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Mohammad Imran Syed
Sorbonne Université, CNRS, LIP6
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Abstract—The Received Signal Strength Indicator (RSSI) is a
preferred metric for localization and distance estimation among
researchers. Although it is easy to use, as it is available for most
operating systems, it is not entirely reliable when used alone. We
assess the inconsistency of RSSI values in an experimental setup.
We deploy multiple sniffers to investigate whether redundancy
can reduce measurement errors and, if so, by how much. Among
other measures, we consider the total number of packets that
individual sniffers miss as well as bursts of consecutive misses.
We analyze their implications for distance estimation and the
detection of mobile targets. As a major outcome of our analysis,
we estimate that the redundancy of three sniffers yields a good
balance between accuracy and cost.

Index Terms—Distance estimation, wireless, passive measure-
ment, RSSI, redundancy.

I. INTRODUCTION

The number of smartphone users is an ever-increasing
figure, and it is expected to reach 7,516 billion by 2026 [1].
Furthermore, as more and more devices connect to the Inter-
net [2, 3], forecasts suggest that, by the end of 2022, there will
be approximately 362 million public Wi-Fi hotspots available
worldwide [4]. These numbers lead to an amplification of
the topology dynamics and more challenging network man-
agement issues. Consequently, our dependence on efficient
measurement techniques to precisely characterize the network
and understand the mobility of users also increases.

Although cellular operators produce a lot of location data,
they are not publicly available. As a result, the research
community still relies on a limited set of traces, which restrains
the universe of possible observations. There is a need for
wireless measurements to build traces that researchers can
use to evaluate and improve networking approaches. In this
paper, we focus on estimating distances separating two or
more moving wireless devices using passive measurements.

Passive measurements are a non-intrusive data collection
method and an effective way of tracing mobility and localiza-
tion. It relies on sniffers (devices collecting wireless packets
in monitor mode) placed throughout the desired testing area.'
Passive measurements are easy to run and are preferable
because they do not require to bother the infrastructure ad-
ministrators or end-users [5, 6, 7, 8].

The Received Signal Strength Indicator (RSSI) values are of
interest to detect the presence of a node in a target area and
evaluate its position relatively to the sniffer [9, 10, 11, 12].

Tt is, however, essential to define which data one can sniff in a given
location to preserve the users’ privacy.
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Fig. 1: Co-located sniffers may miss different packets.

Furthermore, they are available in most operating systems in
a straightforward fashion. However, the downside of using
the RSSI concerns its accuracy. Although there are some
workarounds like machine learning to reduce the error in
distance estimation [13, 14], the applicability of the RSSI is
still questioned [15, 16, 17].

As a part of the ANR MITIK project [18], we collect
Wi-Fi traces through passive measurements to capture the
mobility of wireless nodes in a given area. In the project,
we focus on probe request messages, the only messages a
user’s device sends when it is not associated with any Wi-Fi
access point. The problem is that their sending rate can be
as low as 55 packets per hour or as high as 2,000 packets
per hour, depending on the device [19]. Missing these probe
requests may have severe consequences on the quality of the
measurement campaign, as it may lead to nodes not being
detected or biased mobility estimations.

The capture ratio of a single sniffer is usually low because
of packet losses due to the inherent characteristics of the
wireless medium. We depict this scenario in Fig. 1, where the
sniffers, although co-located, capture different sets of packets.
We advocate that by combining traces of multiple co-located
sniffers, we limit the number of missed packets and get closer
to the complete trace. The question we address in this paper
is what redundancy (number of co-located sniffers) is needed
to achieve a good balance between trace completeness and
deployment cost.

To this end, we conduct experimental work. We collect
wireless traces using five Raspberry Pi 4B (RPi4 hereafter)



devices as sniffers and one as a source generating Wi-Fi
traffic [20]. The source is the node we want to characterize. We
co-locate the sniffers (i.e., introduce redundancy) to investigate
the consistency of the RSSI values. We do the measurements
outdoors and monitor the traffic generated by a controlled
source for which we know the ground truth of its distance from
the sniffers. In our experiments, we place the source node at
multiple distances from the sniffers and make the following
observations:

« Individual sniffers miss quite a lot of packets. However,
the percentage of packets captured by the sniffers is
homogeneous for a given distance.

o All sniffers do not necessarily miss the same packet. It
means the packet is undoubtedly not lost because of the
collisions at the sniffers.

o The number of consecutive packets missed by a sniffer
can be huge at times. Moreover, the sniffers miss the
capture for several seconds, which is problematic if one
has to analyze mobility.

o At times, there is incoherence in RSSI values of the
same packet captured by different sniffers, which leads
to frequent errors in distance estimation.

