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Abstract

Building a network of interconnected overmature forests is crucial for the con-

servation of biodiversity. Indeed, a multitude of plant and animal species

depend on forest structural maturity attributes such as very large living trees

and deadwood. LiDAR technology has proved to be powerful when assessing

forest structural parameters, and it may be a promising way to identify existing

overmature forest patches over large areas. We first built an index (IMAT)

combining several forest structural maturity attributes in order to characterize

the structural maturity of 660 field plots in the French northern Pre-Alps. We

then selected or developed LiDAR metrics and applied them in a random forest

model designed to predict the IMAT. Model performance was evaluated with

the root mean square error of prediction obtained from a bootstrap cross-

validation and a Spearman correlation coefficient calculated between observed

and predicted IMAT. Predictors were ranked by importance based on the aver-

age increase in the squared out-of-bag error when the variable was randomly

permuted. Despite a non-negligible RMSEP (0.85 for calibration and validation

data combined and 1.26 for validation data alone), we obtained a high correla-

tion (0.89) between the observed and predicted IMAT values, indicating an

accurate ranking of the field plots. LiDAR metrics for height (maximum height

and height heterogeneity) were among the most important metrics for predict-

ing forest maturity, together with elevation, slope and, to a lesser extent, with

metrics describing the distribution of echoes’ intensities. Our framework makes

it possible to reconstruct a forest maturity gradient and isolate maturity hot

spots. Nevertheless, our approach could be considerably strengthened by taking

into consideration site fertility, collecting other maturity attributes in the field

or developing adapted LiDAR metrics. Including additional spectral or textural

metrics from optical imagery might also improve the predictive capacity of the

model.

Introduction

An overmature forest stand is in the latest stages of forest

dynamics, from the end of the growing stage to the col-

lapse stage; these stages are often by-passed in forests

managed for wood production. Overmature forests

include true old-growth forests (OGF) but also forests

that are rarely or no longer logged, especially in the con-

text of a specific silvicultural regime, known as retention

silviculture (Gustafson et al., 2013).

Overmature forests are characterized by the following

structural characteristics, the so-called maturity attributes

(Bauhus et al., 2009; Cateau et al., 2015; Janssen, 2016;

Paillet et al., 2010):

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

731

https://orcid.org/0000-0002-7458-1165
https://orcid.org/0000-0002-7458-1165
https://orcid.org/0000-0002-7458-1165
mailto:
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frse2.274&domain=pdf&date_stamp=2022-07-15


• a floristic structure dominated by native species,

• a heterogeneous dendrometric structure (well-distributed

variety of diameters and heights) and the presence of very-

large-diameter trees, leading to a high total basal area,

• a large volume of standing and lying deadwood, with a

high diversity among pieces of lying deadwood in terms

of dimension and degradation stage,

• the presence of numerous dendro-microhabitats (cavities,

cracks, detached bark, sporophores of saproxylic fungi, etc.),

• a relatively open canopy with a heterogeneous distribu-

tion in terms of gap size class or closure stage. Recent stud-

ies have pointed out that overmature forests provide a large

set of ecosystem services including carbon sinks (Luyssaert

et al., 2008), attractivity for ecotourism (Gunes &

Hans, 2007), protection from rockfalls (Fuhr et al., 2015)

and biodiversity conservation (Paillet et al., 2010). Numer-

ous studies have highlighted that a multitude of plant and

animal species depend on the structural attributes of over-

mature forests (Paillet et al., 2010):

