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The motion of an autophoretic spherical particle in a simple fluid is analyzed. This motion is
powered by a chemical species which is absorbed/emitted by the particle and which diffuses and is
advected in the surrounding fluid. The transition from the nonmotile to the motile state occurs if
the Péclet number Pe (defined as the ratio of the solute emission rate over the solute diffusion rate)
is sufficiently large. We first analyze the axisymmetric case (restricting the particle to a unique
direction). In this case, we find that the motion of the particle transits from a motionless to a
directed motion at a given critical Pe. Increasing Pe, we find a second critical value where the
particle becomes stagnant in a symmetric flow. Further increase of Pe leads to a recovery of motile
motion. When Pe is increased even further, the particle shows a periodic motion undergoing a
subharmonic cascade before entering chaos. In this regime, the mean square displacement behaves
quadratically with time (a ballistic regime). When the axisymmetry constraint is relaxed, allowing
the particle to freely move in three-dimensional space, we find that at a small Pe the particle moves
in a straight manner. There exists a critical value where the particle exhibits an oscillatory motion
with a meandering trajectory. Increasing further Pe leads to chaotic bursts for some time, before
entering fully into chaos via intermittency scenario at a critical Pe number. In this regime, the
particle shows run and tumble like dynamics: the trajectory is then characterized by a ballistic
swimming nature at a short time and a diffusive nature at a long time.
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I. INTRODUCTION

It has now become clear that many living systems, prokaryotic [1, 2] as well as eukaryotic [3–6] cells, have the
ability to swim in a fluid by deploying several strategies, such as flagella [7–11] and cilia beating [12], ample shape
deformation (amoeboid swimming) [4, 6, 13–17], and so on. Other motile systems use, instead of body deformation,
chemical activity in order to move forward. Typical examples are Marangoni-driven particles [18–20] (e.g. drops; also
designated as phoretic particles). In this case, the particle emits or absorbs a chemical that induces a Marangoni flow
due to the fact that surface tension depends on the chemical concentration.

An outstanding feature of these systems is their ability to exhibit a variety of trajectories from straight, circular,
helical, to chaotic motion. It is actually known for more than a century that the movement of living entities (such
as zoospores, flagellated/ciliated Protista, and so on) follows complex trajectories, such as spiral ones [21]. More
recently, several studies have reported on complex trajectories of real and artificial microswimmers [12, 22–29]. The
identification of minimal ingredients for the occurrence of complex trajectories has become a major issue. Ingredients,
such as particle asymmetry [25], or the complex nature of the suspending fluid [27] have led to the discovery of
curved trajectories (e.g. helical, spiral). At the same time, numerical simulations in two dimension have shown the
occurrence of curved and chaotic trajectories even for a circular phoretic particle moving in a simple fluid, and in the
absence of noise [29]. Recently, a general theory [30, 31], based on symmetry arguments, has shown that circular,
helical and chaotic trajectories should emerge for any symmetric particles (sphere) powered by a concentration field
moving in an isotropic medium (e.g. simple fluid). The theory states that these motions are generic, but this does
not mean that for a given active system these trajectories will actually be manifested. Indeed, since the theory is
based on symmetries, it does not provide information on the region of parameter space where such or such motion is
expected. To achieve this goal one needs to focus on a given system by analyzing explicitly the corresponding model.
The present work is directed towards this objective. Our aim here is to deal with a fully non-axisymmetric three
dimensional (3D) swimming problem, which reveals several new features in comparison to the axisymmetric situation.
As a preliminary study we will first focus on an axisymmetric model and compare our results to those of [19].

We are inspired by systems of water droplets in oil and surfactant phases [28]. It was proposed for such systems
that the transition from the nonmotile to a motile state is driven either by (i) tangential velocity driven by concen-
tration gradient along the surface and/or (ii) by a Marangoni effect due to the dependence of surface tension on the
concentration. In the present manuscript we consider a rigid spherical particle so that the effect of surface tension
does not play a role, and we focus on the motility due to tangential transport only.

