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Abstract
Backtrack search is a classical complete approach for exploring the search space of a constraint
optimization problem. Each time a new solution is found during search, its associated bound is used
to constrain more the problem, and so the remaining search. An extreme (bad) scenario is when
solutions are found in sequence with very small differences between successive bounds. In this paper,
we propose an aggressive bound descent (ABD) approach to remedy this problem: new bounds are
modified exponentially as long as the searching algorithm is successful. We show that this approach
can render the solver more robust, especially at the beginning of search. Our experiments confirm
this behavior for constraint optimization.
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1 Introduction

In Constraint Programming (CP), even if many related frameworks have been proposed
since the 70’s, it is usual to deal with either Constraint Satisfaction Problems (CSPs) or
Constraint Optimization Problems (COPs). In addition to a set of (integer) variables to be
assigned while satisfying a set of constraints, a COP instance involves an objective function
to be optimized (i.e., a cost function to be minimized or a reward function to be maximized).
Solving a COP instance not only requires to prove satisfiability (i.e., to find at least a
solution), but also ideally to prove optimality or at least to find solutions of rather good
quality (i.e., close to optimality).

Backtrack search is a classical complete approach for exploring the search space of a
COP instance. Actually, this is equivalent to solve a series of CSP instances. Assuming an
objective function f to be minimized, initially f is handled under the form of a constraint
f <∞, and each time a new solution of cost B is found, B is used as a new limit for the
objective constraint, so as to become f < B (hence, forming a tighter CSP instance). This
way, any new found solution is guaranteed to have a better quality (lower cost) than the
previous one, and optimality can be proved when the problem instance becomes unsatisfiable.

It is not unusual that optimization problems that come from industry are under-
constrained, meaning that a lot of solutions exist with various qualities in different parts of
the search space. In such situations, applying backtrack search may be penalized because
the bound descent (i.e., the decreasing sequence of successively found bounds), can be very
slow: the distance between any two successive bounds can be rather small. In this paper, we
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propose an approach to attempt reducing this phenomenon by modifying the bounds in a
more aggressive manner: as long as it is successful, new limits for the objective constraint are
computed following an exponential growth. Of course, in case the limit renders the problem
unsatisfiable or very difficult to solve, a restart mechanism allows us to resume search on
safe tracks.

Even if other search techniques exist in the literature, like for instance the widely used
meta-heuristic Large Neighborhood Search (LNS) [10], in this paper, we focus on depth-first
backtracking search, equipped with solution (-based phase) saving that has been shown to
be highly effective [12, 4].

This paper is organized as follows. In Section 2, technical background about CP is
introduced. Next, in Section 3, Aggressive Bound Descent (ABD) is presented, and before
concluding, experimental results are given in Section 4.

2 Technical Background

A Constraint Network (CN) consists of a finite set of variables and a finite set of constraints.
Each variable x can take a value from a finite set called the domain of x, denoted by dom(x).
Each constraint c is specified by a relation over a set of variables. A solution of a CN is
the assignment of a value to all variables such that all constraints are satisfied. A CN is
satisfiable if it admits at least one solution, and the corresponding Constraint Satisfaction
Problem (CSP) is to determine whether a given CN is satisfiable, or not.

A Constraint Network under Optimization (CNO) is a constraint network together with
an objective function obj that maps any solution to a value1 in R. Without any loss of
generality, we shall consider that obj must be minimized. A solution S of a CNO is a solution
of the underlying CN; S is optimal if there is no other solution S′ such that obj(S′) < obj(S).
The usual task of the Constraint Optimization Problem (COP) is to find an optimal solution
to a given CNO. Note that CNs and CNOs are also called CSP/COP instances.

Backtrack search is a classical complete procedure for solving CSP/COP instances.
It interleaves variable assignments (and refutations) and a mechanism called constraint
propagation in order to filter the search space. Typically, as in MAC [9] that propagates
constraints by maintaining the property of arc consistency, a binary search tree T is built: at
each internal node of T , (i) a pair (x, v) is selected where x is an unfixed variable and v is a
value in dom(x), and (ii) two cases (branches) are considered, corresponding to the assignment
x = v and the refutation x ̸= v. The order in which variables are chosen during the depth-first
traversal of the search space is decided by a variable ordering heuristic; a classical generic
heuristic being dom/wdeg [2]. The order in which values are chosen when assigning variables
is decided by a value ordering heuristic; for COPs, it is highly recommended to use first
the value present in the last found solution, which is a technique known as solution (-based
phase) saving [12, 4].

