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) concept of activity. The principles of both theoretical stances and the networking approach are explained. The resulting model of reasoning processes is presented along with a brief discussion of its affordances and limitations. An example of data analysis is presented for the purpose of illustration.

Introduction

Theory takes an intermediate position between research, problems, and practices [START_REF] Silver | Theory in mathematics education scholarship[END_REF]. It facilitates transforming commonsensical problems into research problems, understanding real life practices through research, and enables identifying problems from certain state of affairs. Mathematics education has no grand theory of its own that could guide on all sorts of matters of mathematics teaching and learning and could distinguish mathematical learning from learning in general [START_REF] Silver | Theory in mathematics education scholarship[END_REF]. Multiple theoretical perspectives, with mutually exclusive principles, guide research practices in mathematics education. The diversity of theories is considered as a resource as well as a challenge for the development of the field [START_REF] Artigue | Different theoretical perspectives and approaches in research in mathematics education[END_REF][START_REF] Bikner-Ahsbahs | Networking of theories as a research practice in mathematics education[END_REF][START_REF] Ernest | A postmodern perspective on research in mathematics education[END_REF]. Networking of theories is a research practice that promotes dialogue between different theories and seeks to find solutions to problems on the intersection of different theories. [START_REF] Lester | On the theoretical, conceptual, and philosophical foundations for research in mathematics education[END_REF] suggests that mathematics education researchers should act as bricoleurs by adapting ideas from various theoretical sources to deepen understanding of teaching and learning of mathematics as well as to gain practical wisdom about the problems practitioners care about. [START_REF] Silver | Theory in mathematics education scholarship[END_REF] call for developing mid-range theories that could inform a discrete variety of practices and study the subfields in mathematics education such as individual mathematical thinking, teaching and learning in classrooms, or mathematics teacher education. [START_REF] Lesh | Mathematics education as a design science[END_REF] argue for approaching mathematics education research as a design science and call for developing conceptual systems that address the complex learning problems from multiple theoretical perspectives.

In this paper, I provide an example of networking of theories from my PhD research project in which I combine the conceptual framework of mathematical reasoning [START_REF] Lithner | A research framework for creative and imitative reasoning[END_REF] with cultural historical activity theory (CHAT) [START_REF] Engeström | Learning by expanding: An activity theoretical approach to developmental research[END_REF][START_REF] Leont'ev | The problem of activity in psychology[END_REF] to develop an analytical model of mathematical reasoning. In what follows, I argue for the need of the new model concerning the research aims. After that, I describe the two theoretical resources used and elaborate on the networking of them. I then present an illustrative empirical example for the developed model. At the end, I attend to limitations and affordances of the developed model.

Mathematical reasoning with regard to the learning environment

Mathematical reasoning is regarded as a vital constituent of mathematical learning. Mathematics curricula at different levels advocate for developing mathematical reasoning competence [START_REF] Alpers | A framework for mathematics curricula in engineering education: A report of the mathematics working group[END_REF]Niss & Højgaard, 2011). Some theoretical positions regard mathematical reasoning as an individual competence (Niss & Højgaard, 2011) while others regard the effect of the learning environment in forming the individual reasoning competencies [START_REF] Lithner | A research framework for creative and imitative reasoning[END_REF]. However, previous studies consider the role of individual components of the learning environment, such as textbook, teacher, individual tools, and examination (tasks), in forming mathematical reasoning (cf. [START_REF] Granberg | ICT-supported problem solving and collaborative creative reasoning: Exploring linear functions using dynamic mathematics software[END_REF][START_REF] Lithner | Mathematical reasoning in task solving[END_REF][START_REF] Lithner | Mathematical reasoning in calculus textbook exercises[END_REF][START_REF] Olsson | Relations between task design and students' utilization of GeoGebra[END_REF]. A holistic perspective on learning environment accounting for both tools and social elements in the analysis of mathematical reasoning has rarely been taken up. In this paper, I seek to form an analytical model by benefitting from existing theoretical stances, which could guide the analysis of the role of the learning environment in the formation of mathematical reasoning.

Conceptual framework for mathematical reasoning

In the conceptual framework of mathematical reasoning [START_REF] Lithner | A research framework for creative and imitative reasoning[END_REF], reasoning is manifested in a task solving activity, which comprises the following four steps: i) getting a task or a problematic situation, ii) selecting a strategy, iii) implementing the strategy, and iv) reaching to solution. The step of selecting the strategy entails predictive argumentation, which concerns learners' reasons about why the strategy will work. The step of implementing the strategy entails verificative argumentation, which concerns reasoning for why the strategy did work.