In [19] a numerical study of axisymmetric motion in 3D has reported on several motions. Besides a straight motion
where the speed is a constant, two other motions have been reported for higher Péclet number (denoted as Pe), namely,
a stationary particle solution with a symmetric extensional flow and a chaotic regime where the particle moves back and
forth in an erratic manner. In this regime the motion is ballistic, that is, the mean square displacement (MSD) behaves
with time τ as MSD ∼ τ2. They also reported that chaotic oscillations may not arise for pure Marangoni propulsion
and that a small amount of diffusiophoretic behavior is needed. We have analyzed [29] numerically a phoretic model
(including tangential transport, but with no Marangoni effect) in 2D and have shown that on increasing Péclet number
we have a successive motion from straight motion, to meandering, circular and chaotic trajectories. In the chaotic
regime the MSD ∼ τ2 at short time and MSD ∼ τ at longer time, that is, the particle exhibits a persistent random
walk motion. More recently, Chen et al. [32] considered theoretically and numerically two situations: (i) a solid
particle having an extended planar geometry and (ii) a 3D spherical particle. In the first case, besides the straight
steady motion, they reported on the emergence of multiple concentration plumes are emitted from the catalytic
plane, which eventually merge into a single larger one when Pe is large enough. For a spherical particle, they found
that besides a straight motion, plumes are generated at the surface of the particle, which starts to move irregularly,
without providing the scenario by which irregular motion takes place, nor analyzing the resulting trajectory. Recent
experiments by Hokmabad et al. [33] have focused on the motion of an oil droplet suspended and slowly dissolving in
supramicellar aqueous solutions of ionic surfactants, by using a Hele-Shaw geometry (quasi-2D motion). The Péclet
number was increased thanks to a modification of the viscosity of the suspending solution. A remarkable feature
is that the particle undergoes, at high enough Pe, a chaotic motion in the form of a self avoiding random walk.
Self-avoidance of trajectories in confined quasi-2D geometry were also reported in another experiment of autophoretic
particle (similar in principle to the above described system) [34]. Another experimental study [35] focused on droplets
of diethyl phthalate (DEP) suspended in an aqueous solution of sodium dodecyl sulphate. The resulting DEP swollen
micelles are thermodynamically more stable than the empty ones. It is argued that an infinitesimal perturbation in
the velocity of the droplet leads to an anisotropy in surfactant concentration. This asymmetry induces a Marangoni
stress that forces the surface flow of surfactants, leading to a spontaneous droplet motion. By adding surfactants in
the solution, various drop motions are analyzed. As the surfactant concentration increases the motion turns from a
regular straight motion into an irregular one, with a ballistic motion at short time and a diffusive one at long time,
in agreement with our previous 2D simulation [29]. This experiment [35], in contrast to the two others [33, 34] did
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not report on self-avoiding trajectories. This question will be discussed further in this paper.
None of the above theoretical or numerical studies analyzed in details how chaotic motion takes place, or analyzed

the chaotic characteristics of the motion. These questions constitute a main contribution of the present work. A
systematic numerical investigation of the system shows a variety of motions from straight, meandering to chaotic
motions, as well as swimming stagnation. We will first focus on the simplified case where an axisymmetry constraint
is imposed, and show that the particle can swim beyond a critical Péclet number. In this regime, a comet-like solute
concentration field takes place; the solute shows a polarity. By increasing Pe the particle can be arrested, due to
the symmetric bi-polarization of the solute pattern. A further increase of Pe leads to a subharmonic cascade of the
particle position, before exhibiting chaos, in agreement with the study in [19]. In contrast to their study, by looking
more closely to the chaotic motion, we show here that this motion can be split into two ballistic regimes, one at short
enough time, and one at long time. The two regimes have two different amplitudes of their MSD, and we will provide
an intuitive understanding of these two regimes. In addition we analyze here in details the transition towards chaos
and show that it occurs via subharmonic cascade. We analyze here also the non axisymmetric case in great details
We find in this case meandering and chaotic motion, and this time via an intermittency scenario.

This paper is organized as follows. In Section II, we describe the mathematical model for the diffusiophoretic system
and derive the analytical solution of the velocity field. We further analyze the linear stability of the trivial stationary
solution of immobile state and determine the onset of stability. A systematical numerical investigation of the problem
in axisymmetric and fully three-dimensional space is presented in Section III. Finally, concluding remarks and future
work are addressed in Section IV.

II. MODEL

A spherical colloidal particle of radius a is suspended in a Newtonian solvent of viscosity η and density ρ, where
a chemical species dispersed in the solution interacts with the particle through an isotropic chemical activity A at
the particle surface. We focus on the so-called sharp interface limit, that is, the length λ, which characterizes the
interaction potential between the chemical species and the particle, is much smaller than a. In this regime, a local
slip flow is created along the particle surface, leading to a phoretic motion along with a net flow field [18]. The
concentration of the solute diffuses with diffusivity D and is advected by the surrounding fluid flow.

To proceed, we non-dimensionalize the length, fluid velocity, and concentration as in [18] by the characteristic
values a, |AM|/D, a|A|/D, correspondingly. Here the signed mobility M = ±kBTλ2/η, which depends on the
particle-solvent interaction forces, is defined with the Boltzmann constant kB and the temperature T . We assume
the fluid inertia is negligible as supported by the typical diffusiophoretic experiments [36] in which the Reynolds
number Re = ρ|AM|a/ηD is generally small (Re ∼ 10−5). Therefore, the motion of the fluid in the body-fixed frame
(attached to the center of the particle) obeys the incompressible Stokes equations

where p being the pressure and the velocity is decomposed by u = urer+uθeθ+uφeφ (er, eθ, eφ denote the standard
basis in spherical coordinates (r, θ, φ)). We assume that the fluid variables and the solute concentration, denoted by
c, are all defined in an unbounded domain Ω = {(r, θ, φ)|r ∈ [1,∞), θ ∈ [0, π], φ ∈ [0, 2π)}. The surface slip flow along
the particle serves as a boundary condition and is proportional to the tangential gradients of concentration as

u(r = 1) = M∇sc(r = 1), (1)

where M =M/|M| = ±1 being the dimensionless mobility and ∇s = (I−n⊗n)∇ denotes a surface gradient operator
with n being normal vector along the particle surface. In the far-field limit the velocity field converges to the phoretic
propulsion velocity

u(r →∞) = −(U + Ω× r), (2)

where r = rer. The phoretic kinematics of the particle can be found by using the reciprocal theorem [37], which
gives the relation for the translational velocity U and rotational velocity Ω to the surface slip velocity via the surface
integrals over the sphere:

U = − 1

4π

∫
u(r = 1) dS, Ω = − 3

8π

∫
er × u(r = 1) dS. (3)

It is remarkable to note that the motion of the particle is always irrotational (Ω = 0) in the present system. This
result can be directly derived from Eq. (4) due to the fact of homogeneous mobility. In contrast, given an uneven
surface mobility M = M(θ, φ) would generally produce a rotational motion [38].
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As aforementioned, the solute concentration obeys an advection-diffusion equation

∂c

∂t
+ u · ∇c =

1

Pe
∆c, (4)

where Pe = |AM|a/D2 denotes the Péclet number. The concentration field is subject to the fixed-flux isotropic
boundary condition

∂c

∂r
(r = 1) = −A, (5)

where the constant rate A = A/|A| = ±1 being the surface activity of emission (A > 0) or consumption (A < 0), and
fulfills the far-field attenuation condition

c(r →∞) = 0. (6)

We first note that there exists a trivial stationary solution at all Péclet numbers with an isotropic distribution
of solute concentration c0(r) = A/r, zero net flow and motionless translational velocity U = 0. At high Péclet
numbers, the nonlinear advective term u · ∇c plays an essential role, in that scenario it may lead to a polarization of
the concentration around the particle surface when Pe is large enough; hence any infinitesimal perturbation to the
immobile state solution c0(r) will trigger a spontaneous persistent swimming motion. This symmetry-breaking feature
was reported in [18] where an axisymmetric constraint is imposed. In the present work, we allow the particle to move
freely in three-dimensional space and aim to see the emergence of rich dynamics, such as straight, meandering, and
chaotic motions at large Péclet numbers. Note that other slightly different models have been adopted for phoretic
droplets where in addition to tangential flow (Eq. (2)) a Marangoni effect is taken into account which enters the
tangential stress balance. In particular it is shown that only the model with slip velocity (in contrast to the one
involving a Marangoni effect) leads (for the axisymmetric problem) to a chaotic regime, highlighting the inequivalence
of the two models [19]. Here we consider the simplest model (only tangential flow is taken into account), which will
already reveal variety of motions, from regular to chaotic ones. We have also admitted that the chemical activity is
assumed to be isotropic, for simplicity.

A. Analytic solution for the velocity field

Since we consider a spherical geometry, the velocity field, which fulfills Eqs. (1-3), can be solved analytically by
applying the Lamb’s general solution for squirmers in Stokes flow [40] via the expression of the vector spherical
harmonic expansion:

ur =

∞∑
n=1

n∑
m=0

ψn(r)Pmn (cos θ)
(
Bmn cosmφ+ B̃mn sinmφ

)
,

uθ =

∞∑
n=1

n∑
m=0

χn(r) sin θPm
′

n (cos θ)
(
Bmn cosmφ+ B̃mn sinmφ

)
,

uφ =

∞∑
n=1

n∑
m=0

χn(r)

(
−mPmn (cos θ)

sin θ

)(
B̃mn cosmφ−Bmn sinmφ

)
,

(7)

where ψ1(r) = 4
3

(
1− 1

r3

)
, ψn(r) = n+1

rn

(
1− 1

r2

)
for n ≥ 2, χ1(r) = 2

3

(
−2− 1

r3

)
and χn(r) = 1

rn

(
n−2
n −

1
r2

)
for n ≥ 2;

Pmn being the associated Legendre polynomial of degree n and order m and the prime represents differentiation. The
concentration field can also be represented as

c(r, θ, φ, t) =

∞∑
n=1

n∑
m=0

Pmn (cos θ) (cmn(r, t) cosmφ+ c̃mn(r, t) sinmφ) . (8)

Notice that the zeroth harmonic mode n = 0 vanishes in the above expression due to the far-field condition (7).
Matching the slip boundary condition (2) via the usage of Eqs. (8-9), one finds the coefficients

Bmn =
Mn

2
cmn(1, t) and B̃mn =

Mn

2
c̃mn(1, t). (9)
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As we can see, the velocity u (as well as U) is given in terms of c at the particle surface, and, when substituted into
Eq. (5), yields a closed nonlinear equation for c.

Given the analytic solution for the velocity field, we can compute the translational phoretic speed (written in
Cartesian components) via Eq. (4) as

U =
4

3

(
B11ex + B̃11ey −B01ez

)
. (10)

We immediately see that only the first harmonic modes B11, B̃11, and B01 are responsible for the swimming velocity
corresponding to the x-, y-, and z-directions, and this allows the phoretic particle to swim along arbitrary direction
in the three-dimensional domain.