• the quantity and quality of available deadwood strongly

influences the specific or functional diversity of saproxylic

organisms such as saproxylic beetles or saproxylic fungi

(Janssen et al., 2016; Janssen et al., 2017), bryophytes and

lichens (Dittrich et al., 2014),

• very large living and dying trees provide shelter and

food for many birds species—especially cavity-nesting

species such as woodpeckers or small mountain owls

(Bütler et al., 2004) and bat species (Bouvet et al., 2016),

• a diversity of gap sizes leads to a significant hetero-

geneity of light conditions at ground level and benefits

the specific and functional diversity of several taxa. For-

ests take centuries, even millenniums, to reach a stage of

overmaturity. Conversely, overmature forests can be

destroyed or degraded very quickly, even though setting

aside protected areas can help limit this destruction. In

addition, if a patch of overmature forest is too small, its

mere presence may not be sufficient to provide resources

for certain species with minimum area requirements

(Pe’er et al., 2014). Forest managers usually classify

patches of overmature forests according to size, from

individual trees or small groups of trees to islets (around

1 ha) and forest reserves (10 to ≥1000 ha; Lachat &

Bütler, 2007). Most of the species depending on overma-

ture forest attributes disperse slowly (Komonen &

Müller, 2018); therefore, building and maintaining net-

works of interconnected overmature forest patches is cru-

cial to their conservation (Svensson et al., 2020).
The first step in creating a network of overmature for-

ests is to identify existing patches. Currently, this identifi-

cation process relies on detailed field protocols with

numerous structural indicators that provide information

on biodiversity, naturalness and overmaturity, for exam-

ple, the WWF Old-Growth Forest Protocol or the

Potential Biodiversity Index (Larrieu & Gonin, 2008;

Rossi & Vallauri, 2013). These protocols are costly and

time-consuming and have only been implemented over

small areas, making them unhelpful for building an ade-

quate network at the landscape scale.

Early work exploring the potential of remote sensing to

identify old-growth forests appeared with the introduction

of Landsat images (Cohen & Spies, 1992; Jiang et al., 2004;

Sabol et al., 2002). They focused mostly on conifer forests

and aimed at separating young or adult even-aged stands

with a regular structure from irregularly-structured over-

mature or old-growth stands. Recently, Spracklen and

Spracklen (2019) obtained promising results in Ukraine by

discriminating irregular OGFs from regular forest types

with Sentinel-2 satellite images and by combining spectral

indices and textural features. However, to our knowledge,

these approaches fail to separate adult and overmature

stands in irregular management systems, where structural

differences between the two categories are much less

pronounced.

The use of LiDAR (light detection and ranging) tech-

nology to assess forest structure has increased during the

last decades, thanks to its ability to characterize the 3D

structure of vegetation. Airborne Laser Scanning (ALS) is

an active remote sensing system where an aircraft emits

laser pulses towards the ground. The pulses are reflected

by the obstacles and the distance to the emitting device is

calculated from the time elapsed between the transmission

of the signal and the reception of its return (or echo).

The aircraft is also equipped with a GNSS (Global Navi-

gation Satellite System) receiver and an inertial control

unit so it is possible to precisely calculate the 3D coordi-

nates of each surface element that has reflected one of the

laser pulses. The resulting point cloud is then classified to

differentiate the “ground” points, used to generate a digi-

tal terrain model (DTM), from other points interacting

mainly with forest vegetation.

Two types of metrics can be extracted to characterize for-

est structure from the LiDAR point cloud. First, point cloud

metrics are summary statistics that describe the point cloud

in a given area. These commonly include the quantiles of

the distribution of point heights above the ground, mean

and standard deviations of height, and echoes’ intensity val-

ues. These metrics are related to the 3D structure of the for-

est canopy as seen by the laser scanner. They are routinely

used to predict forest stand structural variables such as

dominant height, mean diameter, basal area or standing

volume (White et al., 2013). Predictive models can be cali-

brated by linking stand dendrometric variables measured

on field plots with the point cloud metrics extracted for the

corresponding areas. However, such metrics do not directly

translate into overmature forest attributes and this limits

their utility for forest managers.
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The second type of metrics, object-oriented metrics,

relies on the use of geometrical criteria to identify objects

such as trees, gaps and edges in the point cloud. It is also

possible to derive summary statistics from these objects to

supplement a set of explanatory variables (Glad

et al., 2020). However, object-oriented metrics, such as

the number of detected trees of a certain height or the

proportion of area covered by gaps, do not necessarily

improve model predictive power (Marchi et al., 2018).

Airborne LiDAR has now been used for several years

for mostly management-oriented forest inventories. Appli-

cations to other ecosystems services, e.g. protection from

rockfalls (Monnet et al., 2017) or biodiversity mapping

(Bouvier et al., 2017; Glad et al., 2020), have also been

tested. Using LiDAR data to identify mature forests is a

recent technique that has mainly focused on the detection

of one specific maturity attribute: deadwood. The results

highlight that identifying deadwood elements, whether

standing or lying, requires high point density, e.g. more

than 20 pts./m2 (see Marchi et al. (2018) for a review).

