G xP -1/α * (1 -G -x(1 -P -1/α ) .
Theorem 1.15. Let the conditions of Theorem 1.14 be fulfilled. If moreover Condition A 3 is satisfied , then the density p n (x) exists for all n larger than a certain value, and

(1.29) sup x p n (x) -l(x) → 0, n → ∞,
where l(x) is the density of the stable distribution L(x) from Theorem 1.14.

Local large deviations. Let {S n , n ≥ 0} be an integer-valued random walk such that Sn an , converges in distribution to a stable law of index α ∈ (0, 1) as n → ∞, then Gnedenko's local limit theorem provides a useful estimate for P{S n = r} for values of r such that r/a n is bounded. However, under appropriate conditions, another estimate is valid when r/a n → ∞, establishing a large deviation local limit theorem.

This type of estimates proceeds from Nagaev's classical and elegant result [START_REF] Nagaev | On the asymptotic behaviour of one-sided large deviation probabilities[END_REF], which we recall. Let S = {S n , n ≥ 0} be a random walk whose increments X i are independent copies of X, where E X = 0, and

(1.30) P{X > x} ∼ x -α L(x), as x → ∞,
where α ∈ (1, ∞[ and L is slowly varying at infinity. Then for any ε > 0 and uniformly in x ≥ εn,

(1.31) P{S n > x} ∼ n P{X > x}, as n → ∞.
Doney showed that for lattice-valued random walks, there is an analogous local limit theorem.

Theorem 1.16 ([46], Th. 1). Suppose that {S n , n ≥ 0} is an integer-valued random walk with E X = µ finite and such that

(1.32) P{X = m} ∼ m -(1+α) L(m), as m → ∞,
where α ∈ (1, ∞[ and L is slowly varying at infinity. Then for any ε > 0 and uniformly in m ≥ (µ + ε)n,

(1.33) P{S n = m} ∼ n P{X = [m -nµ]}, as n → ∞.
Tkachuk [START_REF] Tkachuk | Limit theorems for sums of independent random variables belonging to the domain of attraction of a stable law[END_REF], see also Doney [START_REF] Doney | One-sided local large deviation and renewal theorems in the case of infinite mean[END_REF], showed that if S is in the domain of attraction of a stable law with index 0 < α < 1 and positivity parameter 0 < ρ ≤ 1, then uniformly for n such that x/a n → ∞, where a n is a norming sequence for S, 

(1.34) P{S n > x} ∼ nP{X > x} as x → ∞,
τ (r) = F (-r) F (r) = -r -∞ p k ∞ r+1 p k .
Theorem 1.17. Assume that the following assumptions are satisfied. For some slowly varying function L,

(i) p r ∼ αr -(α+1) L(r), as r → ∞, (ii) lim r→∞ τ (r) = ρ -1 -1, where 0 < ρ ≤ 1. (1.36)
Then, uniformly in n such that r/a n → ∞,

(1.37) P{S n = r} ∼ n P{X = r} as r → ∞.
Results of this kind can be used for establishing local versions of generalized renewal theorems. Assume that X takes non-negative values only. Thus S is a discrete renewal process. Consider the renewal mass function,

(1.38) u r = ∞ n=0 P{S n = r}.
Here we have by using Theorem 8.7.3 in Bingham, Goldies and Teugels [START_REF] Bingham | Encyclopedia of Mathematics and Its Applications[END_REF], that (1.39)

F (n) = ∞ k=n+1 p k ∼ n -α L(n), as n → ∞, is equivalent to (1.40) n k=0 u k ∼ n α Γ(1 -α) L(n)Γ(1 + α) , as n → ∞,
Theorem 1.18. Assume that X takes non-negative values only, (1.39) holds and further

(1.41) sup n≥0 np n F (n) < ∞.
Then

lim n→∞ n 1-α L(n)u n = Γ(1 -α) Γ(1 + α).
The two preceding theorems are respectively Theorems A and B in Doney [START_REF] Doney | One-sided local large deviation and renewal theorems in the case of infinite mean[END_REF].

Diophantine measures and local limit theorem. Breuillard studied in [START_REF] Breuillard | Distribution diophantiennes et théorème limite local sur R d[END_REF] the local limit theorem in R, also in R d , in the i.i.d. case for Diophantine measures. Let {X i , i ≥ 1} be a sequence of i.i.d. R-valued, centered random variables of common law µ. In order to study the asymptotic behavior as n tends to infinity of the means

(1.42) E f (S n ) = f dµ n
for f defined on R, the author introduces the notion of Diophantine measure, in analogy with the type of a real number. Let η be a positive real number or infinity. An irrational number α is said to be of type type η if η is the supremum of all γ for which lim inf q→∞ q γ {qα} = 0, where q runs through the positive integers. See Kuipers and Niederreiter [START_REF] Kuipers | Uniform distribution of sequences[END_REF], p. 121. So that if η is finite and η > η, then for some C > 0

{qα} ≥ C q η ,
for any q large enough. A measure µ on R is l-Diophantine, for some real l ≥ 0, if there exists C > 0 such that for any x ∈ R large enough in absolute value,

(1.43) inf y∈R {xa + y} 2 dµ(a) ≥ C |x| l .
Here {b} denotes the distance from b to the nearest integer. One says that µ is Diophantine if µ is l-Diophantine, for some real l ≥ 0.

This notion shares strong similarities with Mukhin's structural characteristic D(X, x) 1 defined in (1.141), since the quantity to be estimated, namely the right hand side of (1.43), is the same. Indeed,

D(X, x) = inf v∈R E {(X -v)x} 2 = inf y∈R {xa + y} 2 dµ(a).
Note that the question considered was also studied in 1964 by Shepp in a seminal paper [START_REF] Shepp | A local limit theorem[END_REF] 2 , see also Stone [START_REF] Stone | A local limit theorem for nonlattice multi-dimensional distributions functions[END_REF], [START_REF] Stone | On local and ratio limit theorems[END_REF].

However condition (1.43) is specific, to our knowledge, to Breuillard's work, and is not present in Mukhin's papers. That condition seems not easy to check in general. When µ is a Dirac measure at point a, the l-Diophantinity of µ coincides with the l-type of irregularity of a, expressing that a is l-badly approximable, see [START_REF] Kuipers | Uniform distribution of sequences[END_REF], Def. 3.4. This clearly justifies the terminology introduced.

Condition (1.43) translates to the Fourier transform of µ. Let l ≥ 0. Then µ is l-Diophantine if and only if there exists a real C > 0 such that for any x large enough in absolute value,

(1.44) | µ(x)| ≤ 1 - C |x| l .
Other equivalences are formulated in term of the symmetrized measure µ * µ -1 . See [START_REF] Breuillard | Distribution diophantiennes et théorème limite local sur R d[END_REF], Proposition 3.1. The proof is short and based on the elementary inequality (c 1 , c 2 being positive constants)

c 1 {x} 2 ≤ 1 -cos(2πx) ≤ c 2 {x} 2 .
1 not quoted in [START_REF] Breuillard | Distribution diophantiennes et théorème limite local sur R d[END_REF] 2 not quoted in [START_REF] Breuillard | Distribution diophantiennes et théorème limite local sur R d[END_REF] The author generalizes to Diophantine measures some results of Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], XVI Th. 2 (Edgeworth expansion of densities under the assumption that µ is integrable). For instance ( [START_REF] Breuillard | Distribution diophantiennes et théorème limite local sur R d[END_REF], Th. 3.2), Theorem 1.19. Let r be some non-negative integer, and a real l ≥ 0. Assume that µ is centered and has moment of order r + 2 finite. If moreover µ is l-Diophantine, then for any function f of class C k with k > l(r + 1)/2 + 1 and such that

(1.45) C k (f ) := max 0≤j≤k f (j) 1 < ∞,
one has the following asymptotic Edgeworth expansion

(1.46) E f (S n ) = r p=0 1 n p/2 R f (x √ n)P p (x)g(x)dx + C k (f ) . o 1 n (r+1)/2
where the constants hidden in the symbol o depend on r, µ only, g is the Gaussian density associated to µ through the central limit theorem, and P p are polynomials of degree ≤ 3p, whose coefficients only depend of the moments of µ of order less or equal to p + 2.

We say that µ is aperiodic if

(1.47) | µ(x)| < 1, (∀x ∈ R\{0})
The author also examines for µ centered, aperiodic on R, with variance σ 2 and admitting a moment of order r ≥ 2, when the limit (where

I s = [-s, s]) (1.48) lim n→∞ µ n (I s + x) ν n (I s + x) = 1
is uniform in x and s, ν being the standard Gaussian distribution. For instance the limit is uniform when |x| + s ≤ √ cσ 2 n log n. See [START_REF] Breuillard | Distribution diophantiennes et théorème limite local sur R d[END_REF], Th. 4.2.

Local limit theorems with arithmetical conditions. The first approaches use arithmetical conditions of type: For all q ≥ 2 (1.49) max 0≤r≤q-1

P{X j ≡ r (mod q)} ≤ 1 -α j ,
for all j, where α j is some specific sequence of reals decreasing to 0. Conditions of this sort already appeared in Mitalauskas 1960's paper [START_REF] Mitalauskas | On multidimensional local limit theorem for lattice distributions[END_REF], and 1964's paper by Raudelyunas [START_REF] Raudelyunas | On multidimensional local limit theorem[END_REF], later in Fomin's paper [START_REF] Fomin | An arithmetical method of proof of a local theorem for series of independent integer random vectors (in Russian)[END_REF]. Roughly speaking, one requires the random variables to do not overly much concentrate in a particular residue class r (mod q) of Z.

A condition of this kind is used in the following multidimensional result by Fomin [START_REF] Fomin | An arithmetical method of proof of a local theorem for series of independent integer random vectors (in Russian)[END_REF], which however seems not of an easy application.

Theorem 1.20. Let X (n) = (X (n) 1 , . . . , X (n) 
d ), = 1, . . . , n, n = 1, 2, . . . be an array of independent i.i.d. Z d -valued, centered random vectors with components having third moments, and assume that the covariance matrix R (n) of X (n) is positive definite. Let

σ 2 ni = E (X (n) ni ) 2 , B 2 ni = nσ 2 ni and β 2 ni = E |X (n) ni | 3 , i = 1, . . . , d. Let also S n = n k=1 X (n) k = (S n1 , . . . , S nd ), S n = ( S n1 B n1 , . . . , S nd B nd ). Assume that β ni = o σ 3 ni ∆ 2 n √ n , i = 1, . . . , d.
where ∆ n = det(R (n) ). Further assume that for each q ≥ 2, each a = (a 1 , . . . , a d ) ∈ Z d , with gcd(a 1 , . . . , a d , q) = 1,

(1.50) max 0≤r≤q-1 P{a.X (n) 1 ≡ r (mod q)} ≤ 1 -α n ,
where

α n = K max 1≤i≤d max β 2 ni σ 4 ni ∆ 2 n n , σ ni √ n log n,
and K is some constant. Then,

(1.51) B n1 . . . B nd P S n = z -φ R (n) (z) → 0,
where φ R (n) (z) is the Gaussian density with covariance matrix R (n) .

The following theorem provides a fine local limit theorem for triangular arrays of i.i.d. sums. It was proved by Freiman, Moskvin and Yudin [START_REF] Freiman | Structural theory of set addition, and local limit theorems for independent lattice random variables[END_REF].

Theorem 1.21. For each n = 1, 2, . . ., let Xn = (X 1n , . . . , X nn ) be composed with i.i.d. Z-valued random variables, having third moments, and let

E X 1n = a n , E (X 1n -a n ) 2 = σ 2 n . Assume that (1)
Xn satisfies the central limit theorem as n → ∞,

(2)

σ 2 n = O(n ρ ) where ρ < log(2+c) log 2 -1 and c < 1. (3)
For q = 2, 3, . . . and ω > 0 sufficiently large,

max 1≤r≤q P X 1n ≡ r (mod q) < 1 -ω max ρ 2 n nσ 4 n , 1 n 1-µ log n, where ρ n = E |X 1n -a n | 3 and µ = (1+ρ) log 2
log(2+c) . Then the local limit theorem for the sequence (X 1n , . . . , X nn ), n ≥ 1 holds.

In both statements, the third moment condition is restrictive. However, in some important applications, the random variables are bounded and this condition is automatically satisfied, see [START_REF] Freiman | Structural theory of set addition, and local limit theorems for independent lattice random variables[END_REF].

The independent case

Let X = {X i , i ≥ 1} be independent, square integrable random variables taking values in a common lattice L(v 0 , D).

Let S n = X 1 + . . . + X n , n ≥ 1. Let also a n = E S n , σ 2 n = Var(S n ) → ∞.
According to Definition 1.3, the sequence X satisfies a local limit theorem if (1.52) sup

N =v 0 n+Dk σ n P{S n = N } - D √ 2π e - (N -an) 2 2s 2 n = o(1), n → ∞.
Let us first consider the following example due to Prohorov [START_REF] Prokhorov | On a local limit theorem for lattice distributions[END_REF].

Example 1.22. Assume that X 1 takes the values 1 and 0 with probabilities p and q, respectively, and let X j , j ≥ 2 be equal to 2 with probability 1 2 and 0 with the same probability. Then the sequence X satisfies the local limit theorem iff p = q = 1 2 and the local limit theorem does not hold for the sequence X = {X j , j ≥ 2}.

Thus in this example, the fulfilment of the local limit theorem depends on the behavior of the first members of X. Hence it is reasonable to introduce the following definition. Definition 1. 23 ([186]). Let X = {X j , j ≥ 1} be a sequence of independent random variables taking only integral values. A local limit theorem in the strong form (or in a strengthened form) is said to be applicable to X, if a local limit theorem in the usual form (Definition 1.3) is applicable to any subsequence extracted from X, which differs from X only in a finite number of members.

Remark 1.24. The terminology 'in the strong form', also 'in strong sense', is used by various authors, for instance in Gamkrelidze [START_REF] Gamkrelidze | On a local limit theorem in strong sense[END_REF], [START_REF] Gamkrelidze | On a local limit theorem for lattice random variables[END_REF], Mitalauskas [START_REF] Mitalauskas | Local limit theorems for stable limit distributions[END_REF], Mitalauskas-Stepanauskas [START_REF] Mitalauskas | Local limit theorems and asymptotic expansions for sums of independent lattice random variables[END_REF], Mukhin [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF], . . . whereas the other is used in Petrov [START_REF] Petrov | Sums of Independent Random Variables[END_REF], Prohorov [START_REF] Prokhorov | On a local limit theorem for lattice distributions[END_REF], Rozanov [START_REF] Rozanov | On a local limit theorem for lattice distributions[END_REF], notably. Different equivalent forms of the above definition are considered in [START_REF] Gamkrelidze | On a local limit theorem in strong sense[END_REF]. This definition can be made a bit more convenient ( [START_REF] Gamkrelidze | On a local limit theorem in strong sense[END_REF]). Let

S k,n = ξ k+1 + . . . + ξ k+n , A k,n = E S k,n , B 2 k,n = Var(S k,n ). (1.53)
The local limit theorem in the strong form holds if and only if (1.54)

P n j=k+1 X j = m = D B k,n √ 2π e - (m-A k,n ) 2 2B 2 k,n + o 1 B k,n ,
uniformly in m and every finite k, k = 0, 1, 2, . . ., as n → ∞ and B k,n → ∞.

Prohorov's Theorem. Gnedenko's Theorem 1.4 was generalized by Prohorov in 1954, to sequences of independent uniformly bounded random variables.

Theorem 1. 25 ([186]). Let X = {X j , j ≥ 1} be independent, uniformly bounded integralvalued random variables with partial sums

S n = X 1 + . . . + X n . Let A n = E S n , B 2 n = Var(S n ) → ∞,
and suppose that

P{X n = 0} = max j≥1 P{X n = j}.
Then X satisfies a local limit theorem in the strong form if and only if 1 is the highest common factor of the values of j with ∞ n=1 P{X n = j} = ∞.

Local limit theorems for asymptotically stable lattice distribution functions have been obtained by Rvačeva [START_REF] Rvačeva | On domains of attraction of multi-dimensional distributions[END_REF] for the multi-dimensional case, generalizing those of Gnedenko for the one-dimensional case. Stone [START_REF] Stone | A local limit theorem for nonlattice multi-dimensional distributions functions[END_REF] obtained results of this sort for non-lattice distribution functions.

Maejima investigated in [START_REF] Maejima | The Remainder Term in the Local Limit Theorem for Independent Random Variables[END_REF] (continuing [START_REF] Maejima | Non-uniform estimates in the central limit theorem[END_REF]), the question of estimating the remainder term in the local limit theorem for independent random variables. He notably deduced from a more general result he proved in this paper, an extension to the non-identically distributed case of a result due to Ibragimov-Linnik.

Let {X k , k ≥ 1} be a sequence of independent random variables with

E X k = 0, E X 2 k = σ 2
k < ∞, (σ k ≥ 0 and not all null) and with distribution F k (x). Suppose for instance σ 1 > 0, and let

s 2 n = n k=1 σ 2 k , Z n = s -1 n n k=1 X k , f k (t) = E e itX k , fn (t) = E e itZn , R k (x) = |u|>x u 2 F k (du), Q k (x) = |u|≤x u 2 F k (du)
. Further let pn (x) be the density function of Z n and φ(x) be the standard normal density function.

Consider the following two simple classes of functions:

G = g : R → R : g is even, and on ]0, ∞), g(x) > 0, x g(x) is non-decreasing G 0 = g ∈ G : x α g(x) is non-decreasing on ]0, ∞) for some 0 < α < 1 . Set for g ∈ G, λ k (g) = sup x>0 g(x)R k (x), µ k (g) = sup x>0 g(x) x Q k (x), ρ k (g) = λ k (g) + µ k (g). Note that if E X 2 k g(X k ) < ∞, then of course ρ k (g) < ∞. Theorem 1.26. Let g ∈ G. Suppose ρ k (g) < ∞ for 1 ≤ k ≤ n. Further assume that (a)
s 2 n < Kn, for some positive constant K, (b) sup x p k (x) < M , for some M > 0 independent of k.

Then we have

sup x pn (x) -φ(x) ≤ C n k=1 ρ k (g) s 2 n g(s n ) . In particular if E X 2 k g(X k ) < ∞ for 1 ≤ k ≤ n, then sup x pn (x) -φ(x) ≤ C n k=1 E X 2 k g(X k ) s 2 n g(s n ) .
Applying Theorem 1.26 with g(x) = x δ , gives the following extension of the local limit theorem by Ibragimov-Linnik (Theorem 1.12) to the case of non-identically distributed random variables.

Corollary 1.27. Assume in addition to conditions (a) and (b), that lim inf n→∞ s 2 n /n > 0. Let 0 < δ ≤ 1. Then in order that

sup x pn (x) -φ(x) = O n -δ/2 , it is sufficient for 0 < δ < 1, that (1.55) 1 n n k=1 sup x>0 R k (x) = O(1), as n → ∞,
and for δ = 1, that (1.55) with δ = 1 and

(1.56) 1 n n k=1 sup x>0 Q k (x) = O(1), as n → ∞, hold.
One key argument used in the course of the proof of Theorem 1.26 is Survila's inequality:

Proposition 1.28 ([215]). Under conditions (a) and (b), we have for

1 ≤ k 1 = k 2 ≤ n, | fn (t)| ≤ f k 1 (t/s n )f k 2 (t/s n ) exp{-cn}, for |t| ≥ π √ 2 √ n, exp{-ct 2 }, for |t| < π √ 2 √ n.
We consider also the strong strong local limit theorem with convergence in variation ( [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], [START_REF] Gamkrelidze | On a local limit theorem in strong sense[END_REF]). Let X = {X n , n ≥ 1} be a sequence of independent, square integrable, integer-valued random variables, and let S k,n = X k+1 + . . . + X k+n for each n.

Definition 1.29. The sequence of partial sums {S n , n ≥ 1} is said to satisfy the strong local limit theorem with convergence in variation if there are constants A k,n and B k,n such that for each k = 0, 1, 2, . . .,

(1.57) m∈Z P{S k,n = m} - 1 B k,n √ 2π exp - (m -A k,n ) 2 2B 2 k,n → 0,
as n → ∞ and B k,n → ∞.

A necessary condition for the sequence X to satisfy the strong local limit theorem with convergence in variation, is given in Gamkrelidze [START_REF] Gamkrelidze | On a local limit theorem in strong sense[END_REF]. More precisely, Proposition 1.30. Let the sequence X satisfy the strong local limit theorem with convergence in variation. Then for every finite k, there exist a positive integer n 0 = n 0 (k) and a positive number λ = λ(k) such that

(1.58) δ S k,n 0 = m∈Z P S k,n 0 = m -P S k,n 0 = m -1 < λ.
The smoothness characteristic δ S k,n 0 is defined for general integral-valued random variables in (1.128) and it was introduced and investigated by Gamkrelidze in [START_REF] Gamkrelidze | A measure of "smoothness"of multidimensional distributions of integer-valued random vectors[END_REF] notably, see Proposition 1.57 for some properties.

In [START_REF] Gamkrelidze | On a local limit theorem in strong sense[END_REF] Gamkrelidze made the following instructive remark: "Until now very general conditions have been obtained under which a local limit theorem follows from an integral limit theorem in some form. However, as a rule, these conditions are hard to verify in the case of summands that are not identically distributed. In [START_REF] Gamkrelidze | On the application of a smoothness function in proving a local limit theorem[END_REF], sufficient conditions for the local limit theorem are expressed in very simple terms, but they do not have great generality. The purpose is to give sufficiently general conditions for the local limit theorem to hold by means of simple and intuitive characteristics of the summands.

In the same paper [START_REF] Gamkrelidze | On a local limit theorem in strong sense[END_REF], he further showed that his necessary condition is sharp, and proved the following result improving upon Theorem 1.60.

Theorem 1.31. Assume that the sequence X satisfies the following conditions:

(1) There exists a positive integer l, a positive λ such that δ S k,l ≤ λ < √ 2 for some k,

(2) For every finite k,

S k,n -A k,n B k,n
converges in distribution to N(0, 1) as n → ∞.

(3) For every finite k, B k,n tends to infinity not rapidly than the power function, i.e. B k,n = O(n t ) as n → ∞.

Then X verifies the local limit theorem in the strong form, namely

(1.59) sup m∈Z B k,n P{S k,n = m} - 1 √ 2π exp - (m -A k,n ) 2 2B 2 k,n → 0, as n → ∞.
We provide some hints of proof. The proof follows the usual scheme of proof of local limits theorems using characteristic functions.

Let f (t, S k,n ) denote the characteristic function of S k,n . By the Fourier inversion formula

(1.60) 2π B k,n P{S k,n = m} - 1 √ 2π e -z 2 2 = I 1 + I 2 + I 3 + I 4 , where z = z n,m (m -A k,n )/B k,n and 
I 1 = |t|≤A e -izt f t B k,n , S k,n -e -t 2 2 dt I 2 = |t|≥A e izt-t 2 2 dt I 3 = A≤|t|≤εB k,n e -izt f t B k,n , S k,n dt I 4 = εB k,n ≤|t|≤πB k,n e -izt f t B k,n , S k,n dt. (1.61)
Note that I 1 , I 2 can be made small, the first because of condition (2) and the second by choosing A large. Now I 3 is small for |t| ≤ εB k,n , since because of Prohorov's bound in [START_REF] Prokhorov | On a local limit theorem for lattice distributions[END_REF],

|f (t/B k,n , S k,n )| ≤ e -t 2 /3 . Finally |I 4 |
is made small by using Lemma 1.58. The proof is quite similar to the one given in (1.134).

A general necessary condition. Before stating Rozanov's Theorem, let us first introduce a useful definition. Definition 1.32. Let {X n , n ≥ 1} be a sequence of independent, integer-valued random variables, and let S n = n k=1 X k , for each n. The sequence of partial sums {S n , n ≥ 1} is said to be asymptotically uniformly distributed with respect to lattices of span h, in short a.u.d.(h), if for m = 0, 1, . . . , h -1, we have

(1.62) lim n→∞ P{S n ≡ m (mod h)} = 1 h .
We say that the sequence {S n , n ≥ 1} is asymptotically uniformly distributed, in short a.u.d., if (1.62) holds true for any h ≥ 2 and m = 0, 1, . . . , h -1.

Dvoretzky and Wolfowitz [START_REF] Dvoretsky | Sums of random integers reduced mod m[END_REF] proved the following characterization. Let {X k , k ≥ 1} be a sequence of independent random variables taking on only the values 0, 1, . . . , h -1.