B. A brief summary of Linear stability analysis

In this section we briefly recall the linear stability analysis [18]. As we mentioned earlier, the trivial stationary
solution of immobile state, c0(r) = A/r, exists at all Péclet numbers. Here, we analyze its stability by introducing a
perturbation of the form

c1(r, θ, φ, t) =

∞∑
n=1

n∑
m=0

Pmn (cos θ)
(
Cmn(r, t) cosmφ+ C̃mn(r, t) sinmφ

)
. (11)

Using the ansatz c0 + εc1 and neglecting the higher-order terms in ε, we derive a set of differential mode equations
(by using Eq.(5) and above velocity field)

∂

∂t
Cmn = AM

n

2

ψn(r)

r2
Cmn(1, t) +

1

Pe

[
1

r2

(
∂

∂r

(
r2
∂Cmn
∂r

))
− n(n+ 1)

r2
Cmn

]
, (12)

∂

∂r
Cmn(r = 1) = 0, Cmn(r →∞) = 0, (13)

where all the Cmn’s are decoupled from each other, due to the very nature of linearization. It is to be noted that the
equation for C̃mn satisfies exactly the same form of equation and thus is omitted here. Besides, the coefficients of the
equation do not depend on m. Therefore, for a given n, all the Cmn’s are identical and thus we look for eigenmodes
of the form Cmn = eσntCn(r). The eigenvalue problem reads LnCn = σnCn in which Ln denotes the linear operator
on the right-hand side of Eq. (13). The interesting fact is that the velocity in the diffusion equation can be expressed
in favor of the concentration field, as reported in other papers [18, 19, 41].

The first term on the right-hand side of Eq. (13) reflects the effect of advection while the second term is responsible
for the diffusion. It can be seen that the sign of the advection term depends on AM and the coefficient of the diffusion
term is always positive. As a result, the advection can be destabilizing (stabilizing) when A and M have the same
(opposite) sign, whereas the diffusion term is always stabilizing. Since we look for the potentially unstable modes to
the system, we henceforth focus on the case when A and M have the same sign. For definiteness, we fix A = M = 1.

We first note that the neutral condition for instability corresponds to σn = 0, and our aim is to extract the
corresponding condition, satisfied by the control parameter Pe. The critical values for Péclet numbers is obtained by
solving the differential equations LnC0

n = 0 together with the condition (14).
For the first harmonic mode n = 1, we find the general solution, without imposing the boundary conditions, is

given by

C0
1 (r) =

[(
1− Pe

2

)
r +

Pe

6

(
2 +

1

r3

)]
α1 +

[(
1− Pe

2

)
1

r2
+
Pe

6

(
2 +

1

r3

)]
β1, (14)

where α1 and β1 are constants. It can be seen clearly that the first term on the right hand side of the above expression
blows up as r →∞. Therefore we must have α1 = 0. On the other hand, the fact that the second term approaches a
non-zero constant as r →∞ indicates the presence of a boundary layer. To obtain a non-trivial solution, a matching
between the inner and outer solution should be performed to fulfill the vanishing boundary condition at infinity; see
Refs. [19, 42] for further details. Finally, by imposing the boundary condition at r = 1 we find that Pe1 = 4 being
the critical Péclet number. That is, when Pe > Pe1 = 4, the eigenvalue σ1 becomes positive so that the stationary
solution loses its stability, resulting in a solute polarity (solute excess at one pole and deficit at the opposite pole,
see the numerical simulation in Fig. 3(a)), leading to spontaneous swimming motion with a certain velocity along a
straight line (recall that only the first mode fixes the swimming speed, see Eqs. (10-11)).
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For higher modes n ≥ 2, we obtain

C0
n(r) =

[(
1− 2n+ 1

4
Pe

)
rn +

Pe

4

(
n+ 1

rn
+

n

rn+2

)]
αn +

[(
1− 2n+ 1

4
Pe

)
1

rn+1
+
Pe

4

(
n+ 1

rn
+

n

rn+2

)]
βn,

(15)

where αn and βn are constants. Again, the first term on the right hand side of the above expression blows up as
r → ∞. Therefore we must have αn = 0. The second term approaches zero as r → ∞ that fulfill automatically the
vanishing boundary condition. That is, there is no boundary layer for n ≥ 2. Here the critical number Pen = 4(n+1)
is obtained by imposing the boundary condition at r = 1, beyond which fluctuations of the second moment (stresslet,
n = 2) or other higher moments (n ≥ 3) are exponentially amplified. Thus, the progressive increase of Pe leads to
more and more harmonics being unstable. This results in more and more complex dynamics, as seen below. We
determine now the maximum growth rate σmax (or maximum eigenvalue of Ln) numerically for the first several
unstable modes as a function of Pe in Fig. 1. This reproduces the results already presented in [18]. As one can see,
the onset of unstable eigenmodes is consistent with the theoretical calculation. Besides, at high Péclet numbers, the
amplification of unstable modes is stronger for higher harmonics.

10
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2
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0

0.1
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m
a
x
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n = 2, Pe2 = 12
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n = 4, Pe4 = 20
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FIG. 1. The maximum growth rate σmax of Ln as a function of Pe with different modes. Based on the present theoretical
prediction (Pe1 = 4, P en = 4(n+ 1) for n ≥ 2), the spontaneous autophoretic motion occurs when the first swimming mode is
activated (Pe > Pe1 = 4).