Moreover, even with high point density, lying deadwood

remains difficult to detect because the canopy and the

shrub cover prevent beam penetration and because rocks

often create noise. Indeed, as mentioned by Marchi

et al. (2018), studies have been mostly located in areas

where tree mortality was high and deadwood abundant.

However, even if the developed methods are becoming

more and more sophisticated and promising, they may

not be operational in areas where forest dynamics are

dominated by small- to medium-scale disturbances, as it

is the case in most European mountain forests (Brang

et al., 2006). Nevertheless, studies focusing on medium-

to-large size deadwood elements (diameter > 30 cm) have

obtained promising results (Mücke et al., 2013; Wing

et al., 2015; Yao et al., 2012).

The objective of our study was to build a model able

to predict forest maturity in areas dominated by managed

forests with the LiDAR data commonly used for forest

inventories over large areas (from 3 to 30 pts./m2). We

first build a maturity index (IMAT) to characterize forest

maturity in those stands. The IMAT combines three

maturity attributes that may not all be simultaneously

present at the same site: the total basal area of very large

living trees, the total basal area of large dead standing

trees and the volume of large lying woody debris. The

IMAT was computed for a network of 660 field plots that

were recently included in LiDAR surveys in the Northern

French Alps. We then selected LiDAR metrics that had

proven useful in predicting individual maturity attributes

in other studies. We make the hypothesis that a combina-

tion of these LiDAR metrics is operational to accurately

predict the index of maturity.

Figure 1. Location of the study sites.
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Materials and Methods

Study sites and field data collection

The study area encompasses four mountain ranges in the

French northern Pre-Alps: the Vercors, the Chartreuse,

the Bauges and the Haut-Bugey (Fig. 1). These mountain

ranges are quite similar in terms of substratum (lime-

stone), climate (temperate) and altitude. The forest stands

are pure or mixed dominated by European beech (Fagus

sylvatica), silver fir (Abies alba) and, in places, Norway

spruce (Picea abies). The dominant silvicultural system

favours uneven-aged stands through single-tree or small-

group selection cutting. Due to accessibility constraints,

the lack of logging roads, natural hazard protection zones

and ownership division, intensive management has hith-

erto been quite low, allowing overmature forests to

develop in places.

We assessed forest structural maturity in 660 field plots

(Table 1) at elevations ranging from 634 m to 1745 m.

Plots originated from diverse research projects that com-

bine systematic sampling on selected sites and random

sampling at the mountain range scale. Most of the plots

(487) were set up between 2012 and 2018. We also

included 173 plots set up between 2006 and 2010 in forest

reserves that have not been managed at least over the last

50 years and where no major natural disturbance was

recorded during the 2006–2018 period. The largest time

difference between field data collection and ALS acquisi-

tion was 13 years (concerning 5 GNB plots in the Char-

treuse mountain range). As the maturity index changes

slowly in the absence of major disturbances, this time lag

is expected to bring noise in the data but obtained mod-

els are still relevant to map the distribution of the matu-

rity index.

The field protocols differed slightly among plots but

had several important points in common: they all have

circular subplots with radii from 15 to 20 m whose

centres were spatially located with a GNSS receiver and

where very large living trees (diameter at breast height

(dbh) ≥ 77.5 cm), large dead standing trees (dbh

≥30 cm) and large lying woody debris (≥ 30 cm in

diameter at the narrow end and ≥0.5 m in length) were

recorded. Very large living trees and large snags were

measured in dbh. The diameter of the large lying

woody debris was measured at both ends and the

length of each debris piece located inside the plot was

recorded. All diameters were measured using a tree cali-

per. Some field protocols included additional measure-

ments that were not considered to assess stand

maturity.

Assessing plot maturity

For each plot i, we built a maturity index combining

three structural attributes with well-known links to matu-

rity:

• the total basal area of very large living trees (GVLLT

m2.ha−1),

• the total basal area of large dead standing trees (GLDST,

m2.ha−1),

• the volume of large lying woody debris (VLWD,

m3.ha−1).Three other important maturity attributes were

not considered in the construction of the index:

Table 1. Plot measurement and LiDAR survey specifications.