Backtrack search for COP relies on CSP solving: the principle is to add a special objective
constraint obj <∞ to the constraint network (although it is initially trivially satisfied), and
to update the limit of this constraint whenever a new solution is found. It means that any
time a solution S is found with cost B = obj(S), the objective constraint becomes obj < B.
Hence, a sequence of better and better solutions is generated (SATisfiability is systematically
proved with respect to the current limit of the objective constraint) until no more exists

1 For simplicity of presentation, we consider that costs are given by integer values.
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(UNSATisfiability is eventually proved with respect to the limit imposed by the last found
solution), guaranteeing that the last found solution is optimal.

Restart policies play an important role in modern constraint solvers as they permit to
address the heavy-tailed runtime distributions of SAT (Satisfiability Testing) and CSP/COP
instances [5]. In essence, a restart policy corresponds to a function restart : N+ → N+,
that indicates the maximal number of “steps” allowed for the search algorithm at attempt,
called run. It means that backtrack search piloted by a restart policy builds a sequence of
binary search trees ⟨T1, T2, . . .⟩, where Tj is the search tree explored at run j. Note that the
cutoff, which is the maximum number of allowed steps during a run, may correspond to the
number of backtracks, the number of wrong decisions [1], or any other relevant measure. In
a fixed cutoff restart strategy, restart(j) is constant whatever is the run j. In a dynamic
cutoff restart strategy, restart increases the cutoff geometrically [13], which guarantees that
the whole space of partial solutions will be explored.

3 Aggressive Bound Descent

When solving a COP instance, the bound descent is defined as the sequence D = ⟨B1, B2, . . . ⟩
of successive bounds identified by the search algorithm. At an extreme, this sequence contains
only one value, the optimal bound. At another extreme, it contains a large sequence of
values, each one being close to the previous one: the bound descent is said to be slow.
This is the case when the mean value of the derived sequence of bound gains (or gaps)
G = ⟨B1 −B2, B2 −B3, . . . ⟩ is small (close to 1).

Certainly, a slow bound descent indicates that there is some room for improvement about
the way the backtrack search is conducted. Indeed, enumerating a lot of close solutions before
reaching optimality involves solving many derived satisfaction problem instances, always
on different, although related, backgrounds (objective constraint limits), and this may be
penalizing. This is why we propose an aggressive policy of bound descent, ABD (policy) in
short. Instead of setting the strict objective constraint limit to B when a new solution of
cost B is found, we propose to set it to a possibly lower value B′.

A first and simple ABD policy could be to use a static difference between B and B′:
B′ = B −∆ where ∆ is a fixed positive integer value. However, this static policy clearly
suffers from a lack of adaptability, and besides, setting the right value for ∆ may be problem-
dependent and not very easy to achieve. This is why we propose some dynamic ABD policies,
inspired from studies concerning the sequences used by restart policies.

To define dynamic ABD policies, we first introduce a few general sequences of strictly
positive integers, i.e., functions abd : N+ → N+. Although detailed later, the parameter
i ≥ 1 of these sequences corresponds to the number of successive successful limit updates,
i.e., successive aggressive updates of the objective constraint limit while keeping satisfiability.
Specifically, four integer sequences are used in our study:

exp(i) = 2i−1 (1)

rexp(i) =
{

2k−1, if i = k(k+1)
2

2i− k(k+1)
2 −1, if k(k+1)

2 < i < (k+1)(k+2)
2

(2)

luby(i) =
{

2k−1, if i = 2k − 1
luby(i − 2k−1 + 1), if 2k−1 ≤ i < 2k − 1

(3)
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prev(i) =
{

1, if i = 1
Gi−1 × 2, else

(4)

where, in Equation 4, Gi is the ith value of the sequence of bound gains, as defined earlier.
Equation 1 corresponds to the classical exponential function exp (using base 2). Derived

from this simple exponential progression, rexp in Equation 2 corresponds to a regularly
reinitialized exp sequence. The first values of this sequence are: 1, 1, 2, 1, 2, 4, . . . When only
considering the highest numbers produced by the first term (condition) of the equation,
we obtain a slightly slower progression than the previous one: O(2

