Supporting Information for

Co-Fe-P Nanosheet Arrays as Highly Synergistic and Efficient Electrocatalyst for Oxygen Evolution Reaction

Yanyu Xie, † Huanfeng Huang, † Zhuodi Chen, † Zhujie He, † Zhixiang Huang, † Shunlian Ning, †

Yanan Fan,[†] Mihail Barboiu,^{†,‡} Jian-Ying Shi,[†] Dawei Wang,^{*,†} and Cheng-Yong Su[†]

[†]Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

[‡]Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of

Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095 Montpellier, France.

*E-mail: wdawei@mail.sysu.edu.cn.

Figure S1. SEM image of Co-ZIF-L nanosheet arrays.

Figure S2. PXRD patterns of Co-ZIF-L nanosheet arrays.

Figure S3. SEM image of Co-Fe-LDH nanosheet.

Figure S4. TEM image of Co-Fe-LDH nanosheet.

Figure S5. HRTEM image of Co-Fe-LDH nanosheet. Insert is the FFT (Fast Fourier Transform)

pattern.

Figure S6. SAED pattern of Co-Fe-LDH nanosheet arrays.

Figure S7. PXRD pattern of Co-Fe-LDH nanosheet arrays.

Figure S9. LSV curves of CC, Co-Fe-LDH/CC, Co-P/CC, Fe-P/CC, Co-Fe-P/CC and RuO₂

without *iR* compensation.

Figure S10. SEM image of Co-P/CC.

Figure S11. SEM image of Fe-P/CC.

Figure S12. SEM image of Co-Fe-P/CC after OER.

Figure S13. PXRD patterns of Co-Fe-P/CC before and after OER process for 24 h.

Figure S14. Raman spectra of Co-Fe-P/CC before and after OER process for 24 h.

Figure S15. Raman spectra of Co-P/CC before and after OER process for 24 h.

Figure S16. Raman spectra of Fe-P/CC before and after OER process for 24 h.

Figure S17. CV curves of Co-Fe-P/CC at different scan rates.

Figure S18. CV curves of Co-P/CC at different scan rates.

Figure S19. CV curves of Fe-P/CC at different scan rates.

Figure S20. N₂ sorption isotherms of Co-Fe-P/CC, Fe-P/CC and Co-P/CC.

 Table S1. Elemental composition of Co-Fe-LDH/CC based on EDX.

Element	С	0	Fe	Со
Content (at. %)	62.28	28.52	5.93	3.27

Element	Fe	Со	Р
Content (mg L ⁻¹)	1.98	1.50	1.91
Content (mmol L ⁻¹)	0.35	0.25	0.062

 Table S2. Elemental composition of Co-Fe-P/CC based on ICP-AES.

 Table S3. Performance comparison between the recently developed, typical cobalt phosphide

		Overpotential (mV)	Tafel Slope
Catalyst	Substrate	$(j=10 \text{ mA cm}^{-2})$	(mV dec ⁻¹)
Hollow Co-Fe phosphide ^{S1}	NF	225	37.88
FeCoP ₂ @NPPC ^{S2}	GCE	236	83
CoFeP NS@Fe-CoP NW ^{S3}	NF	260	107
Co-Fe-P nanoboxes ^{S4}	CFP	269	31
CoFeP triangular plate arrays ^{S5}	NF	198	42
CoFeP hollow microspheres ^{S6}	GCE	350	59
CoFeP hollow cube ^{S7}	GCE	180	55
CoFeP NFs/NPCNT ^{S8}	GCE	278	39.5
Co _{0.17} Fe _{0.79} P/NC ^{S9}	GCE	299	44
FeCo-P/C Nanocomposites ^{S10}	RDE	362	50.1
CoP-FeP/CC ^{S11}	CC	250	131

based electrocatalysts for OER in 1.0 M KOH.

Fe-Co-P hollow spheres ^{S12}	RDE	252	33
Fe-CoP triangle plate arrays ^{S13}	NF	230	43
Co _{0.7} Fe _{0.3} P/C ^{S14}	RDE	270	27
Fe-CoP ^{S15}	NF	190	36
3D porous Co-Fe-P foam ^{\$16}	Cu foam	294	40
Co _{0.7} Fe _{0.3} P/CNT ^{S17}	CFP	243	36
FeCoP UNSAs $(j=20 \text{ mA cm}^{-2})^{S18}$	NF	260	63
Co/Fe phosphides ^{S19}	NF	244	58
Co-Fe-P nanosheets arrays (This work)	СС	240	36

Supplementary References

(S1) Chen, Q.; Zhang, Q.; Liu, H.; Liang, J.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Preparation of Hollow Cobalt-Iron Phosphides Nanospheres by Controllable Atom Migration for Enhanced Water Oxidation and Splitting. *Small* **2021**, *17*, e2007858.

(S2) Wang, Y. N.; Yang, Z. J.; Yang, D. H.; Zhao, L.; Shi, X. R.; Yang, G.; Han, B. H. FeCoP₂
Nanoparticles Embedded in N and P Co-Doped Hierarchically Porous Carbon for Efficient
Electrocatalytic Water Splitting. ACS Appl. Mater. Interfaces 2021, 13, 8832-8843.

(S3) Bi, H.; Li, B.; Zhang, J.; Pan, A.; Jiang, L.; Huang, G.-F.; Chang, S.-L.; Huang, W.-Q.