III. NONLINEAR DYNAMICS

To go beyond the linear analysis presented in the previous section, we aim to perform a systematic study of the entire
diffusiophoretic system (1-7). In order to do so, we develop a first-order implicit-explicit time advancing numerical
scheme to discretize Eq. (5). The scheme is outlined as follows: the nonlinear advective term is treated explicitly
while the diffusive term is handled implicitly, where the velocity field is given analytically through Eq. (8) and the
concentration is decomposed via the spherical harmonic expression (9). This procedure generates a set of 1D partial
differential equations for the modes cmn and c̃mn, which can be solved efficiently using finite difference discretization in
the radial direction. See Lin et. al. [43] for further details, and the convergence validation presented in the Appendix.
Two cases will be studied: (i) a particle constrained to move in an axisymmetric manner, and (ii) a free particle
moving in three-dimensional space.
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A. Results in axisymmetric case

We first constrain the system to explore only axisymmetric solutions, that is, all the modes with m 6= 0 are
deliberately set to be zero. In this manner, the particle is allowed to swim along a straight direction, taken to be
z-axis, with the locomotion speed denoted as W (z-component of U).

It is found that, for Pe < Pe1 = 4, and as expected from the linear stability, the system recovers to the trivial
immotile solution regardless of the amplitude of imposed perturbation, whereas when Pe > Pe1 = 4, a spontaneous
symmetry-breaking swimming motion is found. This is exactly compatible with the theoretical prediction on the onset
of self-propulsion reported in the previous section. We plot in Fig. 2(a) the speed of the particle as a function of Pe.
It can be seen that at Pe1 = 4 the system undergoes a supercritical bifurcation. Remarkably, in Fig. 2(b) we find that
the swimming speed W ∝ (Pe − Pe1)1/2 close to the onset of bifurcation points. This result is consistent with the
prediction in the recently proposed generic model [30, 31]. The classical pitchfork behavior is due to finite size [44] in
numerical simulations (see below). We also find that the nonlinear variation of the phoretic velocity (blue solid line)
agrees quantitatively with those (red dots) obtained by Michelin et. al. [18]. We also note that in this regime where
the particle exhibits straight motion, the concentration field shows a comet-like distribution. An example at Pe = 10
is shown in Fig. 3(a).

Before proceeding further, an important remark is in order. Morozov and Michelin [45] showed recently that in
fact close to the bifurcation point from a nonmotile to a motile state the velocity behaves as W ∼ Pe − Pe1, and
not as (Pe − Pe1)1/2, as we found above. This result is confirmed by Saha et al. [46]. Actually this finding was
also reported earlier by Rednikov et al. [41] (see their equation 24). To be more precise |W | ∼ Pe − Pe1, and the
absolute value is a signature of singular behavior. We first note in passing that |W | ∼ Pe−Pe1 implies the existence
of two symmetric branches of solutions W ∼ ±(Pe− Pe1), and the bifurcation is not transcritical, as stated in [45],
but of pitchfork (albeit singular) nature. This singular behavior is due to the infinite size of the system. In our
simulation discretization reintroduces finite size effects. Even if our domain is formally infinite and mapped onto [0, 1]
due to the Kelvin inversion (details of numerics are given in [43]), in the transformed coordinate r = 0 is excluded
(meaning infinity in real space), to avoid numerical singularity. The finite size, even arbitrary large, regularizes
the bifurcation, in that W ∼ (Pe − Pe1)1/2. The regularization of the singular pitchfork bifurcation into a classical
(regular) pitchfork bifurcation is discussed in detail in [44]. In particular, by focusing on the vicinity of the bifurcation
we prove numerically that the bifurcation is of pitchfork nature (Fig.2b), in agreement with the prediction in [44].

FIG. 2. (a) Bifurcation diagram for the locomotion speed W as a function of Pe under axisymmetric constraint. By increasing
Pe numbers, the dynamics of the particle exhibits behaviors such as stationary, straight, stagnant, directed, and chaotic
motions. The phoretic velocity obtained by our simulations (blue solid line) agrees quantitatively with the ones (red dots) in
[18]. (b) Zoom-in view of panel (a) around the first critical Péclet number, Pe1 = 4. Near Pe = 4, the speed W fits well with

the dashed curve 1.723× 10−2(Pe− Pe1)1/2.

By increasing Péclet number, the dynamics of the particle transits from motile to another nonmotile and stagnant
state (W = 0) at Pe ≈ 26. A similar steady stagnant solution is also observed for chemically-active droplets [19].
In this regime, the concentration field is symmetric about z = 0 so that the swimming velocity equals identically to
zero. An example at Pe = 30 is shown in Fig. 3(b). Further increasing on Pe leads to another transition to directed
motions at Pe ≈ 50. In this regime, the concentration distribution obviously differs from the “comet-like” one for
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FIG. 3. Top: Concentration distribution denoted using color code for symmetric-breaking solutions in (a) straight, Pe = 10;
(b) stagnant, Pe = 30; (c) directed regime, Pe = 51. White arrow denote the swimming direction. Bottom: corresponding
streamlines.

straight motion, but more close to the symmetric one for stagnant solution. An example at Pe = 51 is shown in
Fig. 3(c). Note that in Fig. 3(c) the concentration has a very small front-back asymmetry and the resulting speed is
quite small.