Our experiments confirm that redundancy improves the
capture quality by reducing the number of packets missed and
the gaps due to consecutive packet misses. More importantly,
we noticed that the redundancy of three seems to be the
sweet spot for the type of nodes and antennas we used in
our experimental campaign. Furthermore, we could also solve
the problem of the incoherence of RSSI values and reduce the
error in distance estimation.

The rest of the paper is organized as follows. We explain
the complete experimental methodology and the dataset in
Section II. In Section III, we present the analysis to show
the need for redundancy. In Section IV, we present the results
for distance evaluation using redundancy. Section V mentions
the related work. We finally conclude the paper and indicate
future directions in Section VI.

II. EXPERIMENTAL METHODOLOGY AND DATASETS

In this section, we explain our experimental methodology
and the datasets that we obtain as a result. As we mentioned in
Section I, we collect Wi-Fi traces generated by our own source
node, which lets us know the ground truth and rule out any
privacy issues. We run the experiments outdoors and consider
the redundancy of up to five sniffers. We perform several tests
where we place the source node at different distances from
the sniffers.

A. Experimental set-up

Nodes. We use six RPi4 nodes in our measurement set-up,
five as co-located sniffers and one as the source of Wi-Fi
traffic. We use one external Wi-Fi module per sniffer (Alfa
AWUSOS5INH [21]). The advantage of this specific external
Wi-Fi module, contrarily to others commercially available, is
that it can be easily set to monitor mode to capture the Wi-Fi
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Fig. 2: The layout of the sniffers for the experiment (placed
on the ground).

traffic passively. In our experiments, the source and sniffers
operate on channel 1 of the 2.4 GHz band.

Scenario. We capture traces outdoors while maintaining a line
of sight between the source node and the sniffers. We place
sniffers side by side with a distance of 20 cm between each of
them (see Fig. 2), and they remain stationary for the duration
of the experiments. We place the source node at distances of
1, 10, 20, 30, 40, and 50 meters from the sniffers. We perform
four tests for each distance, each lasting five minutes.

B. Methodology of the capture

Trace generation. We use scapy [22] at the sender node
to send Wi-Fi probe requests. The source node transmits at
a rate of 10 packets per second. This rate is the maximum
value we can achieve without looping through the sequence
numbers; in this way, we can identify the packets correctly
and synchronize the sniffers’ traces.

Trace capture. Sniffers run tcpdump to collect the
traces [23]. We configure filters to gather only the traffic
generated from the controlled source node. The final captured
trace is one pcap file per individual sniffer and distance.

Comparison between traces. The sniffers’ traces are not
synchronized among them because the sniffers have their
own local clocks. We need synchronization to be able to
compare the traces that the sniffers collect at the same time.
Synchronization is mandatory to identify the common frames,
i.e., frames captured by at least two sniffers. We developed
a Python tool called PyPal that performs such a synchro-
nization operation [24]. Once the traces are synchronized, we
concatenate the traces of all four tests to generate one large
trace for each distance. We then perform multiple analyses to
determine how many sniffers capture each packet. We store
the RSSI values for each packet as seen by each sniffer.

Steps involved in synchronization. The beacons are the
closest representatives of real-time clocks. Moreover, the
IEEE 802.11 standard dictates that the beacon frames have
a fixed timestamp in the header, added by the access point,
further improving synchronization precision. We use these
frames as a basis for the synchronization process as illustrated
by Fig. 3. Two traces come as inputs: one as a reference
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Fig. 3: PyPal’s methodology for synchronizing traces.

trace and the second as the one to be synchronized. The first
step consists of extracting the beacons that appear in both
traces (common frames). Note that the coverage areas of the
sniffers capturing these traces should overlap; otherwise, the
traces will be disjoint. The common frames serve as reference
frames. In the next step, the timestamps of reference frames
are synchronized using linear regression over a sliding window
of 3 frames. The synchronized reference frames are then the
guidelines to synchronize the complete trace. The tool provides
additional options to concatenate or merge the synchronized
traces, which are out of the scope of this paper.