Mountain range

Field Plot Dataset (Plot number,

sampling design)* Year of measuremnt Flight period LiDAR sensor

Mean point

density (m−2)

Chartreuse GNB (10, R)

PSDRF_Seuil (41, S)

Janssen (4, R)

2006

2012

2014

Aug–Sept 2019 Riegl LMS Q680i 20

Vercors GNB (9, R)

PSDRF_HP (164, S)

Janssen (3, R)

2006

2007

2014

Sept 2010 and Aug 2011 Riegl LMS Q560 14

Bauges Grosso (41, S)

LPO (42, R)

Fullie (54, S)

Bellevaux (41, S)

Clocher (9, S)

Seythenex (1)

Janssen (29, R)

Protest (63, S)

2012

2013

2013

2013

2013

2013

2014

2018

Sept 2016 and

Sept 2018

Riegl LMS Q780

Riegl LMS Q780

5

24

Ain PSDRF (58, S)

Trameforet (91, R)

2015

2018

Oct–Dec 2014 Riegl LMS Q680i 3

All the plots of PSDRF_HP and half of the plots of GNB are located in forest reserves.
*R: random, S: systematic.
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• the stand floristic structure, since native species largely

dominated our study sites,

• tree microhabitats, because most of our field datasets

lacked reliable information for these attributes,

• the diversity of the degradation stages of the large lying

deadwood debris because information was lacking for

some plots.GVLLT, GLDST and VLDWD values were capped

at their respective 99% quantiles (η.99) to ensure that

extreme values did not carry disproportionate weight in

the subsequent calculations.

The maturity index ranges from 0 to 1 and was calcu-

lated as follows:

IMAT ¼ 1

3

GVLLT

η:99 GVLLTð Þ þ
GLDST

η:99 GLDSTð Þ þ
VLWD

η:99 VLWDð Þ
� �

:

We preferred to give each the same weight in a compre-

hensive approach considering that we lacked bibliographic

references to assign a different weight to each attribute

and that the dependence on maturity attributes varies

among taxa.

Selecting LiDAR metrics and topographical
variables

LiDAR data were obtained from various ALS surveys

whose specifications are given in Table 1. They were taken

from 2010 to 2019, as most of the field data. Data pre-

processing and classification were performed for each sur-

vey by the corresponding data providers. Ground points

were separated from vegetation points with the TIN-

iterative algorithm (Axelsson, 2000) to produce a digital

terrain model (DTM). We used the normalize_height

function (tin algorithm option) implemented in lidR

package (Roussel et al., 2020) to calculate the height of

each vegetation point by subtracting the altitude value

from the ground elevation value interpolated at the plani-

metric coordinates. The desired LiDAR metrics were com-

puted for the normalized point clouds extracted from

discs whose centre points corresponded to the centres of

the field plots. The discs had a horizontal radius of 35 m

in order to include a buffer zone with a width that corre-

sponded approximately to half of the average stand height

(30 m). The LiDAR metrics were then either directly

derived from the point cloud (heights and intensities of

the vegetation returns) or calculated after the detection of

individual trees. Calculations were performed with func-

tions from the R package lidaRtRee version 3.1.2 (https://

cran.r-project.org/package=lidaRtRee). The “tree_segmen-

tation” and “tree_extraction” functions were applied for

tree detection, on a 1-m resolution canopy height model

derived from the LiDAR point cloud, with their defaults

settings. The method relies on local maxima filtering algo-

rithm (method 1 in Eysn et al., 2015). The performance

of tree detection in ALS data depends on forest structure

but dominant trees are usually well detected. We assume

that tree-related metrics, which are summary statistics

derived from the detected trees, will bring additional,

interpretable information to the models even though

detected trees are only an estimation of real ones. Point

cloud metrics are computed using the function “aba_met-

rics” with default parameters. This function relies on

function “stdmetrics” from package lidR (version 3.2.3).

An example is available at https://gitlab.irstea.fr/jean-

matthieu.monnet/lidartree_tutorials/-/wikis/Forest-

structure-metrics-mapping.