Let S n = n k=1 X k , for each n. In order that the partial sums {S n , n ≥ 1} be a.u.d.(h), it is necessary and sufficient that

(1.63) ∞ k=1 h-1 m=0 P{X k = m} e 2iπ h rm = 0, (r = 1, . . . , h -1).
Equivalently,

(1.64) ∞ k=1 E e 2iπ h rX k = 0, (r = 1, . . . , h -1).
The condition

(1.65) ∞ k=1 h-1 min m=0 P{X k = m} = ∞, is sufficient for {S n , n ≥ 1} be a.u.d.(h).
Rozanov's necessary condition was found in 1957 and states as follows.

Theorem 1.33 ([196], Th. I). Let X = {X j , j ≥ 1} be a sequence of independent, square integrable random variables taking only integral values. Let b

2 k = Var(X k ), B 2 n = b 2 1 +. . .+b 2 n . Assume that (1.66) B n → ∞ as n → ∞.
The following condition is necessary for the applicability of a local limit theorem in the strong form to the sequence X,

(1.67) ∞ k=1 max 0≤m<h P X k ≡ m (mod h) = 0 for any h ≥ 2.
This is naturally an important result in the theory of the local limit theorem. The proof is based on the following lemma, which provides a necessary condition for the validity of the local limit theorem. Lemma 1.34. Suppose that the local limit theorem is applicable to the sequence X. Then the partial sums S n are a.u.d. This is Lemma 1 in [START_REF] Rozanov | On a local limit theorem for lattice distributions[END_REF], we provide a detailed proof. 3Proof. By assumption, (1.68)

P S n = m = D B n √ 2π e - (m-M n) 2 2B 2 n + o 1 B n , uniformly in m, as n → ∞. Let ε > 0 be fixed and note that P{|S n -M n | > B n / √ ε} ≤ ε. Then P S n ≡ m (mod h) = |k-Mn|≤Bn/ √ ε k≡m (h) P S n = k} + O(ε) = D √ 2πB n |k-Mn|≤Bn/ √ ε k≡m (h) e - (k-Mn) 2 2B 2 n + o 1 B n + O(ε) = D √ 2πB n |k-Mn|≤Bn/ √ ε k≡m (h) e - (k-Mn) 2 2B 2 n + D √ 2πε o(1) + O(ε),
where the above o(1) term tends to 0 as n tends to infinity. Now as

1 B n |k-Mn|>Bn/ √ ε e - (k-Mn) 2 2B 2 n = o(ε),
we get

P S n ≡ m (mod h) = D √ 2πB n k≡m (h) e - (k-Mn) 2 2B 2 n + O(ε).
Noticing that

(1.69) 1 √ 2πB n k≡m (h) e - (k-Mn) 2 2B 2 n = 1 h + O 1 B n .
we obtain

P S n ≡ m (mod h) = D h + O(ε),
as n tends to infinity. But ε could be chosen arbitrarily small. And so the claimed result is proved.

We now deduce from Lemma 1.34, that if the local limit theorem in the strong form is applicable to the sequence X, then

(1.70) ∞ k=1 P X k ≡ 0 (mod h) = ∞, for any h ≥ 2.
Indeed, otherwise if ∞ k=1 P{X k ≡ 0 (mod h)} < ∞ for some h ≥ 2, then by the Borel-Cantelli lemma, on a set of measure greater than 3/4, X k ≡ 0 (mod h) for all k ≥ k 0 , say. The new sequence X defined by X k = 0 if k < k 0 , X k = X k unless, with partial sums S n , verifies P{S n ≡ 0 (mod h)} > 3/4 for all n large enough, thereby contradicting the fact that P{S n ≡ 0 (mod h)} should converge to 1/h. This establishes (1.70). Now the proof of Theorem 1.33 is achieved as follows. Since the local limit theorem is applicable to the sequence X , it is also applicable to the "shifted" sequence X where X k = X k -m k and m k are arbitrary integers. This is easy to check. Let m k be defined by

max 0≤m<h P X k ≡ m mod(h) = P X k ≡ m k mod(h) = P X k ≡ 0 mod(h) . By (1.70), ∞ k=1 P X k ≡ m k mod h) = ∞ k=1 P X k ≡ 0 mod(h) = ∞, for any h ≥ 2. Thus ∞ k=1 max 0≤m<h P X k ≡ m (mod(h) = ∞ k=1 1 -P X k ≡ m k mod(h) = 0.
Thus (1.67) is obtained, and thereby Theorem 1.33 is proved.

Remark 1.35. A sequence X and any subsequence extracted from it, which differs from it only in a finite number of members, is a.u.d. if and only if (1.67) holds.

Remark 1.36. It follows from Gnedenko's theorem or Prohorov's theorem that the necessary condition (1.67) is also sufficient in the case when the X j are identically distributed or bounded.

Less restrictive conditions on the random variables X k are also given in Rozanov [START_REF] Rozanov | On a local limit theorem for lattice distributions[END_REF], under which condition (1.67) is sufficient. More precisely, we have the following result.

Theorem 1.37 ([196], Theorem II). Let X = {X j , j ≥ 1} be as in Theorem 1.33, and let

a k = E X k , k ≥ 1. Assume that condition (1.66) is satisfied and further that (1.71) 1 b 2 k |j-a k |≤N (j -a k ) 2 P{X k = j} → 1 as N → ∞, uniformly in k.
Then condition (1.67) is sufficient for the applicability of the local limit theorem in the strong form to the sequence X.

Condition (1.71) together with condition (1.66) imply that Lindeberg condition is fulfilled. The proof consists with a careful application of the method of characteristic functions.

In [START_REF] Vo An | To An' Zung, Certain local limit theorems for independent integervalued random variables[END_REF], Vo An' Zung, Mukhin and To An' Zung, proved the following interesting theorem generalizing Theorems 1.25 and 1.37 of Prohorov and Rozanov respectively.

Let {X n , n ≥ 1} be a sequence of independent, integer-valued random variables, and let {X n , n ≥ 1} be the corresponding sequence of symmetrized random variables. Let pkm = P{ Xk = m} for each k and m, and S n = n k=1 X k for each n. Set for n ≥ 1 and M ≥ 1,

B 2 n (M ) = n k=1 |m|≤M m 2 pkm . Theorem 1.38. Assume that (1) For each k, Var(X k ) < ∞ and b 2 n = n k=1 Var(X k ) → ∞ as n → ∞. Further there exist M and γ > 0 such that B 2 n (M ) ≥ b 2 n . (2) There exists a sequence {a n , n ≥ 1} such that P{S n -a n < xb n } → Φ(x) = (2π) -1/2 x -∞ exp(-u 2 /2)du,
as n → ∞.

(

) For each d, 2 ≤ d ≤ M , the sequence {S n , n ≥ 1} is a.u.d.(d). Then, P{S n = m} = 1 √ 2π b n e - (m-E Sn) 2 2b 2 n + o 1 b n . 3 
Another important necessary condition for the validity of the local limit theorem, due to Gamkrelidze, takes the form of a remarkable explicit lower bound of the essential integral majorant I 4 (see (1.18)).

Concerning results of this kind, Gamkrelidze remarked in [START_REF] Gamkrelidze | On One Inequality for Characteristic Functions[END_REF], p. 275, (citing also Gnedenko and Kolmogorov [START_REF] Gnedenko | Limit distributions of sums of independent random variables[END_REF]) that: "... A good deal of probability theory consists of the study of limit theorems, because in reality the epistemological value of the theory of probability is revealed only by limit theorems. Important part of this area consists of the upper estimation of the rate of convergence in the limit theorem. It is quite reasonable turn to the construction of the lower estimates. Unfortunately, many mathematicians working in the field of the theory of limit theorems pay less attention to such kind of problems."

Gamkrelidze's lower bound. Let {X k } be a sequence of independent square integrable random variables taking only integer values and let

S n = n k=1 X k , B 2 n = Var(S n ), M n = E (S n ), φ k (t) = E (e itX k ). Recall (Definition 1.3) that ∆ n = sup N =v 0 n+Dk B n P{S n = N } - D √ 2π e - (N -Mn) 2 2B 2 n . Theorem 1.39 ([74] Theorem 1). Suppose S n = X 1 + . . . + X n takes only integer values. For k ≥ 1 (1.72) 1 4π 2π 2k+1 ≤|t|≤π |φ n (t)| 2 dt ≤ 1 2 √ πB n (1 -e -k 2 4B 2 n ) + 2Λ n B n , where Λ n = 2.01(∆ n + 1 2 √ π e -π 2 B 2 n ).
Proof. We follow the proof given in [START_REF] Gamkrelidze | On One Inequality for Characteristic Functions[END_REF]. Let Xk be an independent copy of X k and set Ŝn = n k=1 X k -Xk . Suppose v 0 = 0, D = 1, B n ≥ 1, fix k and write

P( Ŝn = k) = ν∈Z P(S n = k + ν)P(S n = ν) = ν∈Z P(S n = k + ν)(P(S n = ν) -Q(x nν )) + ν∈Z (P(S n = k + ν) -Q(x n,k+ν ))Q(x nν ) + ν∈Z Q(x n,k+ν )Q(x nν ) (1.73) where Q(x nν ) = 1 √ 2πBn exp{-x 2 nν 2 }, x nν = (ν-Mn)
Bn . Define

S 1 = ν∈Z Q(x nν ) and S 2 = ν∈Z Q(x n,k+ν )Q(x nν ).
Recall formula (5.12) on p.633 in [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF] (

1.74) 1 √ 2πt ν∈Z exp{- 1 2t (s + 2νπ) 2 } = 1 2π m∈Z e -m 2 t 2 cos (ms),
where t > 0 and s ∈ R. Put s = -2πM n and t = 4π 2 B 2 n in (1.74), thus

S 1 = 1 √ 2πB n ν∈Z exp{- 1 2B 2 n (ν -M n ) 2 } = 1 + 2 m≥1 e -2m 2 π 2 B 2 n cos (m • 2πM n ). It follows from 2e -2π 2 B 2 n m≥1 e -2(m-1) 2 π 2 B 2 n ≤ 2e -2π 2 B 2 n 1 + m≥2 (e -2π 2 B 2 n ) m ≤ 2e -2π 2 B 2 n 1 + e -4π 2 1 -e -2π 2 that (1.75) S 1 = 1 + θ 1 • 2.01 • e -2π 2 B 2 n , |θ 1 | < 1.
Further,

S 2 = 1 2πB 2 n ν∈Z exp{- 1 2B 2 n ((k + ν -M n ) 2 -(ν -M n ) 2 )} and by (k + ν -M n ) 2 + (ν -M n ) 2 = 2(ν -(M n -0.5k)) 2 + 0.5k 2 we have (1.76) S 2 = 1 2πB 2 n e -k 2 4B 2 n ν∈Z exp{- 1 B 2 n (ν -(M n -0.5k)) 2 ).} Now, by (1.74) with s = -2π(M n -0.5k) and t = 2π 2 B 2 n we get (1.77) S 2 = 1 2 √ πB n e -k 2 4B 2 n 1 + 2 m≥1 e -m 2 π 2 B 2 n cos (m • 2π(M n -0.5k)) .
Consequently,

(1.78) S 2 = 1 2 √ πB n e -k 2 4B 2 n (1 + θ 2 • 2.01 • e -π 2 B 2 n ), |θ 2 | < 1.
Whence by (1.73) we get

(1.79) |P{ Ŝn = k} - 1 2 √ πB n e -k 2 4B 2 n | ≤ B -1 n ∆ n + B -1 n ∆ n • S 1 + (S 2 - 1 2 √ πB n e -k 2 4B 2 n ).
Therefore by (1.75) and (1.78) we obtain

(1.80) |P{ Ŝn = k} - 1 2 √ πB n e -k 2 4B 2 n | ≤ 2.01(∆ n + 1 2 √ π e -π 2 B 2 n )B -1 n := Λ n B -1 n .
On the other hand if we set ϕ n (t) = E(e itSn ) then

ϑ k := P{ Ŝn = 0} - 1 2k + 1 k ν=-k P( Ŝn = ν) = 1 2π π -π (1 - 1 2k + 1 k ν=-k e -itν )|ϕ n (t)| 2 dt. From k ν=-k (e it ) ν = 1 + 2 k ν=1 cos tν = sin (2k + 1) sin (0.5t) we get (1.81) ϑ k = 1 2π π -π 1 - sin (2k + 1) (2k + 1) sin (0.5t) |ϕ n (t)| 2 dt. Now, observe that by (1.80) for |ν| ≤ k P{ Ŝn = 0} ≤ 1 2 √ πB n + Λ n B -1 n and P{ Ŝn = ν} ≥ 1 2 √ πB n e -k 2 4B 2 n -Λ n B -1 n whence (1.82) ϑ k ≤ 1 2 √ πB n (1 -e -k 2 4B 2 n ) + 2Λ n B -1 n .
Finally, note that for |t| ≤ π we have | sin 0.5t| ≥ |t| π thus for |t| ≥ 2π 2k+1 we get sin (2k + 1) (2k + 1) sin (0.5t)

≤ 1 (2k + 1)| sin (0.5t)| ≤ π (2k + 1)|t| ≤ 0.5.
By this, (1.81) and (1.82) we obtain claimed lower bound.

Gamkrelidze [START_REF] Gamkrelidze | On the Lower Estimation of the Rate of Convergence in the Local Theorem[END_REF] (see also [START_REF] Petrov | Sums of Independent Random Variables[END_REF], p. 215, supplement 12) proved the following inequality

(1.83) 1 8 √ π + 2 2(1 + √ 2π∆ n ) πB n + 2∆ n ≥ B n 4π π≥|t|≥ 2π 2Kn+1 n k=1 |ϕ k (t)| 2 dt, where 4 K n = 2(1 + √ 2π∆ n ) πB n + 2∆ n 1/2 B n . Assume that B n → ∞ with n. A consequence is that the condition (1.84) B n εn≤t≤2π n k=1 |ϕ k (t)| 2 dt → 0
for any positive ε n which tends to 0 as n tends to infinity, is necessary for the local limit theorem to hold. An application is given in Gamkrelidze [START_REF] Gamkrelidze | On a probabilistic property of the Fibonacci sequence[END_REF], p. 149.

From (1.83) it follows that for i.i.d. sequences there exists t 0 such that

2(1 + √ 2π∆ n ) πB n + 2∆ n ≥ Const. |φ(t 0 )| 2n+1 .
An analog statement to Theorem 1.39 is also proved for multidimensional characteristic functions in [START_REF] Gamkrelidze | On an inequality for multidimensional characteristic function Theory[END_REF].

Stable limit distributions. Let X = {X i , i ≥ 1} be independent random variables taking only integer values. We assume that X i has distribution function F i (x) defined by (1.85)

F i (x) = 0 for x ≤ 0 1 -c i + α i (x) 1 x α for x > 0, where |α i (x)| ≤ α(x), α(x) → 0 as x → ∞, 0 < c < c i < c < ∞, i = 1, 2, . . . and 0 < α < 1.
Let also

B n = n i=1 c i 1/α , S n = n i=1 X i , p kj = P{X k = j}. Let G(x) denote the stable distribution function for which M (x) = 0, N (x) = -1/x α , σ 2 = 0 and γ(τ ) = ατ 1-α /(1 -α), in the Lévy-Khintchin formula.
Rogozin [START_REF] Rogozin | Some problems in the field of limit theorems[END_REF] proved that, as n tends to infinity,

(1.86) P S n B n < x → G(x).
This result was later generalized by Banys [START_REF] Banys | An integral limit theorem for convergence to a stable law, Selected Trans[END_REF].

A local limit theorem in the strong form holds (Definition 1.9) for the sequence X, if

B n P{S n = m} -g m B n → 0, as m → ∞ uniformly in m, -∞ < m < ∞, where g m B n = G m B n .
The following characterization was proved by Mitalauskas in [START_REF] Mitalauskas | Local limit theorems for stable limit distributions[END_REF].

Theorem 1.40. In order that the sequence X satisfies a local limit theorem in the strong form, it is necessary and sufficient that Rozanov's condition (see (1.67)) be fulfilled, namely that

∞ k=1 min 0≤m<q P X k ≡ m (mod q) = ∞, for all integers q ≥ 2.
We give some hints. Let ϕ n (t) be the characteristic function of S n . By the Fourier inversion formula

2πP{S n = m} = π -π e -itm ϕ n (t)dt = 1 B n πBn -πBn e -itm/Bn ϕ n (t)dt. 2πg m B n = ∞ -∞ e -itm/Bn f (t)dt,
where

f (t) = exp -Γ(1 -α) cos πα 2 |t| α 1 -i t |t| .
Thus

B n P{S n = m} -g m B n = πBn -πBn e -itm/Bn ϕ n (t)dt - ∞ -∞ e -itm/Bn f (t)dt = I 1 + I 2 + I 3 + I 4 , (1.87) 
where

I 1 = |t|<θ e -itm/Bn ϕ n t B n -f (t) dt I 2 = |t|≥θ e -itm/Bn f (t)dt I 3 = θ≤|t|<εBn e -itm/Bn ϕ n t B n dt I 4 = εBn≤|t|≤πBn e -itm/Bn ϕ n t B n dt, (1.88)
and θ is some large positive real. The last integral requires a delicate analysis which starts with

|I 4 | ≤ εBn≤|t|≤πBn ϕ n t B n dt ≤ ε/2π≤|u|≤1/2 exp -p n k=1 j p kj sin 2 πuj du. (1.89)
Next by a standard diophantine approximation result (Dirichlet theorem), one can write

u = a q + t
where a, q are integers, (a, q) = 1, 0 < q < τ , |t| ≤ 1/qτ . By reporting, |I 4 | will be bounded from above by a sum over a q of three integrals, of which the estimation achieves the proof. In the same paper the author stated a version of the previous theorem for independent, symmetric, lattice valued random variables. Let X = {X i , i ≥ 1} be independent random variables taking only integer values, and assume that X i has distribution function F i (x) defined by (1.90)

F i (x) = c i + α i (x) 1 x α for x ≤ 0 1 -c i + α i (x) 1 x α for x > 0, where |α i (x)| ≤ α(x), α(x) → 0 as x → ∞, 0 < c < c i < c < ∞, i = 1, 2, . . . and 0 < α < 2.
Theorem 1.41. In order that the sequence X satisfies a local limit theorem in the strong form, it is necessary and sufficient that Rozanov's condition be fulfilled.

Gamkrelidze's counter-examples. The first counter-example provides a negative answer to a question raised by Prohorov. It is known that the local limit theorem always implies the integral limit theorem. It follows from the intermediate step of the proof of Rozanov's theorem, namely Lemma 1.34, (see also [START_REF] Gnedenko | Limit distributions of sums of independent random variables[END_REF]), that a necessary condition for the validity of the local limit theorem is that the partial sums S n are a.u.d. . It was also proved that under relatively general supplementary conditions in [START_REF] Prokhorov | On a local limit theorem for lattice distributions[END_REF], [START_REF] Rozanov | On a local limit theorem for lattice distributions[END_REF], [START_REF] Mitalauskas | Local limit theorems for stable limit distributions[END_REF] notably, see also Theorems 1.37, 1.38, 1.40, 1.41, from the integral limit theorem and a.u.d. property for partial sums follows the local limit theorem. An hypothesis was stated by Prohorov that the integral limit theorem plus the a.u.d. property for partial sums is equivalent to the local limit theorem. This hypothesis was contradicted by Gamkrelidze [START_REF] Gamkrelidze | On a local limit theorem for lattice random variables[END_REF] who constructed the following remarkable counter-example.

Example 1.42. Let ξ = {ξ j , j ≥ 1} be a sequence of independent random variables defined as follows:

-The variables ξ j with odd subscripts j = 2k -1 are distributed according to a symmetrized Poisson law with characteristic functions

(1.91) f (ξ 2k-1 , t) = exp Λ k cos(th k ) -1 , where Λ k = k -1/2 , h k = 2 e k 2 /2 . k -1/4 .
-The variables ξ j with even subscripts j = 2k take the values

-k, -k + 1, -. . . , 1, 2, . . . , k
with probability 1/2k each, and so are uniformly distributed mod k. Let S n = n j=1 ξ j and set

A n = E S n , B 2 n = Var(S n ), P n (m) = P{S n = m}. (i) We have A n = 0. Further S n /B n is asymptotically normal, (1.92) P S n < xB n → Φ(x),
so that the variables ξ j satisfy the central limit theorem. In fact, let n = 2k -1 be the largest odd number less than n. Then

Λ k h 2 k ∼ 4e k 2 ,
and

Var(ξ 2k -1 ) < B 2 n ≤ k≤k Var(ξ 2k ) + k<k Var(ξ 2k-1 ) + Var(ξ 2k -1 ), or Λ k h 2 k < B 2 h ≤ k 3 + 4k e (k -1) 2 + Λ k h 2 k . Thus B 2 h ∼ Λ k h 2 k ∼ 4e k 2 . Further S n = 2k≤n ξ 2k + k<k ξ 2k-1 + ξ 2k -1 := r n + ρ n + ξ 2k -1 .
One checks that the random variables r n , ρ n are tending to 0 in probability, and the random variable

ξ 2k -1 Λ k h 2 k -1/2 ,
is asymptotically normal. This thus implies (1.92).

(ii) The sums S n are a.u.d., this follows from the fact that if a random variable τ is a.u.d. mod h, and η is an independent integral-valued random variable, then the sum τ + η is also a.u.d. mod h. Since the random variables ξ 2k are a.u.d. mod (k), it follows that S n is a.u.d. mod h, for any 0 < h < n/2 .

(iii) The sequence ξ does not satisfy the local limit theorem. Assume that the contrary is true. We use the following Lemma.

Lemma 1.43 (stability Lemma). Assume that the local limit theorem in the strong form is applicable to the sequence X. Then

P{S n = m } ∼ P{S n = m } for m = o(B n ), m = o(B n ).
Thus by the stability Lemma, we must have

(1.93) P{S n = m } ∼ P{S n = m } for m = o(B n ), m = o(B n ). Choose m = 0, m = 1 2 h k = o(B n ). Then (1.94) P{S n = m } = P{r n + ρ n = m -ξ 2k -1 } ≤ 2P{r n + ρ n ≥ 1 2 h k } ≤ 2P{ρ n ≥ 1 2 h k -k 2 }. But for k ≥ k 0 , 1 4 h k ≥ k 2 , so that (1.95) P{S n = m } ≤ 2P{ρ n ≥ 1 4 h k }. Let 1 4 h k = T . By Chebyshev's inequality, (1.96)
P{ρ n ≥ T } ≤ e -uT E e uρn = e -uT + k<k Λ k (cosh uh k -1) , for any u > 0. Choose u such that the equation

(1.97) e uh k -1 = h k 8Λ k -1 h k -1 , is realized, that is u = 1 h k -1 log h k 8Λ k -1 h k -1 .
For such an u,

-uT + k<k Λ k (cosh uh k -1) ≤ -uT + k Λ k -1 e uh k -1 = - 1 4 h k h k -1 log h k 8Λ k -1 h k -1 + 1 8 h k h k -1 k . (1.98) Now observe that h k h k -1 ∼ e -1/2 e k , log h k 8Λ k -1 h k -1 ∼ k .
So that the right-hand side of (1.98) is equivalent to 

- 1 8 
h k h k -1 k ∼ - 1 8 e -
P{S n = m } ≤ 2 exp - 1 16 k e k .
But at the same time

(1.101) P{S n = 0} ∼ 1 √ 2πB n ∼ 1 2 √ 2π e -k 2 /2 ,
which produces a contradiction with (1.93). The local limit theorem is therefore inapplicable to the sequence ξ.