Wi-Fi header fields that identify reference frames. We use
a combination of different header fields to identify reference
frames that are present in both traces: (i) sender’ MAC
address, (ii) sequence number, (iii) frame sub-type, (iv) Frame
Checksum Sequence (FCS), (v) fragment number, and (vi)
fixed timestamp as per the IEEE 802.11 standard.

C. Dataset

Each sniffer generates one trace per test for each distance.
As discussed earlier, we run the test four times. So we obtain
120 traces in total. As the first step after time synchronization,
we organize all traces within a single test — we perform this
step separately for each distance. Once we have a single trace
per test, we combine the traces from each test to get one single
trace for each distance. At this stage, we have all the traffic
captured in the four tests at a given distance in one final trace.
We do the analysis to identify the packets that are captured by
multiple sniffers and group them by their RSSI values. So, we
have a single concatenated file per distance representing the
RSSI values of each packet as seen by different sniffers. For
the sake of illustration, we provide in Table I a snapshot of
such a trace for the distance of 50 m. Note that, for example,
sniffer s, misses the first packet, while sniffers s;, s3, and s5
miss the second packet.

We use this dataset for all the analyses we present in the
remainder of this paper.

TABLE I: Per-packet per-sniffer RSSI (dBm) at 50 m for a
subset of the collected trace. “~" means that particular sniffer
does not capture the packet.

RSSI captured per sniffer
Packet S1 S92 S3 S4 S5
1 -48 54 48 - -46
2 - =78 - -48 -
3 - =72 - - -
4 - - -64 - -
5 -48 56 -48 48 -44
6 -48 54 50 48  -46
7 -46 -54 50 48 44
8 46 - 48 48 44
9 -48 - - - -
10 - - - - -44
11 - - - -50 -
12 -46  -54 50 48 -4
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Fig. 4: Global error for individual sniffers at 1, 20, and 50
meters. Note that the longer the distance, the higher the ratio
of packet misses.

III. IS A SINGLE SNIFFER ENOUGH?
A. Global error

A single sniffer is bound to lose some traffic because of
the characteristics of the wireless medium. We show in Fig. 4
the percentage of packets missed by each sniffer at distances
of 1, 20, and 50 meters.2 We call it the global error because
it represents the overall packet loss. We observe that between
26% and 30% of the packets are missed at a distance of 1 m,
while the miss ratio increases to a maximum of nearly 35% and
40% for 20 m and 50 m, respectively. However, we observe
that the error ratio is roughly the same for all five sniffers for
the same distance.

B. Burst of packets missing

We now look into the burst size of consecutive packets
missing. It is an important parameter as it translates into a
period during which the sniffers fail to detect the presence

2We only show three representative values for the sake of readability, as
the results are similar for 10, 30, and 40 meters.



TABLE II: Maximum burst size (M.B.S.) for individual sniffers and the ratio between the number of maximum size bursts

and the total number of bursts (Freq.).

1m 10m 20m 30m 40m 50m
Sniffer | M.B.S. Freq. M.B.S. Freq. M.B.S. Freq. M.B.S. Freq. M.B.S. Freq. M.B.S Freq.
s1 7 1/1997 7 2/1926 10 1/2065 9 1/2120 9 1/2090 12 1/2098
52 6 1/2063 8 1/1952 8 2/2030 7 512077 8 2/2042 9 3/2067
s3 9 1/2142 9 1/2078 259 1/2040 7 3/2147 11 1/2058 9 2/2110
S4 6 4/2077 8 1/1973 8 1/2035 11 1/2187 9 1/2081 11 1/2082
S5 54 1/2078 7 2/1931 7 3/2101 8 1/2079 13 1/2115 13 1/2073

of devices — depending on their mobility, they may traverse
the monitored zone without being even detected. We show
in Table II the maximum burst size (M.B.S.) of consecutive
packet misses for each one of the five sniffers at each distance,
along with the ratio between the number of maximum size
bursts and the total number of bursts (Freq.). The numbers
are far from negligible in certain cases. We see a gap of 259
consecutive packet misses by sniffer s3 for the distance of
20 m. Recall that our source sends packets at a rate of 10
packets/s. Thus, s3 misses packets for 25.9 seconds, which is
massive! For contextualization, the average walking speed of
an adult is between 1.2 m/s and 1.4 m/s, which means that a
mobile user would have moved between 31.08 m and 36.26 m
in 25.9 seconds [25, 26]. The phenomenon is even worse if
we consider an average transmission rate of 1,028 probes per
hour [19]. If a sniffer misses 259 consecutive packets, then it
will end up missing traffic for 15.24 minutes. The user would
have covered a distance between 1,097 and 1,280 meters. It
means by the time this sniffer captures the next packet, the
user is most likely to be out of the coverage area of several
following sniffers.