We then selected through a bibliographic synthesis a

set of candidate predictor LiDAR metrics that had proved

to be useful in previous studies (Table 2).

LiDAR metrics characterizing height distribution

(Zmax, Zmean, Tree.meanH, TreeSup30.density and Zsd,

Zkurt, Tree.sdH, Tree.giniH) may be good predictors for

Table 2. Candidate LiDAR metrics. The metrics in italics were computed from detected trees.

Metric type Metric name Metric definition

Maximum and mean

heights

Zmax, Zmean Maximum and mean height values of the points classified as vegetation in the point cloud (m)

Tree.meanH Mean height of detected trees (m)

TreeSup30.density Density of detected trees above 30 m in height (stems.ha−1)

Height distribution Zsd, Zkurt Standard deviation and kurtosis of the height values of the points classified as vegetation in the

point cloud

Tree.sdH,

Tree.giniH

Standard deviation and Gini coefficient of the heights of detected trees

Intensity Imean, Isd Mean and standard deviations of the normalized intensities of the points classified as vegetation

in the point cloud

Stand density Tree.density Density of detected trees (stems.ha−1)

Canopy cover Tree.canopy_cover Percentage of the plot area covered by the crowns of detected trees

Environmental variables Elevation

Slope

Elevation above sea level (m)

Slope (%)
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very large trees. Similar metrics were found appropriate

for predicting total stand basal area (Bright et al., 2013)

and the density of large diameter trees (Korhonen

et al., 2016). Indeed, even though beyond a certain diam-

eter threshold, growth in diameter is no longer accompa-

nied by growth in height, the largest trees are potentially

also the highest (Jennings, 1999). Moreover, LiDAR met-

rics characterizing height distribution are also good pre-

dictors of large snags (Bater et al., 2009; Casas

et al., 2016; Martinuzzi et al., 2009) or coarse woody deb-

ris volume (Pesonen et al., 2008).

In addition to height metrics, echoes’ intensity infor-

mation (Imean, Isd) provide information about the dis-

tribution of the photosynthetic and non-photosynthetic

elements in the stand and are good predictors of total

dead biomass (Kim et al., 2009b), snag basal area

(Bright et al., 2013; Wing et al., 2015) and coarse woody

debris volume (Pesonen et al., 2008). Kashani

et al. (2015) pointed out that raw intensity values

depend on acquisition geometry and LiDAR hardware.

Due to missing information on the flight trajectory and

the absence of overlap area between surveys, it was not

possible to perform intensity correction, or intensity

normalization based on histogram matching. However,

to make intensity values comparable, values were stan-

dardized by survey using the mean and standard devia-

tion of intensity values of points extracted in plots

covered by the survey.

Moreover, assuming that the canopy of overmature

stands may be slightly denser and more open than the

surrounding stands, we selected a LiDAR metric related

to tree density (Tree.density) and another one related to

canopy cover (Tree.canopy_cover). Casas et al. (2016)

found that a similar metric, “fractional cover”, was pow-

erful for detecting snags. The selected LiDAR metrics were

not highly correlated (Spearman correlation coeffi-

cient <0.85) except for the two metrics related to crown

size (mean crown area and mean crown volume of

detected trees), which thus were removed.

We added two topographical variables that may impact

the spatial distribution of overmature forests: elevation

and slope, which we considered appropriate proxies for

logging accessibility.

Statistical modelling and validation

We related the maturity index (IMAT) calculated from

our field survey data to the selected LiDAR metrics and

topographic variables with a random forest regression

algorithm, a machine-learning technique based on multi-

ple decision trees (Breiman, 2001). We assumed that

between-predictor interactions are sufficient to translate

data heterogeneity related to differences in point density

because a preliminary analysis showed that the addition

of a variable related to LiDAR survey did not improve

prediction accuracy. The random forests were grown with

1000 trees. The optimal value of the number of predictors

sampled at each node of each tree was fixed to two

according to a tuning procedure that minimized the out-

of-bag error estimate (Liaw & Wiener, 2002). The predic-

tive importance of each LiDAR metric was assessed

through the average increase in the squared out-of-bag

error when the variable was randomly permuted (Liaw &

Wiener, 2002). Finally, the model was evaluated with two

indices averaged over 100 replicates of a bootstrap cross-

validation (70% and 30% partitioning for calibration and

validation, respectively). First, we used the Root Mean

Square Error of Prediction (RMSEP), which was divided

by the mean observed IMAT to facilitate interpretation.