The framework characterizes individual learner's mathematical reasoning as imitative or creative based on the anchoring of mathematical arguments. In creative mathematical reasoning, the learner creates a novel reasoning sequence in which the arguments are rooted in properties of mathematical objects. Imitative reasoning is founded in application methods, which are, for instance, given in textbooks or told by the teacher. The predictive and verificative argumentation is based on the authority of sources of information instead of the mathematical properties involved.

The research framework considers the learner's reasoning sequence guided or limited by individual competencies formed in the learning environment. Lithner's framework has also been used to study the effects of individual components of the learning environment such as textbook, teachers, and examinations (cf. [START_REF] Granberg | ICT-supported problem solving and collaborative creative reasoning: Exploring linear functions using dynamic mathematics software[END_REF][START_REF] Lithner | Mathematical reasoning in task solving[END_REF][START_REF] Lithner | Mathematical reasoning in calculus textbook exercises[END_REF][START_REF] Olsson | Relations between task design and students' utilization of GeoGebra[END_REF].

Regarding methodology, the main data source are observations of students' solving of mathematical tasks along with written solutions, think-aloud protocols, pre-and post-interviews, and the textbook materials [START_REF] Lithner | A research framework for creative and imitative reasoning[END_REF]. Multiple sources of data aid in triangulation and ultimately support trustworthiness of the interpretations. The research questions that the framework seeks to answer focus on distinguishing between creative and imitative mathematical reasoning of individual students, required in tasks administered in textbooks and examination tasks [START_REF] Lithner | Students' mathematical reasoning in university textbook exercises[END_REF][START_REF] Palm | Mathematical reasoning requirements in Swedish upper secondary level assessments[END_REF], and facilitated by digital tools [START_REF] Granberg | ICT-supported problem solving and collaborative creative reasoning: Exploring linear functions using dynamic mathematics software[END_REF].

Cultural historical activity theory

In cultural historical activity theory (CHAT), object-oriented activities are arenas for human learning [START_REF] Engeström | Learning by expanding: An activity theoretical approach to developmental research[END_REF][START_REF] Leont'ev | The problem of activity in psychology[END_REF]. Learning takes place when individuals participate in human activities. An activity is conceptualized as subject-object interaction at three subject-levels: collective subject, individual subject, and non-conscious subject [START_REF] Engeström | Learning by expanding: An activity theoretical approach to developmental research[END_REF]. Each level entails different forms of learning. The collective subject refers to a group of individuals as a whole and learning at this level concerns mastering the whole activity systems bringing changes into the activity systems.

The individual subject carries out actions through which the activity is realized. The individual actions are directed towards goals linked to the object of an activity. To perform goal-directed actions, the individual devises a plan, a tacit representation of the method to reach the goals, termed as a model. The model is regarded as the tool for carrying out the actions. Based on the way the model is selected, the learning is categorized as: a) productive, or b) reproductive. The productive learning happens when the subject finds a new model through careful experimentation. Reproductive learning refers to the subject selecting the model from previously known methods through blind search or through trial-and-error approach [START_REF] Engeström | Learning by expanding: An activity theoretical approach to developmental research[END_REF].

The non-conscious human functioning refers to performing automatized operations during the activity. The learning at this level refers to formation of automatic operations and relates to tools in use. The tools at this level are the production tools such as writing instruments [START_REF] Cole | Cultural Psychology: A once and future discipline[END_REF]. The object is perceived as a fixed end and the subject attempts to reach to the object by making simple adaptations with regard to the conditions of the tools.

The action-goal and operation-condition layers are interlinked. That is, the actions upon enough practice may become operations and the operations upon alteration of the conditions of execution may rise back to the level of actions. In this sense, the learning at individual and non-conscious levels are intertwined and have implications for each other. That is, the model chosen at the action-goal layer influences the operations and the operations have implications for the action-goal level.

Regarding methodology, [START_REF] Nardi | Studying context: A comparison of activity theory, situated action models and distributed cognition[END_REF] infers from CHAT the following four methodological aspects. First, the research frame should include time as human activities evolve over long periods of time. Second, the attention should be paid to large patterns and narrow episodic frames should only be used in view of large patterns. Third, multiple data sources should be considered to conceive the activity system from all possible angles. Fourth, the researcher should be committed to understand the subject's object. The analysis of shorter episodes enables micro-analyses of processes within an activity and is to be linked to macro aspects of the activity at hand. The common type of research questions concern exploring relationships between elements of an activity system that affect the realization of the activity's object into the outcome. The individual subject's functioning can be analysed in view of the conditions of the activity system.

