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Abstract 

The assessment of food authenticity is a topic that gained a lot of interest at the international 

level. This term includes misidentification of variety, origin, production system, processing 

but also adulteration. These frauds all have an analytical component, and research tends to 

offer new analytical solutions to manage them. One of them is non-targeted approaches, 

which get around the limitations of targeted analysis by detecting the unexpected. A wide 

range of products are studied such as wine, rice, olive oil, spices, and honey among the top 

five. Geographic origin is by far the fraud with the most attention. The main reason is 

probably the complexity to consider terroir effect and every other variable to determine an 

area of production. This review offers an overview of the potential of non-targeted analysis to 

assess food authenticity. These results also illustrate the capability to look for environmental 

terroir markers that could be cross-matrixes. 
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1. Introduction 

Food authenticity is a concept at the essence of the contract between consumers and 

producers. It is closely related to food quality, and sometimes safety when it comes to 

adulteration. Still, acts of deceiving consumers are common since antiquity and measures 

were taken. Laws were pronounced against adulteration in both Rome and Greece. These laws 

became transnational in the thirteenth century (Sumar & Ismail, 1995). 

However, new types of food fraud emerged with globalization. EU estimated the cost of food 

fraud at 30 to 40 billion euros every year, and number of alerts almost doubled between 2016 

and 2019 (European Commission. Directorate General for Health and Food Safety., 2020). 

The CEN working agreement 17369:2019 defines food fraud as the act of “intentionally 

causing a mismatch between food product claims and food product characteristics” (CWA 

17369: Authentic and Fraud in the Feed and Food Chain- Concepts, Terms and Definitions, 

2019). That implies that fraud can be committed in two ways: either modifying food product 

characteristics (that would be product tampering), or food product claims (that would be 

record tampering or implicit claim violation). 

Some of the records tampering can only be verified through traceability checks like batch 

numbers, ethical and sustainability practices, counterfeits, or selling products obtained from 

grey market. This part of food fraud is in the hand of regulation authorities and has no 

physicochemical components. However, product tampering and a few record tampering can 

be analytically verified (Robson et al., 2021) such as qualities, vintages, ripening times, 

farming practices, geographic origins, species identification, and some processes applied on 

the products (e.g., irradiation, “never frozen” for salmon or “not heated” for honey). 

Both targeted and untargeted (or non-targeted) approaches are used for these purposes. 

Targeted techniques are used for decades and are very effective to identify and quantify 

known markers of a specific fraud such as triacyl glycerides (TAG) to assess oil variety 

(Indelicato et al., 2017). They are also the only methods available to detect the chemical 

origin of compounds with isotopic measurement (e.g., if they are issued from organic 

synthesis, biotechnology, or natural reaction). However, unknown, or unexpected markers are 

unavoidably missed because they are not part of databases. This limitation conducted to the 

melamine scandal in milks in 2008, which was not detected by targeted techniques (Cavin et 

al., 2016). Untargeted approaches in the food analytical field were developed from this 

observation (Supplementary figure). This field have been reviewed before with different 

interests: Cubero-Leon et al., 2014 is the first one and retrieved mainly articles about 

adulteration where spectroscopic techniques were overrepresented. They also noticed that 

PCA was the most used algorithms. Cuadros-Rodríguez et al., 2016 followed and specifically 

reviewed in chromatographic techniques on specific fractions or extracts. Finally, Medina et 

al., 2019 is the first to talk about biomarkers to discriminate across food frauds. In each of 

these reviews, the term “fingerprint” is used for different purposes including a specific class 

of molecules, a specific range of a chromatogram or “molecular markers that represent a 

characteristic food state or condition” (Medina et al., 2019). This is a good illustration of how 

various terms in the literature are used to characterize untargeted workflows and how often 

there is confusion and inconsistency between them. Therefore, there are numerous keywords 

that were looked for, such as: fingerprint, profile, signature, untargeted, non-targeted, multi-
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targeted, and chemistry-related omics workflows. Then, the article selection of this review 

was based on three criteria. First, our review is interested in differentiating between the 

different terms used, namely between profiling and non-targeting, where the term “profiling” 

is restricted to the study of one class of compounds (e.g., phenols, fatty acids, etc.) whereas 

the non-targeting strategy seems to be the most innovative. It is in this perspective of making 

the difference between the approaches and showing the need to develop the cross-targeted and 

non-targeted approaches that the review is written. 

The purpose of these studies was to use untargeted methods to classify authentic samples or 

find promising authenticity markers. Many platforms both analytically and statistically were 

used to tackle specific authenticity issues, meaning geographic origin, specie identification, 

quality, farming practice or adulteration. In the end, models are evaluated regarding the 

assignation of samples to a specific group. Therefore, the identification of the markers is not 

mandatory or sometimes possible, depending on the technique. However, this identification 

and the clarification of biological roles of such molecules reinforce trust in the conclusion or 

even lead to a targeted approach. A good example is the identification of 16-O-Methylcafestol 

that demonstrated to be an adequate biomarker for distinguishing between Robusta and 

Arabica coffee. (Gunning et al., 2018). 

2. Untargeted metabolomics workflow for food 

authentication 

Non-targeted approaches are far from being a standardized process. However, general 

guidelines were edited by USP. They state three steps that have been reviewed in each article: 

sampling, classification, and evaluation of the model. (USP Guidance on Developing and 

Validating Non-Targeted Methods for Adulteration Detection, 2019). 

2.1. Experimental design and sampling 

Untargeted experiments are mainly carried out in two ways: database filtering or global 

approaches (Shao et al., 2019). Database filtering often implies that components not in the 

database are not considered. Due to this bias, results are partly forecasted, and this approach 

should be considered as pseudo-targeted. Global workflows open the most possibilities and 

results are only based on statistical analysis; this is the only case considered as non-targeted 

analysis further in this review. The experimental plan needs to consider the variability needed 

to evaluate each modality. The number of samples for each modality (e.g., origin, species, 

quality…) should be enough to reflect natural variations like seasoning, terroirs, processes 

variations, etc. Recommendations for sample size range from 60 to 200 samples for each 

modality (McGrath et al., 2018, Uhlig et al., 2021). Once this design step is completed, the 

first step in analysis can begin with sampling. 