√
i). Another sequence,

commonly used in restart policies, is the Luby sequence [8], given by Equation 3. The first
values of the Luby sequence are: 1, 1, 2, 1, 1, 2, 4, . . . When considering again the highest
numbers produced by the first term, we can observe that the progression is in O(i). Finally,
the last sequence, given by Equation 4, is based on the sequence of bound gains, and also
follows an exponential progression.

Each sequence in Ψ = {exp, rexp, luby, prev} allows us to define an eponymous ABD
policy as follows.

3.1 ABD Policy
Let T be the current search tree built by the search algorithm (i.e., during the current run).
Let D be the bound descent produced since the beginning of the current run, and let abd ∈ Ψ.
The current run can meet three distinct situations:
1. the current run is stopped because the cutoff value is reached,
2. the current run is stopped because the search algorithms indicates that no more solution

exists,
3. a new solution S is found.
First, we discuss the most interesting case: the third one. The ABD policy states that when
a new solution S of cost B is found, B is appended to D, and the limit of the objective
constraint is set to B + 1− abd(i), where i = |D|. In other words, the objective constraint
becomes: obj < B + 1− abd(i); note that 1 is added to B because abd functions only return
values greater than or equal to 1. Now, we give a general precise description (handling in
particular the two first situations above) of how an ABD policy can be implemented within
backtrack search.

3.2 Simple ABD Implementation
The function solve, Algorithm 1, aims at solving the specified CNO P while using the
specified aggressive bound descent policy abd.

Algorithm 1 solve(P, abd)

Output: BP ..BP , runStatus
1 BP ..BP ← −∞.. +∞
2 do
3 P, runStatus← run(P, abd)
4 while runStatus = CONTINUE
5 return (BP ..BP , runStatus)

First of all, the lower and upper bounds, denoted by BP and BP , of the objective function
of P are respectively initialized to −∞ and +∞ (or any relevant values that can be pre-
computed). During search, these bounds will be updated (but for the sake of simplicity, this
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will not be explicitly shown in the pseudo-code). At line 2, the sequence of runs (restarts) is
launched. Each time a new run is terminated, it returns the constraint network (possibly
updated with some constraints or nogoods that have been learned; this will be discussed in
more details later) together with a status information. The status takes one of the following
values: CONTINUE if the solver is allowed to continue with a new run; COMPLETE if
the last run has exhaustively explored the solution space; INCOMPLETE if the solver has
reached the timeout limit without entirely exploring the search space. Finally, the function
returns the best found bounds (in case, the optimality has been proved, we have BP = BP )
and the final status of the search.

The function run, Algorithm 2, performs a search run, following the restarts and abd
policies. Before going further, we need to introduce the notion of safe/unsafe run solving:
when the solver is asked to aggressively decrease its objective limit, we may enter a part of
the search space that is UNSAT. If unsatisfiability is proved during the current run, this may
be due to our aggressive approach, and consequently, we have to address this issue. This is
discussed below.

Algorithm 2 run(P, abd)

Output: (P, status)
1 i← 1
2 Σi ← ∅
3 do
4 ∆← abd(i)
5 i← i + 1
6 Σi, status← search_next_sol(P, Σi−1, ∆)
7 while status = SAT
8 safe← ∆ = 1
9 if status = TIMEOUT then

10 return (P, INCOMPLETE)
11 if status = UNSAT & safe then
12 return (P, COMPLETE)
13 if status = UNSAT & ¬safe then
14 return (P ⊕ nld(Σi−1), CONTINUE)
15 if status = CUTOFF_REACHED & ¬safe then
16 return (P ⊕ nld(Σi−1), CONTINUE)
17 if status = CUTOFF_REACHED & safe then
18 return (P ⊕ nld(Σi), CONTINUE)