Combining the two theories: A model of reasoning processes through a cultural historical perspective

The analysis of individual cognition lies at the core of the conceptual framework of mathematical reasoning [START_REF] Lithner | A research framework for creative and imitative reasoning[END_REF]. In activity theory, the individual learner's acts only make sense in view of other elements of the activity system. In the reasoning framework, the search and implementation of the strategy are the two main steps of the reasoning sequence. These two steps parallel to searching and implementing of the model in CHAT (see Table 1 for other parallel terms).

The reasoning framework regards mathematical reasoning as a product of the learning that already has taken place in a learning environment. Through activity theory, mathematical reasoning can be associated to the ongoing learning in the activity as the model selection links to productive or reproductive learning. Mathematical reasoning can be viewed as woven in the action-operation dynamics of mathematical learning activities. Thus, I argue that the conceptual framework of reasoning and activity theory can be combined to deepen the understanding of the effect of the learning environment on reasoning processes. The mathematical reasoning process model is achieved by putting reasoning steps from the conceptual framework of reasoning into CHAT's concept of activity. The process of achieving the model is depicted in Figure 1. In Figure 1, the triangle represents the hierarchical layers of the activity (Leont'ev, 1974) while the dotted border shows that the reasoning is entailed in the bottom two layers. That is, the steps of selecting and implementing strategies, the main constituent steps of reasoning when solving a task,
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The non-conscious subject carries out operations.

The individual selects a model to carry out goal-directed action.

are weaved in the action-operation dynamics of the activity (Figure 1). The step of selecting a strategy takes place in the action-goal layer in the form of model selection. The implementation of the strategy takes place in the operation-condition layer (as shown in Figure 1). The fact that the actions and operations in CHAT affect each other implies that the steps of selecting a strategy and implementing the strategy also affect each other (shown with arrows in Figure 1).

The conceptual framework of reasoning provides an outer structure to mathematical reasoning through the two main steps of reasoning. CHAT provides an additional layer to how-and why-aspects of mathematical reasoning and adds an internal dynamic to the reasoning process. That is, CHAT not only allows looking into how reasoning takes place but facilitates understanding why certain actions (e.g., choice of strategies) take place in relation to the condition of the environment (e.g., tools, division of labour). In this way, it allows not only distinguishing between creative and imitative aspects of reasoning to its parallel forms of learning in CHAT, productive and reproductive learning, but also enables analysing the underlying contributing factors from the learning environment. In particular, the action-operation dynamics allow analysing effects of one step onto the other (as shown in Figure 1). Moreover, the role of tools can be analysed clearly and systematically. For instance, the model (Figure 1) enables analysing whether and how the tool operations effect the goals and the selections of models.

In terms of networking strategies (Bikner-Ahsbahs & Prediger, 2014), the practice is regarded as combining because the elements from the two theories in concern are fitted together to gain understanding of the empirical phenomenon of mathematical reasoning. In combining theories, the theories do not need to be compatible with regards to their principles as is the case with the theories in consideration -the conceptual framework and CHAT. The resulting conceptual framework is not a theoretical framework but a bricolage for understanding of the phenomenon of reasoning.

An illustrative example of the use of the model

Below, I present an episode from undergraduate engineering students' activity in a digital environment. The data belongs to a larger study, which focuses on student's activities in paper and pencil and digital environment (cf. [START_REF] Kanwal | Exploring affordances of an online environment: a case-study of electronics engineering undergraduate students' activity in mathematics[END_REF]. This example concerns two students' work on the following task: Solve a definite integral ∫ 𝑒 -𝑗𝜔𝑡 1 -1 𝑑𝑡, where 𝑗 is the complex number with 𝑗 2 = -1.

The definite integral can be solved as follows.

By using Euler's formula, 𝑒 𝑗𝜔 = 𝑐𝑜𝑠𝜔 +j 𝑠𝑖𝑛𝜔 for any real 𝜔, in (1), one gets:

𝒋(𝒆 -𝒋𝝎 -𝒆 𝒋𝝎 ) 𝝎 = 𝒋[(𝒄𝒐𝒔𝝎-𝐣 𝒔𝒊𝒏𝝎)-(𝒄𝒐𝒔𝝎 +𝐣 𝒔𝒊𝒏𝝎)] 𝝎 = 𝒋(-𝟐𝒋𝒔𝒊𝒏𝝎) 𝝎 = 𝟐𝒔𝒊𝒏𝝎 𝝎 (2) 
In the participants' activity, Per and Jan searched on the Internet to make the Maxima code, "j: sqrt (-1); A: e^(-j*w*t); integrate (A, t, -1, 1)". The maxima code served as the model being constructed through the use of Internet with the focus on syntax in Maxima. Involving this model, the task was translated into a Maxima code without the need of taking any integration into consideration.