Collection and processing of the samples are crucial steps to obtain reliable results. As 

discussed by USP and Food Integrity group (USP Guidance on Developing and Validating 

Non-Targeted Methods for Adulteration Detection, 2019, McGrath et al., 2018), adequate 

sampling is the first requirement to consider in the development process. To develop the 

model, a calibration set of typical samples should be obtained from reliable sources. For its 

evaluation, a validation set of comparable size, containing both typical and atypical samples, 

should be employed (Graphical Abstract). To confirm the authenticity of the sample, a 

recommended approach is to go through PDOs management organisms, applied research 
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institutes, federal control labs, or directly from producers. Acquiring and certifying all the 

metadata for each sample takes the utmost efforts, but it cannot be overlooked as the quality 

of the model highly depends on it. Regarding sample processing, it is recommended to keep it 

minimal (Rubert et al., 2014), as any sample manipulation can cause chemical changes, 

elimination of some compounds or contamination of the sample. This is a reason why 

techniques where samples can be directly subjected to analysis are especially interesting in 

untargeted experiments (Beneito-Cambra et al., 2020). However, some preparation is often 

needed prior to analysis which can include dilution, extraction, or purification, depending on 

the analytical technique. 

2.2. Techniques and data acquisition 

The analytical platform that is used to perform the analyses is an important choice 

(Supplementary table). Three main systems can be distinguished: sensory based techniques 

like electronic noses and tongues (e-nose / e-tongue) (Gliszczyńska-Świgło & Chmielewski, 

2017), spectroscopy including nuclear magnetic resonance (NMR) and Fourier-transform 

infrared (FTIR) with near and mid infrared (NIR and MIR) and finally, spectrometry 

hyphenated with gas or liquid chromatography (GC–MS/LC-MS). Some other detectors can 

be hyphenated with these separation methods as well. Each of these systems comes with its 

own benefits and drawbacks (Ellis et al., 2012). Chromatographic techniques offer high 

sensitivity and separation. GC–MS is the most reproducible and wide range of databases are 

available for identification, the downside is the limitation to volatile compounds and the need 

of derivatization to be expanded. LC-MS has better metabolite coverage, but preparation can 

be time consuming and induce robustness issues. Identification is also a challenging point. 

NMR and FTIR both offer detection of the whole sample with no separation and poor 

sensitivity. NMR gives reliable identification of compounds with a high analysis cost (Shao et 

al., 2019). On the other side, FTIR is an inexpensive alternative, but compound identification 

in a mixture is nearly impossible. Finally, e-sensors offer separation, sensitivity, and whole 

sample analysis, but identification cannot be carried out in a standalone method. 

Analytical validation for each of them is technique-dependent, but guidelines for targeted 

methods can be applied to verify robustness, accuracy, reproducibility, etc. An interesting 

point that is shared by a lot of studies, is the use of pooled QC samples (Mie et al., 2014, Putri 

et al., 2019, Zhao et al., 2017) that provides information on the state of the system over the 

batches. They can also be used during the post processing to ensure the quality of the model. 

2.3. Data treatment and result processing 

As these results can be composed of thousands of features and hundreds of samples, data 

filtering is generally needed before applying chemometric analysis. For data filtering, main 

techniques are deconvolution or peak picking, peak or spectra alignment, denoising, 

normalization, bucketing, etc. Many workflows and tools are available such as 

Worflow4Metabolomics, XCMS, MetAlign, Mzmine 2, and other proprietary solutions 

(MetAlign. n.d., MZmine 2., n.d., Workflow4Metabolomics, n.d., XCMS, n.d.). 

Once the data is suitable for statistical analysis, data compression is often performed. There 

are two types of learning commonly used: supervised and unsupervised. The former optimizes 

the function based on the attended outcomes, whilst the latter is done without prior 

information and attempts to guess the data structure. Among these, one algorithm is the most 

frequent: principal component analysis (PCA) that is unsupervised and provides effective data 
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reduction. It was used in 83 % of the retrieved articles (Table 2, Table 3, Table 4, Table 5). 

Linear discriminant analysis (LDA) is a supervised alternative but can also be used after PCA 

to perform classification (Vestner, 2016). Data reduction enables the selection of the most 

relevant features and observations in a large amount of data. These selected features are often 

verified using significance test or analysis of variance (ANOVA), and k-nearest-neighbors (k-

NN) can provide this information for each feature and detect outliers (Abbatangelo & 

Sberveglieri, 2019). Another statistical approach is to use artificial neural networks (ANN) 

(Gumus et al., 2018) or hierarchical cluster analysis (HCA) to similarities between variables 

across different clusters. Finally, once selected data has been validated for significance and 

confidence, it can be used to build the model. Unknown samples can be compared to the 

model and classified as authentic or not in the case of univariate models, or as belonging to 

one category or none in the case of multivariate ones (Alonso et al., 2015). Algorithm to 

classify samples are mostly supervised and overfit quickly. As a result, cross validation is 

essential to ensure the model's adequacy (McGrath et al., 2018). Random forest (RF) is used 

for both classification and regression and can be helpful to create decision trees that can 

assign subsamples to each class. It is suitable for both one class and multiclass modelling. 

Recent improvements coupled RF with swarm intelligence such as ant colony optimization 

(ACO) to improve accuracy (Kalogiouri et al., 2018). 

Others include soft independent modelling by class analogy (SIMCA) and projection to latent 

structure (PLS). SIMCA can be data-driven (DD) and is a one-class method. PLS-DA can be 

used for multi-class modelling as well as data compression. Variations of the method exist 

with orthogonal projection to latent structure (OPLS-DA) or projection to latent structure 

correlation (PLSC-DA). All these variations have been grouped as PLS-DA further in the 

review as they do not affect the predictivity of the model (Trygg & Wold, 2002). 

It should be noted that due to the large amount of data generated and the diversity of 

untargeted approaches, machine learning is a promising tool to use. It is already commonly 

used in metabolomics (Liebal et al., 2020) but it stays a bit more confidential in food 

authenticity. As reviewed recently by Liang et al., 2022, many types of neural network 

structures are used in the context of food authenticity. In most cases retrieved by Liang et al., 

these techniques improve results of classification. However, it is important to point out that 

hidden layers in neural networks have a significant disadvantage: determining the amount of 

discrimination for each molecule is challenging. As a result, either explainable AI must be 

used to rationalize the decision-making process, or other algorithms must be applied to gather 

this information. 