The function starts by initializing a counter i to 1. It corresponds to the number of times
we have tried to find a new solution during the current run. At Line 2, Σi is the sequence
of decisions taken along the rightmost branch of the current run, just before starting the
next attempt to find a new solution; this way, we can keep searching from the very same
place (in practice, we simply resume search after is was stopped). Initially, we start from
no taken decisions at all (and so, Σ1 is the empty set). From a practical point of view, as
we shall see, only the two last sequences Σi and Σi−1 will be useful (to deal with the safe
and unsafe solving cases). Then, the algorithm iteratively performs runs as long as new
solutions can be found. At each turn of the loop, the next bound gap ∆ is computed by
soliciting the abd policy, i is incremented (lines 4 and 5). To perform a part of the search, the
function search_next_sol is called, while considering the specified sequence of decisions

DPCP 2022
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to start from, and the specified bound gap. The gap ∆ is used by search_next_sol to
compute a temporarily upper bound B′ which replaces the current upper bound BP : we
have B′ = BP − ∆ + 1, forcing then the objective constraint to be f < B′ during this
call to search_next_sol. If a new solution of cost B (necessarily, B < B′) is found by
search_next_sol, the call is stopped, and the objective constraint is updated to safely
become f < B. Otherwise, the call is stopped (because the cutoff or timeout limits are
reached), and the objective constraint is updated to f < BP (getting back the previous safe
upper bound). To summarize, this function implicitly updates the optimization bounds before
returning the new sequence of decisions (the exact place where the search has stopped) and
a (local) status. The local status is either SAT, in which case the run can be continued with
a new loop iteration, or a value among UNSAT, CUTOFF_REACHED, and TIMEOUT.

The current run necessarily executes some statements starting from Line 8. At this line,
a Boolean is set, informing us whether the current run was safe or not, regarding the last
computed ∆ value. When the global timeout limit is reached, the constraint network and the
status INCOMPLETE are returned (lines 9 and 10). When the local status notifies UNSAT,
we have two cases to consider. If the current search was performed in safe mode, COMPLETE
can be returned because the search space is guaranteed to have been completely explored.
Otherwise, CONTINUE is returned with the constraint network P possibly integrating some
new constraints (nogoods). The notation P ⊕ nld(Σi−1) indicates that all nogoods that can
be extracted from the last but one sequence of decisions (see [6]) are added to P ; this is valid
because this sequence was the one corresponding to the last found solution. When the local
status notifies CUTOFF_REACHED, we can also continue, while considering the adjunction
of some restart nogoods, from either Σi or Σi−1.

We conclude this section with two remarks. Firstly, the algorithm is introduced within
the context of a light nogood recording scheme (only, nogoods that can be extracted from
the rightmost branch, when the search is temporarily stopped, are considered). However,
it is possible to adapt it to other learning schemes, by keeping track of the exact moment
where a nogood (clause) is inferred; this is purely technical. Secondly, there is a specific case
concerning unsatisfiability: if ever we encounter a situation where B′ ≤ BP when trying to
set a new temporarily upper bound B′ during the current run, the sequence is reinitialized
by forcing back i = 1 and B′ is recomputed.

3.3 Related Work

As a related approach, let us mention domain splitting (e.g., see [11]) whose role is to partition
the domain of the variable selected by the variable-ordering heuristic, and to branch on the
resulting sub-domains. When the objective function is simply represented by a stand-alone
variable (whose value must be minimized or maximized), a domain splitting approach can be
tuned to simulate an exponential aggressive bound descent. However, no control is possible
as no mechanism allows us to abandon too optimistic choices, contrary to ABD which is
well integrated within a restart policy. Besides, when the objective function has a more
general form than a variable (like, for example a sum or a minimum/maximum value to
be computed), there is no more direct correspondence (and systematically introducing an
auxiliary variable for representing the objective can be very intrusive, and even source of
inefficiency, for the solver). Finally, note that the issue of avoiding long sequences of slowly
improving solutions has been addressed in MIP by introducing primal heuristics, which aim
at finding and improving feasible solutions early in the solution process.
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4 Experimental Results