Second, we computed the Spearman coefficient correla-

tion between the observed and predicted maturity indices.

We performed these analyses on the R software v.3.6.0

with the randomForest package v.4.6–14 (Liaw &

Wiener, 2002). Third, we calculated three other validation

indices following Gauch et al. (2003) who partitioned

mean squared deviance into three independent additive

components called squared bias (SB), nonunity slope

(NU) and lack of correlation (LC). These three compo-

nents are related to a comparison of observed and pre-

dicted values and quantify: a biased mean prediction and

a rotation bias (considering the intercept or the slope of a

linear regression line for SB or NU, respectively) and a

lack of covariance (as measured by a Pearson coefficient

correlation, LC).

Results

IMAT values

The capped values of the total basal area of very large liv-

ing trees (GVLLT) and large standing dead trees (GLDST)

ranged respectively from 0 to 15.7 m2.ha−1 (with an

extreme value reaching 58.3 m2.ha−1) and 0 to

11.4 m2.ha−1 (with an extreme value reaching

25.4 m2.ha−1). The capped value of the volume of large

lying woody debris (VLWD) ranged from 0 to 92 m3.ha−1

(with an extreme value reaching 284 m3.ha−1).

The three variables used to calculate the maturity index

were not correlated (Fig. 2). In other words, the plots rich

in very large trees were not necessarily rich in deadwood

(lying or standing). Plots where the maturity index took a

mean value can therefore be plots rich in very large trees

(ageing stage) or plots rich in deadwood (senescence stage).

Most of the field plots were not mature: IMAT ranged

from 0 to 1 with an average value of 0.14; more than half

of the plots had an IMAT between 0 and 0.2.

736 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Detecting Overmature Forests with Airborne Laser Scanning

 20563485, 2022, 5, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.274 by Inrae - D

ipso, W
iley O

nline L
ibrary on [27/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Model accuracy

Mean estimation error was rather high, with a RMSEP

of 0.85 for calibration and validation data combined and

1.26 for validation alone, when related to the mean

IMAT value. This is explained by a prediction bias: low

IMAT values tend to be slightly overestimated, while

high values are underestimated by the model (Fig. 3).

This result was confirmed by the partitioning of mean

square deviance (NU = 0.002, LC = 0.0005, and SB = 0)

that mainly come from a rotation bias (NU), little from

a lack of correlation due to high error values (LC), and

not from a biased mean prediction (SB). Finally, the

rank correlation between observed and predicted values

was high (Spearman correlation coefficient of 0.89). Pre-

diction errors were not correlated with the difference of

dates between LiDAR survey and plot field measure-

ments.

Predictor variable importance

Elevation and slope ranked first in importance (Fig. 4);

Zmax, Zmean, Zsd, Tree.density, Tree.meanH and

TreeSup30.density were among the top eight predictive

variables (Fig. 4); Isd and Tree.CanopyCover were of inter-

mediate importance (Fig. 4); Zkurt, Tree.giniH, Tree.sdH

and Imean were of quite low importance (Fig. 4).

Predictor variable direction

Forest maturity increased with the height metrics (Zmax,

Zmean and TreeSup30.density), height distribution

Figure 2. Correlations between maturity attributes within the field plot dataset.

Figure 3. Relationship between observed and predicted maturity

indices (IMAT). RMSEP: root mean square error of prediction. The

dotted line is the 1:1 line (y = x).
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heterogeneity (Zsd, Zkurt and Tree.sdH), intensity distri-

bution heterogeneity (Isd) and mean intensity (Imean),

even though the importance of Imean was rather low

(Fig. 5). Forest maturity increased with slope and when

elevation was above 1450 m a.s.l. (Fig. 5).

Forest maturity decreased strongly with tree density

and increased slightly with canopy cover (Fig. 5).

Variations in forest maturity according to Tree.giniH

(Fig. 5) did not show any clear trend. However, Tree.gi-

niH had low predictive power.