∫ 𝑒 -𝑗𝜔𝑡 1 -1 𝑑𝑡 = -1 𝑗𝜔 ∫ 𝑒 -𝑗𝜔𝑡 1 -1 (-𝑗𝜔)𝑑𝑡 = -1 𝑗𝜔 𝑒 -𝑗𝜔𝑡 | 1 -1 = -1 𝑗𝜔 (𝑒 -𝑗𝜔 -𝑒 𝑗𝜔 ) = 𝑗 2 𝑗𝜔 (𝑒 -𝑗𝜔 -𝑒 𝑗𝜔 ) = 𝑗(𝑒 -𝑗𝜔 -𝑒 𝑗𝜔 ) 𝜔 (1) 
Later in the implementation phase, Per ran this command, which generated the output, ). The difference is due to the appearance of the two additional terms, %i and 𝑙𝑜𝑔(𝑒), in the Maxima output. In Maxima, 𝑙𝑜𝑔(𝑒) refers to natural logarithm of 𝑒. The reason why Maxima did not evaluate 𝑙𝑜𝑔(𝑒) into 1 and produced this term in the output is that Per did not specify 'e' as Euler's number in his input command. The Euler number 𝑒 is specified by %e in Maxima whereas Per just used 'e'. Also, the term %i represents the imaginary unit, sqrt (-1) in Maxima. Per denoted the imaginary unit with the symbol 'j' in his input command and Maxima replaced it with %i in the output. Replacing 𝑙𝑜𝑔(𝑒) = 1 and %𝑖 = 𝑗 in the output, one gets the textbook solution form. Yeah, that it is complex… 138 Jan:

Yeah.

Per's suggestive question (131) "that's probably correct, right?" indicates that Per was speculating that the solution was correct. The second part of Per's statement, "it is just that it is written in a way that is crazy hard to…", elucidates that he was aware that the form of the solution was different, and that the participant found the different form difficult to comprehend. Jan also did not seem to be sure, as he replied, "yeah, probably" and started examining the Maxima code by saying "look at the command line for it. What did you write there?". Per responded by reading the command line and pointed out (135) that "%i is just a symbol that it is…", and Jan adds instantly, "it is something". Per completed his sentence by saying that "yes, it is complex" which shows that Per was aware that "%i" represented the imaginary unit in the output. There were no comments regarding the term 𝑙𝑜𝑔(𝑒) and it was probably the main term that was inconceivable. Later, the students ended the discussion by saying that they would ask the lecturer about the correctness of the solution.

This example elucidates only one aspect of the developed reasoning process model, i.e., the manner of model selection affects the model implementation (indicated with the downward arrow in Figure 1). The example shows that the students selected the model in the form of the Maxima code that led them bypass the mathematical operations. The nature of required operations shifted from mathematics to syntax in Maxima. The final solution was correct; however, they were not able to comprehend it due to unfamiliarity with language and symbolism used in Maxima. Based on the implementation phase, the students revisited the initial model to see if it was correct. As the model was a conversion of the integral into Maxima code, the only thing to check was the syntax in Maxima. There were no mistakes in the model (code) and, therefore, the model was not changed. In this particular task, the availability of Maxima shifted the focus away from the integration in itself and the students became more engaged with syntax related issues. The availability of Maxima thus affected the reasoning process in an undesired fashion in this particular example, as the students did not engage with the involved mathematics. Using the developed model (Figure 1) in this example enabled to analyse the reasoning process in the form of individual actions and tool operations rooted in the conditions of the environment. The material conditions of Maxima affected the individual actions and the execution of operations, and hence the reasoning processes, as seen above.

Limitations of the model

The proposed model can only be used in the analysis of reasoning within activities and cannot be used for the analysis of short episodes without understanding the overall activity system. The model also does not guide the analysis of peer interactions while it may enable to consider social actors as division of labour, rules, and the community. Moreover, the reasoning will be interpreted from actions and operations, which may or may not be accompanied by utterances. This requires additional data in terms of stimulated recall interviews in order to make trustworthy interpretations from the data although it will only give access to the activity in an indirect way.
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	Mathematical task	Problem
	Strategy	Model
	Choosing a strategy	Selecting a model in action-goal layer
	Implementing the strategy	Implementing the model in operation-condition layer
	Creative mathematical reasoning	Productive learning
	Imitative reasoning	Reproductive learning