C. Introducing redundancy

Using a single sniffer can be risky. We highlight the need
for more robust capture strategies. To this end, we combine
the traces from different co-located sniffers to assess the
advantages of redundancy. We take one sniffer and keep
adding other sniffers one by one. We analyze all possible
combinations of sniffers for a given redundancy, which gives
a total of (}) = Wlk)' combinations.

We do the calculations for all combinations and take the
average for all combinations of the same size. We show in
Table III the results for the average maximum burst size of
consecutive packets missing. We see that even the average
value of maximum burst size for single sniffers is quite high
for all distances. However, the burst size decreases signifi-
cantly for a combination of two sniffers for each distance. The
results improve further for larger combinations of sniffers. The
results are zero for the captured traffic when we consider the
combination of all sniffers because each packet is captured by
at least one sniffer.

IV. DISTANCE EVALUATION

A. Detection of a node

We use the Log-Distance Path Loss (LDPL) model to
estimate the distance and put values into context. The formula
for LDPL is as follows [27, 28]:

TABLE III: Average burst size of consecutive packets missing
for multiple sniffers.

Number of Average burst size per distance
combined sniffers | 1m | 10m | 20m | 30m | 40m | 50 m
1 16 8 58 8 10 11
2 4 5 5 5 5 6
3 3 3 3 4 3 4
4 2 2 2 2 2 3
5 0 0 0 0 0 0

RSSI(d) =RSSI(dy)— 10 xn x log (;), (1)
0

where RSSI(d) is the RSSI value seen by the sniffers when
they are at a distance d from the source, RSSI(dp) is the RSSI
value at a close-in reference distance dg, and 7 is the path loss
index which is dependent on the propagation environment. We
use the following values for our experimental set-up:

o dg = 1 meter,

o average RSSI at dy = -19.7 dBm, and

e n =175

In our experiments, the average RSSI value at a reference
distance of 1 m is -19.7 dBm. Although there are a few
building walls on the side, we maintain Line of Sight (LoS)
in our experiments, so we choose 1.75 as the value of 7. The
specifications of the hardware are as follows:

e transmission power: 27 dBm

o antenna gain: 5 dBi

e receiver sensitivity: -93 dBm

B. Disparity in RSSI

We see in Table I that -46 dBm and -48 dBm are the
most common RSSI values for all sniffers, but we see some
values as -78 dBm, -72 dBm, -56 dBm, and -54 dBm. We
classify these values as outliers by using the Majority Rule
Scheme strategy [29]. These values are not coherent with other
measures and result in large errors in distance estimation. We
have such RSSI outliers for all distances in our experiments.
We calculate the average RSSI value for each packet for all
combinations of sniffers for redundancy of 1 to 5.

Table IV shows the average per-packet error in distance
estimate in meters, using two sniffers with the least error, for
combinations of all number of sniffers at 50 m. We see in row
1 that the average error of estimated distance for a combination
of two sniffers is 6.24 m which is 2.35 m less than the
average of individual sniffers. Similarly, if we consider only
the average of single sniffers in the second row, the average



TABLE IV: Raw per-packet average distance error for the

distance of 50 m.

Number of sniffers

Packet 1 2 3 4 5
1 8.59 6.24 0.86 0.86 2.76
2 1051.8 8.59 8.59 128.32  248.05
3 924.03  924.03 924.03 924.03 924.03
4 289.96 289.96 289.96 289.96 289.96
5 8.59 6.24 0.86 2.76 3.99
6 6.24 2.76 0.86 0.45 1.5
7 6.24 2.76 0.86 1.6 6.35
8 8.59 8.59 1041 13.66 16
9 8.59 8.59 8.59 8.59 8.59
10 25.53 25.53 25.53 25.53 25.53
11 3.88 3.88 3.88 3.88 3.88
12 6.24 2.76 0.86 1.6 6.35

TABLE V: Per-packet average distance error after removing

the outliers for the distance of 50 m.