We now pass a second remarkable counter-example due to Azlarov [START_REF] Azlarov | On a Limit Theorem for Lattice Distribution[END_REF]. Sometimes the local limit theorem (LLT) is equivalent to the central limit theorem (CLT) (see e.g. [START_REF] Azlarov | On a Limit Theorem for Lattice Distribution[END_REF] (also Chapter VII, §4, 14 on p.216 in [START_REF] Petrov | Sums of Independent Random Variables[END_REF]) and [START_REF] Prokhorov | On a Local Limit Theorem[END_REF]). Let ξ 1 , ξ 2 , . . . , ξ n . . . be such that

P{ξ k = m} = 1 2N k + 1 , m ∈ {-N k , -N k + 1, . . . , -1, 0, 1 . . . , N k }, N k ∈ N ∪ {0}.
Set

σ 2 k = Var(ξ k ) = N k (N k + 1) 3 , B 2 n = n k=1 σ 2 k = 1 3 n k=1 N k (N k + 1), λ n = B n min 1≤k≤n N -1 k .
Theorem 1.44 ([10]). The condition lim n λ n = ∞ is necessary and sufficient for {ξ k } to satisfy CLT and LLT. Moreover, for every n ≥ 2 such that λ n ≥ 2 we have

∆ n ≤ Cλ -1 n , where C > 0 is an absolute constant. Proof. We have 1 4 λ -2 n < B -2 n E 2 ( max 1≤k≤n |ξ k |) ≤ B -2 n E ( max 1≤k≤n ξ 2 k ) ≤ B -2 n max 1≤k≤n N k E ( max 1≤k≤n |ξ k |) ≤ 4λ -1 n . Thus λ n → ∞ is equivalent to B -2 n E (max 1≤κ≤n ξ 2 k
) → 0 which in turn is equivalent to the Lindeberg condition. Therefore in view of Theorem 22 on pp.99-100 in [START_REF] Petrov | Sums of Independent Random Variables[END_REF] it is enough to prove the second statement of Theorem 1.44. For this note that

f k (t) = E (e itξ k ) = 1 2N k + 1 sin 2N k +1 2 t sin t 2 . Suppose that we proved that for t ∈ [0, 2 2N k +1 ] (1.102) |f k (t)| ≤ e -Ct 2 σ 2 k and for t ∈ [ 1 2N k +1 , π) (1.103) |f k (t)| ≤ e -C ,
where C are some constants (possibly different). Let us decompose

2πB n P{S n = m} = |t|< 1 4Ln e -it m Bn n k=1 f k ( t B n )dt+ 1 4Ln ≤|t|≤πBn e -it m Bn n k=1 f k ( t B n )dt = I 1 +I 2 ,
where

L n = B -3 n n k=1 E (|ξ k | 3
). We have

I 1 = |t|< 1 4Ln e -it m Bn n k=1 f k ( t B n ) -e -t 2 2 dt + √ 2πe -it m 2 B 2 n - |t|≥ 1 4Ln e -it m Bn e -t 2 2 dt.
By Lemma 1 on p.109 in [START_REF] Petrov | Sums of Independent Random Variables[END_REF] the absolute value of the first integral is bounded by CL n while

|t|≥ 1 4Ln e -it m Bn e -t 2 2 dt ≤ 8L n t≥ 1 4Ln te -t 2 2 dt = 8L n e -1 32Ln . Note that L n ≤ B -3 n n k-1 N k E (ξ 2 k ) ≤ B -1 n max 1≤k≤n N k = λ -1 n . In view of this (1.104) |I 1 | ≤ √ 2πe -1 2 m 2 B 2 n + CL n + CL n e -1 32L 2 n ≤ Cλ -1 n . Now, we fix n (satisfying λ n ≥ 2) and rearrange ξ 1 , . . . , ξ n such that N 1 ≥ N 2 ≥ • • • ≥ N n . Whence σ 2 1 ≥ σ 2 2 ≥ • • • ≥ σ 2 n and λ n = N -1 1 B n . So that (1.105) |I 2 | ≤ 2B n 1 4N 1 ≤t≤π n k=1 |f k (t)|dt = n i=0 A i ,
where for i = 1, 2, . . . , n -1

A i = 2B n 1 N i +1/2 ≤t< 1 N i+1 +1/2 n k=1 |f k (t)|dt and A 0 = 2B n 1 4N 1 ≤t< 1 N 1 +1/2 n k=1 |f k (t)|dt, A n = 2B n 1 Nn+1/2 ≤t<π n k=1 |f k (t)|dt. For i = 1, 2, . . . , n we have 0 ≤ t ≤ 1 N 1 +1/2 ≤ 1 N i +1/2
, therefore by (1.102) for some C

(1.106)

A 0 ≤ 2 t≥ λn 4 e -Ct 2 dt ≤ C λ n and A 1 ≤ 2B n 1 N 1 +1/2 ≤t< 1 N 2 +1/2 exp{-Ct 2 (B 2 n -σ 2 1 )}dt.
In view of

B 2 n -σ 2 1 = B 2 n - N 1 (N 1 + 1) 3 ≥ B 2 n - 2 3 B 2 n λ 2 n ≥ 5B 2 n 6 we get (1.107) A 1 ≤ 2B n 1 N 1 +1/2 ≤t< 1 N 2 +1/2 exp{-Ct 2 B 2 n )}dt ≤ 2 t≥ 1 N 1 +1/2 e -Ct 2 dt ≤ C λ n . By the inequality (1.103) for k ≥ 2 and t ∈ [ 1 N k +1/2 , π) we have (since N k ≤ N 2 ) |f k (t)| ≤ exp{-C (N k + 1/2) 2 (N 2 + 1/2) 2 }. Therefore A k ≤ 2B n exp{-C B 2 n -σ 2 1 -σ 2 2 (N 2 + 1/2) 2 } 1 N k +1/2 ≤t< 1 N k+1 +1/2 |f 1 (t)||f 2 (t)|dt and n-1 k=2 A k ≤ 2B n exp{-C B 2 n -σ 2 1 -σ 2 2 (N 2 + 1/2) 2 } 1 N 2 +1/2 ≤t< 1 Nn+1/2 |f 1 (t)||f 2 (t)|dt.
Taking into account inequalities

B 2 n -σ 2 1 -σ 2 2 ≥ B 2 n -2σ 2 1 ≥ B 2 n 1 - 4 3λ 2 n ≥ 2 3B 2 n
and using inequality π sin x ≥ 2x, x ∈ [0, π/2], we get

1 Nn+1/2 1 N 2 +1/2 |f 1 (t)||f 2 (t)|dt 2 ≤ π 4 16 
1 (N 1 + 1/2) 2 (N 2 + 1/2) 2 ∞ 1 N 2 +1/2 dt t 2 2 ≤ π 4 16 
1 (N 1 + 1/2) 2 . Whence (1.108) n-1 k=2 A k ≤ 2B n π 2 4 1 N 1 + 1/2 e -C B 2 n (N 1 +1/2) 2 ≤ Cλ n e -Cλ 2 n ≤ C λ n .
Analogously (1.109) ≥ e -6C(x/2) 2 .

A n ≤ 2B n exp{-C B 2 n -σ 2 1 -σ 2 2 (N 2 + 1/2) 2 } π 1 Nn+1/2 |f 1 (t)||f 2 (t)|dt ≤ π 2 4 2B n N 1 + 1/2 e -C B 2 n (N 2 +1/2) 2 ≤ C λ n . Now,
By (1.110) for t ∈ [0, 1 N k +1/2 ) we obtain |f k (t)| ≤ t/2 sin (t/2) e -Ct 2 (N k +1/2) 2 ≤ t/2 sin (t/2) e -Ct 2 /4 e -Ct 2 (N 2 k +N k ) ≤ t/2 sin (t/2) e -Ct 2 /4 e -Ct 2 σ 2 k . By 3σ 2 k = N k (N k + 1) ≥ 2 for any k we have |f k (t)| ≤ t/2 sin (t/2) e -Ct 2 /4 e -4/3Ct 2 e -Ct 2 σ 2 k ≤ t/2 sin (t/2) e -6Ct 2 /4 e -Ct 2 σ 2 k ≤ e -Ct 2 σ 2 k .
Finally we turn to the proof of (1.103). For any t ∈ (0,

π N k -1/2 N k +1/2 ] we have |f k (t+ π N k + 1/2 )| ≤ 1 2N k + 1 sin [(N k + 1/2)t + π] sin (t/2 + π 2N k +1 ) ≤ 1 2N k + 1 | sin ((N k + 1/2)t)| sin (t/2) = |f k (t)| hence for 1 ≤ (N k + 1/2)t ≤ π(N k + 1/2) the following inequality is true |f k (t)| ≤ max s∈ 1 N k +1/2 , π+1 N k +1/2 |f k (s)|. One can prove that |f k (s)| is decreasing for s ∈ 1 N k +1/2 , π N k +1/2 . Moreover, if s ∈ 1 N k =1/2 , π+1 N k +1/2 then |f k (s)| ≤ s/2 sin (s/2) sin ((N k + 1/2)s) (N k + 1/2)s ≤ 1 π π/2 sin (π/2) = 1/2.
Consequently, we obtain

|f k (t)| ≤ max{1/2, |f k ( 1 N k + 1/2 )|}.
Thus by (1.102) it follows

|f k ( 1 N k + 1/2 )| ≤ exp{-C σ 2 k (N k + 1/2) 2 } ≤ e -C/6 < 1.
Theorem is proved.

Remark 1.45. From the proof of Theorem 1.44 it follows that the conclusions are true if i) n -s(n) → ∞, where s(n) is the number of random variables in {ξ 1 , ξ 2 , . . . , ξ n } for which N k = 0; ii) we drop the assumption of symetricity around the origin. Also N k can dependent on n in such a way that still lim n→∞ λ n = ∞.

This equivalence in Theorem 1.44 is however not true in general, as shown by Gamkrelidze, who built in [START_REF] Gamkrelidze | On a probabilistic property of the Fibonacci sequence[END_REF] an unexpected counter-example based on the properties of the Fibonacci sequence.

Example 1.46. Let [1, 1, . . . , 1 . . .] be a continued fraction representation of the number ϕ = (1 + √ 5)/2. Let P j /Q j denote the convergents of the continued fraction of ϕ. The sequence {P j , j ≥ 0} is the Fibonacci sequence and P j-1 = Q j for j ≥ 1.

Consider now the sequence of independent integer-valued random variables defined as follows 1.

ξ 1 , . . . , ξ n 1 , 2.

ξ n 1 +1 , . . . , ξ n 1 +n 2 , . . . j.

ξ n 1 +n 2 +n j-1 +1 , . . . , ξ n 1 +n 2 +...+n j , . . . Any random variable ξ r of the line j takes values 0, Q j , P j with respective probabilities (P j -2)/P j , 1/P j , 1/P j .

For this sequence, the u.a.d. property is satisfied, as well as the central limit theorem. Further it is uniformly asymptotically negligible, namely

sup 1≤j≤n P{|ξ j | > x} → 0
as n → ∞, for all x > 0.

But the local limit theorem fails to hold.

Let us analyze the characteristic properties of this example. At first,

E ξ j = P j + Q j P j = P j+1 P j Var(ξ j ) = P 2 j + Q 2 j P j - (P j + Q j ) 2 P j
We note that

Var(ξ j ) ≥ (1 -1/P j ) P 2 j + Q 2 j P j > 1 3 P 2 j + Q 2 j P j The characteristic function verifies f (t, ξ j ) = E e itξr = P j -2 + e itQ j + e itP j P j , f (t, ξ r ) 2 = (P j -2) 2 + 2 P 2 j + 2 P 2 j cos t(P j -Q j ) + 2(P j -2) P 2 j cos tQ j + cos tP j .
Let

n j = P 3/2 j . Let N k = n 1 + . . . + n k and B 2 N k = Var(S N k ) = k j=1 P 3/2 j + 1 Var(ξ N k ) = O(P 5/2 k ).
(i) The sequence has the u.a.n. property. Let n be arbitrary and let k be such that

N k-1 < n ≤ N k . Then max 1≤j≤n ξ j -E ξ j ≤ P k , B 2 N k ≥ 3 -1 j=1 k(P 2 j + Q 2 j ) n j P j . Whence max 1≤j≤n ξ j -E ξ j B n ≤ C P -1/4 k-1 → 0,
as n tends to infinity.

(ii) The Liapunov's condition

1 B n 1≤j≤n ξ j -E ξ j 2+δ 1/(2+δ)
→ 0

as n tends to infinity, holds for some δ > 0.

(iii) The a.u.d. condition is fulfilled.

(iv) The necessary condition (1.84) for the validity of the local limit theorem fails to hold.

Integral limit theorem and local limit theorem. We shall consider in this subsection a wider setting and first introduce a definition. Definition 1.47. Let {X nk , k = 1, . . . , k n } be series of independent random variables with values in Z s and set

(1.112) S n = kn k=1 X nk , n = 1, . . .
We say that the integral limit theorem (i.l.t.) holds if there exist A n ∈ R s and real B n → ∞ such that the sequence of distributions of (S n -A n )/B n converges weakly to an absolutely continuous distribution with density g(x), which is uniformly continuous in R s .

This preliminary raises the question of finding all the limit distributions for these sums. This has been considerably investigated and we refer to Petrov [START_REF] Petrov | Sums of Independent Random Variables[END_REF], Ch. IV, § 1, where these questions are well exposed. Some natural restrictions are necessary. Definition 1.48. We say that the series of random variables satisfies a condition of infinite smallness if

(1.113) max 1≤k≤kn P{|X nk | ≥ ε} → 0,
for every fixed ε > 0.

We have the following fundamental result.

Theorem 1.49 ([180], Th. 1, p. 72). The set of distribution functions that are limits (in the sense of weak convergence) of the distributions of sums kn k=1 X nk of independent random variables satisfying the condition of infinite smallness, coincides with the set of infinitely divisible distributions functions.

We denote by the class L the set of all distribution functions which are limit of distribution of sums

(1.114) 1 a n n k=1 X k -b k
where {X n , n ≥ 1} is a sequence of independent random variables, {a n , n ≥ 1}, {b n , n ≥ 1} are sequences of constants with a n > 0, and the following condition is satisfied,

(1.115) max 1≤k≤n P{|X k | ≥ εa n } → 0,
for every fixed ε > 0.

By the previous theorem the class L is a subset of the set of infinitely divisible distributions functions. We have the following characterization. Let S n = kn k=1 X nk , where {X nk , k = 1, . . . , k n } are series of independent random variables with values in Z s , and satisfying the i.l.t., namely (Definition 1.47) there exist A n ∈ R s and real B n → ∞ such that the sequence of distributions of (S n -A n )/B n converges weakly to an absolutely continuous distribution with density g(x), which is uniformly continuous in R s .

Definition 1.51. The local limit theorem is valid if

(1.116) P{S n = m} = B -s n g m -A n B n + o(B -s n ), uniformly in m ∈ Z s .
As already observed, the local limit theorem always implies the integral limit theorem. By Theorem in Sato [START_REF] Sato | Absolute Continuity of Multivariate Distributions of Class L[END_REF] if µ is a genuinly s-dimensional distribution of class L, then µ is absolutely continuous (with respect to Lebesgue measure). In this case its characteristic function μ(t), t ∈ R s , is uniquely represented in the form

(1.117) μ(t) = exp iat -A(t) + R s e itu -1 - itu 1 + |u| 2 ν(du) ,
where a ∈ R s , A(t) is a non-negative quadratic form, and ν is a measure (called Lévy measure) on R s such that ν({0}) = 0 and

(1.118) R s |u| 2 1 + |u| 2 ν(du) < ∞.
Mukhin's necessary and sufficient condition. Let {S n , n ≥ 1} be a sequence of integervalued random variables such that an integral limit theorem (i.l.t.) holds: there exist a n ∈ R and real b n → ∞ such that the sequence of distributions of (S n -a n )/b n converges weakly to an absolutely continuous distribution G with density g(x), which is uniformly continuous in R. Let (1.119) ε n := sup

x∈R P S n -a n b n < x -G(x) → 0.
Mukhin [START_REF] Mukhin | Some necessary and sufficient conditions for the validity of the local limit theorem[END_REF]Th. 1] has shown in 1984 the following important result relating the i.l.t. to l.l.t. . Theorem 1.52. The following assertions are equivalent.

(A) There exists a sequence of integers

v n = o(b n ) such that (1.120) sup m P{S n = m + v n -P{S n = m = o 1 b n (B) (1.121) P{S n = m} = 1 b n g m -a n b n + o 1 b n ,
However from the proof available in [START_REF] Mukhin | Some necessary and sufficient conditions for the validity of the local limit theorem[END_REF], we could only obtain the following slightly weaker result, see Weber [START_REF] Weber | On Mukhin's necessary and sufficient condition for the validity of the local limit theorem[END_REF].

Theorem 1.53. Let v n be a sequence of positive integers such that v n = o(b n ). The following assertions are equivalent.

(A')

(1.122) sup m,k∈Z |m-k|≤vn P{S n = m -P{S n = k = o 1 b n + 1 v n O(ε n ), n → ∞. (B') (1.123) sup m P{S n = m} - 1 b n g m -a n b n = o 1 b n + 1 v n O(ε n ), n → ∞. Choosing v n = max{1, [ √ ε n b n ]
} we get the following Corollary 1.54. A necessary and sufficient condition for the local limit theorem in the usual form to hold is

(1.124) sup m,k∈Z |m-k|≤max{1,[ √ ε n bn]} P{S n = m -P{S n = k = o 1 b n .
Remark 1.55. By Theorem 2 in [START_REF] Mukhin | Some necessary and sufficient conditions for the validity of the local limit theorem[END_REF], for arbitrary ∆ > 0, the relation

(1.125) P{S n ∈ [x, x + ∆]} = ∆ b n g m -a n b n + o 1 b n , n → ∞, holds uniformly in x ∈ R if and only if for any λ > 0, v n > 0, v n = o(b n ) we have (1.126) sup x P S n ∈ [x + v n , x + v n + λ] -P S n ∈ [x + v n , x + v n ] = o 1 b n , n → ∞.
It is not clear how these assertions should imply our condition (A'), and conversely.

Remark 1.56. The key quantity

(1.127) sup m∈Z P{S n = m + k -P{S n = k ,
for partial sums of integer valued r. v.'s was thoroughly investigated by Mukhin in several works, in [START_REF] Mukhin | Approximations of local probabilities of sums of independent random variables[END_REF], [START_REF] Mukhin | A relationship between local and integral limit theorems[END_REF], [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF] and [START_REF] Mukhin | Smoothing of composition of distributions[END_REF] notably, using structural characteristics of the summands. Mukhin wrote in [START_REF] Mukhin | Some necessary and sufficient conditions for the validity of the local limit theorem[END_REF]: "... getting from here more general sufficient conditions turns out to be difficult in view of the lack of good criteria for relations (1.125) and (1.126).

Working with asymptotic equidistribution properties are more convenient in this respect ". Sufficient conditions of different type for the validity of the l.l.t. are given in [START_REF] Mukhin | Local limits theorems for an arbitrary law I[END_REF].

Characteristics of a random variable. The local limit theorem is often studied by using various structural characteristics, which are interrelated. There exists a subsequent literature. This unfortunately does not include a survey, and we only report some of the background here.

(1) Let X be an integer-valued random variable, that is, X is taking with values in N, and we do not specify whether X might take values in some sub-lattice, almost surely.

The "smoothness"characteristic

δ X = m∈Z P{X = m} -P{X = m -1} , (1.128) 
was introduced and much investigated by Gamkrelidze in [START_REF] Gamkrelidze | On Smoothing the Probabilities for Sums of Independent Integer-Valued Variables[END_REF], [START_REF] Gamkrelidze | A measure of "smoothness"of multidimensional distributions of integer-valued random vectors[END_REF] [71], and in [START_REF] Gamkrelidze | On a local limit theorem for lattice distributions[END_REF] with Shervashidze.

Let us list some properties of this characteristic.

Proposition 1.57 ([69]). (1) δ X ≤ 2.

(2) If δ X < 2, then there is an integer m 0 such that P{X = m 0 } > 0 and P{X = m 0 -1} > 0. Thus the span of X is 1.

(3) δ X ≥ 2 max m∈Z P{X = m}. If the distribution of X is unimodal, namely if there is an m 0 such that P{X = m + 1} ≤ P{X = m} for m ≥ m 0 , and P{X = m -1} ≤ P{X = m} for m ≤ 0, then δ X = 2 max m∈Z P{X = m}. (So is the case for stable laws.) (4) Let X 1 , X 2 be two independent random variables. Then

δ X 1 +X 2 ≤ min δ X 1 , δ X 2 .
(5) ( [START_REF] Gamkrelidze | On Smoothing the Probabilities for Sums of Independent Integer-Valued Variables[END_REF], p. 825) Let X i , i ≥ 1 be a sequence of i.i.d. integer-valued random variables with maximal span 1, and let for each n, S n = X 1 + . . . + X n . Then δ Sn → 0 as n → ∞. If the random variables are moreover uniformly bounded,

|X i | ≤ L, then (1.129) δ Sn = 2 Var(X 1 )2πn + O 1 n .
Let now Y be an integer-valued random variable. The following inequalities are implicit in [START_REF] Gamkrelidze | A measure of "smoothness"of multidimensional distributions of integer-valued random vectors[END_REF], p. 428. We have

(1.130) P{Y ≡ 0 mod h} -h -1 ≤ δ Y , P{Y ≡ j mod h} -h -1 ≤ (2 -h -1 ) δ Y ,
for any j = 1, . . . , h -1, and h ≥ 2. Consequently, a sufficient condition for a sequence of integer-valued random variables Y n to be asymptotically uniformly distributed is that δ Yn → 0 as n → ∞. In particular if for each n, S n = n k=1 X k , where {X n , n ≥ 1} is a sequence of independent, integer-valued random variables, a sufficient condition for S n to be a.u.d (Definition 1.32) is that δ Sn → 0 as n → ∞.

The smoothness characteristic δ X is connected to the characteristic function ϕ X (t) = E e itX through the relation

(1 -e it )ϕ X (t) = m∈Z (itm) m! P{X = m} -P{X = m -1} . (1.131) Hence |ϕ X (t)| ≤ δ X 2| sin(t/2)| (t / ∈ 2πZ). (1.132)
The Lemma below ([71], Lemma 2) is obtained as a consequence of inequality (1.132) and Cramér's inequality ( [START_REF] Cramér | Random variables and probability distributions[END_REF], Lemma 1, p.27,) which we recall.

Cramér's inequality: If f (t) is the characteristic function of a distribution function and if, for some b > 0,

|f (t)| ≤ α, for 2b > |t| ≥ b, where 0 < α < 1, then (1.133) |f (t)| ≤ 1 -(1 -α 2 )(|t| 2 /8b 2 )
for |t| < b.

Lemma 1.58. Let η i , i ≥ 1, be independent copies of a random variable η and let T n = η 1 + . . . + η n for each n. Let n 0 be chosen so that δ Tn 0 < √ 2. Let f (t) denote the characteristic function of η. Then for all |t| ≤ π,

|f (t)| ≤ e -ct 2 , where c = 1 2π 2 n 0 1 - δ 2 Tn 0 2 .
Remark 1.59. The existence of an integer n 0 such that δ Tn 0 < √ 2 is possible only if the span of η is one (Proposition 1.57). Lemma 1.58 is used in Gamkrelidze [START_REF] Gamkrelidze | On the application of a smoothness function in proving a local limit theorem[END_REF] to prove the following result.

Theorem 1.60. Let X be a sequence of independent integer valued random variables satisfying the following conditions:

(i) There exists a positive real λ < √ 2 and an integer n 0 such that for all k, δ X 1 k +...+X n 0 k ≤ λ, where X j k , 1 ≤ j ≤ n 0 are independent copies of X k .

(ii) The central limit theorem is applicable.

(iii) Var(S n ) = O(n). Then the local limit theorem is applicable in the strong form.

Remark 1.61. The sufficient conditions obtained in this statement, as well as in some others, do not require any explicit speed of convergence in the central limit theorem, which is a remarkable characteristic of the method used.

Let us explain how to bound from above the main integral term (I 4 in (1.18)), by using Lemma 1.58. Let f (t, S n ), f (t, X j ) respectively denote the characteristic function of S n and of X j . Let B 2 n = Var(S n ). Assumption (i) implies that

|f ( t B n , S n )| ≤ n j=1 |f ( t B n , X j )| ≤ e -cn(t/Bn) 2
and one can take c = 1 2π 2 n 0 (1 -λ 2 /2). Let ε > 0. Then by assumption (iii),

ε≤|t|≤πBn |f ( t B n , S n )|dt ≤ ε≤|t|≤πBn e -cn(t/Bn) 2 dt ≤ B n ε/Bn≤|u|≤π e -cnu 2 du ≤ B n √ 2cn |v|≥ √ 2cnε/Bn e -v 2 /2 dv ≤ B n √ 2cn e -cnε 2 /B 2 n ≤ C e -C ε 2 (1.134)
which is small for ε large.