Discussion

Managers interested in mapping forest maturity for oper-

ational applications often have to rely on available field

data and ALS surveys provided by public agencies. Cases

where field and remote sensing data are not perfectly sui-

ted to this specific objective are likely to be common.

Nevertheless, the results obtained in this study showed

that modelling a maturity index is possible by combining

several field and ALS datasets not specifically designed for

this purpose.

Our results showed that the use of a combination of

LiDAR metrics, that had proven useful in predicting

forest maturity attributes, is operational to predict the

structural maturity of irregular forests dominated by

beech and fir in the French pre-Alps, which validates our

hypothesis.

Almost all the expected relationships between the matu-

rity index and the LiDAR metrics were confirmed by our

statistical model. Stand structural maturity was positively

correlated with the LiDAR metrics quantifying (maximal?)

height, height distribution heterogeneity, intensity distribu-

tion heterogeneity, and negatively correlated with the

LiDAR metrics quantifying tree density and canopy cover.

The LiDAR metrics describing height (maximum

and heterogeneity) were among the variables with the

strongest ability to increase predictive accuracy. These

results are consistent with other studies that have empha-

sized the importance of height distribution in predicting

characteristic attributes of structural maturity: total stand

basal area (Bright et al., 2013), density of large trees

(Korhonen et al., 2016), tree diameter distributions (Bock

et al., 2020), snag density or basal area (Bater et al., 2009;

Casas et al., 2016; Martinuzzi et al., 2009) and lying dead-

wood volume (Pesonen et al., 2008).

The LiDAR metrics describing intensity distribution

were also important predictors of forest maturity,

Figure 4. Importance of LiDAR metrics and topographical variables (average increase (in percent) in the squared out-of-bag error when the vari-

able was randomly permuted) in predicting IMAT in the random forest model. See Table 2 for abbreviations.
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although to a lesser extent. We centred and scaled the

intensity distributions for each survey, but seasonal differ-

ences in data acquisition and different equipment settings

among surveys might have induced some among-survey

variability in intensity distribution (Kim et al., 2009a).

That may explain why intensity-related metrics had such

a low predictive power. However, our results confirm pre-

vious findings linking these metrics to the presence of

standing or lying deadwood pieces (Bright et al., 2013;

Kim et al., 2009b; Wing et al., 2015). Echo intensity

depends on the varying photosynthetic capacity of living

and non-living plant tissue, desiccated leaves or dead

trees, for example. Improvement in intensity contribution

to modelling might be possible if the variability due to

acquisition and instruments can be reduced. As there is

little convergence in intensity processing by data provi-

ders, technical options are left to end-users. Within-

survey variability due to acquisition geometry can be cor-

rected if aircraft trajectory is available. Between-survey

variability can be reduced by histogram matching in over-

lapping areas. If the field sample is large enough, one

might consider building survey-specific models. An alter-

native to input radiometric information would be to use

airborne or satellite imagery, which might provide more

homogeneous data, more bands and possibly with a

higher time frequency, at the expense of a lower resolu-

tion.

Contrary to our assumptions, IMAT was not positively

correlated with the LiDAR metrics quantifying canopy

openness or tree density. Overmature field plots in our

dataset were mostly in the ageing stage of forest succes-

sion; the stands were dominated by very large trees that

were quite distant from each other but whose crowns

joined, leaving few gaps. In addition, as the irregular

Figure 5. Relationship between the maturity index (IMAT) and LiDAR or topography variables. Partial dependence is the response of the maturity

index on one predictor variable after averaging out the effects of the other predictor variables (Friedman, 2001).
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silvicultural system favours the creation of small gaps, the

canopy of adult stands may be more open than the

canopy of overmature stands. Algorithms that detect trees

from a 2D segmentation of the canopy height model are

usually successful in detecting dominant and co-

dominant trees, especially in coniferous stands (Eysn

et al., 2015). However, the proportion of detections

among suppressed trees is low and depends on forest

structure. As a result, we can expect that density of tall

detected trees (e.g. density of trees higher than 30 m) is

close to what would be measured on the field. In contrast,

the density of all detected trees is likely to be very differ-

ent from its field counterpart, especially in young, homo-

geneous and broadleaved stands.