Remarkably, it is found that the directed motion turns into periodic motion when Pe & 52.64, and the system
undergoes a period-doubling cascade as Pe increases in the region 52.64 . Pe . 52.72. This period doubling cascade
shows an accumulation point, corresponding to the transition to chaos. The period-doubling cascade is one of the
three classical scenarios of transition to chaos (the two others being intermittency and quasiperiodicity). With the
help of extensive and careful numerical computations, we can describe five subwindows supporting the occurrence
of the period-doubling cascade, and the beginning of accumulation of critical points for successive period-doubling
bifurcations. For brevity of the description, we only give the representative results for each subwindow phase-plane
diagram (W, dW/dt). We start by setting Pe = 52.64, corresponding to the first subwindow. Due to the periodicity of
the solution, the phase portrait forms a closed curve with time period T = 159.22, see Fig. 4(a). Next, the value of Pe
is increased to 52.67 which lies in the second subwindow. The topology of the phase curve shown in Fig. 4(b) appears
to change while a new branch can be clearly seen. In this case the period T = 318.125. For Pe = 52.70, corresponding
to the third subwindow, the phase diagram is given in Fig. 4(c), where a new discernible branch is generated with the
period T = 632.988. In the fourth subwindow, we set Pe = 52.71 and obtain the period T = 1264.69, see Fig. 4(d).
It is also clearly seen that in Fig. 4(a,b,c) the distance between two successive critical values of Pe becomes smaller
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and smaller, which shows a generic feature of a subharmonic cascade. The final example corresponds to Pe = 52.72
(the fifth subwindow, see Fig. 4(e)). In this case the dynamics shows a strange attractor, characteristic of chaotic
motion. As aforementioned the subharmonic cascade occurs in the very narrow region 52.64 . Pe . 52.72, so these
time periodic motions can be sensitive to small increment of Pe. We therefore ran a series of numerical simulations
to confirm the numerical validity of these results. It shows that the time periodic numerical solutions converge when
refining spatial or temporal step size (see appendix). This guarantees the correctness of the observed scenarios and
the convergence of our proposed numerical scheme in [43].

To further characterize the solution behavior in this regime, we illustrate, with a numerical simulation at Pe = 54,
the behavior of the mean square displacement (MSD) and the corresponding swimming speed in Fig. 5. It can be
seen that the swimming speed exhibits an apparent random rectilinear motion, while the average value of the velocity
highlights the preference for swimming along a certain direction (either positive or negative z-axis), and this results in
the MSD being proportional to τ2 at long times. Notably, the quadratic behavior of MSD is also found for the chaotic
swimming of active droplets under the axisymmetric assumption in [19]. However, no directed motion is reported after
the stagnant one. This is probably due to the difference in models (a rigid particle here, and a droplet in Ref.[19]). A
priori, since the particle undergoes chaos, we could have expected to have a non-ballistic motion (for example normal
and abnormal diffusion). The origin of this ballistic behavior may be understood as follows. Due to axisymmetry,
the particles moves in a given direction in the directed motion (preceding chaos). The two opposite directions are
equally good candidates. However, given an initial condition, the particle will select one definite direction (and not
the other). When chaos takes place, the particle goes back and fourth in its own frame. In the laboratory frame, the
particle has on the average a definite directed motion along, say positive z-axis. Simulations show that MSD is made
of two successive quadratic regimes in time that can be interpreted as short time and long time ballistic regimes.

At short enough time the particle undergoes a ballistic motion associated with velocity |W (t)|. More precisely, we
define

A2 =
1

N

N∑
i=1

W 2
i , (16)

where Wi being the speed at different time steps ti. At short time the the particle makes back and forth motion
with a negligible net forward motion (measured by (

∑
iWi)

2) so that the mean square displacement is dominated by∑
iW

2
i . In that case we expect MSD ∼ A2τ2. At long time the particle makes a back and forth motion but makes

a significant net forward motion which is dominated by (
∑
iWi)

2. We define

B2 =

(
1

N

N∑
i=1

Wi

)2

(17)

and we expect MSD ∼ B2τ2.The results of these two ballistic motion are shown in Fig. 5, showing a remarkable
agreement with the full numerical simulation. The chaotic back and forth motion is related to a chaotic oscillation of
concentration polarity around the bead. As seen above only the first harmonic contributes to the swimming speed.
Therefore, in order to make the polarity oscillation more visible, we have projected the concentration field onto the
first harmonic. We show in supplementary material [47] a movie highlighting the chaotic behavior of the comet.

B. Results in three dimensions

Now, we turn our attention to the case where the particle is free to move in three-dimensional space. We plot the
bifurcation diagram for the phoretic velocity ‖U‖ as a function of Pe in Fig. 6. It can be seen that, as expected,
the trivial stationary solution loses its stability when Pe > Pe1 = 4. Once the instability threshold is reached,
i.e., the first mode is activated (n = 1), a symmetry-breaking solution takes place so that the particle is able to
persistently propel itself along an arbitrary direction with constant velocity that leads to a particle trajectory of the
form X(t) = U0t + X(0), where U0 is a constant vector. In such a scenario, the concentration field of the particle
shows the comet-like pattern (see Fig. 3(a)), leading to a nonzero concentration gradient on the particle surface. Also,
the magnitude of ‖U‖ in the regime of straight motion is, obviously, identical to that obtained under the axisymmetric
assumption, see Fig. 6.