Once the model is operable, the test sample set is used to evaluate its performance. USP 

mentioned a way to evaluate performances of chemometrics models with sensitivity and 

specificity (USP Guidance on Developing and Validating Non-Targeted Methods for 

Adulteration Detection, 2019). The sensitivity rate is “the number of correct atypical 

predictions from the method divided by the total number of atypical samples” while the 

specificity rate is “the number of correct typical predictions from the method divided by the 

total number of typical samples.” Despite this guideline, most studies use different indicators 

such as prediction accuracy and classification capability that are defined as the number of 

correct assignations (authentic or not), divided by the size of the sample (Cajka et al., 2011; 

Gumus et al., 2020). The counterpart of this indicator, the error rate, is also found in literature. 

Once the model performances are evaluated and acceptable, new samples can be assigned 

using it. However, another step is often carried out: most important loadings (e.g. compounds) 

identification. 
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2.4. Biomarker identification 

In non-targeted analysis, discriminatory molecules are referred as biomarkers. This 

denomination is relevant when they occurred naturally but might not be suitable when it 

comes to adulteration. Their identification is often the final step in the development of a new 

method and is technically optional. A long list of databases and tools can be used to help on 

compound identification (Table 1). 

Table 1. Available databases for compound identification in chromatography and NMR. 

Databases Techniques 
Spectral 

collection 

Number 

of entries 
Website 

HMDB 
NMR 

MS 

Experimental + In 

Silico 
> 115 000 https://hmdb.ca/ 

Kegg – – > 15 000 https://www.genome.jp/kegg/  

FooDB – – > 70 000 https://foodb.ca/  

MetaCyc – – > 17 000 https://metacyc.org/  

ChEBI – – > 59 000 https://www.ebi.ac.uk/chebi/init.do 

Coconut – – > 400 000 https://coconut.naturalproducts.net/  

MassBank 
LC-MS 

GC–MS 
Experimental > 86 000 https://www.massbank.jp/  

Metfrag LC-MS In Silico 
> 10 000 

000 
https://msbi.ipb-halle.de/MetFrag/  

MoNA LC-MS 
Experimental + In 

Silico 
> 200 000 https://mona.fiehnlab.ucdavis.edu/  

GNPS LC-MS 
Experimental + In 

Silico 
> 10 000 https://gnps.ucsd.edu  

Wiley GC–MS 
Experimental + In 

Silico 
> 650 000 https://sciencesolutions.wiley.com  

NIST 
GC–MS 

LC-MS 
Experimental > 100 000 https://chemdata.nist.gov/  

GMD GC–MS Experimental > 25 000 https://gmd.mpimp-golm.mpg.de/  

BMRB NMR Experimental > 6 000 https://bigg.ucsd.edu/  

BML NMR NMR Experimental 208 https://www.bml nmr.org/ 

Metabolight 

NMR 

 

MS 

Experimental > 27 000 https://www.ebi.ac.uk/metabolights/  

LIPID 

MAPS 
MS 

Experimental + In 

Silico 
> 45 000 https://www.lipidmaps.org/  

Metlin MS 
Experimental + In 

Silico 
> 900 000 https://metlin.scripps.edu/  

Databases can be built using only chemical structures and names or include mass and NMR 

spectra as well. These data were mainly experimental, retrieved from publications, but the 

evolution of computational tools now allows in silico prediction of both new compounds or 

physicochemical properties that can increase the number of compounds available or the 
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trustworthiness. LC-HRMS workflows generally query HMDB, Kegg and Massbank 

databases because they are the most developed and easy to interface. For GC–MS, the NIST 

and Wiley are the oldest and most spread databases, the NIST is using experimental Kovats 

index, while the Wiley’s are computed. Databases are not mandatory for NMR, but 

identification might be time consuming and challenging in the event of overlapping signals in 

complex mixtures. As mentioned above, identification of biomarkers is not mandatory to 

assign classes and authenticate foodstuffs, but it is relevant for official validation and method 

transfer into production. 

2.5. Food authentication 

The purpose of these analyses in the foodstuff field is to guarantee that the product is what it 

claims it is. Authentication of food requires specific aspects to be considered for each type of 

fraud. The UK Food Crime Strategic Assessment, 2020 (Food Crime Strategic Assessment, 

2020) stated that diversion of waste product, misrepresentation of premium status or 

provenance, adulteration and unlawful processing are the most important issues analytically 

verifiable. Products most susceptible to fraud are a constant top 10 including olive oil, wine, 

honey, meat, fruits, and vegetables. This report also shows that the most important fraud is 

mislabeling, counting for 47 % of the alerts, followed by adulteration (20 %) and unapproved 

treatment or process (16 %). Mislabeling includes products wrongfully labelled as organic, 

from premium quality (e.g., extra virgin olive oil instead of lampant or virgin), or from an 

incorrect origin. Adulteration is the act of adding, removing, substituting, or diluting a 

product. For instance, water can be added to fish, honey can be substituted by sugars and 

pollens, and colorants can be added to spices. Finally, unapproved treatments or processes are 

the use of unauthorized practices. For example, in the EU, it is forbidden to use ethylene 

oxide or radiation to sterilize product or carbon monoxide to enhance tuna’s color. 

This review was organized based on the type of fraud: misdescription was separated between 

organic or conventional farming distinction, premium quality usurpation, species 

identification and geographic origin. All forms of adulteration were considered together, but 

literature shows that the focus is on melamine-like adulteration; the use of exogen substances 

because they might be life-threatening. However, real-life scenario is closer to the dilution of 

a wine with a cheaper one instead of just adding one substance. 

3. Food frauds and ways to identify them 

Non-targeted analysis being a new area of analytical chemistry, >80 % of the retrieved articles 

came out within the last five years. Most represented techniques are MS-based with >75 % of 

the mentions. Many data were extracted from the research such as the statistical tools, the 

classification abilities, and the identified chemical family of biomarkers. The oldest food 

fraud studied by chemical methods was about adulteration, 200 years ago (Accum, 1820). 

3.1. Adulteration 

Adulteration is defined as the act of adding, substituting, diluting, or removing an ingredient 

from a product (Jha, 2016). It was firstly studied by targeted methods, until the melamine 

scandal showed that control plans were not foolproof. Since, untargeted methods started to be 

developed. Different kind of approaches exist with both spectroscopic and chromatographic 

methodologies (Table 2). The idea is to apply forensic techniques to fraud. Instead of keeping 
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a list of what fraudsters might use and check for them, the point is to be prepared and look for 

everything. If unexpected contaminants are found, further investigation is needed (Primrose et 

al., 2010). The main difficulty is the evaluation of the method. Because you must choose 

adulterants to create atypical samples, or screen enough commercial fraudulent samples to 

evaluate the accuracy of the method. 