(2) Consider the following characteristic

ϑ X = m∈Z P{X = m} ∧ P{X = m + 1}, (1.135) where a ∧ b = min(a, b). Note that 0 ≤ ϑ X < 1. (1.136) Indeed, let k 0 be some integer such that P{X = m 0 } > 0. Then ∞ m=m 0 P{X = m} ∧ P{X = m + 1} ≤ ∞ m=m 0 P{X = m + 1} = ∞ m=m 0 +1 P{X = m}, and so 0 ≤ ϑ X ≤ m<m 0 P{X = m + 1} + ∞ m=m 0 +1 P{X = m + 1} < 1. Note also that (1.137) m∈Z P{X = m} + P{X = m + 1} -P{X = m} + P{X = m + 1} = 2ϑ X ,
since for positive reals a and b, one has a + b -|a -b| = 2(a ∧ b). But the left-hand side is just 2 -δ X . Whence the relation

(1.138) δ X = 2(1 -ϑ X ),
which was quoted in Mukhin [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF], p. 700. We thus have the equivalence

(1.139) ϑ X > 0 ⇐⇒ δ X < 2.

An important consequence is

Corollary 1.62. The condition δ X < 2 implies that X has a Bernoulli component.

This follows from Lemma 1.68. We add the interesting remark below.

Remark 1.63. The two characteristics seem through formula (1.138) equivalent. However by formula (1.131), Lemma 1.58 and Theorem 1.60, the first is related to the method of characteristic functions, whereas the second is related to the Bernoulli part extraction, which is known to be characteristic function free, and is used in the proof of the next result, see also prerequisites to Theorem 1.70. [START_REF] Davis | An elementary proof of the local central limit theorem[END_REF] a variant of Gamkrelidze's Theorem 1.60, based on the Bernoulli part extraction of a random variable. The characteristic ϑ X is used in [START_REF] Davis | An elementary proof of the local central limit theorem[END_REF], and it is required that ϑ X > 0. This method will be explained in details later. Davis Theorem 1.64. Let {X j , j ≥ 1} be independent, integer valued random variables with partial sums S n = X 1 + . . . + X n and let f j (k) = P{X j = k}. Also for each j and n, let

Davis and McDonald proved in

q(f j ) = k [f j (k) ∧ f j (k + 1)], Q n = n j=1 q(f j )
and assume that q(f j ) > 0 for each j ≥ 1. Further assume that there exist numbers b n > 0,

a n such that lim n→∞ b n = ∞, lim sup n→∞ b 2 n /Q n < ∞, and S n -a n b n L =⇒ N(0, 1).
Then

lim n→∞ sup k b n P{S n = k} - 1 √ 2π e - (k-an) 2 2b 2 n = 0.
It is implicitely assumed that P{X j = v k } > 0 and P{X j = v k+1 } > 0 for some k ∈ Z. This is a serious restriction, a large class of examples or models being built with random variables which are precisely of this type. This is however not a restriction for the study of the almost sure local limit theorem.

Remark 1.65. Assume that X has finite mean µ and finite variance σ 2 . Then we have the following inequality

σ 2 ≥ D 2 4 ϑ X . (1.140) Indeed, P |X -µ| ≥ D 2 = v k ≥µ+ D 2 P{X = v k } + v k ≤µ-D 2 P{X = v k } ≥ v k+1 ≥µ+ D 2 P{X = v k ) ∧ P{X = v k+1 } + v k ≤µ-D 2 P{X = v k } ∧ P{X = v k+1 } = v k ≥µ-D 2 P{X = v k } ∧ P{X = v k+1 } + v k ≤µ-D 2 P{X = v k } ∧ P{X = v k+1 } ≥ ϑ X .
Next by Tchebycheff's inequality,

D 2 4 P |X -µ| ≥ D 2 ≤ σ 2 .
(3) The following characteristic for which we refer to Mukhin [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF], was already studied in earlier investigations on the local limit theorem.

D(X, d) := inf a∈R E (X -a)d 2 . (1.141)
Here d is a real number, |d| ≤ 1/2 and α is the distance from α to the nearest integer. Notice that D(X, d) = 0 if and only if X is lattice valued with span 1/d. The link with ϑ X is given in Lemma 2 of [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF],

D(X, d) ≥ |d| 2 4 ϑ X . (1.142)
This characteristic is also close to those arising from Prohorov and Rozanov's Theorems, (see Theorem 1.33, see also [START_REF] Prokhorov | Probability Theory: Basic Concept, Limits Theorems, Random Processes[END_REF], [START_REF] Rozanov | On a local limit theorem for lattice distributions[END_REF])

ν(X, h) = min j,0,...,h-1 P{X ≡ j (mod h), (1.143)
where h ≥ 2. We have ( [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF], p. 700), 1 2h 3 ν(X, h) ≤ D(X,

1 h ) ≤ 1 4 ν(X, h). (1.144)
Consider also the characteristic

H(X, d) = E X * d 2 ,
where X * is a symmetrization of X. In Mukhin [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF] and [START_REF] Mukhin | Local limit theorems for distributions of sums of independent random vectors[END_REF], the two-sided inequality

1 -2π 2 H(X, t 2π ) ≤ |ϕ X (t)| ≤ 1 -4H(X, t 2π 
), (1.145) is established.

Mitalauskas and Statulyavichus used in [START_REF] Mitalauskas | Local limit theorems and asymptotic expansions for sums of independent lattice random variables[END_REF] and in other papers the following refined characteristic α(X, a, q, M ) = q -2 r∈(-q/2,q/2]

r 2 P{aX * ≡ r (mod q), |X * | ≤ M }, (1.146)
where a, q are positive coprime numbers, (a, q) = 1, a ≤ q/2.

For the shown values of a and q, the following relation holds

H(X, a/q) = α(X, a, q, ∞). (1.147)
The following is the one-dimensional version of Theorem 5 in [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF] and is stated without proof, however.

Theorem 1.66 (Mukhin). Let X 1 , . . . , X n have zero mean and finite third moments. Let

B 2 n = n j=1 E |X j | 2 , H n = inf 1/4≤d≤1/2 n j=1 H(X j , d), L n = n j=1 E |X j | 3 (B n ) 3/2 . Then ∆ n ≤ CL n B n /H n , recalling that ∆ n is defined in Definition 1.3.
Remark 1.67. Under the assumption made, the central limit theorem is fulfilled with speed of convergence L n , by Berry-Esseen inequality. However no condition is made on L n .

A manuscript devoted to estimates of the rate of convergence was announced in [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF] with no resulting publication, however.

The Bernoulli part of a random variable. This is one instance of coupling method. A remarquable feature of this one is that it is "characteristic function free". This approach, due to McDonald [START_REF] Davis | An elementary proof of the local central limit theorem[END_REF], is indeed purely probabilistic and consists with extracting the Bernoulli part of a random variable. It seems, according to [START_REF] Aizenmann | On Bernoulli decompositions for random variables, concentration bounds, and spectral localization[END_REF] that this idea first appeared in Kolmogorov's work [START_REF] Kolmogorov | Sur les propriétés de fonctions de concentration de M. P. Lévy[END_REF] on concentration functions.

It is worth citing here Kolmogorov (from his 1958's paper [START_REF] Kolmogorov | Sur les propriétés de fonctions de concentration de M. P. Lévy[END_REF] p. 29): "... Il semble cependant que nous restons toujours dans une période où la compétition de ces deux directions [characteristic functions or direct methods from the calculus of probability] conduit aux résultats les plus féconds ...".

Dabrowski and McDonald mentioned in [START_REF] Dabrowski | An application of the Bernoulli part to local limit theorems for moving averages on stationary sequences[END_REF] that this idea is implicit in Galstyan [START_REF] Galstyan | Local analogs of a theorem of Heyde[END_REF], Mineka [START_REF] Mineka | A criterion for tail events for sums of independent random variables[END_REF] and Rösler [START_REF] Rösler | Das 0-1 Gesetz der terminalen σ-algebra für Harrisirrfahrten[END_REF].

Let X be a random variable such that P{X ∈ L(v 0 , D)} = 1. We do not assume that the span D is maximal. Further, no integrability condition on X is necessary. Put

f (k) = P{X = v k }, k ∈ Z.
We assume that

(1.148) ϑ X > 0,
where ϑ X is defined in (1.135). Recall that ϑ X < 1.

Let 0 < ϑ ≤ ϑ X . One can associate to ϑ and X a sequence {τ k , k ∈ Z} of non-negative reals such that (1.149)

τ k-1 + τ k ≤ 2f (k), k∈Z τ k = ϑ. Just take τ k = ϑ ν X (f (k) ∧ f (k + 1)
). Now define a pair of random variables (V, ε) as follows:

P{(V, ε) = (v k , 1)} = τ k , P{(V, ε) = (v k , 0)} = f (k) -τ k-1 +τ k 2 . (∀k ∈ Z) (1.150)
By assumption this is well-defined, and the margin laws verify

P{V = v k } = f (k) + τ k -τ k-1 2 , P{ε = 1} = ϑ = 1 -P{ε = 0}. (1.151) Indeed, P{V = v k } = P{(V, ε) = (v k , 1)} + P{(V, ε) = (v k , 0)} = f (k) + τ k -τ k-1 2 . Further P{ε = 1} = k∈Z P{(V, ε) = (v k , 1)} = k∈Z τ k = ϑ.
Lemma 1.68. Let L be a Bernoulli random variable which is independent of (V, ε), and put Z = V + εDL. We have

Z D = X. Proof. Plainly, P{Z = v k } = P V + εDL = v k , ε = 1} + P V + εDL = v k , ε = 0} = P{V = v k-1 , ε = 1} + P{V = v k , ε = 1} 2 + P{V = v k , ε = 0} = τ k-1 + τ k 2 + f (k) - τ k-1 + τ k 2 = f (k).
Consider now independent random variables X j , j = 1, . . . , n, and assume that (1.152) ϑ X j > 0, j = 1, . . . , n.

Let 0 < ϑ j ≤ ϑ X i , j = 1, . . . , n. Iterated applications of Lemma 1.68 allow us to associate to them a sequence of independent vectors (V j , ε j , L j ), j = 1, . . . , n such that

V j + ε j DL j , j = 1, . . . , n D = X j , j = 1, . . . , n . (1.153)
Further the sequences {(V j , ε j ), j = 1, . . . , n} and {L j , j = 1, . . . , n} are independent. For each j = 1, . . . , n, the law of (V j , ε j ) is defined according to (1.150) with ϑ = ϑ j . And {L j , j = 1, . . . , n} is a sequence of independent Bernoulli random variables. Set

(1.154) S n = n j=1 X j , W n = n j=1 V j , M n = n j=1 ε j L j , B n = n j=1 ε j .
Proposition 1.69 (Decomposition of sums). We have

{S k , 1 ≤ k ≤ n} D = {W k + DM k , 1 ≤ k ≤ n}.
And M n D = Bn j=1 L j .

A local limit theorem with effective rate. A careful application of the Bernoulli extraction part method allows one to obtain not only a local limit theorem, but in addition an effective rate of convergence. This is done in the recent work of Giuliano-Weber [START_REF] Giuliano | Approximate local limit theorems with effective rate and application to random walks in random scenery[END_REF]. The proof is completely elementary and the estimates obtained are quite simple and therefore easy to apply. Let X j , j = 1, . . . , n be independent square integrable random variables taking almost surely values in a common lattice L(v 0 , D) = {v k , k ∈ Z}, where v k = v 0 + Dk, k ∈ Z, v 0 and D > 0 are real numbers. Let S n = X 1 + . . . + X n . Assume that condition (1.152) is fulfilled.

Let also 0 < ϑ j ≤ ϑ X i , j = 1, . . . , n. By Proposition 1.69, we have

P{S n = κ} = E (V,ε) P L DM n = κ -W n where S n = E L S n = W n + D 2 B n
, and E L , P L (resp. E (V,ε) , P (V,ε) ) stand for the integration symbols and probability symbols relatively to the σ-algebra generated by the sequence {L j , j = 1, . . . , n} (resp. {(V j , ε j ), j = 1, . . . , n}).

Further E S n = E S n , E (S n ) 2 = E S 2 n - D 2 Θn 4 . Set        H n = sup x∈R P (V,ε) S n -E (V,ε) S n √ Var(S n ) < x -P{g < x} , ρ n (h) = P n j=1 ε j -Θ n > hΘ n , Θ n = n j=1 ϑ j .
Theorem 1.70 ([83], Th. 1.1). For any 0 < h < 1, 0 < ϑ j ≤ ϑ X j , and all κ ∈ L(v 0 n, D)

P{S n = κ} ≤ 1 + h 1 -h D 2πVar(S n ) e -(κ-E Sn) 2 2(1+h)Var(Sn) + C 1 (1 -h)Θ n H n + 1 (1 -h)Θ n + ρ n (h),
where C 1 = max(8/ √ 2π, C 0 ) and C 0 is the same constant as in Theorem 1.2. Further,

P{S n = κ} ≥ 1 -h 1 + h D 2πVar(S n ) e -(κ-E Sn) 2 2(1-h)Var(Sn) - C 1 (1 -h)Θ n H n + 1 (1 -h)Θ n + 2ρ n (h) -ρ n (h).
We shall hereafter deduce from Theorem 1.70 the following corollary.

Corollary 1.71. Assume that log Θn Θn ≤ 1/14. Then, for all κ ∈ L(v 0 n, D) such that

(κ -E S n ) 2 Var(S n ) ≤ Θ n 14 log Θ n 1/2 ,
we have

P{S n = κ} - De -(κ-E Sn) 2 2Var(Sn) 2πVar(S n ) ≤ C 2 D log Θ n Var(S n )Θ n 1/2 + H n + Θ -1 n √ Θ n .
Here

C 2 = 2 7/2 C 1 .
Proof of Theorem 1.70. We denote again X j = V j + Dε j L j , S n = W n + M n , j, n ≥ 1. Fix 0 < h < 1 and let

A n = B n -Θ n ≤ hΘ n , ρ n (h) = P (V,ε) (A c n ). (1.155) For κ ∈ L(v 0 , D), (1.156) P{S n = κ} = E (V,ε) χ(A n ) + χ(A c n ) P L D n j=1 ε j L j = κ -W n ,
and so

(1.157) P{S n = κ} -E (V,ε) χ(A n )P L D n j=1 ε j L j = κ -W n ≤ P (V,ε) (A c n ) = ρ n (h). By Lemma 1.2, since n j=1 ε j L j D = Bn j=1 L j , sup z P L N j=1 L j = z - 2 √ 2πN e -(z-(N/2)) 2 N/2 ≤ C 0 N 3/2 . On A n , (1 -h)Θ n ≤ B n ≤ (1 + h)Θ n , so that E (V,ε) χ(A n ) P L D n j=1 ε j L j = κ -W n - 2e - (κ-Wn-D(Bn/2)) 2 D 2 (Bn/2) √ 2πB n ≤ C 0 E (V,ε) χ(A n ) • B -3/2 n ≤ C 0 (1 -h) 3/2 1 ( n i=1 ϑ i ) 3/2 .
(1.158)

Inserting this in (1.157), we get

(1.159) P{S n = κ} -E (V,ε) χ(A n ) 2e - (κ-Wn-D(Bn/2)) 2 D 2 (Bn/2) √ 2πB n ≤ C 0 (1 -h) 3/2 ( n i=1 ϑ i ) 3/2 + ρ n (h). Then (1.160) Var(S n ) = Var(S n ) - D 2 4 n i=1 ϑ i = n i=1 σ 2 i - D 2 ϑ i 4 . Put T n = S n -E (V,ε) S n √ Var(S n )
. As E (V,ε) S n = E S n , we note that

(κ -W n -D(B n /2)) 2 D 2 (B n /2) = Var(S n ) D 2 (B n /2) κ -E S n Var(S n ) -T n 2 ,
and rewrite (1.159) as follows,

P{S n = κ} -Υ n ≤ C 0 (1 -h) 3/2 1 Θ 3/2 n + ρ n (h), (1.161)
where

Υ n = E (V,ε) χ(A n ) 2e - Var(S n ) D 2 (Bn/2) κ-E Sn √ Var(S n ) -Tn 2 √ 2πB n . (1.162) Set for -1 < u ≤ 1, Z n (u) = E (V,ε) e - 2Var(S n ) D 2 (1+u)Θn κ-E Sn √ Var(S n ) -Tn 2 . Then 2Z n (-h) -2ρ n (h) 2π(1 + h)Θ n ≤ Υ n ≤ 2Z n (h) 2π(1 -h)Θ n . (1.163)
Let Y be a centered random variable. By the transfer formula, for any positive reals a and b, we have

E e -a(b-Y ) 2 - 1 √ 1 + 2a e -b 2 2+1/a ≤ 4 sup x∈R P{Y < x} -P{g < x} . (1.164) Applying this to Z n (u) with a = 2Var(S n ) D 2 (1+u)Θn , b = κ-E Sn √ Var(S n )
gives with (1.160),

b 2 2 + 1/a = (κ -E S n ) 2 Var(S n ) 2 + D 2 (1+u)Θn 2Var(S n ) = (κ -E S n ) 2 2Var(S n )(1 + δ(u))
,

where δ(u) = D 2 Θnu 4Var(Sn) . Further 1 √ 1 + 2a = 1 1 + 4Var(S n ) D 2 (1+u)Θn 1/2 = D 2 Θ n (1 + u) Var(S n )(1 + δ(u)) 1/2
. This along with (1.164) provides the bound,

Z n (u) - D 2 Θ n (1 + u) Var(S n )(1 + δ(u)) 1/2 e -(κ-E Sn) 2 2Var(Sn)(1+δ(u)) ≤ 4H n , (1.165) with H n = sup x∈R P (V,ε) T n < x -P{g < x} .
Besides, it follows from (1.65) that 0 ≤ δ(h) ≤ h, for h ≥ 0. By reporting (1.165) into (1.163) we get,

Υ n ≤ 8H n 2π(1 -h)Θ n + 1 + h 1 -h D 2πVar(S n ) e -(κ-E Sn) 2 2(1+h)Var(Sn) .
And by combining with (1.161),

P{S n = κ} ≤ 1 + h 1 -h D 2πVar(S n ) e -(κ-E Sn) 2 2(1+h)Var(Sn) + 8H n 2π(1 -h)Θ n + C 0 (1 -h) 3/2 1 Θ 3/2 n + ρ n (h). (1.166)
Similarly by using (1.163),

Υ n ≥ 1 -h 1 + h D 2πVar(S n ) e -(κ-E Sn) 2 2(1-h)Var(Sn) - 8H n + 2ρ n (h) 2π(1 + h)Θ n . (1.167)
By combining with (1.161), we obtain

P{S n = κ} ≥ 1 -h 1 + h D 2πVar(S n ) e -(κ-E Sn) 2 2(1-h)Var(Sn) - 8H n + 2ρ n (h) 2π(1 + h)Θ n - C 0 (1 -h) 3/2 1 Θ 3/2 n -ρ n (h), (1.168) 
As C 1 = max(8/ √ 2π, C 0 ), we deduce

P{S n = κ} ≤ 1 + h 1 -h D 2πVar(S n ) e -(κ-E Sn) 2 2(1+h)Var(Sn) + C 1 (1 -h)Θ n H n + 1 (1 -h)Θ n + ρ n (h). (1.169) And P{S n = κ} ≥ 1 -h 1 + h D 2πVar(S n ) e -(κ-E Sn) 2 2(1-h)Var(Sn) - C 1 (1 -h)Θ n H n + 1 (1 -h)Θ n + 2ρ n (h) -ρ n (h). (1.170)
This achieves the proof.

Proof of Corollary 1.71. In order to estimate ρ n (h) we use the following Lemma ([140], Theorem 2.3) Lemma 1.72. Let X 1 , . . . , X n be independent random variables, with 0 ≤ X k ≤ 1 for each k. Let S n = n k=1 X k and µ = E S n . Then for any ε > 0, (a)

P S n ≥ (1 + ε)µ ≤ e -ε 2 µ 2(1+ε/3) . (b) P S n ≤ (1 -ε)µ ≤ e -ε 2 µ 2 .
We deduce, noticing that e -ε 2 µ 2 ≤ e -ε 2 µ 2(1+ε/3) , 3) .

ρ n (h) = P n k=1 ε k > (1 + h)Θ n + P n k=1 ε k < (1 -h)Θ n ≤ 2e -h 2 Θn 2(1+h/
By assumption log Θn Θn ≤ 1/14. Thus h n := 7 log Θn 2Θn ≤ 1/2 and so h 2 n Θn 2(1+hn/3) ≥ (3/2) log Θ n . It follows that

ρ n (h n ) ≤ 2 Θ -3/2 n . (1.171) Let C 2 = 2 7/2 max(C 1 , 1). Further C 1 (1 -h n )Θ n H n + 1 (1 -h n )Θ n + ρ n (h n ) ≤ 2 1/2 C 1 H n √ Θ n + 2 3/2 C 1 + 2 Θ 3/2 n ≤ 2 1/2 max(C 1 , 1) √ Θ n H n + 2 + √ 2 Θ n ≤ C 2 √ Θ n H n + 1 Θ n .
Therefore

P{S n = κ} ≤ D(1 + 4h n ) 2πVar(S n ) e -(κ-E Sn) 2 2(1+hn)Var(Sn) + C 2 √ Θ n H n + 1 Θ n . Besides C 1 (1 -h n )Θ n H n + 1 (1 -h n )Θ n + 2ρ n (h n ) + ρ n (h n ) ≤ 2 1/2 C 1 √ Θ n H n + 6 Θ n + 2 Θ 3/2 n ≤ 2 1/2 max(C 1 , 1) √ Θ n H n + 6 + √ 2 Θ n ≤ C 2 √ Θ n H n + 1 Θ n .
Consequently,

P{S n = κ} ≥ D(1 -2h n ) 2πVar(S n ) e -(κ-E Sn) 2 2(1-hn)Var(Sn) - C 2 √ Θ n H n + 1 Θ n .
(1) If (κ-E Sn) 2 2Var(Sn) ≤ 1+hn hn , then by using the inequalities e u ≤ 1 + 3u and Xe -X ≤ e -1 valid for 0 ≤ u ≤ 1, X ≥ 0, we get

e -(κ-E Sn) 2 2(1-hn)Var(Sn) = e -(κ-E Sn) 2 2Var(Sn) e (κ-E Sn) 2 2Var(Sn) hn 1+hn ≤ e -(κ-E Sn) 2 2Var(Sn) 1 + 3 (κ -E S n ) 2 2Var(S n ) h n 1 + h n ≤ e -(κ-E Sn) 2 2Var(Sn) + 3h n e(1 + h n ) ≤ e -(κ-E Sn) 2 2Var(Sn) + 2h n .
Hence,

D(1 + 4h n ) 2πVar(S n ) e -(κ-E Sn) 2 2(1-hn)Var(Sn) ≤ D(1 + 4h n ) 2πVar(S n ) e -(κ-E Sn) 2 2Var(Sn) + 2h n ≤ De -(κ-E Sn) 2 2Var(Sn) 2πVar(S n ) + 10h n D 2πVar(S n ) .
Therefore, recalling that h n = 7 log Θn 2Θn ,

P{S n = κ} - De -(κ-E Sn) 2 2Var(Sn) 2πVar(S n ) ≤ 10h n D 2πVar(S n ) + C 2 H n + Θ -1 n √ Θ n ≤ C 2 D log Θ n Var(S n )Θ n 1/2 + H n + Θ -1 n √ Θ n . since 5 7/π ≤ C 2 .
(

) If (κ-E Sn) 2 2Var(Sn) ≤ 1 2hn , then as e -u ≥ 1 -3u if 0 ≤ u ≤ 1, we get e -(κ-E Sn) 2 2(1-hn)Var(Sn) ≥ e -(κ-E Sn) 2 2Var(Sn) e -hn (κ-E Sn) 2 Var(Sn) ≥ e -(κ-E Sn) 2 2Var(Sn) 1 -3h n (κ -E S n ) 2 Var(S n ) ≥ e -(κ-E Sn) 2 2Var(Sn) - 3h n e ≥ e -(κ-E Sn) 2 2Var(Sn) -2h n . 2 
Hence,

D(1 -2h n ) 2πVar(S n ) e -(κ-E Sn) 2 2(1-hn)Var(Sn) ≥ D(1 -2h n ) 2πVar(S n ) e -(κ-E Sn) 2 2Var(Sn) -2h n ≥ D 2πVar(S n ) e -(κ-E Sn) 2 2Var(Sn) - 3h n D 2πVar(S n ) .
Consequently,

P{S n = κ} - D 2πVar(S n ) e -(κ-E Sn) 2 2Var(Sn) ≥ - 3h n D 2πVar(S n ) - C 2 √ Θ n H n + 1 Θ n ≥ -C 2 D log Θ n Var(S n )Θ n 1/2 + H n + Θ -1 n √ Θ n .
The following corollary of Theorem 1.70 implies when restricted to the i.i.d. case, Gnedenko's Theorem 1.4. One can also deduce a strong form of the local limit theorem as in Gamkrelidze [START_REF] Gamkrelidze | A measure of "smoothness"of multidimensional distributions of integer-valued random vectors[END_REF] and provide an effective bound. See [START_REF] Giuliano | Approximate local limit theorems with effective rate and application to random walks in random scenery[END_REF] 

√ 2π = 0. Now if (κ-E Sn) 2
Var(Sn) > ( Θn 14 log Θn ) 1/2 , then exp{-(κ-E Sn) 2 2Var(Sn) } ≤ exp{-1 2 ( Θn 14 log Θn ) 1/2 }. By using the first part of Theorem 1.70, with h = h n and (1.171), 

Var(S n )P{S n = κ} ≤ 1 + h n 1 -h n D √ 2π e -(κ-E Sn) 2 2(1+hn)Var(Sn) + C 1 (1 -h n ) Var(S n ) Θ n 1/2 H n + 1 (1 -h n )Θ n + Var(S n )ρ n (h n ) ≤ 3D √ 2π e -1 3 ( Θn 14 log Θn ) 1/2 + C 1 √ 2 Var(S n ) Θ n 1/2 H n + 1 (1 -h n )Θ n +2 Var(S n ) Θ -3/
Var(S n )P{S n = κ} - De -(κ-E Sn) 2 /2Var(Sn) √ 2π = 0.
Remark 1.74. Let ψ : R → R + be even, convex and such that ψ(x) x 2 and x 3 ψ(x) are nondecreasing on R + . Further assume that E ψ(X j ) < ∞. Then under the conditions of Corollary 1.71, we have the following strengthening

P{S n = κ} - De -(κ-E Sn) 2 2Var(Sn) 2πVar(S n ) ≤ C 3 D log Θ n Var(S n )Θ n 1/2 + L n + Θ -1 n √ Θ n ,
where C 3 an explicit constant and

L n = n j=1 E ψ(X j ) / ψ( Var(S n )).
Problem 1.75. A related difficult question can be presented as follows. Let {k j , j ≥ 1} be an increasing sequence of positive integers and {p j , j ≥ 1} be a sequence of reals in ]0, 1[. Let β j are independent binomial random variables with (1.174)

P{β j = 1} = p j , P{β j = 0} = 1 -p j (j ≥ 1).
Describe the LLT for the sequence

S n = k 1 β 1 + . . . + k n β n , n ≥ 1.
Local limit theorems and the Landau-Kolmogorov inequalities. In this subsection we will follow [START_REF] Röllin | Local limit theorems via Landau-Kolmogorov inequalities[END_REF]. Let f : Z → R and for p ∈ [1, ∞) set

f p = k∈Z |f (k)| p 1 p and f ∞ = sup k∈Z |f (k)|.
Define also

∆ 0 f (k) = f (k) and ∆ n+1 f (k) = ∆ n f (k + 1) -∆ n f (k).
Suppose that X, Y : Ω → Z are random variables and put

F (k) = P(X ≤ k), G(k) = P(Y ≤ k).
It turns out that the following variant of the Landau-Kolmogorov inequality holds

(1.175) ∆F -∆G ∞ ≤ C F -G ∞ • ∆ 3 F 1 + ∆ 3 G 1 ,
for some universal constant C. Analogous inequalities hold for Wasserstein, total variation and local metrics ( [START_REF] Röllin | Local limit theorems via Landau-Kolmogorov inequalities[END_REF], Theorem 2.2).