Finally, slope and elevation are two key environmental

variables for predicting forest maturity. Logging difficul-

ties increase with slope (Gauquelin & Courbaud, 2006)

and the most mature stands are therefore often encoun-

tered on steep slopes.

The very good correlation between the observed and

predicted IMAT values was nonetheless associated with

non-negligible estimation errors, mainly due to a predic-

tive bias. The partitioning of mean squared deviance indi-

cated a very accurate average prediction and limited

residual errors, when considered independently from the

bias. However, our model underestimates the maturity of

the most mature stands and slightly overestimates the

maturity of the less mature ones. The underestimation of

the maturity of the most mature stands probably partly

originates from the fact that, above a certain diameter,

tree growth in diameter is no longer accompanied by

growth in height (Jennings, 1999). The LiDAR metrics

quantifying maximal height are therefore capped at a

maximal value, even though tree diameters are still grow-

ing slightly. Probably for the same reason, other studies

predicting tree diameters failed to predict very large trees

(Bock et al., 2020).

Our approach relies on heterogeneous field datasets

and LiDAR surveys point densities, parameters that may

be sources of prediction errors potentially interacting.

Further works of interest would be to test the sensibility

of the model to each parameter. Nevertheless, our model

can immediately be used to map forest maturity in areas

covered by a LiDAR campaign (Fig. 6). Even though the

maturity index should be interpreted with care consider-

ing the existing prediction errors, the least and most

mature forest stands can be accurately identified by

thresholding the maturity index. This meets the needs of

many managers who are targeting conservation actions in

natural areas or aim at constructing a connected ecologi-

cal network of mature forest patches to preserve biodiver-

sity for taxa depending on maturity attributes. De Assis

Barros and Elkin (2021) recently suggested a similar

approach for conifer forests in British Columbia. We

believe that selecting a limited number of metrics which

are easy for forest managers to understand is important

in a management perspective. Once the areas to target for

conservation measures, or other areas of interest, have

Figure 6. Local example of IMAT prediction in forests. The left panel represents an ortho-image. IMAT, maturity index.
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been identified, it is then possible to investigate which

metrics contribute to the maturity index and how. Taking

the link between LiDAR metrics and forest structure into

account may help managers to adopt specific silvicultural

practices to improve the maturity of their forests.

Site fertility is very heterogeneous in the northern

French Pre-Alps. When fertility is low (for example on

very rocky or shallow soils), neither living nor dead trees

can reach the same dimensions (diameter, height) as

when fertility is high. Consequently, the diameter thresh-

olds we used to calculate the maturity index in the field

may not be suitable for some plots. In a study of overma-

ture forests, Larrieu & Gonin (2008) suggest adapting the

diameter threshold to 40 cm for living trees and to 20 cm

for deadwood pieces in sites with very low fertility, as in

some subalpine areas. In poor site conditions, LiDAR

height metrics are capped at maximal local values even

though these values could be intermediate at a broader

scale. It may therefore be necessary to include additional

environmental variables or LiDAR metrics linked to site

fertility when building the prediction model. An option

in irregular stands could consist in building and testing

LiDAR metrics calibrated at a very local scale. As an

example, the TreeSup30.density metric we used in our

study could be replaced by a height metric representing

the 95th percentile of the heights of the detected trees in a

defined neighbourhood of the field plot.

Similarly, a stand’s recent silvicultural history impacts

its structural maturity. As an example, overmature cop-

pice stands may locally concentrate maturity attributes

that are overlooked with the diameter thresholds we

adopted (Lassauce et al., 2012). Here again, considering a

silvicultural effect could modify both IMAT calculation

and prediction. Recent methodological developments

based on multi-sensors highlight the complementarity

between LiDAR and optical data for forest structure mod-

elling. LiDAR data have proven their ability to character-

ize 3D structures, while optical imagery can inform on

species composition or health status. Spectral properties

in the near-infrared region of the light spectrum or

indices, like NDVI, based on combinations of reflectance

in various bands, are useful to detect snags (Bütler & Sch-

laepfer, 2004; Zielewska-Büttner et al., 2020). Combining

spectral and textural information from optical data with

3D information from LiDAR data or stereo photogram-

metry will lead to more and more efficient models and

more reliable cartographic information.
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