Table 2. Summary of screened matrixes for food adulteration. Accuracy, threshold, and 

biomarkers are shown when available. 

Matrix 

(Number 

of sample) 

Analytical 

technique 

Statistical 

tools 
Accuracy 

Adulteration 

 

threshold 

Biomarker Reference 

TCM 
a
 

(1800) 
b
 

FT-NIR PLS-DA 93 % 2 to 5 % – 
(Fu et al., 

2017) 

Palm oil 

(30) 
b
 

NMR PCA – – 

Triglycerides 

Phytosterols 

Fatty acids 

(Perini et al., 

2018) 

Cheese 

(84) 
b
 

UPLC-

Orbitrap 
PCA 87,5% – – 

(Popping et 

al., 2017) 

Orange 

juice (120) 
b
 

DART-

QTOF 

PCA + PLS-

DA 
95 % – 

Tripeptides 

Amino acids 

Fatty acids 

(Xu, Xu, 

Kelly, et al., 

2020) 

Saffron 

(20) 
b
 

UPLC-

QTOF 

PCA + PLS-

DA 
100 % 1 % 

Flavonoids 

Organic acids 

Carbohydrates 

(Guijarro-

Díez et al., 

2015) 

Fruits 

juices (35) 
c
 

UPLC-

QTOF 

PCA + PLS-

DA 
– 1 % 

Flavonoids 

Carbohydrates 

 

Amino acids 

(Jandrić et al., 

2014) 

Fruits 

extracts 

(86) 
c
 

HPLC-UV 
PCA + PLS-

DA 
>97 % 2 % – 

(Pardo-Mates 

et al., 2017) 

Olive oil 

(9) 
c
 

DI-ESI-MS PCA – – – 
(Goodacre et 

al., 2002) 

Fruits 

juices (96) 
c
 

UPLC-

QTOF 

PCA + PLS-

DA 
– 10 % 

Flavonoids 

Organic acids 

Carbohydrates 

(Zhang et al., 

2018) 

Violet leaf 

extracts 
c
 

UPLC-

QTOF 
PCA – 10 % – 

(Saint-Lary et 

al., 2016) 

Fruits 

juices 

(216) 
c
 

UPLC-

QTOF 

PLS-

DA + DD-

SIMCA 

100 % 1 % 

Amino acids 

Flavonoids 

Sphingolipids 

(Xu, Xu, 

Strashnov, et 

al., 2020) 

a 

Traditional Chinese Medicine. 

b 
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Real matrixes. 

c 

Lab-made matrixes. 

These studies show that fruit juices are the most studied matrix for adulteration. This is not 

surprising because adulteration is easier to perform on liquids. Adulteration is often referred 

as economically motivated adulteration (EMA), meaning that profit is the main motivation 

and therefore dependent of the product volumes. As a result, products with a large 

manufacturing volume or a high selling cost are the most targeted by fraudsters (Shears, 

2010). 

Accuracy, as shown in the table, is most likely not the greatest indicator to use in these cases. 

Instead, some articles put forward the detection threshold for typical adulterants. It is 

interesting because the economic motivation has a limit. If adulteration of extra-virgin oil is 

performed with 20 % of lampant olive oil, margins are increased by 19 %, making huge 

profits. If it is done with 1 % or 0.5 %, margins are so thin that adulteration is not 

economically worth anymore. 

The reported adulteration thresholds in untargeted methods range from 1 to 10 %. (Fu et al., 

2017, Guijarro-Díez et al., 2015, Jandrić et al., 2014, Pardo-Mates et al., 2017, Xu et al., 

2020). Substitution, is often carried out by changing the genus identification of meat, fish or 

plants. It comes with different issues when these species are close to each other. 

3.2. Botanic identification 

Identification of botanical species used to be harder to establish since biological procedures 

were not as sophisticated as they are nowadays. With the improvement of DNA techniques 

such as polymerase chain reaction (PCR), next generation sequencing (NGS), and 

metabarcoding, it is now easy to identify raw products. Despite the high performance of 

genetic analysis, the transformations between raw material and processed product can 

complicate the analysis. For example, the nature of honey causes some challenges with PCR 

inhibition. The preliminary filtering of the sample might also result in the loss of information. 

Furthermore, the number of reads collected cannot be used to calculate the contribution each 

species in a honey sample yet. Finally, this technique alone does not ensure the absence of 

fraud since exogenous DNA can be added. To be exhaustive, genetic analysis must be 

associated with other types of techniques to guarantee the origin (biochemical analysis and 

melissopalynology) (Prosser & Hebert, 2017). 

Chemical analysis can be interesting because it is not affected by filtered and spiked honey for 

example or loss of DNA. Metabolite composition can be changed due to the process but there 

are more targets to consider and some of them may remain unaffected. This is the main value 

of untargeted analysis in these situations where DNA is corrupted or added after the process 

(Table 3). Application fields include challenging products such as olive oil or wine where 

there is an important diversity of species. For instance, the OIV lists 449 species of Vitis 

vinifera (OIV - International Organisation of Vine and Wine) while the IOOC estimates that 

139 cultivars of olives account for 85 % of the production (International Olive Oil Council, 

2000). 
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Table 3. Summary of screened matrixes for species identification. Accuracy and biomarkers 

are shown when available. 