In particular, if we set in (1.175) X = n k=1 ε i , where {ε i } are Bernoulli i.i.d., with the probability of success p, and

P{Y = k} = 1 √ 2π k+1/2-E (X) √ Var(X) k-1/2-E (X) √ Var(X) e -x 2 2 dx,
then by the Berry-Esseen theorem

√ n F -G ∞ = O(1)
. Further by Proposition 3.8 in [START_REF] Röllin | Local limit theorems via Landau-Kolmogorov inequalities[END_REF] Thus this approach does not yield the proper rate. However, there are many dependent sequences for which the Berry-Esseen theorem hold (possibly with worse rate, see e.g. [START_REF] Sunklodas | Approximation of Distributions of Sums of Weakly Dependent Random Variables by the Normal Distribution[END_REF]). Also we can substitute the normal distribution with the discrete translated Poisson distribution (see Lemma 4.1 in [197]). Further, the measure of smoothness ( ∆ 3 F 1 + ∆ 3 G 1 ) can be calculated for exchangeable or markovian sequences. So this method allows to obtain improved LLTs for e.g. the magnetization in the Curie-Weiss model ( [START_REF] Röllin | Local limit theorems via Landau-Kolmogorov inequalities[END_REF], Theorem 4.5), for the number of isolated vertices and triangles in the Erdős-Rényi model ( [START_REF] Röllin | Local limit theorems via Landau-Kolmogorov inequalities[END_REF], Theorems 4.8, 4.11) and for embedded sum of independent random variables (for example as in Proposition 1.69) ( [START_REF] Röllin | Local limit theorems via Landau-Kolmogorov inequalities[END_REF], Theorem 4.14).

n ∆ 3 F 1 ≤ 2p + 1 1 -p + 2(1 -p)
Mod-φ convergence and local limit theorem. This approach initiated by Delbaen, Jacod, Kowalski and Nikeghbali [START_REF] Delbaen | Mod-φ convergence[END_REF], [START_REF] Jacod | Mod-Gaussian convergence: new limit thoerems in probability and number theory[END_REF], [START_REF] Kowalski | Mod-Gaussian convergence and the value distribution of ζ( 1 2 + it) and related quantities[END_REF] is an attempt to refine convergence in law of normalized sequences of random variables

X n = Y n -m n √ σ n
by looking more carefully at the limiting behavior of the characteristic functions φ n (t) = E e itYn without normalizing. This behavior may bring in some specific interesting cases, additional informations in presence of a convergence in law of X n , to the normal law for instance. This is best illustrated on examples. Consider first the following example. Let n be a random variable counting the number of distinct cycles in a uniformly chosen permutation σ of {1, . . . , n}. Goncharov proved that X n = ( n -log n)/ √ log n converges in law to N(0, 1), and Kolchin proved the local limit theorem, see (1.227). The characteristic function of n is given by

E e it n = n j=1 1 -j -1 + j -1 e it
Obviously the product diverges as n → ∞, t / ∈ 2πZ. However

E e it n = n j=1
1 + (e it -1)j -1 (1 + j -1 ) 1-e it e (e it -1)Hn , where H n = 1 + 1/2 + . . . + 1/n. One observes that the second term is the characteristic function of a Poisson random variable P Hn of parameter H n . The first term converges since

j≥1 1 + z j 1 + 1 j -z = 1 Γ(1 + z) ,
for any z ∈ C. So that for any t ∈ R.

E e it n ∼ 1 Γ(1 + e it ) e itP Hn , n → ∞.
This suggests a decomposition of type = X n + Y n where X n is Poisson and Y n is independent of X n . However 1/Γ(1 + e it ) is not a characteristic function. The authors called this behavior Mod-Poisson convergence with limiting function 1/Γ(1 + e it ).

Consider a second example. Let ω(k) be the prime divisor function (counting the number of primes dividing k). Let for each integrer n, N n be uniformly distributed in {1, . . . , n}. Erdős and Kac proved that (ω(N n ) -log log n)/ √ log log n converges in law to N(0, 1). Rényi and Turán proved 1

n k≤n e iω(k) = E e itP log log n Φ(t) 1 + o(1) n → ∞,
where

Φ(t) = 1 Γ(e it ) p 1 - 1 p e it
1 + e it p -1 .

Moreover the infinite product is also the limiting function for

X n D = p≤n B p
where B p are independent binomial random variables with P{B p = 1} = 1/p. Finally consider a third example extracted from random matrix theory. Keating and Snaith proved that if X n is a random matrix taking values in the unitary group U (n), distributed according to the natural Haar measure, and

P n (T ) = det(1 -T X n ), then (1.176) E e it|Pn(1)| = e -(log n)t 2 /2 G(1 + it/2)2) 2 G(1 + it) (1 + o(1)),
locally uniformly for t ∈ R. Here G(z) is the Barnes function, which is holomorphic of order 2 and such that G(1) = 1 and G(z + 1) = Γ(z)G(z), see [START_REF] Adamchik | On the Barnes function[END_REF].

Introduce a definition. Let µ be a probability law on R d , d ≥ 1, with characteristic function φ. Let (X n ) n≥1 be R d -valued random vectors with characteristic functions (φ n ) n≥1 . Definition 1.76. We say that there is a mod-φ convergence if there exist

A n ∈ GL d (R), n ≥ 1, such that (H1) φ is integrable on R d , (H2)
Denoting Σ n = A -1 n we have Σ n → 0, and the vectors

Y n = A -1 n (X n ) converge in law to µ, (H3)
For all k ≥ 0, we have sup

n≥1 |t|≥a |Σ * n t)|≤k φ n Σ * n t dt → 0 as a → ∞.
Assumption (H1) implies that µ admits a density, call it α. We note that E e it.Yn = φ n Σ * n t . Assumption (H3) is for instance satisfied if for each k, there exists an integrable function h k (t) such that φ n Σ * n t ≤ h k (t), for all n and all t such that |Σ * n t)| ≤ k. Delbaen, Kowalski and Nikeghbali proved the following local limit theorem.

Theorem 1.77. Assume mod-φ convergence for the sequence (X n ) n≥1 . Then for f continuous and compactly supported we have

E f (X n ) = α(0)| det(A n )| -1 R d f (x)dx 1 + o(1) , n → ∞.
No rate of convergence is however indicated. In [START_REF] Kowalski | Mod-Gaussian convergence and the value distribution of ζ( 1 2 + it) and related quantities[END_REF]Th. 4], a sharper version of this result with rate of convergence is given, however under very restrictive conditions.

It is worth quoting, in relation with the above, that Hwang introduced in [106, p. 451] an analytic assumption on the probability generating functions of integer-valued random variables (X n ) n , that is, on the power series n≥1 P(X N = n)z n = E (z X N ), which is very closely related to mod-Poisson convergence. This assumption is used as a basis to deduce results on Poisson approximation of the sequence, with applications.

Local limit theorem under tightness conditions. Recently Dolgopyat [START_REF] Dolgopyat | A local limit theorem for sums of independent random vectors[END_REF] obtained a local limit theorem for sums of independent random vectors satisfying appropriate tightness assumptions. In particular, his result holds in dimension one for independent uniformly bounded summands, improving Prohorov's Theorem. Let {X j , j ≥ 1} be independent R d -valued random variables such that

E X j = 0, (1.177) E |X j | 3 ≤ m, (1.178)
and assume there exists a constant ε 0 > 0 such that for each

s ∈ R d , E X j , s 2 ≥ ε 0 |s| 2 . (1.179)
Let S N = N j=1 X j and let V N denotes its covariance matrix

(1.180) V N,l 1 ,l 2 = N j=1 E X j,l 1 X j,l 2 .
Under condition (1.178), condition (1.179) is equivalent to the existence of ε 1 , ε 2 > 0 such that for each proper affine subspace Π ⊂ R d , we have

P{d(X j , Π) ≤ ε 1 } ≤ 1 -ε 2 . (1.181) If H is a proper subgroup of R d we call the sequence {X N } arithmetic, otherwise it is called non-arithmetic.
Call a closed subgroup H of R d sufficient if there is a deterministic sequence a N such that S N -a N mod (H) converges almost surely. The minimal subgroup, denoted by H, is defined as the intersection of all sufficient subgroups. The Haar measure on H is defined as follows. H is isomorphic to the product of

Z d 1 × R d-d 1 .
Then λ H is the product of the counting measure on the first factor and the Lebesgue measure on the second factor normalized as follows.

Choose a set D so that each x ∈ R d can be uniquely written as

x = h + θ where h ∈ H, θ ∈ D. λ H is normalized so that R d g(x)dx = H D g(h + θ)dλ H (h)dλ D (θ). (1.182)
where λ D is the Lebesgue measure on D normalized to have total volume 1.

Given a random variable Y , let C Y be the convolution operator

(1.183) C Y (g)(x) = E g(x + Y ). Proposition 1.78. (a) If H is sufficient then R d /H is compact. (b)
The minimal subgroup is sufficient.

By the above Proposition, there exists a bounded sequence a N such that S N -a N mod (H) converges almost surely. Fix such a sequence and denote the limiting random variable by S.

We denote by C(R d ) (respectively C 0 (R d )) the space of continuous (respectively r times differentiable) functions on R d . The subscript 0 indicates that we consider only functions of compact support in the corresponding space.

The following result is proved.

Theorem 1.79. For each g ∈ C 0 (R d ), for each sequence z N = O( √ N ) such that z N -a N ∈ H we have (1.184) lim N →∞ E g(S N -z N ) u N (z N ) = H C S (g)(h)dλ H (h)
where λ H is the Haar measure on H and u N (z) is the density of the normal random variable with zero mean and covariance V N . In particular, in the non-arithmetic case, for each sequence z N = O( √ N ) we have,

(1.185) lim N →∞ E g(S N -z N ) u N (z N ) = R d g(x)dx.
Several examples of applications are provided in [START_REF] Dolgopyat | A local limit theorem for sums of independent random vectors[END_REF].

Local limit theorems and domains of attraction. Let {X k } be i.i.d. random sequence such that there exist normalizing sequences B n > 0, A n , n ≥ 1, and for some non-degenerate probability measure µ we have

X 1 + X 2 + . . . + X n -A n B n → µ, in distribution.
Thus µ is necessarily α-stable, α ∈ (0, 2] and we say that L(X 1 ) is in the domain of attraction of α-stable law, L(X 1 ) ∈ DA(α) in short. The following characterization can be found on p. 313 in [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF].

Theorem 1.80. Suppose L(X 1 ) is non-degenerated. Then, (i) L(X 1 ) ∈ DA(2) iff E (X 2 1 I(|X 1 | ≤ x)) is slowly varying; (ii) L(X 1 ) ∈ DA(α), α ∈ (0, 2) iff x α P{|X 1 | > x} is slowly varying and P{X 1 ≤ -x} P{X 1 > x} + P{X 1 ≤ -x} → q, P{X 1 > x} P{X | > x} + P{X 1 ≤ -x} → p, as x → ∞, (p + q = 1); (iii) up to a constant factor normalizing sequence B n satisfies nE (X 2 1 I(|X 1 | ≤ B n )) ∼ B 2 n .
The following theorem contains (in full) both the Gnedenko ( [START_REF] Gnedenko | On a local limit theorem in the theory of probability[END_REF]) and the Shepp-Stone ( [START_REF] Shepp | A local limit theorem[END_REF], [START_REF] Stone | A local limit theorem for nonlattice multi-dimensional distributions functions[END_REF]) local limit theorems (see also [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF] 

+ mD}, v 0 ∈ R, m ∈ Z, where D is maximal step we have uniformly in m ∈ Z B n P{S n = nv 0 + mD} = dg α nv 0 + mD -A n B n + o(1);
II) or for L(X 1 ) non-lattice and any continuous function G with a compact support we have uniformly in r ∈ R

B n E (G(S n -r)) = g α r -A n B n G(y)dy + o(1);
it is necessary and sufficient that L(X 1 ) ∈ DA(α) and the step D is maximal.

Refinements of the Gnedenko local limit theorem. Let H k (x) denote Hermite-Chebyshev polynomials, i.e.:

H k (x) = (-1) k • e x 2 2 ∂ k ∂x k e -x 2 2 = k! k 2 i=0 (-1) i x k-2i i!(k -2i)!2 i .
Suppose {X k } is a centered i.i.d. random sequence and ϕ(θ) = E (e iθX 1 ). Define cumulants by

γ k = 1 i k ∂ k ∂θ k log ϕ(θ)| θ=0 . We have γ 0 = γ 1 = 0, γ 2 = Var(X 1 ) = σ 2 , γ 3 = E(X 3 1 ) = µ 3 . Put R ν (x) = (k 1 ,k 2 ,...,kν ) k i ≥0, ν i=1 ik i =ν H ν+2 ν i=1 k i (x) ν m=1 1 k m ! γ m+2 (m + 2)!σ m+2 km .
The following result is due to Esseen (see [START_REF] Esseen | Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law[END_REF], Theorem 5, p.63). The mulitidimensional case can be found in [START_REF] Bikelis | Inequalities for multivariate characteristic functions[END_REF] and [START_REF] Bhattacharya | Normal Approximation and Asymptotic Expansions[END_REF](Theorem 22.1, p.231).

Theorem 1.82. If L(X 1 ) is lattice on {v 0 + mD}, E (X 1 ) = 0, E |X 1 | l < ∞, l ≥ 3 then uniformly in m σ √ n d P{S n = nv 0 + mD} = φ(y nm ) 1 + l ν=3 R ν-2 (y nm ) n ν-2 2 +o 1 n l-2 2 
,

where φ(x) = 1 √ 2π e -x 2 2
and y nm = nv 0 +mD σ √ n . In particular for l = 3 we have

P{S n = nv 0 + mD} = φ(y nm ) 1 + (y 3 nm -3y nm ) µ 3 6σ 3 √ n +o 1 √ n .
Now, define

M (s) = ∂ ∂s log ρ(s) = k≥2 γ k (k -1)! s k-1 , σ 2 s = ∂ ∂s M (s) = k≥2 γ k (k -2)! s k-2 , where ρ(s) = E (exp{sX 1 }) < ∞ for s ∈ (s -, s + ) =: S and γ k = ∂ k ∂s k log ρ(s)| s=0 . Consider the equation (1.186) σt = M (s).
Since σ 2 > 0 the unique solution s of (1.186) can be expressed for small t in terms of t (Cf. [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF], p. 180)

s = t σ - γ 3 2σ 4 t 2 - γ 4 6σ 5 - γ 2 3 2σ 7 t 3 - γ 5 24σ 6 - 5γ 3 γ 4 12σ 8 + 5γ 3 3 8σ 10 t 4 -• • • . Therefore ln ρ(s) -sσt = - t 2 2 + γ 3 6σ 3 t 3 + γ 4 σ 2 -3γ 2 3 24σ 6 t 4 + γ 5 σ 4 -10γ 3 γ 4 σ 2 + 15γ 3 3 120σ 9 t 5 + • • • = - t 2 2 + Λ(t)t 3 .
Here Λ(t) stands for the Cramér series (cf. [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF]; [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF], (5.77), p.180). The following result is due to Richter ([192], Theorem 3).

Theorem 1.83. Suppose L(X 1 ) is lattice on {v 0 + mD}, E (X 1 ) = 0, then for y nm > 1,

|y nm | = o( √ n) σ √ n d P{S n = nv 0 + mD} = φ(y nm ) exp y 3 nm √ n Λ y nm √ n 1 + O y nm √ n .
In particular, for

X k with P{X k = -p 2 } = p 1 , P{X k = p 1 } = p 2 , p 1 + p 2 = 1, using Stirling's formula Khintchin in [120] obtained P{ n ν=1 X ν = k -np 2 } = n k p n-k 1 p k 2 = 1 σ √ 2πn e -(y nk ) 2 2σ 2 e - (y nk ) 3 √ n ∞ ν=3 p k-1 1 -(-p 2 ) k-1 ν(ν-1)σ k-1 ( y nk √ n ) ν-3 1 + O y nk √ n ,
where

σ 2 = p 1 p 2 , y nk = k-np 2 σ √
n . For multidimensional case of Theorem 1.83 see [START_REF] Richter | Multi-dimensional local limit theorems for large deviations[END_REF] and for dependent case we recall [START_REF] Chaganty | Large deviation local limit theorems for arbitrary sequences of random variables[END_REF] and [START_REF] Saulis | Limit Theorems on Large Deviations[END_REF]. Now, assume E (X 1 ) = 0 and consider the equation M (s) = t. Let s = s(t) be its unique solution for t ∈ (τ -, τ + ). We have the following local limit theorem for large deviations (see [START_REF] Bahadur | On deviations of the sample mean[END_REF]; [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF], Theorem 6).

Theorem 1.84. Suppose L(X 1 ) is lattice on {mD}, m ∈ Z and E (X 1 ) = 0. Then, σ 2 s > 0 for s ∈ S and for nt taking values of the form mD, m ≥ 0

sup ≤t≤τ + - σ s √ 2πn P{S n = m}) (ρ(s)e -st ) n -D = O 1 n ,
where > 0.

Local limit theorem for the number of renewals. Let X k be nonnegative i.i.d. random variables and E (X k ) = a, Var(X k ) = σ 2 . Put ν(x) = n if S n < x and S n+1 ≥ x, S 0 = 0. A. Nagaev in [START_REF] Nagaev | A local limit theorem for the number of renewals[END_REF] obtained the following local limit theorem for the number of renewals.

Theorem 1.85. If x → ∞ then, uniformly in n

P{ν(x) = n} = 1 2πxσ 2 /a 3 e - (n-x/a) 2 2xσ 2 /a 3 + o 1 √ x .
Local limit theorems for densities and refinements. Let B -1 n (S n -A n ) has density p n (x) where S n = X 1 + . . . + X n and X k are i.i.d.

Theorem 1.86 ([110], Theorem 4.3.1). In order that for some choice of constants

A n , B n > 0 lim n sup x |p n (x) -g α (x)| = 0,
where g α is the density of α-stable distribution (0 < α ≤ 2), it is necessary and sufficient that L(X 1 ) ∈ DA(α) and sup x p n 0 (x) < ∞ for some n 0 ≥ 1. 

Let F n (x) = P{S n -A n ≤ xB n } and F n = a n F ac n + b n F s n where F ac n (F s n ) is absolutely continuous (singular) part.

1). In order that for some choice of constants

A n , B n > 0 lim n ∞ -∞ |p n (x) -g α (x)| dx = 0,
where g α is the density of α-stable distribution (0 < α ≤ 2), it is necessary and sufficient that L(X 1 ) ∈ DA(α) and a n 0 > 0 for some n 0 ≥ 1.

For α = 2 Theorem 1.87 is due Prokhorov ([185]). For finite dimensional generalization see [START_REF] Mamatov | Global limit theorems for distribution funcions in higher dimendional case (in Russian)[END_REF] and [START_REF] Blozenis | A note on the multivariate local limit theorem[END_REF] for infinite dimensional counterexample. The Orlicz spaces case is treated in [START_REF] Bobkov | Local limit theorems for densities in Orlicz spaces[END_REF].

Let

B n = σ √ n and A n = 0 where σ 2 = E (X 2 1
) and E (X 1 ) = 0. The analog of Theorem 1.82 for densities is as follows.

Theorem 1.88 ([110], Theorem 4.5.2). Suppose that E |X 1 | l < ∞ and sup x p n 0 (x) < ∞ for some n 0 ≥ 1. Then, p n (x) = φ(x) 1 + l ν=3 R ν-2 (x) n ν-2 2 +o 1 n l-2 2 
,

where φ(x) = 1 √ 2π e -x 2 2
and R k are as in Theorem 1.82. In particular for l = 3 we have

p n (x) = φ(x) 1 + (x 3 -3x) µ 3 6σ 3 √ n +o 1 √ n .
where µ 3 = E (X 3 1 ). Let E (exp{s 0 |X 1 |}) < ∞ for some s 0 > 0 and Λ(t) stands for the Cramér series (see Theorem 1.83). The following result is due to Richter ([192], Theorem 2). Theorem 1.89. Suppose L(X 1 ) has bounded and continuous density. Then, for x ≥ 1,

x = o( √ n) p n (x) = φ(x) exp x 3 √ n Λ x √ n 1 + O x √ n .
Local limit theorem for residues of linear transforms of sums. Let {X k }, k ∈ {0} ∪ N, be a sequence of non-degenerate random variables taking values on the real line R and defined on a probability space (Ω, F, P). For λ = 0 consider the residues of the linear transform of

S n = X 1 + . . . + X n Λ n (a) = {λS n + a} = (λS n + a) mod 1 = λS n + a -λS n + a , λ, a ∈ R, where x = sup{k ∈ Z ; k ≤ x < k + 1}, Z = {. . . , -1, 0, 1, . . .}. Observe that Λ n (a) ∈ [0, 1), Λ n (k) = Λ n (0) for k ∈ Z and Λ n (a) ≡ {a} if S n takes only multi- ples of 1 λ • Let U 0 denote Lebesque measure on interval [0, 1) ∩ R while U 1 m is the uni- form measure on {0, 1 m , . . . , m-1 m }, m ∈ N. Put µ(θ) = E [e iθX 0 ] and define λ( µ) via λ( µ) • inf{n ∈ N ; | µ(2πnλ)| = 1} = 1, where λ( µ) = 0 if such n does not exist. If λ( µ) > 0 set b = λ( µ)Arg( µ(2π(λ( µ)) -1 λ)). It turns out that the law L(Λ n ) is in the domain of attraction of U λ( µ) under the following condition (1.187) |E [e iθSn ]| ≤ (1 -c(1 -|E [e iθX 0 ]| 2 )) n q , θ ∈ R, n ∈ N,
for some c ∈ (0, 1]∩R and an integer q ≥ 2. Condition (1.187) is satisfied for a functional f defined on digits of continued fractions expansion (see Lemma 1.194) and is used for local limit theorems for ψ-mixing Markov chains (see Lemma 1.5 in [START_REF] Nagaev | More exact statements on limit theorems for homogeneous Markov chains[END_REF] and Proposition 7 in [START_REF] Merlevède | On the local limit theorems for ψ-mixing Markov chains, ALEA[END_REF]).