Supersaturation-Triggered Synthesis of 2D/1D Phosphide Heterostructures as Multi-Functional Catalysts for Water Splitting. *Appl. Phys. Lett.* **2021**, *118*, 093901.

(S4) Zhang, H.; Zhou, W.; Dong, J.; Lu, X. F.; Lou, X. W. Intramolecular Electronic Coupling in Porous Iron Cobalt (Oxy)phosphide Nanoboxes Enhances the Electrocatalytic Activity for Oxygen Evolution. *Energy Environ. Sci.* **2019**, *12*, 3348-3355.

(S5) Zhang, L.; Wang, X.; Li, A.; Zheng, X.; Peng, L.; Huang, J.; Deng, Z.; Chen, H.; Wei, Z.
Rational Construction of Macroporous CoFeP Triangular Plate Arrays From Bimetal-Organic
Frameworks as High-Performance Overall Water-Splitting Catalysts. *J. Mater. Chem. A* 2019, *7*, 17529-17535.

(S6) Du, Y.; Qu, H.; Liu, Y.; Han, Y.; Wang, L.; Dong, B. Bimetallic CoFeP Hollow Microspheres as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media. *Appl. Surf. Sci.* **2019**, *465*, 816-823.

(S7) Zhang, X.; Wu, Y.; Sun, Y.; Liu, Q.; Tang, L.; Guo, J. CoFeP Hollow Cube as Advanced Electrocatalyst for Water Oxidation. *Inorg. Chem. Front.* **2019**, *6*, 604-611.

(S8) Li, W.; Chen, Y.; Yu, B.; Hu, Y.; Wang, X.; Yang, D. 3D Hollow Co-Fe-P Nanoframes Immobilized on N,P-doped CNT as An Efficient Electrocatalyst for Overall Water Splitting. *Nanoscale* **2019**, *11*, 17031-17040.

(S9) Chen, J.; Zhang, Y.; Ye, H.; Xie, J.-Q.; Li, Y.; Yan, C.; Sun, R.; Wong, C.-P. Metal-Organic Framework-Derived Co_xFe_{1-x}P Nanoparticles Encapsulated in N-Doped Carbon as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. *ACS Appl. Energy Mater.* 2019, *2*, 2734-2742.

(S10) Hong, W.; Kitta, M.; Xu, Q. Bimetallic MOF-Derived FeCo-P/C Nanocomposites as Efficient Catalysts for Oxygen Evolution Reaction. *Small Methods* **2018**, *2*, 1800214.

(S11) Niu, Z.; Qiu, C.; Jiang, J.; Ai, L. Hierarchical CoP-FeP Branched Heterostructures for Highly Efficient Electrocatalytic Water Splitting. *ACS Sustainable Chem. Eng.* 2018, *7*, 2335-2342.
(S12) Liu, K.; Zhang, C.; Sun, Y.; Zhang, G.; Shen, X.; Zou, F.; Zhang, H.; Wu, Z.; Wegener, E. C.; Taubert, C. J.; Miller, J. T.; Peng, Z.; Zhu, Y. High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. *ACS Nano* 2018, *12*, 158-167.

(S13) Hu, E.; Ning, J.; Zhao, D.; Xu, C.; Lin, Y.; Zhong, Y.; Zhang, Z.; Wang, Y.; Hu, Y. A Room-Temperature Postsynthetic Ligand Exchange Strategy to Construct Mesoporous Fe-Doped CoP Hollow Triangle Plate Arrays for Efficient Electrocatalytic Water Splitting. *Small* **2018**, *14*, e1704233.

(S14) Jiang, M.; Li, J.; Cai, X.; Zhao, Y.; Pan, L.; Cao, Q.; Wang, D.; Du, Y. Ultrafine Bimetallic Phosphide Nanoparticles Embedded in Carbon Nanosheets: Two-dimensional Metal-Organic Framework-Derived Non-Noble Electrocatalysts for the Highly Efficient Oxygen Evolution Reaction. *Nanoscale* **2018**, *10*, 19774-19780.

(S15) Cao, L. M.; Hu, Y. W.; Tang, S. F.; Iljin, A.; Wang, J. W.; Zhang, Z. M.; Lu, T. B. Fe-CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large-Current-Density Oxygen Evolution and Overall Water Splitting. *Adv. Sci.* **2018**, *5*, 1800949.

(S16) Kim, H.; Oh, S.; Cho, E.; Kwon, H. 3D Porous Cobalt-Iron-Phosphorus Bifunctional Electrocatalyst for the Oxygen and Hydrogen Evolution Reactions. *ACS Sustainable Chem. Eng.* **2018**, *6*, 6305-6311.

(S17) Zhang, X.; Zhang, X.; Xu, H.; Wu, Z.; Wang, H.; Liang, Y. Iron-Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. *Adv. Funct. Mater.* **2017**, *27*, 1606635.

(S18) Zhou, L.; Shao, M.; Li, J.; Jiang, S.; Wei, M.; Duan, X. Two-dimensional Ultrathin Arrays

of CoP: Electronic Modulation Toward High Performance Overall Water Splitting. *Nano Energy* **2017**, *41*, 583-590.

(S19) Zhang, T.; Du, J.; Xi, P.; Xu, C. Hybrids of Cobalt/Iron Phosphides Derived from Bimetal-Organic Frameworks as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. *ACS Appl. Mater. Interfaces* **2017**, *9*, 362-370.