Matrix 

(Numbe

r of 

sample) 

Analytica

l 

technique 

Statistical tools 
Accurac

y 

Numbe

r of 

varietie

s 

Biomarker Reference 

TCM 

(65) 

UPLC-

QTOF 

PCA + HCA + PLS-

DA 
100 % 5 Terpenoids 

(Pan et al., 

2020) 

Tea (88) 
UPLC-

Orbitrap 

PCA + PLS-

DA + ANOVA  
3 Flavonoids 

(Fraser et 

al., 2013) 

Olive oil 

(51) 

UPLC-

QTOF 
PCA + ACO-RF – 6 

Flavonoids 

Oleocanthal 

(Kalogiouri 

et al., 2018) 

TCM 

(37) 

UPLC-

QTOF 
PCA + PLS-DA – 4 

Lipids 

Amino acids 

Organic acid 

Flavonoids 

(Zhao et al., 

2017) 

Legumes 

(3) 

HPLC-

Orbitrap 

PCA + HCA + ANOV

A 
– 3 

Flavonoids 

Polyphenols 

Carbohydrates 

(Llorach et 

al., 2019) 

Honey 

(24) 

UPLC-

QTOF 
PCA 

 
1 Peptides 

(Silva et al., 

2021) 

Wine 

(79) 

SPME-

GC–MS 
PCA + LDA 100 % 5 

Esters 

Furfural 

Alcohols 

(Ziółkowsk

a et al., 

2016) 

Triticum 

(60) 

DART-

Orbitrap 
PCA + PLS-DA + RF > 98 % 3 

Lipids 

Polypeptides 

Diacylglycerol

s 

(Miano et 

al., 2018) 

Shia, 

linseed, 

sesame 

(28) 

SPME-

GC–MS 
PCA + RF 

 
3 Organic acids 

(Erban et 

al., 2019) 

Coffee 

(186) 

HPLC-

FLD 
PCA + PLS-DA 100 % 2 Caffeic acids 

(Núñez et 

al., 2021) 

Wine 

(343) 

UPLC-

QTOF 

DART-

QTOF 

PCA + PLS-DA 95 % 8 
Flavonoids 

Polyphenols 

(Rubert et 

al., 2014) 

Rice 

(165) 

SPME-

GC–MS 

PCA + PLS-DA + DD-

SIMCA 
– 7 

Esters 

Ketones 

Hydrocarbons 

Terpenoids 

(Ch et al., 

2021) 

Coffee 

(150) 

HPLC-

QTOF 
PCA + PLS-DA – 9 – 

(Souard et 

al., 2018) 

Wine 

(43) 

UPLC-

QTOF 
PCA + PLS-DA 92 % 3 – 

(Uttl et al., 

2019) 
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Matrix 

(Numbe

r of 

sample) 

Analytica

l 

technique 

Statistical tools 
Accurac

y 

Numbe

r of 

varietie

s 

Biomarker Reference 

Wine 

(18) 

HPLC-

QTOF 
PCA – 2 

Carbohydrates 

Amino acids 

Fatty acids 

(Arbulu et 

al., 2015) 

Hazelnut 

(25) 

UPLC-

QTOF 
PLS-DA + HCA – 6 

Polyphenols 

Sterols 

(Ghisoni et 

al., 2020) 

Results obtained from these analyses are often unambiguous with an accuracy above 90 %. 

This goes up to 100 % when trying to separate cultivars from the same areas (Pan et al., 

2020). Including products from various countries increases sample diversity, ensuring that 

observed variations are exclusively due to species differences. Multivariate models that 

account for both origins and species generally require more samples to achieve comparable 

accuracy (Núñez et al., 2021, Rubert et al., 2014). Agricultural practices are sometimes 

difficult to assess with analytical tools. The organic farming labels are a good example, often 

assessed only by pesticides residues. 

3.3. Discrimination of organic farming 

Organic farming is a fast-growing market since the 1990s and often associated with higher 

value. Inside the European Union, it is fully implemented since 2007 (Council Regulation 

(EC) No 834/2007, 2007). It includes general principles such as the interdiction of GMOs or 

ionizing rays and more specific regulations for fertilizing and repellent products. To be 

analytically confirmed, this involves the verification of compounds with very low residue 

limits and the general fingerprint of the sample. High resolution mass spectrometry (HRMS) 

is a suitable tool to perform both targeted regulatory analysis and untargeted fingerprinting 

(Ballin & Laursen, 2019). Five out of seven studies presented used HRMS platforms 

hyphenated with liquid chromatography (Table 4). The last ones used simple MS with direct 

introduction systems: electrospray (DI-ESI) or proton transfer (PTR-MS). 

An interesting fact in these studies is that the mean number of samples is quite lower than in 

the other topics, same goes for accuracy. The studies with fewer than 40 samples achieve 

lower classification accuracy ranging from 73 % to 85 % (Martínez Bueno et al., 2018, Mie et 

al., 2014, Xiao et al., 2018). It is difficult to determine whether these results are due to a lower 

number of samples, or the quality of authentic references, or the quantified differences. 

Comparatively, the research on carrots with a higher number of samples showed a better and 

equivalent accuracy with studies on other frauds (Cubero-Leon et al., 2018). This would 

imply that this type of fraud needs more than 40 samples to achieve proper classification. 

Another observation is that organic farming assessment is mainly oriented into fruits and 

vegetables. Only two studies were interested in meat and starch (Oliveira et al., 2015, Xiao et 

al., 2018). In general, meat is not the most studied product in untargeted approaches since 

fraud possibilities can often be resolved by targeted approaches. For species identification, 

DNA is almost always recoverable and NGS allows reliable confirmation (Xing et al., 2019). 

Other frauds such as geographic origin or faming practice can be fought with techniques like 

isotope or heavy metals measurement (Liu et al., 2020, Potočnik et al., 2020). Organic 

products are generally associated with high quality items, which are also a target for fraud 

because of the potential profits. 
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3.4. Evaluation of premium qualities 

High and premium quality products are associated with specific human activity (e.g., savoir-

faire) and geographic location. The location influences geological composition, climate, water 

sources, and phenology. All these aspects account for the so called “terroir effect” (Seguin, 

1986). Terroir is an element mainly considered for wine cultures. However, it could be 

extended to any product in which at least one of these elements is essential to its quality. 

Quality evaluation includes different aspects: vintage, ageing or ripening time, expert 

classification, or specific quality appellations (Table 4). Origin can also be an interesting 

criterion, keeping in mind that it must be examined separately as it raises its own set of 

concerns. 

Table 4. Summary of screened matrixes for premium qualities. Accuracy and biomarkers are 

shown when available. 