Theorem 1.90 ([220], Theorem 1). Suppose that identically distributed, non-degenerate random variables

{X k }, satisfy (1.187). If λ( µ) = 0 then Λ n (a) converges to U 0 . If λ( µ) > 0 and S n then Λ n (-nbλ) converges to U λ( µ) .
Theorem 1.90 includes results in [START_REF] Dvoretsky | Sums of random integers reduced mod m[END_REF] and [START_REF] Nagaev | A case of convergence to the uniform distribution in a segment[END_REF] (for identically distributed random variables) and reveals similar dichotomy as in the classical local limit theorem (cf. Theorem 10.17 in [START_REF] Breiman | Probability[END_REF]). In view of this it is classified as a local limit theorem (with the normalizing sequence ≡ 1).

Corollary 1.91. Suppose integer valued, identically distributed, non-degenerate random variables {X k } satisfy (1.187) and

I ⊂ [0, 1). Then either P{Λ n (a) ∈ I} → n U 0 (I) or P{Λ n (-nbλ} ∈ I) → n U 1 m (I), for some integer m > 1 and b ∈ R.
It seems that the limiting behaviour of random sums mod 1 was for the first time investigated by Lévy ([134]).

The ergodic case

Aside the study of intrinsic properties of the various kind of ergodic sums, such as L pconvergence, mixing properties, spectral representation, almost everywhere convergence, recurrence, variational inequalities, and spectral regularization inequalities, the central limit theorem and the local limit theorem are tools of investigation in this area, so different from Probability theory. Results obtained in this far-off setting show the validity of these limit theorems (for bounded variation functions) for a broad variety of transformations. This is a very active research's area, covered by an abundant and still flourishing literature.

We essentially consider local limit theorems for piecewise monotonic transformations, and the used methods. Local limit theorems related to sub-shifts of finite type, toral automorphims are not considered, we refer to Roger's Thesis [START_REF] Roger | Propriétés stochastiques de systèmes dynamiques et thérorèmes limites: deux exemples[END_REF] for instance, for a good introduction and results. We do not consider either related results obtained in other important specific areas, such as Sinaï's billard. We refer for an introduction to Bunimovich, Sinai and Chernov [START_REF] Bunimovich | Statistical properties of two-dimensional hyperbolic billiards[END_REF], for instance.

Concerning the (numerous) results for interval expanding maps, we refer, among many other papers, to Rousseau-Egele [START_REF] Rousseau-Egele | Un Theoreme de la Limite Locale Pour une Classe de Transformations Dilatantes et Monotones par Morceaux[END_REF], Broise [START_REF] Broise | Transformations dilatantes de l'intervalle et théorèmes limites[END_REF] nice and informative synthesis' article completing Rousseau-Egele's, Calderoni, Campanino and Capocaccia [START_REF] Calderoni | A local limit theorem for a sequence of interval transformations[END_REF], Gouëzel [START_REF] Gouëzel | Berry-Esseen theorem and local limit theorem for non uniformly expanding maps[END_REF] for extensions to non uniformly expanding maps. A typical historical example is the transformation (2x) mod(1), for which Kac [START_REF] Kac | On the distribution of values of sums of the type f (2 k t)[END_REF] established in 1940 the validity of the central limit theorem for a class of Lipschitz functions.

Local limit theorem for interval expanding maps. Let I = [0, 1] endowed with the normalized Lebesgue measure m. Here we discuss an important family of expanding transformations for which the central and local limit theorems hold for large classes of functions.

Lasota and Yorke have [START_REF] Lasota | On the existence of invariant measures for piecewise monotonic transformations[END_REF] shown that if T : I → I is an expanding transformation, which is piecewise of class C 2 , then there exists a measure µ on I, which is T -invariant, absolutely continuous with respect to m and whose density has bounded variation. Put for f ∈ L 0 (m) and n ≥ 1, S n f = n-1 k=0 f • T k . The existence of the central limit theorem (for functions with bounded variation) was proved by Wong [START_REF] Wong | A central limit theorem for piecewise monotonic mappings of the unit interval[END_REF], provided that the limit

σ 2 = lim n→∞ Var(Sn) n
exists and is positive. The approach used for proving the central limit theorem and the local limit theorem (non lattice and lattice case) is spectral, and based on a method of spectral decomposition of the operator, already used for Markov chains by Doeblin [START_REF] Doeblin | Remarques sur la théorie métrique des fractions continues[END_REF] and Fortet [START_REF] Fortet | Sur une suite également répartie[END_REF], whom in particular studied the continued fraction transformation, and the transformation (2x) mod(1). This transformation was also studied by Kac [START_REF] Kac | On the distribution of values of sums of the type f (2 k t)[END_REF], by means of another approach based on Probability theory and Fourier analysis.

In a nicely written paper [START_REF] Rousseau-Egele | Un Theoreme de la Limite Locale Pour une Classe de Transformations Dilatantes et Monotones par Morceaux[END_REF], Rousseau-Egele investigated these questions more precisely (central limit theorem with remainder term, and local limit theorem) for expanding piecewise monotonic transformations. Let T : I → I be an application enjoying the following property. There exists a countable subdivision (I j ) of I where I j = (a j-1 , a j ) is an open interval such that:

(1) (local inversion condition) The restriction of T to I j is strictly monotone and can be extended into an application of class C 2 on Īj .

(2) T (I j ) is composed of finitely many distinct intervals.

(3) (dilatation condition) There exists an integer n such that γ = inf x∈I (T n ) (x) > 1.

The Perron-Frobenius operator associated to T is the operator defined by (1.188)

I φf.g dm = I f.g • T dm (f ∈ L 1 (m), g ∈ L ∞ (m))
This is a positive contraction of L 1 (m) and one has φf = f if and only if the measure µ = f m is T -invariant. Condition (1) allows one to write this operator under the explicit form

(1.189) φf (x) = j f (σ j x)ϕ j (x)χ j (x),
where σ j is the inverse of T over J j = T ( Īj ), ϕ j (x) = |σ j (x)| and χ j is the indicator function of J j . The variation of a function f : I → C is defined as follows:

(1.190) v(f ) := sup 0=t 0 <•••<tn=1 n∈N n i=1 |f (t i ) -f (t i-1 )|.
(By Jordan's theorem, f is of bounded variation, v(f ) < ∞, if and only if it can be written as a difference of two nondecreasing functions.) Definition (1.190) can be extended to f ∈ L 1 (m) by taking v(f ) as being the infimum of v(g), for g in the class modulo m of h. [START_REF] Rousseau-Egele | Un Theoreme de la Limite Locale Pour une Classe de Transformations Dilatantes et Monotones par Morceaux[END_REF], Th. 5). Let f be of the form

Let V denote the sub-space of L 1 (m) of functions f such that v(f ) < ∞. Then V equipped with the norm f V = v(f ) + f 1 is a Banach space, which is dense in L 1 (m). Theorem 1.92 ([
f (x) = η + k(x)
where k(x) is integer-valued, with non-integer integral, η being some real. Assume that conditions (1), ( 2), (3) are fulfilled. Further assume that T is weakly mixing, and that for f ∈ V, the functional equation

f = k + ϕ • T -ϕ has no solution in ϕ ∈ V, k ∈ R. Then lim n→∞ σ √ nµ z + S n f -nµ(f ) ∈ ∆ - 1 √ 2π e -z 2 2σ 2 n ν(∆ -z -n(η -µ(f )) = 0,
uniformaly for every real z and any finite interval ∆, where ν is the counting measure on Z.

The whole strategy used in the proof consists with studying the spectrum of φ, acting as an operator on V, in view of applying the Ionescu-Tulcea and Marinescu Theorem to φ and the pair (L 1 (m), V), in order to get a decomposition of the operator φ n of the type

φ n = p i=1 λ n i φ i + ψ n , n ≥ 1.
This decomposition next allows one to estimate the characteristic function of S n (f ), f ∈ V.

Theorem 1.92 applies to the following examples (conditions (1), ( 2), (3) are fulfilled, moreover these transformations are strongly mixing):

Example 1.93 (β-transformations). T x = {βx}, β > 1. The associated Perron-Frobenius operator is defined by

φf (x) = 1 β [β]-1 j=0 f x + j β + 1 β f x + [β] β χ [0,[β]] (x).
Example 1.94 (Continued fraction transformation). T x = 1 x , T (0) = 0. The associated Perron-Frobenius operator is

φf (x) = ∞ j=1 f 1 j + x 1 j + x 2 .
This important example is more developed below, where further another (non-spectral) approach is introduced, and a local limit theorem stated with hints of proof.

The continued fractions case. Any irrational number x ∈ (0, 1] can be uniquely expressed as a simple non-terminating continued fraction x = [0 ; a 1 (x), a 2 (x), a 3 (x) . . .], where Theorem 14). It follows from Euclid's algorithm that the continued fraction transformation T defined by

[0 ; x 1 , . . . , x n ] = 1 x 1 + 1 x 2 + 1 x 3 + . . .+ 1 xn , n ∈ N = {1, 2, . . .} and a n (x) ∈ N ([121],
T (x) = 1 x - 1 x = 1 x -max{n ∈ N ; nx ≤ 1}, x ∈ (0, 1],
generates natural numbers a n (x), called partial quotients, or digits via

a 1 (x) = 1 x , a n+1 (x) = a 1 (T n (x))
(cf. [START_REF] Iosifescu | Metrical theory of continued fractions[END_REF], p.14). Let P denote Gauss' measure, i.e.

P(A) = 1 ln 2 A λ(dx) 1 + x ,
where A ⊆ (0, 1) and λ is Lebesgue: measurable set and measure, respectively. It is wellknown that P is an invariant measure for T (cf. [START_REF] Iosifescu | Metrical theory of continued fractions[END_REF], Theorem 1.2.1). Besides, if F m k denote the σ-algebra generated by a k , a k+1 , . . . , a m then by Corollary 1.3.15 in [START_REF] Iosifescu | Metrical theory of continued fractions[END_REF] (1.191)

ψ n = sup k∈N sup{| P(A ∩ B) P(A) • P(B) -1|; P(A) • P(B) > 0, A ∈ F k 1 , B ∈ F ∞ n+k } ≤ C n , where C ≤ 2 ln 2 7-4 √ 2 , = 7-4 √ 2 2
and ψ 1 ≤ 2 ln 2 -1 < 0.39 (i.e. {a n } is an exponentially fast ψ-mixing sequence (see [START_REF] Bradley | Introduction to Strong Mixing Conditions[END_REF])).

In order to state normal local limit theorem fix a Borel function f taking values on the real line R and such that E [f (a 1 )] = 0. Define also the sequence b n as follows: if

E [f 2 (a 1 )] < ∞ then b n = σ √ n where σ 2 = E [f 2 (a 1 )] + 2 ∞ k=2 E [f (a 1 )f (a k )] (see [110], Theorem 18.5.2) and if E [f 2 (a 1 )] = ∞ then b n = sup{x > 0 ; x -2 E [f 2 (a 1 )I [|f (a 1 )|≤x] ] ≥ 1 n }, meaning that b 2 n ∼ nE [f 2 (a 1 )I [|f (a 1 )|≤bn] ]. Theorem 1.95. Assume E [f 2 (a 1 )I [|f (a 1 )|≤x] ] is a slowly varying function and E [f (a 1 )] = 0.
If f (a 1 ) is lattice distributed on {v 0 + mD : m ∈ Z}, Z = {. . . , -1, 0, 1, . . .}, for some v 0 ∈ R and D > 0 the maximal span then (1.192) sup

m∈Z | √ 2πb n P{ n ν=1 f (a ν ) = nw + kd} -D exp{- (nv 0 + mD) 2 2b 2 n }| = o(1); if f (a 1 ) is non-lattice distributed then (1.193) sup r∈R | √ 2πb n E [G( n ν=1 f (a ν ) -r)] -exp{- r 2 2b 2 n } G(y)dy| = o(1),
for any continuous function G with a compact support. Conversely, assume that (1.193) or (1.192) holds for some sequence b n , then the function

x → E [f 2 (a 1 )I [f (a 1 )≤x]
] is a slowly varying function in the sense of Karamata, the span D is maximal and E [f (a 1 )] = 0.

It should be noted that, using spectral perturbation method, the normal LLT in more general case of Gibbs-Markov maps but under more restrictive assumption on regularity of the probability tail of marginal distribution was obtained in [2]. For stable, non-normal LLT for continued fraction see e.g. [START_REF] Lévy | Fractions continues aléatoires[END_REF], [START_REF] Heinrich | Rates of convergence in stable limit theorems for sums of exponentially ψ-mixing random variables with an application to metric theory of continued fractions[END_REF], [START_REF] Hensley | The statistics of the continued fraction digit sum[END_REF] or [START_REF] Aaronson | Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps[END_REF].

The proof of Theorem 1.95 (see [START_REF] Szewczak | A local limit theorem for continued fractions[END_REF] for details) does not make use of the spectral perturbation method (cf. [START_REF] Nagaev | More exact statements on limit theorems for homogeneous Markov chains[END_REF], [START_REF] Séva | On the local limit theorem for non-uniformly ergodic Markov chains[END_REF], [START_REF] Hennion | Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness[END_REF]). The general strategy (see [START_REF] Gnedenko | Limit distributions of sums of independent random variables[END_REF], §49) is to use Fourier transform inversion formula over distributional limit theorem (Theorem 3 in [START_REF] Szewczak | On limit theorems for continued fractions[END_REF]). This is possible by the following lemma inspired by Lemma 1.5 in [START_REF] Nagaev | More exact statements on limit theorems for homogeneous Markov chains[END_REF].

Lemma 1.96. Let f be a Borel function. Then

(1.194) |E λ [e iθSn ]| ≤ (1 - 1 324 (1 -|E λ [e iθf (a 1 ) ]| 2 )) n-1 2 , θ ∈ R, n ∈ N,
where E λ is the expectation with respect to the Lebesgue measure.

Moreover, this method is applicable for sums of additive functionals of non-stationary (non-homogeneous), non-lattice Markov chains as one can see from the proof of Theorem 1 in [START_REF] Merlevède | On the local limit theorems for ψ-mixing Markov chains, ALEA[END_REF]). We apply this result for the sequence {f k (a k )} where f k are Borel function. Define incomplete quotients via s n = (s n-1 + a n ) -1 and s 0 = 0. By Corollary 1.2.8 in [START_REF] Iosifescu | Metrical theory of continued fractions[END_REF] (see also p.36) s n is a Markov chain. Moreover, by the proof of Lemma 1 on p.432 in [START_REF] Szewczak | A local limit theorem for continued fractions[END_REF] {s n } satisfies condition (2) in [START_REF] Merlevède | On the local limit theorems for ψ-mixing Markov chains, ALEA[END_REF] [START_REF] Merlevède | On the local limit theorems for ψ-mixing Markov chains, ALEA[END_REF] we get the following.

with a = 3 -1 and b = 2. Now, observe that f k (a k ) = f k ( 1/s k ). Define σ 2 n = E( n k=1 f k (a k )) 2 , τ 2 n = n k=1 E(f 2 k (a k )), φ k (t) = E(exp{itf k (a k )}) and set γ = b -1 a 4 . By Theorem 1 in
Corollary 1.97. Suppose that E(f k (a k )) = 0, k ≥ 1 and

(1.195) τ -2 n n k=1 E(f k (a k )I(|f k (a k )| ≥ τ n )) → 0 > 0.
Assume also that there is δ > 0 and n 0 ∈ N and some real function g such that exp{-g} is integrable on R such that for 1 ≤ |u| ≤ δτ n and n > n 0 we have

(1.196) γ 8 n k=1 (1 -|φ k (u/τ n )| 2 ) > g(u).
Finally, assume that for u = 0 there is c(u), an open interval O u containing u and an n 0 = n 0 (u) such that for all t ∈ O u , and n > n 0 we have

(1.197) γ 8 ln τ n n k=1 (1 -|φ k (t)| 2 ) ≥ c(u) > 1.
Then, (1.198) sup

r∈R | √ 2πσ n E[G( n ν=1 f ν (a ν ) -r)] -exp{- r 2 2σ 2 n } G(y)dy| = o(1),
for any continuous function G with a compact support.

Local limit theorems for Riesz-Raikov sums. These sums are of the type 0≤n<N f (θ n t),

where θ > 1 and f belongs to a class of relatively smooth functions. Suppose that f is an Hölder continuous function and that θ is a Pisot-Vijayaragavan number. In Petit [START_REF] Petit | θ-transformations, θ-shifts and limit theorems for some Riesz-Raikov sums[END_REF], it is proved that lim

N →∞ N -1 1 0 S n f (t) 2 dt = σ 2 < ∞.
If σ 2 > 0, then the central limit theorem holds,

1 σ √ N S N f D ⇒ N(0, 1), N → ∞.
Further a speed of convergence is obtained and a local limit theorem established.

Miscellaneous results

(1) Linear random fields. Suppose X j = i∈Z d a i j-i , where i are i.i.d with Then, for all complex-valued continuous functions

E ( i ) = 0 and E 2 i < ∞. Assume also that i∈Z d a 2 i < ∞. Let Γ d n be a sequence of finite subset of Z d such that card(Γ d n ) → n ∞. Let 1 ≤ k ≤ J n be integers and n(k) = (n 1 (k), . . . , n d (k)) ∈ Z d , m(k) = (m 1 (k), . . . , m d (k)) ∈ Z d , where n i (k) ≤ m i (k), 1 ≤ i ≤ d. Any set of the form Γ d n (k) = d i=1 [n i (k), m i (k)] ∩ Z d is called a discrete rectangle. Set S n = j∈Γ d n X j and B n = Var(S n ).
h such that |h| ∈ L 1 (R d ) lim n→∞ sup u∈R d √ 2πB n E (h(S n -u)) -exp{-u/2B 2 n } h(x)λ(dx) = 0,
where λ is the Lebesgue measure.

(2) Operator form. Let {ξ k } k∈Z + be a homogeneous Markov chain with the transition probability P(x, A), x ∈ R, A -Borel set, with µ -the initial distribution and π -the stationary distribution. Let f be a Borel function X k = f (ξ k ) and S n = n k=1 X k , n = 1, 2, . . . . Let us define the following uniform recurrence condition (Ψ), (cf. [START_REF] Iscoe | Large deviations of uniformly reccurent Markov additive processes[END_REF]): there exist a > 0 and b < ∞ such that for every Borel set A, µ(A) > 0, (1.199) aµ(A) ≤ P (x, A) ≤ bµ(A), µ -a.e.

Under this condition σ 2 = lim n -1 Var(S n ) exists in (0, ∞). Let n denote the density function of the standard normal law. We have the following local limit theorems in operator form.

Theorem 1.99 ([217], Theorem 4). Assume (1.199). Suppose X 0 is lattice on {v 0 + mD} for some Borel function f such that f ∈ L 2 (µ), E π [f ] = 0 and 0 ≤ h ∈ L ∞ (µ) is not vanishing on {v 0 + mD}. Then

sup km∈Z ess sup x σ √ n d E [I [Sn=nv 0 +mD] h(ξ n ) | ξ 0 = x] -φ( nv 0 + mD σ √ n )E π [h] = o(1).
Theorem 1.100 ([217], Theorem 3). Assume (1.199). Let X 0 be non-lattice for some f ∈ L 2 (µ), E π [f ] = 0. Then for any continuous function G with a compact support and

0 ≤ h ∈ L ∞ (µ) sup r∈R ess sup x |σ √ nE [G(S n -r)h(ξ n ) | ξ 0 = x] -φ( r σ √ n ) G(y)dy E π [h]| = o(1).
(3) Nonconventional sums. Suppose {ξ k } is a homogeneous Markov chain with transitions P (x, A) and stationary distribution π. Consider non-conventional sums

S n = n k=1 F (ξ k , ξ 2k . . . , ξ lk ),
where l is fixed integer and F is a Borel function on R d . Assume E (F (ξ k , ξ 2k . . . , ξ lk )) = 0 and E (F 2 (ξ k , ξ 2k . . . , ξ lk )) < ∞. For any real numbers x 1 , . . . , x l-1 set A x 1 ,...,x l-1 = {h ≥ 0 | F (x 1 , . . . , x l-1 , x) ∈ {kh ; k ∈ Z}}, π almost surely, and

B x 1 ,...,x l-1 = {h ≥ 0 | F (x 1 , . . . , x l-1 , x) -F (x 1 , . . . , x l-1 , y) ∈ {kh ; k ∈ Z}}, π 2 = π × π almost surely. If B a 1 ,...,x l-1 = ∅ define h(x 1 , . . . , x l-1 ) = sup{h | h ∈ B x 1 ,...,x l-1 }.
We call the case lattice one if there exists h > 0 such that

h(x 1 , . . . , x l-1 ) = h ∈ A x 1 ,...,x l-1 π l-1 = × l-1 i=1 π almost surely. If π l-1 {(x 1 , . . . , x l-1 ) | B x 1 ,...,x l-1 = ∅} > 0
then we call the case non-lattice.

Theorem 1.101 ([93], Theorem 2.6). Assume that there exists integer m such that (1.199) holds for m-step transition probability P m (x, A). In the lattice case

sup k∈Z σ √ n h P{S n = k} -φ( kh σ √ n ) = o(1).
In the non-lattice case for any continuous function G with a compact support

sup r∈R |σ √ nE (G(S n -r)) -φ( r σ √ n ) G(y)dy | = o(1).
For extensions to dynamical systems see Chapter 2 in [START_REF] Hafouta | Nonconvetional limit theorems and random dynamics[END_REF].

(4) A generalization of Richter's theorem. Let {T n } n≥1 be a sequence of random variables taking only integral values with maximal span 1. Assume that the moment generating function M n (s) = k∈Z P (T n = k)e ks satisfy M n (s) = exp{φ n u(s) + v(s)}(1 + O(κ -1 n )) as n → ∞, uniformly for |s| ≤ ρ, s ∈ C, ρ > 0, and that the following hold: 1. lim n φ n = ∞; 2. u(s) and v(s) do not depend on n, are analytic for |s| ≤ ρ and u (0) = 0; 3. lim n κ n = ∞; 4. there exist constants 0 < ≤ ρ and c = c( , ρ), where > 0 may be taken arbitrarily small but fixed, such that

M n (r + it) M n (r) = O(e -cφn ), uniformly for -ρ ≤ r ≤ ρ and ≤ |t| ≤ π, as n → ∞. Set u m = u (m) (0), v m = v (m) (0), µ n = u 1 φ n , σ 2 n = u 2 φ n .
We have the following generalizations of Theorem 1.83 (see also [START_REF] Chaganty | Large deviation local limit theorems for arbitrary sequences of random variables[END_REF], [START_REF] Kolchin | Random Mappings, Optimization Software[END_REF] and [START_REF] Joutard | Asymptotic approximation for the probability density function of an arbitrary sequence of random variables[END_REF]).

Theorem 1.102 ([105], Theorem 1). If k = µ n + xσ n , x = o( √ φ n ), then (1.200) 
σ n P{T n = k} = φ(x) exp{ x 3 √ φ n Λ( x √ φ n )} 1 + 1≤m≤ν Π m (x) σ m n + O |x| ν+1 + 1 ( √ φ n ) ν+1 + |x| + 1 κ n √ φ n ,
where ν is non-negative integer (depending upon the error term κ -1 n ) and Π m (x) are polynomials of degree m such that Π 2i has only even powers of x and Π 2i-1 has only odd powers of x, i = 1, 2, . . ..

For example, Π 0 (x) = 1, Π 1 (x) = v 1 - u 3 2u 2 x, Π 2 (x) = v 2 2 + v 2 1 2 - v 1 u 3 u 2 + 5u 2 3 8u 2 2 - u 4 4u 2 x 2 + 1 8 - v 2 2 - v 2 1 2 + v 1 u 3 2u 4 - 5u 2 3 24u 2 4 
.