Number of sniffers

Packet 1 2 3 4 5
1 859 624 0.86 0.86 2.76
2 859 859 859 8.59 8.59
3 _ _ _ _ _
4 _ _ _ _ _
5 859 859 859 6.24 3.88
6 624 276 0.86 0.45 1.5
7 6.24 332 1.81 0.66 0.45
8 859 859 859 1041 1223
9 859 859 859 8.59 8.59
10 - - - - -
11 3.88 3.88 3.88 3.88 3.88
12 6.24 332 181 0.66 0.45

error is huge, around 1050 m. However, the error goes down to
8.59 m when we take the average of the combination of two
sniffers with the least error. Although the redundancy helps
reduce the error, the presence of these outliers still results in
massive errors, as we see for combinations of four and five
sniffers in the second row. We clean the dataset to remove
the outliers. The RSSI values below -56 dBm appear in only
2.86% of the cases; thus, we remove them from the 50 m
dataset. Similarly, values greater than -46 dBm account for
only 1.66% of the values. We recalculate the average values
in Table V and we already see a huge improvement. We see in
row seven that the average error with five sniffers goes from
6.24 m to only 0.5 m. The rows with no values mean that the
sniffers presented outlier values.

In Fig. 5, we represent the best and worst-case results of
average error in distance estimation for one, three, and all five
sniffers, with and without outliers. We see that the worst-case
error is massive for a single sniffer for all distances. Three
sniffers yield an improvement, but the worst-case error is still
significant. We also note in Fig. 5b that removing RSSI outliers
significantly reduces the average error, including the worst
case. Even a single sniffer gives low error for short distances
but increases strikingly for longer distances, particularly for
the worst-case scenario.

C. Discussion

The information of glofbal error, bursts of packets missing,
and outliers in the RSSI values lead us to the decision that
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Fig. 5: Error in distance estimate for 1, 3, and 5 sniffers with
and without outliers.

using a single sniffer is not enough, especially in the case
of measuring mobility. The results show that combining the
sniffers improve all three issues that we highlight. On the one
hand, the results of our experiments in Table V show that
using five sniffers primarily results in a minimum error in
distance estimate. On the other hand, the results in Table III
show that even three sniffers (row 3) reduce the average burst
size to 3 or 4, meaning the sniffers miss the traffic for 0.3~0.4
seconds. The user could move between 0.36 and 0.56 meters
in this period. Therefore, we propose that the redundancy of
size 3 is good enough for an outdoor capture to rule out the
anomalies in the trace capture and lead to more complete
results and analysis. The best combination of 3 sniffers in
Fig. 5 slightly outperforms the best case single sniffer which
further strengthens our proposal of the use of redundancy of
size 3.

V. RELATED WORK

Adel et al. use ten maximum RSSI values for indoor local-
ization using Bluetooth Low Energy (BLE). They use median,
mean, mode, and single direction outlier removal to smooth
the RSSI and improve the indoor distance estimate [30]. This
method requires testing in a trilateration setup. Venkatesh et
al. use the mean and median filters to stabilize the RSSI



values to enhance the distance estimation accuracy for indoor
localization in BLE [31]. Salomon et al. make a comparison
for distance estimation by RSSI and Channel State Information
(CSI) for Wi-Fi by doing experiments on RPi4 devices, one as
an Access Point (sender) and one as receiver [32]. Forbes et
al. use a single RPi4 as capturing device to perform distance
estimation in Wi-Fi using CSI [33]. They capture the traffic
generated by an Access Point in response to the packets it
receives from a computer. Chuku et al. remove the RSSI
outliers using clustering to improve the distance estimates [29].
Our work stands distinctive as we introduce redundancy in
the number of devices capturing the traffic, which reduces the
error in distance estimation in Wi-Fi.

VI. CONCLUSION AND FUTURE WORK

We find out that individual sniffers miss many packets,
impacting the quality of mobility traces. The problem is even
more severe when we must rely on probe requests that are
not very frequent. We measured the burst size of consecutive
packet misses, and, in some instances, the number can be as
high as a few hundred. Such misses translate into long data
gaps and poor distance estimation when considering metrics
such as the RSSI. In this regard, we observe fluctuations of
RSSI values across multiple co-located sniffers. The use of a
single sniffer can thus lead to incorrect distance estimations.

For this reason, we advocate for the introduction of redun-
dancy to improve the quality of the traces and, consequently,
the characterization of the nodes. In future work, we plan
to investigate the inter-burst size distribution and its impact
on long-term mobility analysis. We also intend to determine
the value of the path-loss index from the RSSI value that
appears the most for each distance and use that to find the
error distribution in the distance estimation. Moreover, we
plan to extend our work to accommodate mobility with the
introduction of moving source nodes.
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