Matrix 

(Numbe

r of 

sample) 

Analytic

al 

techniqu

e 

Statistical tools 
Accurac

y 

Quality 

aspect 
Biomarker Reference 

Tomatoe

s (25) 

LC-

Orbitrap 
PCA 73 % 

Farming 

practice 

Flavonoids 

Amino acids 

Carotenoids 

(Martínez 

Bueno et al., 

2018) 

Pork 

(41) 

ESI-

MS/MS 

PTR-MS 

PCA + SIMCA + ANO

VA 
100 % 

Farming 

practice 
FAME 

a
 

(Oliveira et 

al., 2015) 

Rice 

(40) 

UPLC-

QTOF 
PCA + PLS-DA + HCA 85 % 

Farming 

practice 

Amino 

alcohol 

 

Anthocyanin 

Lignans 

(Xiao et al., 

2018) 

Cabbage 

(18) 

UPLC-

QTOF 
PCA + PLS-DA 83 % 

Farming 

practice 

Amino acids 

Carbohydrat

es 

(Mie et al., 

2014) 

Tomatoe

s (18) 

DI-ESI-

MS 
ANOVA + RF + HCA – 

Farming 

practice 
– 

(García-

Casarrubias et 

al., 2019) 

Carrots 

(140) 

UPLC-

QTOF 
PCA + PLS-DA 100 % 

Farming 

practice 

Carbohydrat

es 

Amino acids 

Terpenoids 

(Cubero-Leon 

et al., 2018) 

Physalis 

(10) 

UPLC-

QTOF 
PCA – 

Farming 

practice 

Steroids 

 

Fatty acids 

(Llano et al., 

2018) 

Beer 

(265) 

DART-

QTOF 

PLS-

DA + LDA + ANN-

MLP 

100 % 
Trappist 

beer 

Carbohydrat

es 

Amino acids 

Organic 

acids 

(Cajka et al., 

2011) 
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Matrix 

(Numbe

r of 

sample) 

Analytic

al 

techniqu

e 

Statistical tools 
Accurac

y 

Quality 

aspect 
Biomarker Reference 

Vegetabl

e puree 

(18) 

UPLC-

QTOF 

NMR 

 

SPME-

GC–MS 

– 85 % 

Industrial 

processin

g 

Oxylipins 

Volatiles 

(Lopez-

Sanchez et 

al., 2015) 

Wine 

(315) 
Raman PCA 84 % 

Maturatio

n time 
– 

(Mandrile et 

al., 2016) 

Wine 

(26) 
GC–MS PCA – 

Vintage 

 

Maturatio

n time 

Carbohydrat

es 

Glycerol 

(Schueuerma

nn et al., 

2016) 

Coffee 

(186) 

HPLC-

FLD 
PCA + PLS-DA 100 % 

Roasting 

degree 
Caffeic acids 

(Núñez et al., 

2021) 

Ground 

coffee 

(47) 

UPLC-

QTOF 

 

SPME-

GC–MS 

PCA + PLS-DA + HCA – 
Overall 

quality 

Methyl 

pentanoate 

2-

Furfurylthiol 

l-

Homoserine 

(Rocchetti et 

al., 2020) 

Cheese 

(96) 

HPLC-

Orbitrap 
PCA + PLS-DA 100 % 

Ripening 

time 

Amino acids 

Organic 

acids 

Vitamins 

(Le Boucher 

et al., 2015) 

Angelica 

(20) 

GC-TOF-

MS 
PCA – 

Overall 

quality 

Carbohydrat

es 

Amino acids 

Organic 

acids 

(Tianniam et 

al., 2008) 

Cheese 

(10) 
GC–MS PCA – 

Ripening 

time 

Amino acids 

Organic 

acids 

Fatty acids 

Carbohydrat

es 

(Afshari et 

al., 2020) 

Olive oil 

(108) 
GC–MS PCA + PLS-DA 85 % 

Overall 

quality 
Volatiles 

(Sales et al., 

2019) 

a 

Fatty acids methyl ester. 

Quality parameters are generally deciphered by experts of the fields. Many works are released 

every year, for example on vintages and appellations for wine with the Robert Parker Wine 

Advocate (Robert Parker Wine Advocate, 2020). Research works focused on the quality 
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aspects we deal with every day. Cheese, coffee, and alcoholic beverages are among the most 

consumed products daily (Comprehensive European Food Consumption Database, 2021). 

Overall quality being evaluated by sensory experts, it may be difficult to obtain identical 

results with analytical tools (Rocchetti et al., 2020, Sales et al., 2019, Tianniam et al., 2008). 

Maturation time for wine influences aroma, color, and phenolic composition. For example, 

Barolo and Barbaresco are both monovarietal wines that are aged over different times, at least 

26 and 38 months respectively. They were compared with Raman spectroscopy with a 

prediction ability of 84 % (Mandrile et al., 2016). Wine being a complex product, a lot of 

variables may affect its ageing process: the age of the barrel, the temperature, the amount of 

oxygen and so on. For cheese, ripening time was studied either in model cheese or 

commercial denominations (Afshari et al., 2020, Le Boucher et al., 2015). Differences were 

found, especially in the microbial metabolism that plays a key role in cheese aroma. For the 

classification of beer, a multilayer perceptron (MLP) with ANN was used to predict quality 

with the global pattern of markers instead of individual consideration (Cajka et al., 2011). 

Another observation is the predominance of carbohydrates and amino acids as biomarkers in 

these studies. Sugars and amino acids play an important role in taste and might enhance the 

overall sensorial quality of the products (Kochem, 2017). This could explain the fact that six 

out of ten studies found them relevant biomarkers. Official signs identifying quality and 

origin are important to identify these high value products in Europe. While quality is 

frequently associated with provenance, origin can be an issue in and of itself. 

3.5. Geographic origin 

Geographic location is a key element for both prices and terroir recognition. Controlled 

appellations of origins such as geographic indication (GI) or protected designation of origin 

(PDO) are tools to protect high value products inside the European Union. Geographic origin 

is often a primary condition to be included in these labels. However, they often require 

additional criteria. These can be related to species, farming practices and savoir-faire 

(Regulation (EU) No 1151/2012 of the European Parliament and of the Council of 21 

November 2012 on Quality Schemes for Agricultural Products and Foodstuffs, 2012). This 

fraud is probably the most spread and received the most attention from researchers. Many 

products from almost all categories were studied (Table 5). 

Table 5. Summary of screened matrixes for geographic origin. Accuracy and biomarkers are 

shown when available. 