Poisson approximation-Another coupling method.

Here we prospect the role of the Poisson distribution in the study of the local limit theorem and briefly describe a few of the most remarkable results. Under certain simple conditions, binomial distributions can be approximated by Poisson distributions. This is for instance expressed by Le Cam's inequality below. This yields if necessary the importance of this law. The Poisson distribution, however, not always attracted attention. Citing Katti and Rao's review of Haight's 1967 book, one find "If someone had asked us last year to write a book on the Poisson distribution, our immediate reaction would have been, "What for?". We are accustomed to the Poisson starting from the first introductory course in statistics and prone to fed that this is just one of the simple distributions to be used to illustrate new theories that one might develop. It was thrilling to discover how wrong such a judgment can be." Things much changed since and the study of Poisson distribution, Poisson-Dirichlet distribution, scale-invariant Poisson processes [START_REF] Arratia | The Poisson-Dirichlet distribution and the scaleinvariant Poisson process[END_REF], the important approximation properties to sums of independent random variables, together with the study of logarithmic combinatorial structures [START_REF] Arratia | Logarithmic Combinatorial Structures[END_REF] form a whole active research's domain with many concrete applications.

Poisson approximation to binomial distribution. Let X n1 , . . . X nn be n ≥ 1 independent random variables taking values in N and let S n = X n1 + . . . + X nn . Put The convergence can be strengthened and in fact Wang [START_REF] Wang | A compound Poisson convergence theorem[END_REF] showed the following generalized local limit theorem, improving upon Johnson and Simons 1971's analog result [START_REF] Simons | On the convergence of binomial to Poisson distribution[END_REF] for the subcase np n = λ. In Wang [START_REF] Wang | A compound Poisson convergence theorem[END_REF], other modes of convergence are also considered and compared. Le Cam's inequality. Let S n be the sum of n independent binomial random variables X i with P{X i = 1} = p i and set λ = p 1 + . . . + p n . Le Cam [START_REF] Cam | An approximation theorem for the Poisson binomial distribution[END_REF] established in 1960 the following remarkable inequality Theorem 1.104.

∞ k=0 P{S n = k} -e -λ λ k k! ≤ 2 n i=1 p 2 i .
Taking p i = λ/n and noting that the right side simplifies to 2λ 2 /n, we get the classical Poisson limit (1.202) with a control of the error term. Le Cam's inequality identifies the sum n i=1 p 2 i as a quantity governing the quality of the Poisson approximation.

Using a coupling method, Hodges and Le Cam [START_REF] Hodges | The Poisson approximation to the Poisson binomial distribution[END_REF] gave an elementary proof of this result. Coupling methods are elegant and powerful, the Bernoulli extraction part of a random variable can be ranged in this category of methods. Other powerful methods are the semi-group method and the Chen-Stein method. These are nicely described in several papers, notably the one of Steele [START_REF] Steele | Le Cam's inequality and Poisson Approximations[END_REF].

Hodges and Le Cam proof goes as follows. Let Y 1 , Y 2 , . . . be independent Poisson random variables with E Y i = p i and chosen so that P{X i = Y i } is as large as possible. More precisely Consider the case when X is a sum of independent of non-negative integer valued random variables X i , and Y a suitably approximating Poisson variable. Le Cam's inequality can be reformulated as follows:

(1.205)          P{X i = Y i = 1} = p i e -p i P{X i = 1 , Y i = 0} = p i 1 -e -p i P{X i = Y i = 0} = e -p i -p i 1 -e -p i P{X i = 0 , Y i = y} = p y i e -p i y! y = 2, 3, . . .

It is necessary to have

P{X i = Y i = 0} ≥ 0 which is fulfilled if p i ≤ 0, 8. Let T n = n i=1 Y i , n ≥ 1.
Let X 1 , . . . , X n be independent Bernoulli random variables with respective success probabilities p 1 , . . . , p n and let Y be Poisson with mean n i=1 p i . Then

d n i=1 X i , Y ≤ n i=1 p 2 i . (1.211)
We also state Franken's result [START_REF] Franken | Approximation der Verteilungen von Summen unabhängiger nichtnegativer ganzzahler Zufallsgrossen durch Poissonsche Verteilungen Mat[END_REF] concerning d 0 .

Let X 1 , . . . , X n be independent non-negative, square integrable integer-valued random variables, and let Y be Poisson with mean n i=1 E X i . Then

d 0 n i=1 X i , Y ≤ 2 π n i=1 E X 2 i + E X i (X i -1) . (1.212)
An extension of these results to the case of dependent non-negative integer-valued random variables was obtained in Serfling [START_REF] Serfling | A general Poisson approximation[END_REF]Th. 1].

1.6. Some applications

The field of applications of the local limit theorem is not so well known from nonspecialists, but reveals to be impressive. We only introduce, through concrete examples or problems, to some classes of applications, which are just parts of major domains of research.

(1) Asymptotic enumeration. Let a n (k) be a double sequence of non-negative real numbers. We associate the normalized double sequence (1.213) p n (k) = a n (k) j a n (j)

.

We say that a n (k) is asymptotically normal with mean µ n and variance σ 

p n (k) - 1 √ 2π x -∞ e -t 2 /2 dt = 0.
Equivalently, we say that the sequence a n (k) satisfies the central limit theorem.

If for some set of reals numbers S, there are numbers µ n and σ n such that

(1.215) lim n→∞ sup x∈S σ n p n ([σ n x + µ n ]) - 1 √ 2π e -x 2 /2 dt = 0,
we also say that the sequence a n (k) satisfies the local limit theorem on S.

The first results of this kind were obtained for Stirling numbers by Moser and Wyman [START_REF] Moser | Asymptotic development of the Stirling numbers of the first kind[END_REF], Harper [START_REF] Harper | Stirling behavior is asymptotically normal[END_REF] and Lieb [START_REF] Lieb | Concavity properties and a generating function for Stirling numbers[END_REF]. The existence of a central limit theorem for a sequence a n (k) of numbers arising in enumeration, provides a qualitative feel for their behavior, but a local limit theorem is better since it provides asymptotic information about a n (k) for |k -µ n | = O(σ n ). However the step from (1.214) to (1.215) is often not easy. It would become easier when in addition, some smoothness of a n (k) exists. In [15, Th. 1], Bender proved the following central limit theorem based on the nature of the generating function a n (k)z n w k , and gave several applications (to a dimer problem, to ordered sets of partitions, and Eulerian numbers). Theorem 1.105. Let f (z, w) have power series expansion

f (z, w) = n,k≥0
a n (k)z n w k with non-negative coefficients. Suppose that:

(i)
there exists an A(s) continuous and non-zero near 0, (ii) an r(s) with bounded third derivative near 0, (iii) a non-negative m, and ε, δ > 0 such that

1 - z r(s) m f (z, e s ) - A(s) 1 -zr(s) is analytic and bounded for |s| < ε |z| < |r(0)| + δ. Define (1.216) µ = - r (0) r(0) , σ 2 = µ 2 - r (0) r (0) 
If σ = 0, then (1.214) holds with µ n = nµ and σ 2 n = nσ 2 . Bender also indicated that certain smoothness conditions on the a n (k) are sufficient to conclude (1.214) from (1.215). Recall that a sequence a(k) is unimodal if it is first non-decreasing and then non-increasing. He showed in particular that if (1.214) holds, σ n → ∞, and p n (k) are unimodal for sufficiently large n, then for every ε > 0, the local limit theorem holds on S = {x : |x| ≥ ε}.

Further if a n (k) are log concave: (a n (k)) 2 ≥ a n (k -1)a n (k + 1), then (1.215) holds from (1.214) with S = R. Furthermore, the rate of convergence depends only on σ n and the rate of convergence in (1.214) Remark 1.106. Canfield [31, p. 286] has noted that concluding (1.214) from (1.215) requires in fact that certain a n (k) are non-zero.

For the case when P n (x) = k a n (k)x k are polynomials whose roots are all reals and non-positive, Harper [START_REF] Harper | Stirling behavior is asymptotically normal[END_REF] showed that if σ n → ∞, then the local limit theorem holds with S = R. Bender showed how to recover simply Harper's result from a general central limit theorem and using Newton's inequality to show that p n (k) are log concave. Applications to Eulerian numbers, Stirling numbers of the first kind and of the second kind, separated samples, are also given.

Bender's central and local limit theorems were since extended to wider classes of generating functions, and to some general combinatorial structures, see for instance Flajolet and Soria [START_REF] Flajolet | Gaussian limiting distributions for the number of components in combinatorial structures[END_REF], Gao and Richmond [START_REF] Gao | Central and local limit theorems applied to asymptotic enumeration IV, multivariate generating functions[END_REF] and the references therein.

(2) Coefficients of polynomials of binomial type. A sequence of polynomials (P n ) n≥0 satisfying (1.217)

P n (x + y) = n k=0 n k P k (x)P n-k (y),
and having P 0 (1) = 1, is said to be of binomial type. For a sequence of polynomials to be of binomial type, it is necessary and sufficient that there exists a (formal) power series lacking constant term such that

(1.218) exp(xg(u)) = ∞ n=0 P n (x) u n n! .
Expressing g(u) as an exponential generating function

(1.219) g(u) = ∞ n=0 g n u n n! ,
expansion (1.218) reveals the following identity for the coefficients s(n, k) of P n (x)

(1.220) s(n, k) = 1 k! n v 1 , . . . , v k g 1 . . . g k .
Canfield [31, Th. II] proved the following local limit theorem.

Theorem 1.107. Let s(n, k) be the coefficients of polynomials of binomial type (it is not assumed that g(u) is a polynomial). Assume that the s(n, k) satisfy the central limit theorem (1.214) for some numbers µ n and σ n → ∞, and that the following conditions are satisfied:

(i) s(n, k) are log concave: (s(n, k)) 2 ≥ s(n, k -1)s(n, k + 1). (ii)
For each n, {k : s(n, k) = 0} is a bounded interval.

Then the s(n, k) satisfy the local limit theorem with S = R. Consequently,

(1.221) s(n, µ n + xσ n ) ∼ P n (1) σ n √ 2π e -x 2 /2 , as n → ∞,
where x = O(1).

Remark 1.108. We note that condition (ii) excludes from the scope of the above Theorem the important case when the set {k : s(n, k) = 0} is infinite. On the other hand by Exercise 11 in Ch. 2, §5 in [START_REF] Riordan | Combinatorial identities[END_REF] we have

P n (1 + 2x) = n ν=0 n ν 2 x ν (1 + x) n-ν ,
where P n are Legendre polynomials. If we substitute x → x 1-x then we get

(1 -x) n P n ( 1 + x 1 -x ) = n ν=0 n ν 2 x ν .
Finally we put in the latter 

x = p 2 (1-p) 2 , p ∈ (0, 1 2 ) so that (1.223) (1 -2p) n P n ( 1 -2p + 2p 2 1 -2p ) = n k=0 b 2 (k, n, p) = P{B n -Bn = 0}. For p = 1-x+ √ x 2 -1 2 in (1.223) we have σ 2 = 1 -x 2 + x √ x 2 -
(x) = 1 √ 2πn (x + √ x 2 -1) n x+ √ x 2 -1 √ x 2 -1 (1 + o(1)).
Similarly one can use asymptotic expansions (see Theorem 1 in §51, [START_REF] Gnedenko | Limit distributions of sums of independent random variables[END_REF]) to obtain the following Theorem 1.110. For x > 1 we have

P n (x) = 1 √ 2πn (x + √ x 2 -1) n x + √ x 2 -1 √ x 2 -1 1 + 1 8n x -2 √ x 2 -1 √ x 2 -1 + o 1 n .
This approach was used by Maejima and Van Assche to obtain asymptotics for more general Jacobi polynomials and other orthogonal polynomials (see [START_REF] Maejima | Probabilistic proofs of asymptotic formulas for some classical polynomials[END_REF]).

(4) Allocation problems. Allocation (occupancy) problems originates in statistical physics (Maxwell-Boltzmann statistics). In the 1930's nonparametric statistical tests led to an interest in allocation problems. Consider for instance the following model: n balls are distributed in m boxes in such a way that all the m n arrangements are equally probable. Denote by µ r (m, n) (r = 0, 1, . . . , n) the number of boxes containing exactly r balls.

Sevastyanov and Chistyakov [START_REF] Chistyakov | Asymptotic normality in the classical ball problem[END_REF] proved that if n = [ma], 0 < a < ∞, and m → ∞, then for every s = 0, 1, . . . the random variables µ r (m, n) (0 < r < s) have an asymptotic (s + 1)-dimensional normal distribution. Kolchin [START_REF] Kolchin | A certain class of limit theorems for conditional distributions[END_REF] later showed the following result: If n = [ma] where 0 < a < ∞, then for any r = 0, 1, . . . we have (1.224) lim

m→∞ σ r √ m P{µ r (m, n) = j} -φ j -mp r σ r √ m = 0 uniformly in j for |j -mp r | < K √ m, 0 < K < ∞, where φ(x)
is the normal density function, p r = e -α α r /r! and

σ 2 r = p r 1 -p r - p r α (r -α) 2 .
The proof is based on Gnedenko's theorem.

(5) Random permutations. Among the n! permutations of (1, 2, . . . , n) a permutation is chosen at random in such a way that all the n! permutations are equally probable. Denote by a(n) the number of cycles in this permutation. Then we have (1.225) P{a(n) = j} = S(n, j)/n! (j = 1, 2, . . . , n)

where S(n, j), j = 1, 2, . . . , n is a Stirling number of the first kind. Goncharov proved that

(1.226) lim n→∞ P α(n) -log n √ log n ≤ x = Φ(x) = 1 √ 2π e -u 2 /2 du.
Kolchin [START_REF] Kolchin | A problem of the allocation of particles in cells and cycles of random permutations[END_REF] proved the corresponding local limit theorem, that is

(1.227) lim n→∞ log nP{a(n) = j} -φ j -log n √ log n = 0,
uniformly with respect to j in the interval |j -log n| < K(log n) 7/12 . This result provides an asymptotic formula for S(n, j), namely,

(1.228) S(n, j) ∼ n! √ log n φ j -log n √ log n as n → ∞ if |j -log n| < K(log n) 7/12
. Golomb [START_REF] Golomb | Random permutations[END_REF] observed that if L n is the expected length of the longest cycle in a random permutation of (1, 2, . . . , n), then the limit lim n→∞ Ln n = λ exists. Shepp and Lloyd [START_REF] Lloyd | Ordered cycle length in a random permutation[END_REF] proved that

(1.229) λ = ∞ 0 exp -x - ∞ x e -y y dy dx.
Let S n denote the symmetry group. The order of a permutation g ∈ S n is the smallest positive integer m for which g m = e, the identity permutation. Let us choose a permutation at random among the n! permutations of S n so that all the n! permutations are equally probable, and let ν n denotes the order of the random permutation. Erdős and P. Turán [START_REF] Erdős | On some problems of a statistical group theory. III[END_REF] showed that (1.230) lim

n→∞ P log ν n -(log n) 2 /2 (log n) 3 /3 = Φ(x).
See for instance the monograph by Arratia, Barbour and Tavaré [START_REF] Arratia | Logarithmic Combinatorial Structures: A probabilistic approach[END_REF] for recent developments.

(6) Random mappings. This research's area covers allocation theory, random permutations, random mappings, branching processes, random trees, and random forests. We refer to the book by Kolchin and to the one by Kolchin, Sevastyanov, and Chistyakov [START_REF] Kolchin | Random allocations[END_REF]. The main tool used in Kolchin's book is Gnedenko's local limit theorem, and some of its extensions.

(7) Number theory. Applications of the local limit theorem to additive problems are given in Postnikov's monograph [START_REF] Postnikov | Introduction to analytic number theory, AMS Translation of mathematical monographs 68[END_REF], Section 2.3. In [START_REF] Postnikov | Additive problems with a growing number of terms[END_REF], see also [START_REF] Postnikov | Introduction to analytic number theory, AMS Translation of mathematical monographs 68[END_REF], Section 2.4, asymptotic estimates for the number of solutions of the diophantine equations

(E1) x 1 + . . . + x n = N (E2) x 2 1 + . . . + x 2 n = N (1.231)
are obtained applying the local limit theorem to related sums of independent random variables and estimating resulting trigonometric sums. Later Ismatullaev and Zuparov [START_REF] Ismatullaev | On additive problems with an increasing number of terms. (Russian) Random processes and statistical inference[END_REF] considered the number of solutions of the diophantine equation (E3)

x s 1 + . . . + x s n = N (1.232) in which n, N, s ≥ 1, and sharpened and generalized Postnikov's result by using the local limit theorem.

Kubilius ([128]), [START_REF] Kubilius | On local theorems for additive number-theoretic functions, Number Theory and Analysis[END_REF]) proved local limit theorems for additive arithmetical functions. Local limit theorems of large deviations for additive functions are proved in Manstavichyus and Skrabutenas [START_REF] Manstavichyus | Local distribution laws of additive functions. (Russian. English, Lithuanian summaries)[END_REF]. Let h(m) be additive integer-valued function. The letter p denoting a prime number, let µ n = B -1 n max p≤n |h(p)|, where B 2 n = p≤n p -1 h 2 (p) → ∞ and µ n → 0 as n → ∞. An asymptotic formula for relative error

R n = B n n {m ≤ n : h(m) = k} φ -1 (y nk ),
where y nk = k-An Bn , A n = p≤n p -1 h(p) is obtained in terms of the Cramér series (see Theorem 1.83), and which is valid uniformly in k in the region |k -A n | = o(µ -1 n ). In Stepanauskas [START_REF] Stepanauskas | The local theorems for additive arithmetic functions[END_REF], additive functions of the form f (n) = ω(n) + ρ(n), where ω(n) counts the number of prime divisors of n, and ρ(n) is an integer-valued additive function obeying to some strong growth assumptions. Two local limit theorems are proved, providing formulae for |{n ≤ xf (n) = k}| of Sathe-Selberg type, with typical ranges for k of the form c 1 log log x ≤ k ≤ c 2 log log x, where c 1 , c 2 are positive constants.

We also cite Tulyaganov [START_REF] Tulyaganov | A local limit theorem for multiplicative arithmetic functions[END_REF], where a local limit theorem for multiplicative arithmetic functions is obtained.

Almost sure versions

In the following studies, we obtain almost sure local limit theorems in various different but fundamental cases. We essentially follow the classical approach and first proceed with a second order theory of the underlying system of random variables. This is an important and very informative part of the study. Next classical convergence criteria can be applied to derive almost sure limit theorems. It turns out the study of the correlation function of these systems is each time hard.

The Theorem below was proved by Chung and Erdős [START_REF] Chung | Probability limit theorems assuming only the first moment I[END_REF]Theorem 6], and can be viewed as a primary form of an almost sure local limit theorem, see [START_REF] Denker | Almost sure local limit theorems[END_REF].

Theorem 2.1. Let X 1 , X 2 , . . . be a sequence of i.i.d. integer valued random variables with E X 1 = 0 and put S k = k i=1 X i . Assume that every integer a is a possible value of S k for all sufficiently large k. Then for every integer a Note that under the assumptions of Theorem 2.1 we have lim k→∞ M k = ∞ and also

n k=1 P(S k = 0) M k = n k=1 m k M k ∼ log M n as n → ∞.
Hence setting ξ k = I{S k = a}/P(S k = a) and 

d k = m k /M k , D n = n k=1 D k , relation ( 
I{S k = 0} √ k = 1 σ 2 π a.s.
Under assuming finite variances, the following theorem yields a much more general ASLLT for i.i.d. lattice valued random variables. Theorem 2.2. Let X be a square integrable random variable taking values on the lattice L(v 0 , D) = {v 0 + kD, k ∈ Z} with maximal span D. Let µ = E X, σ 2 = Var(X) which we assume to be positive (otherwise X is degenerate). Let also {X k , k ≥ 1} be independent copies of X, and put

S n = X 1 + . . . + X n , n ≥ 1. Then lim N →∞ 1 log N n≤N 1 √ n 1 {Sn=κn} a.s. = D √ 2πσ e -κ 2 /(2σ 2 ) ,
for any sequence of integers κ n ∈ L(nv 0 , D), n = 1, 2, . . . such that

(2.4) lim n→∞ κ n -nµ √ n = κ.
Concerning the sequence κ n , note that by Gnedenko's Theorem 1.4, if κ n ∈ L(nv 0 , D) is a sequence which verifies condition (2.4), then

(2.5) lim n→∞ √ nP{S n = κ n } = D √ 2πσ e -κ 2 2σ 2 .
Theorem 2.2 was announced in Denker and Koch [START_REF] Denker | Almost sure local limit theorems[END_REF] (Corollary 2). The proof however contains a gap. A complete proof was given in Weber [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF]. The argument used depends on sharp inequalities for the correlations

|P(S m = k m , S n = k n ) -P(S m = k m )P(S n = k n )|
which are also established in [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF], and are much harder to get than the correlation inequalities for

|P(S m < k m , S n < k n ) -P(S m < k m )P(S n < k n )|
needed for the proof of global a.s. central limit theorems, see e.g. Lacey and Philipp [START_REF] Lacey | A note on the almost everywhere central limit theorem[END_REF].

The correlation inequality. This one states as follows.

Theorem 2.3. Assume that

(2.6) P{X = k} ∧ P{X = k + 1} > 0 for some k ∈ Z.
Then there exists a constant C,

√ nm P{S n = κ n , S m = κ m } -P{S n = κ n }P{S m = κ m } ≤ C 1 n m -1 + n 1/2 (n -m) 3/2 . (2.7) Corollary 2.4. Let 0 < c < 1.
Under assumption (2.6), there exists a constant C c such that for all 1 ≤ m ≤ cn,

√ nm P{S n = κ n , S m = κ m } -P{S n = κ n }P{S m = κ m } ≤ C c m n .
Remark 2.5. Condition (2.6) seems to be somehow artificial. It is for instance clearly not satisfied if P{X ∈ N} = 1 where N = {ν j , j ≥ 1} is an increasing sequence of integers such that ν j+1 -ν j > 1 for all j. This already defines a large class of examples. However, condition (2.6) is natural in our setting. By the local limit theorem (1.7), under condition (2.4),

lim n→∞ √ nP{S n = n } = D √ 2πσ e -κ 2 2σ 2 , ( n ≡ κ n or n ≡ κ n + 1). Then for some n κ < ∞, P{S n = κ n } ∧ P{S n = κ n + 1} > 0 if n ≥ n κ .
Changing X for X = S nκ , we see that X satisfies (2.6).

When E |X| 2+ε < ∞ for some positive ε, a similar result can be obtained more easily.

√ nm P{S n = κ n , S m = κ m } -P{S n = κ n }P{S m = κ m } ≤ C 1 n m -1 + n n -m 1 (n -m) α , (2.8)
with α = ε/2. See [START_REF] Giuliano | Almost sure local limit theorems with rate[END_REF]. Condition (2.6) is not needed. Corollary 2.4 follows in that case directly from (2.8). When ε = 0, this can obviously no longer be applied, and another approach has to be implemented. Notice that even when ε > 0, (2.7) is stronger than (2.8).

ASLLT for i.i.d. stable lattice random variables

We refer to Giuliano, Szewczak [START_REF] Giuliano | A general correlation inequality and the Almost Sure Local Limit Theorem for random sequences in the domain of attraction of a stable law[END_REF]. Let G be a stable distribution with exponent α (0 < α ≤ 2, α = 1) and denote by g the α-stable density function related to the distribution function G. Let (X n ) n≥1 be a sequence of i.i.d. random variables such that their common distribution F is in the domain of attraction of G. This means that, for a suitable choice of constants a n and b n , the distribution of

T n := X 1 + • • • X n -a n
b n converges weakly to G. It is well known (see [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], p. 46) that in such a case we have b n = L(n)n 1/α , where L is slowly varying in Karamata's sense. For α > 1 we shall assume that X 1 is centered; by Remark 2 p. 402 of [1], this implies that a n = 0, for every α. Let φ be the characteristic function of F . By [1], Theorem 1, for α = 1 it has the form where l is slowly varying as x → ∞ and c 1 and c 2 are two suitable non-negative constants, c 1 + c 2 > 0, related to the stable distribution G.