It is interesting to see that, different from the axisymmetric case, the directed swimming solution loses its stability (a
secondary instability) at Pe ≈ 24.1 in favor of a meandering motion. In this regime, the swimming velocity is no longer
a constant but periodically oscillates in time. The particle trajectory can be written as X(t) = U0t+ U1F (t) + X(0),
where U0, U1 are constant vectors and F (t) is a periodic function. An example of the meandering particle motion
at Pe = 24.1 is shown in Fig. 7. We should also point out that the trajectory is in fact two-dimensional, that is,
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FIG. 4. Phase-plane diagram (W, dW/dt) at different Pe numbers. The time periods T of the solution undergo a period-doubling
cascade as Pe is increased in the region 52.64 . Pe . 52.72.
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certain time interval, and the dotted line shows the value of B.

the particle’s trajectory lies on a two-dimensional affine subspace of R3. So the meandering motion in this regime is
entirely planar.

Soon at Pe ≥ 24.2, the particle quits meandering motion and enters directly into an apparent chaotic regime. This
reveals that the effect of the nonlinear advective term becomes pronounced while the growth of the high harmonic
modes is triggered. The activation of this harmonic mode contributes to the appearance of irregular chaotic burst,
as shown in Fig. 8, which represents the swimming speed of the particle close to the transition towards chaos. As
the Péclet number is increased further the occurrence of chaotic burst becomes more frequent, until at Pe ' 24.5
where the whole trajectory becomes erratic in time, via the intermittency scenario. As a demonstration for solutions
in chaotic regime, we perform a simulation at Pe = 24.5 where the particle exhibits an apparently random motion, as
seen in Fig. 9(a), and we quantify this random walk by measuring the MSD in Fig. 9(b). At short times the particle
produces a persistent run-and-tumble-like motion and the MSD curve is then quadratic in time. At longer times,
a de-correlation process due to chaotic turns takes place with MSD proportional to τ , that is typical of a classical
random walk. This demonstration gives evidence that the complicated swimming motion can arise under the minimal
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FIG. 6. Bifurcation diagram for the locomotion speed ‖U‖ versus Pe in three dimensions. By increasing Pe numbers, the
dynamics of particle exhibits behaviors such as stationary, straight, meandering, and chaotic motions.
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FIG. 7. The particle trajectory at Pe = 24.1 showing a meandering straight motion.

version of dynamics such as in this system, provided by a strong nonlinearity induced from the advective component.
This result agrees with our previous simulation in 2D [29], highlighting its robustness.

Note that some quasi-2D experiments (Hele-Shaw geometry or a confined microfluidic device) [33, 34] reported on
a self-avoiding walk, where the concentration emitted at earlier time by the particle has a long living period so that at
a next passage at later time the particle avoids its own trail. Other experiments [35] did not observe, however, a self-
avoiding walk, but rather a diffusion-like random walk, as found here. This highlights the fact that the self-avoiding
walk is not the rule. The concentration trail decays with time, with a decay time of order 1/(Dq2), q is wavenumber
of order 1/a. We have thus a typical time a2/D. The particle (in the chaotic regime) moves with velocity W of order
D(Pe− Pe1)/a, and its time to travel a persistent length L is of order L/W . The decay time is of order a2/D while
the travel one is of order aL/(DPe) (in the chaotic regime Pe � Pe1). In the chaotic regime Pe ∼ 25 and decay
time is smaller provided that L/a > 25. The typical persistent length is of order of at least 100a, meaning that decay
time is shorter than travel time. Thus on next passage of the particle in previously visited sites the concentration
trail would have significantly decayed. A more precise estimate for the travel time is to use the computed velocity
0.06|AM|/D (recall that velocity in Fig. 6 is rescaled by |AM|/D) so that travel time is of order aL/(0.06DPe) to
be compared to a2/D. Taking Pe = 25 we find that travel time is larger than decay time if L/a � 1.5, which is
safely fulfilled. For significantly larger Pe, the travel time may be reduced so that self-avoidance may emerge. Note
also that the above-mentioned experiments where a self-avoiding walk is observed [33, 34] are quasi-2D (confined
swimming), a fact which may favor self-avoidance, in contrast to our simulation which is performed in 3D. In that
case the probability of successive passages is very low making the exponent of the MSD in the self-avoinding walk
close to that of a clssical random walk (equal to about 1.2 in 3D, to be compared to about 1.5 in 2D)[48]. It will be
an interesting task for future work to reanalyze the 2D simulation in the light of these observations.
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IV. CONCLUSIONS

In this paper, we have shown that a complex dynamics, such as directed, stagnant, meandering, or chaotic propul-
sion, arises for an individual spherical particle powered by a chemical species. A minimal and fully three-dimensional
model was proposed to mimic the diffusiophoretic system. We took advantage of the Lamb’s general solution to find
the analytic velocity field generated by a surface slip flow with arbitrary concentration coverage. Given an isotropic
fixed-flux boundary condition (emission or consumption of concentration) and constant mobility, our linear stability
analysis revealed that the nonmotile stationary solution loses its stability when advection of concentration is suffi-
ciently strong, i.e., beyond the first critical Péclet number Pe1 = 4. We further derived the critical Péclet number for
higher harmonic modes.