Matrix 

(Number 

of 

sample) 

Analytic

al 

techniqu

e 

Statistical tools 
Accurac

y 

Numbe

r of 

area 

Biomarker Reference 

Serrano 

pepper 

(40) 

NMR PCA + PLS-DA – 2 

Amino acids 

Organic 

acids 

Carbohydrat

es 

(Becerra-

Martínez et 

al., 2017) 

Tea (88) 
UPLC-

Orbitrap 
PCA + PLS-DA + ANOVA – 2 Flavonoids 

(Fraser et 

al., 2013) 

Paprika 

(122) 

HPLC-

FLD 
PLS-DA 97,9% 5 Phenols 

(Campmaj

ó et al., 
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Matrix 

(Number 

of 

sample) 

Analytic

al 

techniqu

e 

Statistical tools 
Accurac

y 

Numbe

r of 

area 

Biomarker Reference 

2021) 

Columbia

n coffee 

(41) 

UPLC-

QTOF 
PCA + PLS-DA 95 % 5 

Caffeic acids 

Organic 

acids 

 

Amino acids 

Carbohydrat

es 

(Hoyos 

Ossa et al., 

2018) 

Table 

olive (96) 

UPLC-

QTOF 
PCA + PLS-DA – 3 

Phenols 

Flavonoids 

Fatty acids 

(Kalogiour

i et al., 

2020) 

Margarin

e (35) 

HPLC-

DAD 
PCA + PLS-DA + SIMCA 100 % 2 Fatty acids 

(Bikrani et 

al., 2019) 

Lemon 

EO (16) 

UPLC-

QTOF 

NMR 

PCA + PLS-DA – 2 

Flavonoids 

Fatty acids 

Sesquiterpen

es 

(Marti et 

al., 2014) 

Wine 

(315) 
Raman PCA 90 % 5 – 

(Mandrile 

et al., 

2016) 

Wine 

(79) 

SPME-

GC–MS 
PCA + LDA > 90 % 9 

Esters 

Furfural 

Alcohols 

(Ziółkows

ka et al., 

2016) 

Oranges 

(137) 

SPME-

GC–MS 

e-nose 

PCA + LDA + PLS-DA 97,8% 3 
Terpenoids 

Heterocycles 

(Centonze 

et al., 

2019) 

Wine 

(60) 

UPLC-

QTOF 
RF + GA 86,7% 3 Phenols 

(Gil et al., 

2020) 

Beef (40) NMR PCA + PLS-DA + ANOVA – 4 Amino acids 
(Jung et 

al., 2010) 

Hazelnut 

(236) 

UPLC-

QTOF 

PCA + LDA + SIMCA + S

VM 
99,5% 5 

Phospholipid

s 

Acylglycerol 

Secoiridoids 

(Klockman

n et al., 

2016) 

Indonesia

n coffee 

(80) 

GC–MS PCA – 7 

Amino acids 

Organic 

acids 

Carbohydrat

es 

(Putri et 

al., 2019) 

Wine 

(152) 

UPLC-

QTOF 

FT-ICR 

PCA 
 

5 – 

(Roullier-

Gall, 

Witting, et 

al., 2014) 
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Matrix 

(Number 

of 

sample) 

Analytic

al 

techniqu

e 

Statistical tools 
Accurac

y 

Numbe

r of 

area 

Biomarker Reference 

Coffee 

(186) 

HPLC-

FLD 
PCA + PLS-DA 100 % 7 Caffeic acids 

(Núñez et 

al., 2021) 

Saffron 

(27) 

UPLC-

QTOF 
HCA + PLS-DA – 4 

Flavonoids 

Phenols 

(Senizza et 

al., 2019) 

Wheat 

(94) 

UPLC-

QTOF 
PCA + PLS-DA – 8 

Fatty acids 

Lipids 

(Jin et al., 

2020) 

Beef (39) 

UPLC-

Orbitrap 

GC–MS 

PCA + PLS-DA > 90 % 3 

Amino acids 

Phospholipid

s 

(Man et 

al., 2021) 

Asparagu

s (317) 

UPLC-

QTOF 
PCA + PLS-DA + ANOVA > 82 % 5 Lipids 

(Creydt & 

Fischer, 

2020) 

Olive oil 

(90) 

UPLC-

QTOF 
PCA + PLS-DA 87 % 6 

Fatty acids 

Carbohydrat

es 

(Gil-

Solsona et 

al., 2016) 

Saffron 

(20) 

UPLC-

QTOF 
PCA + PLS-DA 100 % 2 

Flavonoids 

Organic 

acids 

Carbohydrat

es 

(Guijarro-

Díez et al., 

2015) 

Rice 

(165) 

SPME-

GC–MS 

PCA + PLS-DA + DD-

SIMCA 
100 % 3 

Esters 

Hydrocarbon

s 

Terpenoids 

(Ch et al., 

2021) 

Violet 

leaf 

extracts 

(28) 

UPLC-

QTOF 
PCA – 2 – 

(Saint-

Lary et al., 

2016) 

Grape 

marc (57) 
NMR PCA + PLS-DA 100 % 2 

Esters 

Alcohols 

Organic 

acids 

(Fotakis & 

Zervou, 

2016) 

Milk 

(180) 
NMR PLS-DA > 95 % 10 – 

(Tenori et 

al., 2018) 

Angelica 

(6) 

UPLC-

QTOF 
PCA + PLS-DA – 3 

Flavonoids 

Carbohydrat

es 

(Tianniam 

et al., 

2009) 

Rice (80) 

HPLC-

QTOF 

GC–MS 

PCA + PLS-DA + RF > 95 % 2 

Phospholipid

s 

Carbohydrat

es 

Fatty acids 

(Lim et al., 

2018) 

Cheese UPLC- PLS-DA – 2 Lipids (Rocchetti, 
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Matrix 

(Number 

of 

sample) 

Analytic

al 

techniqu

e 

Statistical tools 
Accurac

y 

Numbe

r of 

area 

Biomarker Reference 

(20) QTOF Amino acids 

Oligopeptide

s 

Lucini, et 

al., 2018) 

Wine (6) 
UPLC-

QTOF 
PLS-DA + HCA – 6 Polyphenols 

(Rocchetti, 

Gatti, et 

al., 2018) 

Hazelnut 

(25) 

UPLC-

QTOF 
PLS-DA + HCA – 3 

Polyphenols 

Sterols 

(Ghisoni et 

al., 2020) 

Wine 

(110) 

UPLC-

QTOF 
PCA – 12 

Flavonoids 

Amino acids 

(Arapitsas 

et al., 

2020) 

Out of 32 studies, wine was the matrix of interest in six of them. These studies are 

representative of the scales that can be considered. Four of them focused on discrimination at 

the regional or subregional level (Arapitsas et al., 2020, Gil et al., 2020, Mandrile et al., 2016, 

Roullier-Gall et al., 2014). Overlaps in the PCA are observed in every case. It means that 

geographical proximity is associated with very slim differences between samples, even from 

different cultivars. For the last two studies, one discriminates samples from nine different 

countries with a classification rate over 90 % (Ziółkowska et al., 2016). The other one, only 

considered the chardonnays from three areas in Italy and three other countries: France, Israel, 

and Australia (Rocchetti, Gatti, et al., 2018). Origins were well separated apart from Aosta 

Valley in Italy and Burgundy in France with an almost perfect overlap. This discriminant 

analysis was performed based on the phenolic profile. Therefore, it suggests that phenols 

alone are not enough to discriminate wines from different origins. This could be explained by 

the fact they are produced by the process and not environmentally born or terroir specific. 