Put for ε > 0,

(2.11)

M (x) = M ε (x) = sup 1 ε ≤y≤x h(y), x ≥ 1 ε
where h(x) = l(x) if α ∈ (0, 2) and h(x) = E[X 2 1 {|X|≤x} ] if α = 2. We have M ε (x) < ∞ for every x. Theorem 2.6. Let (X n ) n≥1 be a centered, independent and identically lattice distributed (i.i.l.d.) random sequence with span D = 1. Assume that (2.10) holds with α ∈ (1, 2] and that there exists γ ∈ (0, 2) such that for some ε > 0 (2.12)

b k=a L(k) 1 + M k 1+ 1 α + L η (k) k ≤ C(log γ b -log γ a),
for some η ∈ (0, 1]. Further assume that the function h appearing in (2.9) verifies for sufficiently large n. It is not difficult to check that (2.12) holds (see [START_REF] Giuliano | A general correlation inequality and the Almost Sure Local Limit Theorem for random sequences in the domain of attraction of a stable law[END_REF]Example 4.2]) for details).

If L ≡ a constant (i.e. F belongs to the domain of normal attraction of G, according to the definition on p. 92 of [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF]), then the assumptions in Theorem 2.6 are automatically satisfied. Whence, Again as in Section 2 the key ingredient for the proof is an efficient correlation inequality which is also delicate to establish. This time we use properties of characteristic functions of distributions in the domain of attraction of stable laws. We notice that L(n) = h 1 α (b n ) for α ∈ (0, 2) (by Remark 2 p. 402 in [1]), while L(n) = E X 2 1 {|X|≤bn} for α = 2. This means that h is unique up to equivalence; thus, by Theorem 1.3.3. p. 14 of [START_REF] Bingham | Encyclopedia of Mathematics and Its Applications[END_REF] we can assume that h is continuous (even C ∞ ) on [a, ∞) for some a > 0.

An analogous observation is in force for arg f (t) .

Remark 2.10. Thus we deal with a subclass of strictly stable distributions. Denoting by ψ the characteristic function of G, we know from [START_REF] Zygmund | Trigonometric series, Third Ed. Vol. 1&2 combined[END_REF], Theorem C.4 on p. 17 that log ψ (for strictly stable distributions) has the form log ψ(t) = -c|t| α exp{-i π 2 θα sign(t)}, where |θ| ≤ min{1, 2 α -1} and c > 0. For α = 1 and |θ| = 1 we get degenerate distribution and in this case we say that X n is relatively stable (see e.g. [START_REF] Szewczak | Relative stability in strictly stationary random sequences[END_REF]). Almost sure variant of relative stability for dependent strictly stationary sequences will be discussed elsewhere.

Observe that Theorem 4.2.1 p. 121 in [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF] implies that (2.17)

for every pair (m, n) of integers, with m ≥ 1, n > m + ε -α α+1 , and for every η ∈ (0, 1], where M = M ε and M ε is defined in (2.11).

Remark 2.12. If h is ultimately increasing, then condition (2.13) is satisfied. A quick look at the proof (see [START_REF] Giuliano | A general correlation inequality and the Almost Sure Local Limit Theorem for random sequences in the domain of attraction of a stable law[END_REF]) shows that if h is increasing and continuous, the inequality (2.17) holds for 1 ≤ m < n.

Let δ > -1 and p > 0 two given numbers. We shall use the equality .

If L is non-decreasing the proof of (ii) in Theorem 2.11 (ii) simplifies.

Corollary 2.13. For large m and n ≥ 2m, for every δ < 1 α and for every η ∈ (0, 1] we have

b m b n P{S m = κ m , S n = κ n } -P{S m = κ m }P{S n = κ n } ≤ C L(n) • m n ρ ,
with L(n) = L(n) 1 + L(n 1+ 1 α ) + L η (n) and ρ := min{η( 1 α -δ), 1}. Remark 2.14. In the case α = 2 the correlation inequality of Corollary 2.13 furnishes ρ = η 1 2 -ε < 1 2 , while in Corollary 2.4 the better exponent ρ = 1 2 is found. Remark 2.15. In the case α = 2 with E(X 2 1 ) < ∞ we can avoid (2.10) (see [79, Remark 2.1]) if we adopt the method of the proof of (ii) in Theorem 2.13 together with the Esseen inequality (see [START_REF] Esseen | On the Concentration Function of a Sum of Independent Random Variables[END_REF]) Remark 2.16. As clearly stated at the beginning of this section, Theorem 2.6 holds in the case α > 1. We believe that this is due to the particular arguments used for the proof, and that it is possible to extend the ASLLT also to the case α < 1. The critical case α = 1 remains unexplored till now.

e -C 1
Another not yet investigated situation is for α = 2 with x → E [X 2 1 {|X|≤x} ] slowly varying and E [X 2 ] = ∞ with x → x 2 P{|X| > x} not slowly varying.

ASLLT for Markov chains

The question about ASLLT for dependent random variables was raised by Denker Consider {f (ξ k )} where f (0) = -π 1 , f (1) = π 0 . Let S n = n k=1 f (ξ k ). It is not difficult to see that the asymptotic (or spectral) variance σ 2 of {f (ξ k )} satisfies

σ 2 = E π (f 2 (ξ 0 )) + 2 n≥1 E π (f (ξ 0 )f (ξ n )) = π 0 π 1 (1 + 2γ 1 -γ ) = π 0 π 1 1 + γ 1 -γ •
It turns out that for Markov trials the following corresponds to Corollary 1 in [START_REF] Denker | Almost sure local limit theorems[END_REF] ( 

as κ ν σ √ ν → ν κ,
where κ ν are of the form -νπ 1 + k. We refer to Giuliano, Szewczak [START_REF] Giuliano-Antonini | An almost sure local limit theorem for Markov chains, S tatist[END_REF]. The relation (2.19) is the immediate consequence of more general result in [START_REF] Giuliano-Antonini | An almost sure local limit theorem for Markov chains, S tatist[END_REF]. The proof of the latter uses ideas from [START_REF] Giuliano | Almost sure local limit theorems with rate[END_REF]. The key role is played by Edgeworth expansions in conditional form, which is the special case of more general form with tied up ends ( [START_REF] Volkov | On the distribution of sums of random variables defined on a homogeneous Markov chain with a finite number of states[END_REF], [START_REF] Szewczak | Large deviations in operator form[END_REF])). For example Theorem 1.1 for Markov chains runs as: For i, j = 0, 1 ) (see Theorem 1.99 and Theorem 2 in [START_REF] Szewczak | Moivre theorem revisited[END_REF]). Limit theorems of this type proved to be useful in statistics for finding asymptotic formula for the Bayes risk in discriminating between two Markov chains (see [START_REF] Nagaev | An asymptotic formula for the Bayes risk in discriminating between two Markov chains[END_REF]).

ASLLT for the Dickman function

This section is devoted to the study the asymptotic second order properties of Hwang and Tsai's probabilistic model for the Dickman function in [START_REF] Hwang | Quickselect and the Dickman function[END_REF]. We refer to Giuliano, Szewczak and Weber [START_REF] Giuliano | Almost Sure Local Limit Theorem for the Dickman distribution[END_REF]. We prove a rather delicate correlation inequality for this model and next derive a fine almost sure local limit theorem. Recall briefly that this function arises from Dickman's result: the limit lim n→∞ 1 n # k; 1 ≤ k ≤ n : P + (k) ≤ n 1/u = (u) exists, where P + (n) is largest prime factor of a natural integer n. This limit is called the Dickman function, and is the continuous solution of the differential-difference equation u (u) + (u -1) = 0, u > 1 with the initial condition (u) = 1 for 0 ≤ u ≤ 1.

Let (Z k ) k≥1 be independent random variables defined by The Dickman distribution is denoted throughout by D and is the distribution function with density e -γ (x), x ≥ 0. It is known that D is infinitely divisible.

Apart from its obvious link with number theory, these type of models also appear as borderline cases in the local and almost sure local limit theory. An important problem inside this theory concerns the study of the local and almost sure local limit theorem for weighted sums of Bernoulli variables. The "simple" case when the weights are increasing is, to say the least, far from being understood. Further, the well-known Bernoulli part extraction method used for proving local limit theorems becomes ineffective in this case.

The almost sure local limit theorem for the sequence {T n , n ≥ 1} states as follows. Theorem 2.17. Let κ = (κ n ) n≥1 be a strictly increasing sequence such that lim n→∞ The key tools for proving Theorem 2.17 are the following correlation inequality (Theorem 2.19) and integral convergence of characteristic functions (Proposition 2.20). and

χ (κ,x) m,n = n -m κ n -κ m • log n m √ n -m + n -m κ n -κ m • g m,n + x n -m κ n -κ m - 1 x + m + 1 κ n -κ m .
Recall that the characteristic function of the Dickman distribution satisfies See [START_REF] Hwang | Quickselect and the Dickman function[END_REF]. Consider also the characteristic function of Z k and T n m defined in (2.20) and right after. We have

φ Z k (t) = 1 + e it -1 k φ T n m (t) = n k=m+1 φ Z k (tk) = n k=m+1
1 + e itk -1 k .

The following result is of crucial use for the proof of Proposition 2.24, which together with the above correlation inequality will lead to the proof of Theorem 2.17. The strong form of the local limit theorem for the Dickman density states as follows.

Theorem 2.22 (Strong Local limit theorem).

(2.22)

κ∈N |P(T n = κ) -n -1 e -γ (n -1 κ)| → 0, n → ∞.

A sharper speed of convergence result was recently obtained in La Bretèche and Tenenbaum [START_REF] Bretèche | On strong and almost sure local limit theorems for a probabilistic model of the Dickman distribution[END_REF]. The proof however much appeals to analytic number theory, details are not given, and so seems more reserved to specialists of this area.

The following result is an extension of the one given in [START_REF] Hwang | Quickselect and the Dickman function[END_REF] (Proposition 2.1) for the case m n ≡ 0. The next result will be crucial for the proof of the correlation inequality. In the Proposition below, we first specify Proposition 1 of [START_REF] Hwang | Quickselect and the Dickman function[END_REF] quantitatively in terms of the characteristic functions. The following result specifies Proposition 1 of [START_REF] Hwang | Quickselect and the Dickman function[END_REF] quantitatively in terms of distribution functions. The detailed proofs of the various ASLLT presented before, as well as new ones, are the objet of a joint work in preparation.

  γ < 1. Let ϕ(y) = log(1 + y) -y + y 2 /2. Then ϕ (y) = y 2 1+y . Let |y| ≤ γ. By the mean value theorem, |ϕ(y)| = |ϕ(y) -ϕ(0)| ≤ |y| ξ 2 1+ξ for some ξ ∈] -y, y[, and so |ϕ(y)| ≤ |y| 3 1-γ , namely log(1 + y) -y + y 2

Theorem 1 .

 1 50 ([180], Th. 9, p.[START_REF] Gnedenko | On a local limit theorem in the theory of probability[END_REF]). An infinitely divisible distribution function F (x) belongs to the class L if and only if the corresponding spectral function L(x) is continuous at every point x = 0 and has left and right continuous derivatives and the function xL (x) is non-increasing (here L (x) denotes either the left or the right derivative).

  and McDonald's theorem [40, Th. 1.1] states as follows.

2 n.

 2 Thus by assumption(1.172),lim n→∞ sup (κ-E Sn) 2 Var(Sn) >( Θn 14 log Θn ) 1/2 Var(S n )P{S n = κ} -De -(κ-E Sn) 2 /2Var(Sn) 

+ 1 p

 1 and by a simple calculus n ∆ 3 G 1 = O(1). Therefore with (1.175) we obtain n 3/4 sup k∈Z |P{ n i=1 ε i = k} -P{Y = k}| = O(1).

Theorem 1 .

 1 87 ([110], Theorem 4.4.

  Theorem 1.98 ([58], Theorem 2.2). Suppose that B n → ∞. If a) i∈Z a |a i | < ∞ assume 0 is non-lattice; if b) i∈Z a |a i | = ∞, assume that lim sup |t|→∞ |E (exp{it 0 })| < 1 and that the sets Γ d n are constructed as a pairwise disjoint union of J n discrete rectangles such that lim n→∞ J 2/d n log (B n ) inf

  (a) p ni (k) = P{X ni = k} p ni = 1 -p ni (0), (b) λ n = n i=1 p ni (i = 1, . . . , n, n ≥ 1, k ≥ 0). (1.201) If for each n, X ni are i.i.d. Bernoulli random variables with p n = P{X ni = 1}, then (1.202) lim n→∞ P{S n = k} = e -λ λ k k! , k = 0, 1, . . . , if np n → λ as n → ∞,λ being a positive real. As S n has the binomial distribution B(n, p n ), the distribution B(n, p n ) tends to the Poisson distribution P(λ). The case np n = λ was established by Poisson.

Theorem 1 . 103 .

 1103 Assume that(1.203) (i) λ n = λ + O(1/n) for some real λ > 0, (ii) p ni (k) p ni = α(k) are independent from i and n for all k ≥ 1, (iii) max 1≤i≤n p ni → 0 as n → ∞. ) P{S n = k} -P{Y = k} = 0, k = 0, 1, . . . ,for all non-negative functions h with ∞ k=0 h(k)P{Y = k} < ∞, where Y has compound Poisson distribution with parameter λ and compounding distribution {α(k), k ≥ 1}.

2 ∞

 2 From the well-known additivity property of Poisson distributions, T n has Poisson distribution P( n i=1 λ i ). Put (1.206) D = sup u P{S n ≤ u} -P{T n ≤ u} .Measures of disparity. Several measures of disparity between the distribution of two nonnegative integer valued random variables X and Y are considered in the literature. A first natural measure of disparity is(1.207) d(X, Y ) = sup A P{X ∈ A} -P{Y ∈ A} ,where the supremum is taken over all steps A of non-negative integers. One verifies that d(X, Y ) can be alternatively written(1.208) d(X, Y ) = 1 k=0 P{X = k} -P{Y = k} .Another standard disparity measure is (1.209) d 0 (X, Y ) = sup k≥0 P{X = k} -P{Y = k} . Obviously d 0 (X, Y ) ≤ d(X, Y ). It is easily seen that d, d 0 are in fact metrics in the space of all probability distributions on N, in particular the triangle inequality is satisfied. Simple but quite useful bounds for d and d 0 are d(X, Y ) ≤ P{X = Y }, d 0 (X, Y ) ≤ max P{X < Y }, P{X > Y } . (1.210)

( 3 )b 2

 32 Asymptotics for Legendre polynomials. Let {β k } be i.i.d. Bernoulli random variables with P{β k = 1} = p and { βk } be an independent copy of {β k }. Set B n = β 1 + . . . + β n and Bn = β1 + . . . + βn . Thus (1.222) P{B n -Bn = 0} = n k=0 P{B n = k}P{-Bn = -k} = n k=0 (k, n, p).

  i = a).

(2. 9 ) 2 ) + o |t| α h 1

 921 f (t) = exp -c|t| α h 1 |t| (1 -iβsign(t) tan πα |t| , where c = Γ(1 -α)(c 1 + c 2 ) cos πα 2 > 0 and β = c 1 -c 2 c 1 +c 2 ∈ [-1, 1] are two constants and h(x) = l(x) if α ∈ (0, 2) and c = 1 2 , β = 0, h(x) = E[X 2 1 {|X|≤x} ] if α = 2.We assume that X 1 takes values in the lattice L(v 0 , D) = {v 0 + mD, m ∈ Z} where D is the maximal span of the distribution; hence S n := X 1 + • • • X n takes values in the lattice L(nv 0 , D) = {nv 0 + mD, m ∈ Z}.We further assume that (2.10) x α P{X > x} = c 1 + o(1) l(x);x α P{X ≤ -x} = c 2 + o(1) l(x), α ∈ (0, 2],

Example 2 . 7 .

 27 Let h(x) = log σ x, with 0 < σ < α 1+α . Notice that L(n) = bn n 1 α

Corollary 2 . 8 . 1 α 1

 2811 If (X n ) n≥1 is a centered i.i.l.d. random sequence with span D = 1, (2.10) holds with α ∈ (1, 2) and L ≡ c, then lim {Sn=κn} = g(κ).

Remark 2 . 9 .• h 1 |t| h 1 |t| 1 +

 29111 Let h ∼ h as x → +∞. Then, by (2.14), log f (t) = -c|t| α h 1 |t| o(1) = -c|t| α h |t| 1 + o(1) .

κ n b n = κ. 2 . 2 . 2 .

 222 P{S n = m} = C < ∞.For every n, let κ n be a number of the form nv 0 + mD and let lim n→∞ Correlation inequality. We assume that (X n ) n≥1 is a sequence of i.i.d. random variables verifying the following conditions: (2.10), α = 1 and µ = E[X 1 ] = 0 when α > 1. Recall that the norming constant are a n = 0 and b n = L(n)n 1/α with L slowly varying. With no loss of generality, we shall assume throughout that d = 1.Theorem 2.11. (i) In the above setting we haveP{S m = κ m , S n = κ n } -P{S m = κ m }P{S n = κ n } ≤ Assume that condition (2.13) is fulfilled. Then there exists ε > 0 such that if M = M ε , M ε being defined in (2.11) we have b m b n P{S m = κ m , S n = κ n }) -P{S m = κ m }P{S n = κ n } ≤ CL(n)

  |t| 2 ≤ |f (t)| ≤ e -C 2 |t| 2 , |t| ≤ A, for C 1 , C 2 , A > 0 and the following elementary inequality |z x -z y | < |r x -r y | + r x+y 2 |θ||x -y|, where z = re iθ . We get Corollary 2.4 with ρ < 1 2 which is still sufficient, by the proof of Theorem 2.6, to obtain Theorem 2.2 in a different way.

σ √ 2πn P{ξ 1 +

 1 • • • + ξ n = k ; ξ n = j | ξ 0 = i} = e -(k-nπ 1 ) 2 2σ 2 n π j (1 + o(1)), uniformly in k such that | k-nπ 1 σ √ n | = o(n 1 6

(2. 20 )

 20 Z k = 1 with probability 1/k 0 with probability 1 -1/k.Put for all integers m, n with 0 ≤ m < n, T n m = n k=m+1 kZ k , and set T n = T n 0 . Thenlim n→∞ P n -1 T n < x = e -γ x 0 (v)dv, (x > 0)where γ is the Euler-Mascheroni constant ( ∞ 0 (v)dv = e γ .).

κn n = x > 0 .1

 0 Then we have, recalling that(x) = 1 if 0 ≤ x ≤ 1{Tn=n} = e -γ , a.s.As a consequence, for every x ≥ 1

2. 4 . 1 .

 41 Correlation inequality and integral convergence of characteristic functions. Theorem 2.19. Let κ = (κ n ) n≥1 be a sequence of integers such that lim n→∞ κn n = x > 0. Let Y n = n1 {Tn=κn} , n ≥ 1. Then there exists a positive constant C, such that for any n > m ≥ 2, |Cov(Y m , Y n )| ≤ C n n -m χ (κ,x)

  )| 2 du, as n → ∞. Another consequence of Proposition 2.20 is the following local limit theorem Corollary 2.21. (Local limit theorem) Let κ = (κ n ) n≥1 be a sequence of integers such that lim n→∞ κn n = x > 0. Then lim n→∞ nP(T n = κ n ) = e -γ (x).

Proposition 2 . 23 .

 223 Let (m n ) n≥1 be a sequence of integers such that lim n→∞ (n-m n ) = +∞ and m n = o(n). Then, as n → ∞, the sequence T n mn n-mn converges in distribution to the Dickman law.

Proposition 2 . 24 .

 224 Let κ = (κ n ) n be an increasing sequence of integers. Then, for n > m ≥ 2, (κ n -κ m )P(T n m = κ n -κ m )-P (κ n -κ m ) -n < T n m ≤ (κ n -κ m ) -(m + 1)

Proposition 2 . 25 .

 225 There exists an absolute constant C such that for all integers n > m ≥ 2 and all real numbers t,

Proposition 2 . 26 .

 226 There exists an absolute positive constant C such that, for all positive integers n, m, with n > m ≥ 2, sup x∈R P T n m n -m ≤ x -D(x) ≤ Cg m,n , where g m,n = exp C

  , Linnik, Matskyavichyus, Mitalauskas, Moskvin, Mukhin, Nagaev, Petrov, Postnikov, Prokhorov, Rvačeva, Richter, Rogozin, Rozanov, Sirazhdinov, Statulyavichus, Survila, Tkachuk. Let us also mention the contributions of Cramér, Dabrowski, Dolgopyat, Doney, Kac, Lasota, Yorke, Maejima, McDonald, Petit, Rousseau-Egele, Shepp, Stone, . . .
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  Doney proved in [47, Th. A] a local version of (1.34). LetF (x) = P{X > x} = 1 -F (x).Introduce the tail ratio τ defined by,

	(1.35)

  .

	Then						
	(1.173)	lim n→∞	sup κ∈L(v 0 n,D)	Var(S n )P{S n = κ} -	2Var(Sn) De -(κ-E Sn) 2 √ 2π	= 0.
	Condition (1.172) is for instance satisfied if	
	(i) lim n→∞	Var(S n ) = ∞,		(ii) lim n→∞	H n = 0,		(iii) lim sup n→∞	Var(S n ) Θ n	< ∞,
	If X i are i.i.d., then lim n→∞ H n = 0 as a consequence of [180, Th. 8 p. 118]. Condition
	(ii) is thus satisfied. As conditions (i) and (iii) trivially hold, Corollary 1.73 applies and
	Gnedenko's theorem follows from (1.173).		
	Proof of Corollary 1.73. It follows from Corollary 1.71 and assumption (1.172) that
	lim n→∞	(κ-E Sn) 2 Var(Sn) ≤( Θn 14 log Θn ) 1/2 sup	Var(S n )P{S n = κ} -	De -(κ-E Sn) 2 2Var(Sn)
	Corollary 1.73. Assume that				
	(1.172)		lim n→∞		Var(S n ) Θ n	1/2 H n +	1 Θ n	= 0.

  Th. 4.2.1, p.121; [21] Th. 8.4.2, p. 351 and [172], Th. 2). 1.81. Suppose {X k } is i.i.d. and g α is a stable density, α ∈ (0, 2]. In order that there exist sequences {B n }, B n → ∞, {A n } and such that: I) for L(X 1 ) lattice on {v 0

	Theorem

  1. Therefore, by Theorem 1.4 we obtain the Laplace-Heine theorem (see Theorem 8.21.1 in [216]) Theorem 1.109. For x > 1 we have P n

  that the logarithmic averages of ξ k converge a.s. to 1. Note that ξ k is a strongly dependent sequence of random variables and the ordinary strong law Apart from an unproved remark in Lévy[136, p. 270], Theorem 2.1 is the starting point of a recent and highly interesting theory dealing with almost sure versions of classical weak limit theorems involving logarithmic averaging.2.1. ASLLT for i.i.d. square integrable lattice random variablesLet X 1 , X 2 , . . . be i.i.d. lattice random variables with maximal span 1, mean 0 and variance σ 2 and put S n = n k=1 X k . Then P(S n = 0) ∼ 1

		2.1) can be written equivalently as
	(2.2)		lim n→∞	1 log D n	n k=1	d k ξ k = 1 a.s.
			lim n→∞	1 M n	n k=1	m k ξ k = 1 a.s.
	is not valid. σ	√	2πn and thus by Theorem 2.1
	we have				
	(2.3)	lim n→∞	1 log n		n k=1

stating

  2.2.1. Preliminaries. Formula (2.9) implies that log f (t) = Re log f (t) = -c|t| α h

	(2.14)				1 |t|	1 + o(1) ,
		arg f (t) = Im log f (t) = -c|t| α h	1 |t|	-βsign(t) tan	πα 2	+ o(1)
	hence					
	(2.15)	lim t→0	arg f (t) log |f (t)|	= β tan	πα 2	.

  and Koch ([43], p. 149, lines -2,-1). Consider {ξ k } be 0 -1 state Markov chain generated by a 2 × 2 matrix P, where P = p 11 p 12 p 21 p 22 , p ij > 0, i, j = 1, 2. By the analogy to the i.i.d. case let us call {ξ k } Markov trials. Set γ = 1 -p 12 -p 21 , π 0 = p 21 p 12 + p 21 , π 1 = p 12 p 12 + p 21 •

In Petrov[START_REF] Petrov | Sums of Independent Random Variables[END_REF],Lemma 1, p. 194, also in Rozanov's[START_REF] Rozanov | On a local limit theorem for lattice distributions[END_REF] Lemma 1, p. 261, Lemma 1.34 is stated under the assumption that a local limit theorem in the strong form holds, which is not necessary.

In[START_REF] Gamkrelidze | On the Lower Estimation of the Rate of Convergence in the Local Theorem[END_REF] in formula (3) λ n is missing after √ 2π (the same misprint is in the definition of c 1 on p. 280 in[START_REF] Gamkrelidze | On One Inequality for Characteristic Functions[END_REF]) and also in formula (4) should be 2π 2K+1 under intergral.