More specifically, under the axisymmetric constraint, we found that the only nonlinear ingredient of the model (con-
centration advection) leads to multiple types of spontaneous swimming locomotion. When the first harmonic mode
is activated (Pe > Pe1), the self-propulsion straight motion is observed in which the polarization of concentration
occurs. A strong advection may destabilize this steady self-propelling swimming and spontaneously stop the locomo-
tion with a symmetric net flow. If advection is strengthened further (i.e., increasing Pe), the symmetric state loses its
stability and the particle turns to a directed motion with a slow speed. Strengthening the advective component even
further, we found that the directed motion experienced subharmonic cascade and enters chaotic oscillation, which was
characterized by random reversal of the propulsion direction (thus the particle swims back and forth), and the MSD
behaves quadratically in this chaotic regime. Chaos is found here to occur via a subharmonic cascade. In contrast, in
fully three-dimensional space, another bifurcation scenario occurs. Namely, the straight motion turns into a periodic
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meandering motion, and this motion is only found in a very narrow region for Pe ∼ 24.1, before entering a chaotic
regime. Different from the axisymmetric case, the chaotic bursts of the velocity become more and more frequent as
Pe increases, until the trajectory becomes fully chaotic, via the intermittency scenario. The erratic trajectory shows
a diffusive nature where the MSD reaches a linear function at long time.

Throughout this paper, we considered the simple case of constant chemical activity and mobility, which always
results in irrotational phoretic motion. Appropriate models may be designed to lead to pure translation, pure rotation,
circular, or generally, helical motion [38], that will be studied in the future. This general setup should serve as a guide
for designing arbitrary phoretic spheres with desired locomotion properties.

Finally, besides phoretic particles discussed here, other systems, such mammalian cells, are known to swim in a fluid
[3–6]. In this case cell motility is assisted by actin and myosin dynamics [5, 49, 50]. Actin polymerizes at the cell front
(serving as a sink) and depolymerizes at the back, whereas myosin exerts contractile stress on the cell cortex, affecting
thus the cortex stress (very much like the Marangoni effect). We thus expect similar complex dynamics found here
to occur within these systems as well. Morozov [51] considered a more general model where the chemical activity
depends on the particle surface surfactant concentration, as well an adsorption current depending on the micellar
concentration. This led to the discovery of multistable regimes where a moving solution coexists with a stagnant
solution showing an extensional symmetric flow. It will be an interesting task for future investigations to see how this
type of model refinement would affect (besides multistability [51]) the overall features reported here.
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APPENDIX

Here, we present the convergence validation of the present numerical solver. Following [43], we apply Kelvin’s
inversion with r̄ = 1/r so that the spatial domain is bounded, r̄ ∈ (0, 1]. We choose Pe = 10 with initial concentration
c(t = 0) = 1

r −
1
10 exp(−(r − 1)2)P 1

1 (cos θ)(cosφ + sinφ), and perform the simulation up to T = 10 (the flow field
is under developing to straight motion). In each simulation, we fix 32 and 64 points in the polar and azimuthal
directions, respectively (in spherical harmonic expansion). Denoting the radial mesh width by ∆r̄ and set the time
step size ∆t = ∆r̄, the convergence study is reported in Fig. 10. As one can see, the swimming speed ‖U‖ converges
to a certain value when refining ∆r̄ (left panel), while as expected, the convergence rate is roughly first order (right
panel).
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FIG. 10. Left: the swimming speed ‖U‖ at different mesh sizes. Right: the consecutive error ‖U∆r̄‖ − ‖U∆r̄/2‖.

We also validate the convergence both in spatial and temporal domains for solutions in period doubling regime.
We choose Pe = 52.64 and ran a series of simulations with fixed mesh size ∆r̄ = 0.03125 and different time steps
∆t. As can be seen in Fig. 11, the periodic motion can be indeed captured in each simulation; we can also observe
that the phase portrait (W, dW/dt) tends to converge to a limit cycle along with the convergent time period T when
refining the time step size. On the other hand, we perform the convergence study of spatial size as follows. Note
that all results in Fig. 4 were done by using ∆r̄ = 0.03125 and ∆t = 0.1562. While using the finer spatial mesh
width ∆r̄ = 0.015625, Fig. 12 shows that the period doubling cascade can be reproduced but with slightly different
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Pe values. (Notice that the boundaries, or critical Pe values, of subwindows in this regime can vary a little bit due
to the error from numerical discretization.) The above studies demonstrate the validation for the convergence of the
numerical method.
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FIG. 11. Phase-plane diagram (W, dW/dt) with Pe = 52.64 and ∆r̄ = 0.03125.
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[5] A. Farutin, J. Etienne, C. Misbah, and P. Récho, “Crawling in a fluid,” Phys. Rev. Lett. 123, 118101 (2019).
[6] Laurene Aoun, Paulin Negre, Alexander Farutin, Nicolas Garcia-Seyda, Mohd Suhail Rivzi, Remi Galland, Alphee Michelot,

Xuan Luo, Martine Biarnes-Pelicot, Claire Hivroz, Salima Rafai, Jean-Baptiste Sibareta, Marie-Pierre Valignat, Chaouqi
Misbah, and Olivier Theodoly, “Amoeboid swimming is propelled by molecular paddling in lymphocytes,” Biophys. J.
119, 1157–1177 (2020).

[7] Marco Polin, Idan Tuval, Knut Drescher, J. P. Gollub, and Raymond E. Goldstein, “Chlamydomonas swims with two
“gears” in a eukaryotic version of run-and-tumble locomotion,” Science 325, 487–490 (2009).
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