For other matrixes, different approaches were considered, both in terms of analytical 

platforms and mathematical frameworks. NMR is an untargeted instrument that is often used 

for origin assessment (Becerra-Martínez et al., 2017, Fotakis and Zervou, 2016, Jung et al., 

2010, Marti et al., 2014, Tenori et al., 2018). It is also the only method to be accredited in 

Europe for multivariate analysis (Deutsche Akkreditierungsstelle GmbH, 2020). An 

impressive work was done on milk by metabolomic fingerprinting: milk samples from ten 

farms were acquired and analyzed by NMR. Multivariate analysis achieved proper clustering 

for eight out of ten farms with very little overlaps, using only 19 metabolites (Tenori et al., 

2018). It demonstrates the potential of NMR as an effective and powerful technique for non-

targeted analysis. 

The statistical method is almost as important as the analytical method. It is mainly carried out 

by PCA or PLS-DA, in 82 % and 65 % of the articles, respectively. However, two other 

algorithms were evaluated for origin analysis. A genetic algorithm (GA) inspired by natural 

selection was used for the selection of features. Better results were achieved with this 

approach compare to random forest on the same set of data (Gil et al., 2020). Support vector 

machine (SVM) is a supervised algorithm used to perform data clustering. A model with 

SVM and SIMCA was built to avoid false positive, samples were either properly assigned or 

not assigned with this combination (Klockmann et al., 2016). This demonstrates the analytical 
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capability to attribute a production area to an authentic product. It is important to notice that 

adulterated samples were not considered in these studies. Mixing different vintages, or 

different areas of production might make origin discrimination considerably harder, and this is 

certainly the most common scenario. If we combine these findings, we may describe terroir as 

the total of organic, biologic, and geologic environmental indicators, as well as processed 

born molecules from savoir faire and barrels, mills, or hives for example. 

4. Discussion and perspectives 

To summarize, recent advances in metabolomics coupled with the expansion of non-targeted 

and multivariate analysis allow promising results in the context of food fraud. Technologies 

including mass spectrometry and spectroscopy are relevant for authentication applications 

such as non-adulteration, validation of species, origin, farming practice or quality 

determination. 

Some steps of the non-targeted workflow are reaching consensus such as the performance 

evaluation or the sampling criteria. Nonetheless, many of them still need to be standardized. 

In the coming years, concerns about the number of samples, the interlaboratory testing or the 

establishment of certified reference material (CRM) will certainly get attention. 

Overall, this literature review reveals that successful classification can be achieved in the case 

of authentic samples. Unexpected exogen adulteration is also well understood and already 

standardized for uses in food controls. However, no studies evaluated real-life scenario where 

these frauds can be mixed. For example, a wine sample adulterated with 20 % of a cheaper 

wine from a different origin: classification ability will certainly decrease in these cases. 

Future research might increase performance of multivariate modelling, but it seems difficult 

to achieve exhaustive models for each product. 

There are different perspectives to tackle this issue. One of them is the increasing 

development of data fusion in the context of food authenticity (Biancolillo et al., 2019). For 

example, in determining the origin of an unknown sample, elemental or isotope analysis could 

narrow the search area. Non-targeted approaches can then be used to accomplish closer 

discrimination. 

Another idea stands in the biomarkers identified in these studies. The distribution of the 

biomarkers regarding the type of fraud and their accuracy was analyzed [Fig. 1]. It appears 

clearly that some markers are more relevant than others: Amino acids, carbohydrates, 

flavonoids, fatty acids, organic acids, and volatiles are found in almost every category. 

Accuracy was not available in all studies, but at least one of these biomarkers achieve a 

100 % classification ability in each category. Lipids and phenols are also used in three of the 

five frauds considered and could be worth the attention. Because proteomics is a very new 

field in the context of authenticity (Creydt & Fischer, 2018), it can explain the 

underrepresentation of peptides that are certainly interesting compounds [Fig. 1]. 
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Fig. 1. (a) Distribution of biomarkers depending on the food fraud (b) Heatmap of mean 

accuracy depending on the biomarkers and the fraud considered. When 0 is displayed, it 

means no values were available. (c) Distribution of biomarkers depending on the matrix. 

matrixes with only one type of biomarkers were removed (d) Hierarchical cluster of matrixes 

depending on the biomarkers (distance: binary). 

Based on these conclusions, the distribution and clustering of these biomarkers depending on 

the matrix was also analyzed [Fig. 1]. The first observation is that caffeic acids are matrix 

specific and cannot be considered as good terroir biomarkers. Next are the two most 

interesting markers in this distribution: amino acids and carbohydrates as they are covering 

seven of the ten groups of matrixes. Volatile compounds, fatty acids and lipids can be added 

to these two markers to account for almost 70 % of the total, covering all groups with high 

accuracy. 

The hierarchical cluster was built based on the biomarkers found in each matrix. It shows two 

groups: one is composed of spices, coffee, fat and oil, wine, beer, and grapes. The only 

relationship between those could be the organoleptic importance for each of them. The other 

group is made of vegetables, juices, meat, wheat, and rice. All four of them were studied with 

lipids and amino acids extensively. 
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To conclude, this could pave the way for a new strategy: instead of mapping all matrixes for 

all areas, there is a possibility that some biomarkers might be environmentally born and not 

matrix specific. These biomarkers could be used as terroir markers and be a real game 

changer in the perception of the terroir effect. This effect was studied in the case of wine 

(Roullier-Gall, Lucio, et al., 2014), where it was found that greater differences were observed 

within a given vintage. However, to our knowledge, the thesis of finding terroir biomarkers 

across various products has not been evaluated yet. It will surely be the framework of future 

research on new ways to ensure food authenticity at a global and reliable scale. 
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