This section presents some experimental results concerning the ABD approach on a wide
range of optimization problems. To conduct the experiments, we have used the constraint
solver ACE, which is the new avatar of AbsCon2. The default option settings of the solver
were used: wdegca.cd [15] as variable-ordering heuristic, lexico as value-ordering heuristic,
last-conflict (lc) [6] as a lazy manner to simulate intelligent backtracking, solution-saving
[12, 4] for simulating a form of neighborhood search, and a geometric restart policy [14] with
a base run cutoff set to 10 wrong decisions and a common ratio fixed to 1.1. We notably
study the impact of certain factors of the most promising sequences. All experiments have
been launched on 2.66 GHz Intel Xeon CPU, with 32 GB RAM, while the timeout was set
to 1, 200 seconds.

4.1 About Scoring
First, we introduce the scoring method we used for assessing the experimental results. For
the sake of simplicity, we continue to consider having only minimization problems.

Given a set I of instances and a set S of solvers, bt
i,s corresponds to the best bound (i.e.,

the lowest one) obtained by the solver s ∈ S on instance i ∈ I at time t ∈ [0, ..., T ] and T

is the timeout. We consider the default solver def ∈ S to be the the original solver using
its default behavior (and so, using no ABD policy). For example, bt

i,def is simply the bound
obtained by the default solver on instance i at time t.

We also have a Boolean et
i,S whose value is true when a solution has been found at time

t by at least one solver of S. We can now define two specific values:

mint
i =

{
mins∈S bt

i,s, if et
i,S

0, otherwise
(5)

maxt
i =

{
maxs∈S bt

i,s, if et
i,S

0, otherwise
(6)

where bt
i,s is equal to mint

i if et
i,{s} is false.

The two previous expressions respectively correspond to the smallest (best) and highest
(worst) bounds obtained by a solver on a given instance i at time t.

Then, we can compute a reward for a pair (i, s):

rt
i,s =


0, if ¬et

i,{s}

1 −
bt

i,s−mint
i

maxt
i
−mint

i

, if maxt
i ̸= mint

i

1, otherwise

(7)

The reward function (Equation 7) corresponds to a classical min-max normalization with
possible missing values. In case a solver has not found any solution, its reward is 0, and
in case the smallest and highest bounds are equal (meaning that the solver has found the

2 https://github.com/xcsp3team/ace
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unique known solution at time t), its reward is 1. Otherwise, min-max is employed by taking
the complement to 1 of the result (because the min-value is the best).

The mean reward (based on r) of each solver s at time t is defined as follows:

Rt
s = 1
|I|
×

∑
i∈I

rt
i,s − rt

i,def (8)

This last equation will be useful to draw plot-lines (e.g., Figure 1) representing the average
progression over time of any solver compared to the default solver. Because of the way it is
defined, the default solver corresponds to y = 0. Hence, solvers with a curve situated above
y = 0 can be considered as being better than the default solver, contrary to those with a
curve below y = 0.

4.2 Constraint Optimization
Our approach has been evaluated on a wide range of optimization problems coming from the
XCSP distribution [3, 7]. We have used a benchmark corresponding to the entire set of COP
instances from the XCSP18 competition, resulting in 22 problems and 362 instances.
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Figure 1 Comparison of ABD Policies from Ψ on the optimization solver ACE

Figure 1 shows, against time, a direct comparison of ABD policies with respect to the
default solver (remember that default ACE is represented by y = 0). We can first observe a
neat interest in using ABD Policies during the 200 first seconds: an improvement from 8%
(for the worst policies) to 14-16% (for ACEexp and ACEprev). We can also see that ACEexp stays
at (an improvement level of) around 12%, while ACEprev decreases to 8%.

5 Conclusion

In this paper, we have introduced ABD (Aggressive Bound Descent) which is a technique
modifying aggressively the limit of objective constraints. By taking risks of running peri-
odically solvers in unsafe parts of the search space, we show that interesting experimental
performance can be obtained on constraint optimization problems. It allows us to get more
quickly better bounds than the default backtrack search approach on some strongly structured
problems. Nevertheless, we believe that some refinements of ABD could be studied, as for
example, exploiting more the history of bound gains, or identifying the relevant sequences of
limit gaps to be used according to the structure of the problems.
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